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Abstract.
The long series of multispectral measurements from the Advanced Very High Resolution Radiometer (AVHRRY), which began

in 1979, is now approaching its end, with the last remaining AVHRR sensor currently operating aboard EUMETSAT’s Metop-

C satellite. Several Climate Data Records (CDRs) built on AVHRR data now face the end of their observational

. However, since many modern

imagers contain AVHRR-heritage spectral channels, a potential for extension of these AVHRR-based climate data records

exists. This study investigatesd the possibility to simulate original National Oceanic and Atmospheric Administrationgency
(NOAA)-19 AVHRR channels from the Suomi National Polar-orbiting Platform (NPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) radiances using collocated AVHRR/VIIRS

datasets from 2012-2013. Spectral Band Adjustments (SBAs)-Factors Radiances-from-the-Advanced-\ery-High-Reselution

Factors{SBAFs)-were derived using linear regression and neural networks (NNs). The NN approach produced the best results,

and separating daytime from night-time conditions when simulating AVHRR channel 3B at 3.7 um was key. Furthermore,
daytime radiance corrections in this channel must depend on actual surface and cloud reflectances to be realistic, which was
only achieved by the NN approach.

The cloud mask, cloud top height, and cloud phase products were produced from the simulated AVHRR radiances using the
same retrieval methods for NOAA-19 data used to compile the CLARA-A3 elimate-datarecord(CDR). CLARA-A3 is the
third edition of the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) CDR with cloud parameters,
surface albedo, surface radiation, and Top of Atmosphere (TOA) radiation products from AVHRR. Products were validated
using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations - Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIPSO-CALIOP) cloud products and agreed well with original CLARA-A3 products, with the best results provided by
the NN simulation approach. The NN-based approach best reproduced the corresponding products for cloud optical thickness
(COT), cloud effective radius (CRE), liquid water path (LWP), and ice water path (IWP).
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The CLARA-A3 CDR will be complemented and extended with VIIRS-based products to cover the period 1979-2024 (46
years). This edition will be known as CLARA-A3.5. Future extensions and editions can follow a similar approach by applying
the same radiance simulation method to collocated data from the Metop-C AVHRR and the Metop-Second Generation (SG)
METimage sensors, the first version of the latter scheduled for launch in August 2025. Successful simulation of AVHRR
radiances from METimage and VIIRS data enables the extension-ef-the-CLARA CDR extension for several decades-using

1 Introduction

Successful climate monitoring depends on the availability of long observational time series from reliable and stable observation
platforms and sensors. Observations with very long temporal coverage (i.e., on century scales) have been mainly restricted to
measurements from land-based surface stations and mostly limited to 2-meter temperature measurements (e.g., Morice et al.,
2021). For even longer perspectives, various proxy observations must be used (e.g., tree ring and sediment climatologies;
Anchukaitis et al., 2017).

However, to fundamentally describe and understand climate and climate change, global observations at high spatio-temporal
resolution are needed. Furthermore, a full range of different meteorological parameters need to be covered. The first steps
towards realizing an observation system with truly global coverage were taken when information from polar and geostationary
satellites was introduced in the 1960s. These sensors were later upgraded and introduced in operational missions by the end of
the 1970s (Kidd et al., 2009; Giri et al., 2025). Additional observations with better coverage of ocean surfaces and upper air
were introduced through various technological developments (Lin and Yang, 2020; WMO, 2024; NDACC, 2024).
Furthermore, the systematic use of radiation network measurement data (NDACC, 2021) from active and passive remote
sensing instruments at surface stations and on space platforms is now standard (Thies and Bendix, 2011; eoPortal, 2024). All
these developments made it possible to compile comprehensive and consistent climate datasets by synthesizing data from all
types of observation platforms in reanalysis datasets (Hersbach et al., 2020).

Reanalysis datasets are undoubtedly capable of providing the best possible description of the Earth’s atmospheric and surface

state evolution, at least over the last 3-5 decades, with access to a multitude of global observations and the use of a physically

consistent methodology based on model physics constraints. However, because of the use of data from an ever-changing

observation system, (not least after the introduction of several new or improved satellite sensors over the last few decades},
the uncertainty regarding the existence and magnitude of climate trends in reanalysis results is still considerable (Bengtsson et
al., 2004; Thorne et al., 2005; de Padua and Ahn, 2024; Tarek et al., 2021). In addition, some mpertant-parameters of great
importance for the Earth’s radiation balance are not yet fully assimilated from observations. Fhis-concernsThis concern, in

particular, cloudiness and cloud properties (Yao et al., 2020). Furthermore, the reanalysis dependency on physical constraints

from the current Numerical Weather Prediction (NWP) model means that the results are not completely independent, since
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model physics cannot be considered as perfectly describing the real atmosphere/Earth system (as pointed out by Roebeling et

al., 2025).
With this background, the value of a long time-series of single sensor observations or measurements for climate studies would

still be high. This concerns, not least, Climate Data Records (CDRs) from satellite platforms, where several of them now cover
considerably longer periods than the standard World Meteorological Organisation (WMO) climatological 30-year period. The
Advanced Very High -Resolution Radiometer (AVHRR), operating onboard polar satellites since 1978, provides the longest
available time series of observations from meteorological satellite imagery. The third edition of the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT) Climate Monitoring Satellite Application Facility (CM SAF) CDR
with cloud parameters, surface albedo, surface radiation, and Top of Atmosphere (TOA) radiation products from AVHRR
(abbreviated CLARA-A3, seeand-deseribed-by Karlsson et al., 2023) covers more than four decades of AVHRR observations.
Neither AVHRR radiances nor AVHRR-derived cloud and radiation products have yet been assimilated in reanalysis datasets,

which is an additional argument for their value as an independent observation dataset. However, the last AVHRR instrument
was launched with the EUMETSAT satellite Metop-C in 2018. Thus, the AVHRR era will soon be over.

This paper investigates methods to extend the CLARA CDR with data from the AVHRR successor, the Visible Infrared
Imaging Radiometer Suite (VIIRS), which is now operational on current polar meteorological satellites from NOAA. If
methods are successful, the CLARA CDR can be extended by at least 2-3 decades. The paper studies two approaches to
simulate AVHRR radiances from VIIRS, using Spectral Band Adjustment Factors (SBAFs): 1. using linear regression 2. a
method using a MultiLayer Perceptron (MLP) neural network. As a further test of success besides ordinary radiance-to-
radiance comparisons, the simulated radiances are used to produce the CLARA cloud properties, which are then validated
using independent cloud observations from the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) onboard the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite (Winker et al., 2009).

Section 2 describes the methodological background and the used datasets. The methodology is then described in detail in Sect.
3, followed by results in Sect. 4. Further analysis and discussions are presented in Sect. 5, with conclusions given in Sect. 6.

2 Methodological background and selected datasets
2.1 Introduction to Spectral Band Adjustment Methods

Adjusting measurements after introducing a slightly modified or new sensor version poses a longstanding challenge that has

received considerable attention over the years. Most well-known are the activities of the Global Space-based Inter-Calibration

System (GSICS, WMO 2025), where the primary goal is to ensure a homogeneous behavior of measurement time series-of

measurements from a particular sensor or spectral channel. We call this adjustment “Inter-calibration” (Chander et al., 2013a)

and the purpose here is to provide a homogenous data record without artificial discontinuities. The Fidelity and uncertainty in

climate data records from Earth Observations project (FIDUCEQ) emphasized the difference between homogenized and
harmonized data-sets (Giering et al., 2019) with relevance for the CDR compilationeempilation-of climate-datarecords.
3
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Harmonized data would implybe corrections to a measurement based on high-quality reference measurements, thus providing

the best possible estimation of the measured radiance. This correction would still allow differences to a similar_instrument
having slightly different spectral responses. However, for a CDR,elimate-data+ecord which should allow for estimation-of
climate trends estimation, homogenized data seemingly should be the best choice. Homogenized data for a CDR means that

measurements are corrected with respect to one particular sensor in the measurement series instead of to one high quality

reference sensor. On the other hand, this could also lead to that-sensor accuracy is-violationed (if the various sensors have

significant differences in spectral response). Thus, there are pros and cons of both spectral adjustment methods and any of

them shall be applied with caution. An important aspect is also that radiance differences between two sensors might be caused

by additional factors other than-just differences in spectral responses, e.g. radiance biases or calibration errors.
FheoreticathyWhen! focussing on the current problem to simulate AVHRR radianees-from VIIRS radiances based solely on
spectral response differences, no SBAF-spectral adjustment methodology will ever be able to simulate AVHRR channels

perfectly, since some parts of the spectrum covered by another AVHRR-heritage sensor channel are simply not observed by
the corresponding AVHRR channel (and vice versa). However, if channel differences are not very large, corrections may be
sufficient, depending on the intended applications. Piontek et al. (2023) estimated that linear SBAFs can explain up-temore
than 80 % of the variance, but the efficiency depends on the selected channels.

- ~For many years, the standard methodology tsed-to
handle these transitions-spectral band adjustments has been to calculateing SBAFs. These can be derived from direct inter-

comparisons of spatio-temporally collocated measurements from the two sensors_(for example as described by Meirink et al.,

2013). Relations based on SBAFs can be either linear (Chander et al., 2013b) or non-linear and sometimes more complicated,
involving more channels than the targeted spectral channel (Villaescusa-Nadal et al., 2019; Claverie, 2023). When collocations
are not possible, spectrometer data can be used for calculations, most often relying on data from the SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, Bovensmann et al., 1999) or the Infrared
Atmospheric Sounding Interferometer (IASI, Blumstein et al., 2004) for meteorological applications. Hyperspectral
observations are then convolved with the narrow-band Spectral Response Function (SRF) to calculate the SBAFs (Piontek et
al.,, 2023). The NASA ssatellite cloud and radiation property retrieval system (SatCORPS)atCORPS SBAF tool is a

comprehensive and widely used web-based tool based on this technique, providing SBAFs for a wide range of sensors and
satellites (NASA, 2016; Scarino et al., 2016).
2.2 The challenge: Bridging differences between the spectral channels of AVHRR and VIIRS

Table 1 lists the AVHRR channels simulated in this study. Notice that our target-reference sensor is the third version of this
sensor (AVHRR/3) as carried by the NOAA-19 satellite. The-choice-of the NOAA-19-AVHRR for-deriving- SBAFs-is-not
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versions—eliminating—the—need—forfurther—inter-calibration—The choice of the AVHRR onf NOAA-19 as our primary

targetreference sensor is natural, since we want to replace the loss of NOAA-19 observations in the afternoon orbit after 2012

due to orbital drift. Section 2.5 provides an even stronger motivation for choosing NOAA-19. It should also be mentioned that

the reference radiances forrom-the NOAA-19 AVHRR should be considered as harmonized data, since their quality and

evolution over time has been optimized for this particular AVHRR sensor by a method described by Heidinger -(2018).

In this study, we are not interested in simulating AVHRR channel 3A, as shown in Table 1. The reason is that satellites carrying
the VIIRS sensor follow an afternoon orbit, a sun-synchronous path with a daytime equator crossing shortly after noon. For
all earlier satellites used in the CLARA-A3 CDR, where AVHRR is in a similar orbit to VIIRS, only AVHRR Channel 3B
was available (active). AVHRR observations have a swath width of 2600 km, and the horizontal resolution is approximately
1.1 km at the-nadir. However, it is much coarser (approximately 6 km) at the swath edges. Cracknell (1997) provides more
details on the AVHRR imager.

Table 1: Main AVHRR/3 sensor spectral characteristics. To be noticed is that AVHRR Channel 3A (marked in
italics) is not subject to spectral conversion here (see text for explanation).

Channel name Central wavelength Spectral interval
Channel 1 0.630 um 0.58-0.68 um
Channel 2 0.862 um 0.725-1.00 pm
Channel 3A 1.61pm 1.58-1.64 pm
Channel 3B 3.74 pm 3.55-3.93 um
Channel 4 10.80 um 10.3-11.3 pm
Channel 5 12.00 pm 11.5-12.5 pym

Table 2 gives the complete set of medium resolution channels (M-channels) of the VIIRS imager (described in more detail by
Hillger et al., 2013). The swath width is 3,000 km, the horizontal resolution is 750 m at the nadir, and only slightly less (1.6
km) at the swath edges due to an oversampling scanning technique that is different from AVHRR. The AVHRR-heritage
channels are marked in blue in Table 2. In theory, AVHRR channel 2 may be simulated using a combination of channels M6
and M7. However, saturation problems with channel M6 (as reported by Cao et al., 2013) produce unrealistic measurements,

making it unsuitable for this purpose.



Table 2: Main spectral characteristics of the medium resolution (M) channels of the VIIRS sensor. AVHRR-heritage

cha
VIIRS Central wavelength Spectral interval Corresponding
channel name AVHRR channel
M1 0.412 um 0.402-0.422 pm -
M2 0.445 pm 0.436-0.454 pm -
M3 0.488 pm 0.478-0.498 pm -
M4 0.555 um 0.545-0.565 pm -
M5 0.672 um 0.662-0.682 um Channel 1
M6 0.746 pm 0.739-0.754 um Channel 2
M7 0.865 um 0.846-0.885 um Channel 2
M8 1.240 um 1.230-1.250 um -
M9 1.378 um 1.371-1.386 pm -
M10 1.610 um 1.580-1.640 pm Channel 3A
M11 2.250 pm 2.225-2.275 um -
M12 3.700 pm 3.691-3.709 um Channel 3B
M13 4.050 pm 3.973-4.128 pm -
M14 8.550 um 8.400-8.700 pm -
M15 10.763 pm 10.263-11.263 pm Channel 4
M16 12.013 pm 11.538-12.488 um Channel 5

nnels are marked in blue. Notice that the channels marked in italics are not used (see text for explanation).

For a better visualization of the differences between the two sensor’s channels, we can study the differences in spectral
responses as illustrated in Fig. 1. It is clear that there are indeed substantial differences for most channels, except possibly for
AVHRR channels 4 and 5. However, the different wavelength scales at the x-axes in the plots in Fig. 1 tend to exaggerate
differences for some channels (e.g., AVHRR channel 1) and underrate differences for other channels (e.g., AVHRR channel
2). AVHRR channel 2 shows the most significant difference, with a broader spectral coverage than the VIIRS AVHRR heritage
channels (M6 and M7).
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Figure 1: Comparison of spectral responses for AVHRR (NOAA-19) and AVHRR-heritage channels of VIIRS (Suomi-NPP).
Spectral response curves of AVHRR channels are given in blue to be compared with the response curves from VIIRS channels in
red. Corresponding AVHRR-heritage channel notations (M5, M6, M7, M8, M12, M15 and M16) are provided at their central
wavelengths along the x-axis. The grey curves give the atmospheric transmittance for reference.

2.3 VGAC - Reduced resolution VIIRS data

The CLARA-A3 CDR is based on the archived global AVHRR dataset stored in a format called Global Area Coverage (GAC)
with a horizontal resolution of approximately 4 km (Kidwell, 1991). Fhe-CLARA-A3-CDR-is-based-on-AVHRR-data-with-a

~Extending CLARA-A3
with VIIRS-derived products requires resampling VIIRS data to an equivalent horizontal resolutionfermat. This process
benefits from a resampled VIIRS dataset already developed at NOAA (Knapp et al., 2019). This format is called VVIIRS Global
Area Coverage (VGAC), and VIIRS data in this format are currently available for almost the entire Suomi-NPP and some

years of the NOAA-20 data record. The horizontal resolution is 3.9 km, and the resampling procedure (e.g., radiance averaging)
is improved compared to the original GAC format for AVHRR. VGAC data have already been tested for use in CDR
production (Wang et al., 2023; Seo et al., 2023). For this study, we used Suomi-NPP VGAC data from 2012, 2013, and 2019,
as well as NOAA-20 VGAC data from 2019.
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2.4 Selected approach

This study initially tested various SBAF relations, primarily sourced from NASA (2016). Results were acceptable for most
AVHRR channels, but for some channels (especially channel 3B at 3.7 pm), we detected—encountered serious
deviationsproblems in using the VIIRS-based simulations;—which-caused-specific-problems—for-various-applications-of-the
simulated-radiances. For example, night-time cloud detection significantly overestimated the-ameunt-of low-level clouds
amounts. The cloud detection method used (CMAPROB, described by Karlsson et al., 2020) is a probabilistic method using
all AVHRR channels. AVHRR channel 3B is considered the most crucial channel for the perfermance-of this method’s
performance, especially at night. Only minor deviations from the original AVHRR channel 3B radiances significantly affect
the results_at night. The encountered problems enceuntered—were likely caused by the limitation of IASI #s—not
providingobserving radiances for wavelengths shorter than 3.62 um. Since the-spectral-respenses-of AVHRR channel 3B and
VIIRS band M12 spectral responses both allow for significant contributions at wavelengths shorter than 3.62 um foer-sherter

wavelengths (see Fig. 1), this limitation can be substantial, especially since this affects in particular the contribution from
reflected solar radiation which rapidly increases with decreasing fersherter-wavelengths-in-this-wavelength-region. An effort
to describe these contributions using Radiative Transfer Model (RTM) calculations was applied in the satCORPS tool, but this

foreedwas donemade using threuwgh-assumptions, making results more uncertain.

approach-Due to the uncertainties encountered for the NASA-derived SBAFs for this channel, we decided to proceedearry-on

by calculating SBAFs from collocated AVHRR- and VVIIRS-observed radiances. In practice this means that the derived spectral

band adjustments might be composed by more than just the effects of differences in spectral responses, since we cannot

separate these effects from other effects (e.g. radiance biases or calibration errors) when doing collocations. Ferthisreasen;

2.5 Selected collocation and validation datasets

Since VIIRS on the Suomi-NPP satellite was launched already in 2011 (with useful data delivered from January 2012 onwards),
collocations with AVHRR measurements have been possible for more than a decade (Fig. 2). However, the only satellite
allowing nearly simultaneous overpasses covering the entire globe was NOAA-19. In 2012 and 2013, NOAA-19 had nearly
the same orbital configuration as Suomi-NPP, with a daytime equator crossing overpass time near 01:30 PM (i.e., local solar
time 13:30 in Fig. 2). After 2013, the orbital drift of the NOAA-19 satellite gradually restricted available collocations to higher
latitudes. Notice also that for later satellites carrying VIIRS (i.e., NOAA-20 launched in 2018 and NOAA-21 launched in
2022), these satellites still have fixed equator crossing times at 01:30 PM. Consequently, no global collocations with AVHRR

were anymore possible.
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Figure 2: Local solar times at equator observations for all AVHRR-carrying NOAA satellites from TIROS-N to NOAA-19 and
EUMETSAT’s METOP A/B/C satellites. Shown are all data that were used for the CLARA-A3 CDR processing. The figure shows
ascending (northbound) equator crossing times for afternoon satellites (NOAA-7 to NOAA-19) and descending (southbound)
equator crossing times for morning satellites (NOAA-12 to NOAA-17 and METOP A/B/C). Corresponding night-time observations
take place 12 hours earlier/later. To be noticed is that Suomi-NPP has a stable orbit with equator crossing time at 13:30.

Since NOAA-19 and Suomi-NPP had slightly different orbital altitudes and thus slightly different orbital periods, simultaneous
observations (in this case, limited to within 2 minutes) occurred approximately every 15" day. Considering some data losses
for both satellites, this resulted in a total collocation dataset of 115 Suomi-NPP orbits and corresponding NOAA-19 orbits for
the two years. At most, pixel data were separated by 3 km, and maximum satellite zenith angles of up to 15 degrees to avoid
too much influence from directional effects. Collocations were calculated using nearest neighbour matching with the
Pyresample module in the Pytroll software package (Raspaud et al., 2018).

Table 3 lists the training and validation datasets used.

10



Table 3: Description of the used training and validation datasets. The table shows the number of selected Suomi-NPP
230 and NOAA-20 orbits being compared with the corresponding AVHRR radiances and cloud products, alternatively (for
cloud product validation) the number of orbits being validated with CALIPSO cloud products. See text for details.

Dataset Number of orbits Period
Training dataset 1 65 2012: Feb, Apr, Jun, Jul, Aug,
Suomi-NPP Oct, Nov, Dec
2013: Jan, Mar, May, Jul, Sep,
Nov
Training dataset 2 34 2013: Feb, Apr, Jun, Aug, Oct,
Suomi-NPP Dec
Radiance validation dataset 16 2012: Jan, Mar, May, Sep
Suomi-NPP
Cloud product validation dataset 289 2012, 2013, 2019: All months
Suomi-NPP
Cloud product validation dataset 274 2019: All months
NOAA-20
Cloud property inter- 48 2012: All months

comparison dataset Suomi-NPP

The linear SBAF regression methods utilized the entire training dataset (dataset 1 and 2). For the Neural Network (NN)
235 approach, training dataset 1 was used for the actual training and dataset 2 was used as a “during training validation dataset” to
decide when to stop the training. The radiance validation dataset was used to evaluate the performance of all SBAF approaches.
For the NN training, special handling of the AVHRR channel 3B for very low brightness temperatures (BT) had to be applied.
The original AVHRR data have a rather poor radiometric resolution at very low temperatures, while the corresponding data

11
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from the M12 channel of VIIRS are much improved compared to the AVHRR data. The poor radiometric resolution for
AVHRR in this channel often led to missing data or a very large spread of realized BTs. It was decided not to let the network
learn this type of irregular behaviour of AVHRR. Thus, data points with missing channel 3B data or data with BTs below 220
K were slightly modified using a simple relation between VIIRS and AVHRR BTs. Before training, the AVHRR BTs for these
pixels were set to original VIIRS M12 BTs plus the difference between AVHRR Channel 4 and VIIRS M15 BTs, hereby
assuming that the difference in BTs for 11 pm channels should be the same as the difference for 3.7 um channels. This would
stop the network from trying to learn these deficiencies of AVHRR Channel 3B for colder temperatures than 220 K.

In addition to validating the VGAC-simulated AVHRR radiances, inspecting the performance of certain CLARA products
derived from these radiances proved necessary. As noted earlier, achieving a perfect simulation of AVHRR radiances is
theoretically impossible. Therefore, it was important to check if the derived products were good enough to comply with
CLARA product requirements. Thus, we produced the CLARA-A3 cloud products from the simulated AVHRR radiances.
Comparisons with original NOAA-19 products (cloud property inter-comparison dataset in Table 3) and cloud datasets from
the CALIPSO satellite (cloud product validation datasets in Table 3) were used to investigate them. More details on cloud
product validations are given in Section 3.3.

3 Detailed description of applied spectral band adjustment methods and validation procedures
3.1 Spectral Bband aAdjustment (SBA) methods

We have tested two different Spectral Band Adjustment (SBA) methods for the simulation of NOAA-19 AVHRR radiances
from Suomi-NPP VIIRS radiances:

1. SBAFs derived from linear regression
2. SBAFs derived from a MultiLayer Perceptron (MLP) neural network

Method 1 is the classical regression method, often used in inter-calibration applications relating two nearby spectral
channels, in which-where measurements can be collocated during an overlapping period—{e-g-—fer-harmonizing-channels
from-the same-senser-but-on-different satellites). The two training data sets described in Table- 3 were merged and used to

estimate the regression parameters. The method has been applied with two different configurations:

Linear-la: Linear regression based on all training samples for individual channels
Linear-1b: Linear regression separating results for day, night, and twilight

Configuration Linear-1b accounts for the fact some channels might behave differently during the day and night. This
concerns, in particular, AVHRR channel 3B at 3.7 um, which measures exclusively thermally emitted radiation at night but

12
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both thermally emitted and reflected solar radiation during the day. We have defined night as solar zenith angles (SZAs)
above 89°, twilight for SZAs between 80-89°, and day as SZAs below 80°.
Appendix A provides linear regression parameters for both methods.

Method 2 (hereafter described as the NN-based method or SBAF-NN) explores whether multichannel information from
VIIRS can be used to simulate individual AVHRR channel radiances, taking illumination conditions into account (in the
same way as for method Linear-1b). The NN-based method was trained on all training samples, allowing dependence on
multiple input channels for each target channel, separated by night, twilight, and daytime conditions. The following section
further describes this method and its training.

3.2 Definition and training of the SBA-NNMLP-network

This study used Multilayer perceptrons of the type Quantile Regression Neural Networks (QRNN, Pfreundshuh et al., 2018,
Cannon, 2011). These have been successfully used to retrieve cloud top height parameters from polar satellite imagery
(Hakansson et al., 2019) in the EUMETSAT Nowcasting Satellite Application Facility (NWC SAF) project. The resulting
cloud top height products were also used later in CLARA-A3. Separate networks were trained for day, night, and twilight
conditions. As input to the AVHRR training, the network had the individual channels (as reflectances and brightness
temperatures), channel differences (i.e., brightness temperature differences, BTDs), and channel ratioguotas from VIIRS (e.q.,
M10 reflectances divided by M6 reflectances). As truth to train against, the same variables for AVHRR were used (Table 4).
However, channels at 1.6 um and 8.5 um are not available on NOAA-19 AVHRR, which were consequently used only as
input to the network. We omitted the variables concerning reflective channels during night-time conditions. The reason for
using primarily channel differences and ratioguetas between channels in the training, rather than just the original set of all
individual channels, is that many of the downstream applications for deriving CLARA products (e.g., cloud mask, cloud optical
thickness, effective radii, and surface albedo) rely heavily on relations between two or more AVHRR channels. Thus,
simulating these relations between channels as closely as possible is important.

The networks were trained for three distribution quantiles: of 16 %, 50 %, and 84 %, which estimate the retrieval error. The
Sequential model form Keras/Tensorflow (Joseph et al., 2021) defined the networks, with the MLP settings detailed in Table
5. The code for the training and the resulting networks is available on Github (https:/github.com/foua-pps/shafs_ann). Table

C1 in Appendix C6 provides the details on the final networks.

The data underwent thinning before training. The input data range was calculated and divided into 10 equal bins for each
variable, from which 1,000 data points were randomly selected per bin. Bins with fewer than 1,000 points were supplemented
with additional random selections to reach exactly 400,000 data points for the night-time network and 700,000 for each daytime
and twilight network. Data thinning aimed to give rare but important data points, such as cloud-free snow-covered surfaces

and hot deserts, larger representation in the training data.
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Table 4: Training variables for the MLP network.

Variables

Reflectance at 0.6 pm
RatioQueta of 0.6 um and 0.9 um reflectances
Brightness temperature at 11 pm
BTD between 12 um and 11 um
BTD between 3.7 pum and 11 pm
BTD between 8.5 pm and 11 pm
| RatioQueta of 1.6 um and 0.6 um reflectances

310 Table 5: MLP network settings.

‘ Multi--Layer Perceptron Model Setting Value
Number of hidden layers 2
Number of neurons per hidden layer 15
Learning rate 0.02
Patience 30
Momentum 0.9
Decay 10
Activation function for hidden layers Tanh
Kernel initializer glorot uniform
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3.3 Evaluation methods

The results for the simulated radiances are primarily evaluated by inter-comparing radiances in scatter plots and calculating
appropriate scores of radiance agreement. This evaluation is based on the Radiance validation dataset in Table 3.

An equally important way of evaluating the results is to investigate the impact on some central CLARA CDR cloud products,
to verify that the products derived from simulated AVHRR radiances fulfilled essential CLARA-A3 CDR product
requirements. A favourable condition for the chosen period was the possibility of collocating VIIRS and AVHRR orbits with
observations from the CALIPSO satellite (also having equator crossing times near 01:30 PM). Consequently, cloud products
derived from VIIRS-simulated AVHRR data could be efficiently validated using CALIPSO-CALIOP cloud products (Winker,
2018). Thus, validation results for the cloud parameters cloud fractional cover (CFC in %), cloud top height (CTH, in meters)
and cloud phase (CPH, meaning the percentage of liquid phase cloud tops) could be derived. The validation methods were the
same as those described by Karlsson and Hakansson (2018).

The processing of CLARA CDR cloud products is based on the software package for the Polar Platform System (PPS)
originally developed within the EUMETSAT NWC SAF project (https://www.nwcsaf.org/web/guest/home). PPS enables

cloud product processing for a wide range of imagers. The shift from one sensor to another is generally dealt with by adjusting

pre-calculated cloud detection thresholds, atmospheric corrections and other adaptations from mainly RTTOV-simulations

utilizing each sensors” spectral response functions.

We used a variety of validation scores depending on the investigated parameters (all scores described in detail by Karlsson
and Hakansson, 2018). For the cloud mask evaluation, we first converted cloud probabilities to a binary cloud mask using the
probability threshold of 50 %. Then, we calculated the overall cloud fractional cover (CFC) to be compared with the CFC
calculated from the CALIPSO cloud products. Validation scores mean error (bias in percentage points - %), dimensionless Hit
Rate and Kuipers scores were then calculated. Since the CALIOP cloud lidar on CALIPSO is more sensitive to cloud
occurrence than AVHRR, the Kuipers and Hit Rate scores were also calculated for CALIOP observations with the thinnest
clouds excluded (i.e., excluding contributions from cloud layers with cloud optical thicknesses < 0.20). For CTH, the cloud
top of the topmost cloud layer detected by CALIOP was used as the validation reference. Computed validation scores for CTH
were mean error and mean absolute error (both in meters). Also here, the effect of removing the thinnest clouds from the
CALIPSO dataset was studied, but now using a slightly relaxed cloud optical thickness threshold of 0.4, claiming that the
prospect of retrieving a cloud top height requires that clouds are also detected with reasonable confidence.

Notice that the Suomi-NPP/CALIPSO matchups for the years 2012-2013 (i.e., basically the Cloud product validation dataset
for Suomi-NPP in Table 3) are independent of the AVHRR/Suomi-NPP matchups (i.e., the two training datasets for Suomi-
NPP) in the same period. More clearly, the likelihood of simultaneous nadir observations from all three platforms is extremely

low.
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In addition to evaluating the performance of cloud products for 2012 and 2013, we also made the same validation effort based
on CALIPSO data for all months in 2019. The purpose was mainly to choose a period with more independent data, well
separated in time from the two years when SBAF methods were initially derived. Thus, we wanted to see if the results were
still valid for Suomi-NPP data 6 years later. In addition, we also wanted to see if the next VIIRS sensor on NOAA-20, with
slightly different spectral responses for some involved channels, would produce results with similar quality. This validation
effort used data from cloud validation datasets from 2019, as shown in Table 3.

As a final confirmation that simulated CLARA-A3 cloud products would perform satisfactorily overall, we also made inter-
comparisons between original and simulated AVHRR cloud property products for the NOAA-19/Suomi-NPP matchups in the
year 2012. Cloud property products COT, CRE, LWP, and IWP could not be validated in the CALIPSO validation study.
Comparing them with original AVHRR products indicates their validity, even though the validation dataset (i.e., the Cloud
property inter-comparison dataset in Table 3) partly includes cases used for training the methods. The analysis also computes
agreement scores similar to those defined for the radiance inter-comparisons.

4 Results

4.1 Results for simulated AVHRR radiances

for the 2012 radiance validation dataset.

Figure 3 shows scatterplots with results of the simulated AVHRR reflectances for the two visible AVHRR channels (Channels
1and 2, see Table 1). For the linear regressions, we only show results of version Linear-1b, since the two linear versions give
almost identical results for the visible channels. Results are compared with original reflectances from AVHRR and VIIRS. It
is clear that original channel reflectances are highly correlated in both sensors, although VIIRS reflectances are generally
slightly higher than AVHRR reflectances. The relatively large spread around the identity line is largely explained by remaining,
but small collocation errors in space and time. Furthermore, sampling differences in how radiances are averaged in AVHRR
GAC and VIIRS VGAC Ffield Fef ¥Views (FOVs) can also contribute to the scatter.

Simulations with the linear method improves the agreement (i.e., brings results closer to the identity line) in Fig. 3 for both
channels, but appear to create overcompensated results for high reflectances. The NN-based method delivers the best results,
effectively removing most of the off-diagonal deviations observed in the linear method.

16



100 100 100
g £
E 80 o 80 280
© ° S
S 60 S 60 = 60
2 L =
o D
S 40 8 40 < 40
= 0
-
20 20 20
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
AVHRR 0.6 um AVHRR 0.6 um AVHRR 0.6 um
100 100 100
. g IS
E 80 & 80 280
o ° =
S 60 38 60 = 60
g o z
S 40 g 40 < 40
= (%]
-
20 20 20
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
AVHRR 0.9 um AVHRR 0.9 um AVHRR 0.9 um
[ T ——
200 400 600 800 1000

Figure 3: Radiance inter-comparisons for AVHRR channels 1 (0.6 pm, upper panels) and 2 (0.9 pm, bottom panels).

Original AVHRR vs VIIRS reflectances (%) are shown in the leftmost column. AVHRR vs VIIRS-simulated

reflectances are shown by the central and rightmost columns. The center column shows results from the Linear-1b
375 method, while the rightmost column shows simulated results from the SBAF-NN SBA-NN method.
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Figure 4: Radiance inter-comparisons for AVHRR channel 3b (3.7 um, uppermost panels), channel 4 (11 um, middle
380 panels) and channel 5 (12 pum, lowermost panels). The figure shows merged results for all daytime categories. Original
AVHRR vs VIIRS brightness temperatures (K) are shown in the leftmost column. AVHRR vs VIIRS-simulated
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brightness temperatures are shown by the central and rightmost columns. The center column shows results from the

Linear-1b method, while the rightmost column shows simulated results from the SBAF-NN method.

As seen in Fig. 1, the spectral responses for VIIRS and AVHRR for the infrared channels 4 and 5 are very similar, which is
also verified by the results in the middle and bottom panels of Fig. 4. Original and simulated results for the two AVHRR
channels are here more or less identical. Some deviations are, however, seen for AVHRR channel 3B (upper panel in Fig. 4)
and the NN-based method is somewhat better than the linear method for reducing these deviations.

Although AVHRR simulations for the infrared and shortwave-infrared channels appear to agree well with the original AVHRR
radiances in Fig. 4, we must emphasize that for some CLARA applications (like cloud detection), the quality of simulated
AVHRR channel differences is very important. Similarly, estimating surface albedo in CLARA requires accurate inter-channel
relations (i.e., reflectance ratioguetas) between the two visible channels. Fig. 5 closes in on those features.

The close-up of differences and ratiosguetas in Fig. 5 reveals deviations from the identity line for both original and simulated
results. The brightness temperature differences for the three original infrared and short-wave infrared channels are relatively
large. The linear approach somewhat improves the agreement, but the NN-based method can almost completely remove the
differences. The linear method cannot improve the agreement for the reflectance ratiogueta, while the NN-based method

provides an excellent agreement.
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Figure 5: Results for selected channel differences and ratiogusetas. The figure shows merged results for all three
daytime categories. Uppermost panels: Results for original and simulated brightness temperature differences (K)
between AVHRR channels 4 and 5 (11-12 pm). Middle panels: Results for original and simulated brightness
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temperature differences (K) between AVHRR channels 4 and 3B (11-3.7 pm). Lowermost panels: Results for original
and simulated reflectance ratiogueta between AVHRR channels 2 and 1 (0.9/0.6 um). Original AVHRR and VIIRS
relations are shown in the leftmost column, results for the Linear-1b method in the middle column, and results for the
NN-based method in the rightmost column.

Figure 6 summarises the quality (uncertainty) of simulated results, i.e., the difference distribution between simulated and real
AVHRR results for the studied methods based on the same datasets as in Figs. 3, 4, and 5. Notice that the figure also shows
results for the previously illustrated channel differences and ratioguetas, and results for the Linear-1a method (not shown in
Figs. 4 and 5). For reference, the figure also shows the original deviation between AVHRR and VIIRS channels.

We immediately notice that the SBAF-NN method is superior to all other methods by showing the highest frequency at the
zero-difference level (blue curves in Fig. 6). This method creates no secondary peaks, and the distribution is clearly non-
Gaussian (i.e., the grey distribution indicated in Fig. 6 is Gaussian with the same bias and standard deviation). Notice, in
particular, this method has excellent results for channel differences and ratioguetas (lowest row in Fig. 6).

Results in Fig. 6 clearly show that AVHRR channel 3B simulations require separate handling of day and night measurements.
If the simulation method is not different between day and night (i.e., as in Linear-1a), the error difference clearly peaks outside
the zero level (e.g., green curves in the leftmost plots in the middle and bottom rows in Fig. 6).

Tables A2.1-A2.4 in Appendix B summarize all results for selected overall statistical measures. Appendix B also provides
results sub-divided for day, night, and twilight conditions.
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two panels show results for all 5 AVHRR channels, while the bottom panels show results for BTDs (channel 4 — channel

5) and channel 4 — channel 3B) and reflectance ratiogueta (channel 2 divided by channel 1).

4.2 CALIPSO-based validation of derived CLARA cloud products for 2012 and 2013

Tables 67-89 show the results from the CALIPSO-CALIOP validation of three CLARA-A3 cloud products based on
VIIRS/VGAC-simulated AVHRR radiances. Section 3.3 describes the general validation setup and the validation scores used.
The tables contain validation results for seven-eight different validation setups:

1. NOAA-19 CLARA-A3
Achieved validation results in a previous validation of CLARA-A3 products for products generated from the NOAA-
19 AVHRR instrument over 2012-2013. These results are included, since this study aims to produce results from
VIIRS/VGAC data compatible with earlier NOAA-19 AVHRR-based products.

2. PPS VIIRS MGACNo-SBAF
Validation results based on uncorrected AVHRR-heritage channels of VIIRS/VGAC data in 2012-2013. Notice that
this category means that PPS cloud products have been produced in the VIIRS environment (i.e., applying pre-
calculated cloud detection thresholds, atmospheric corrections and other adaptations using spectral responses of the
five AVHRR-heritage channels of VIIRS).

3. VGAC No SBA
Similar to the previous category but now based on PPS cloud products produced in the AVHRR environment (i.e.,
applying pre-calculated cloud detection thresholds, atmospheric corrections and other adaptations using spectral
responses of the original five NOAA-19 AVHRR channels). This environment is also used for all following
categories.

4. VGAC Linear-la
Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the method Linear-1a in 2012-
2013.

5. VGAC Linear-1b
Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the method Linear-1b in 2012-
2013.

6. VGAC SBAF-NN
Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the SBAF-NN method in 2012-
2013.

7. VGAC SNPP 2019 SBAF-NN
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Validation results based on Suomi-NPP VIIRS/VGAC-simulation of AVHRR channels based on the SBA=-NN

method in 2019.
8. VGAC NOAA-20 2019 SBAF-NN
Validation results based on NOAA-20 VIIRS/VGAC-simulation of AVHRR channels based on the SBAF-NN

method in 2019.

The tables also show the original requirements defined for the three cloud products when compiling the CLARA-A3 CDR in
the rightmost column. Products generated from VIIRS/VGAC-simulated products should also fulfill these target requirements.
Notice that in the CLARA-A3 evaluation, the removal of contributions from detected very thin clouds by CALIPSO-CALIOP
was applied based on the COT threshold of 0.2 for CFC and 0.4 for CTH. The use of different COT thresholds here is motivated

by the wish to avoid the thinnest clouds detected by the cloud masking procedure, since these are always the most difficult

clouds to deal with for any CTH retrieval. Results from the same procedure are also included in the tables.

Table 6.6- Validation scores for Cloud Fractional Cover (CFC): bias [%], Kuipers score, and hitrate (both [-]). See text

and Sect. 3.3 for details.

Parameter NOAA-19 PPS VGAC VGAC VGAC VGAC VGAC VGAC CLARA-A3
CLARA-A3 VIIRS No SBA Linear-1a  Linear-1b SBA-NN SNPP NOAA-20 Product
2019 2019 require-
SBA-NN SBA-NN ment
Total # 1026 497 497 497 497 497 289 274
Orbits
Total #FOVs 6355780 3468354 3468354 3468354 3468354 3468351 1891597 1804134
CFC bias -11.03 % -10.46 % -7.47 -6.11% -10.20 % -9.74 % -10.37 % -9.43 % -
CFC bias -0.22% 0.28 % 3.27% 4.63% 0.55% 1.00 % 0.67 % 1.63% 5%
(COT>0.2)
CFC Kuipers 0.687 0.701 0.639 0.606 0.688 0.695 0.694 0.687 -
CFC Kuipers 0.706 0.712 0.646 0.638 0.710 0.700 0.701 0.685 0.6
(COT>0.2)
CFC Hitrate 0.825 0.833 0.822 0.814 0.829 0.834 0.831 0.833 -

Table 78. Validation scores for Cloud Top Height (CTH): bias and mean absolute error (both [m]). Total number of

used orbits and samples are given in Table 67. See text and Sect. 3.3 for details.

Parameter NOAA-19 PPS VGAC VGAC VGAC VGAC VGAC VGAC CLARA-A3
CLARA-A3 VIIRS No SBA Linear-la  Linear-1b SBA-NN SNPP NOAA-20 Product
2019 2019 require-
SBA-NN SBA-NN ment
CTH bias -900 m -1049 m -1129 m -504 m -501m -598 m -633m -408 m -
CTH bias 807 m 644 m 641 m 1166 m 1143 m 1034 m 1122 m 1288 m 800 m

(COT >0.4)
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CTH mean 1664 m 1678 m 1755 m 1560 m 1538 m 1541 m 1673 m 1656 m -
abs error

Table 89. Validation scores for Cloud Phase (CPH, here the fraction of liquid clouds): bias [%], Kuipers score, and
hitrate (both [-]). Total number of used orbits and samples are given in Table 67. See text and Sect. 3.3 for details.

Parameter NOAA-19 PPS VGAC VGAC VGAC VGAC VGAC VGAC CLARA-A3

CLARA-A3 VIIRS No SBA Linear-1a Linear-1b SBA-NN SNPP NOAA-20 Product
2019 2019 require-
SBA-NN SBA-NN ment

CPH mean -1% -4 % -0:06 % -1% 1% 0% 0% 2% 5%

bias

CPH Kuipers 0.67 0.66 0.66 0.69 0.68 0.68 0.67 0.68 0.6

CPH Hitrate 0.84 0.83 0.83 0.85 0.85 0.84 0.84 0.84 -

[f comparing results in columns “PPS VIIRS” and “VGAC No SBA” for CFC in Table 6, we notice that to process VIIRS data

for AVHRR-heritage channels in the correct PPS VIIRS environment generally gives better results than when processing these

data in the AVHRR PPS environment. It proves that there is indeed a need to apply spectral band adjustments to properly use

VIIRS-based data in the AVHRR PPS environment. Some signs of this is also seen for CPH results in Table 8 while it is more

difficult to judge the changes seen for CTH results in Table 7.

Regarding CFC results, it is clear that all methods (except pessibhy-Linear-1a which actually worsens results further) perform
well, indeed much better than the CLARA-A3 requirements and very close to the achieved validation results for CLARA-A3.
The SBAF-NN method has the best overall scores for the VIIRS/VGAC simulations validated against all CALIPSO-detected
clouds. A closer look at results (not shown here) reveals that clearly better results are mainly explained by superior CFC
performance during night conditions.

Results for CTH in Table 78 are also somewhat similar for all methods, but it is difficult to draw conclusions based exclusively
on the bias parameter. As Hakansson et al. (2018) pointed out, the cloud top distribution is largely bi-modal with peaks for
low-level and high-level clouds. Since determining high-level cloud tops is much more difficult than for low-level cloud tops
(i.e., high-level clouds are predominantly semi-transparent), the actual distribution of low-level and high-level clouds in the
validation dataset has therefore great importance for the bias results. Consequently, the error structure is generally non-
Gaussian, making the bias parameter inappropriate as a measure of uncertainty. A more reliable uncertainty parameter here is
the mean absolute error. We notice that all results based on simulated AVHRR data are in line with or even slightly better than
the AVHRR reference results from CLARA-A3.

For the CPH product results in Table 89, the differences in the results between the various products are even smaller, so no

method can be determined as clearly standing out compared to any other method.
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It is encouraging is to see that the method found to best simulate AVHRR radiances according to the previous section (the
SBAF-NN method), also appears to perform well based on Suomi-NPP and NOAA-20 data from 2019. Only a minor
degradation appears visible for NOAA-20, which has a VIIRS sensor with slightly different spectral channel responses
compared to Suomi-NPP.

4.3 Inter-comparing original AVHRR-based and VIIRS/VGAC simulated cloud physical products for 2012

Only some of the CLARA-A3 cloud products can be validated using CALIPSO-CALIOP. The cloud physical products (CPP)
of CLARA-A3 consist not only of the CPH product (validated in the previous section), but also of the CWP product, sub-
divided into cloud liquid water path (LWP) and ice water path (IWP). COT and CRE are needed for their generation. Even if
we cannot easily validate these products from independent data, comparing the original AVHRR-based products with the
VIIRS/VGAC-generated products in the used AVHRR/VIIRS collocation dataset is possible. Here, we show such inter-
comparisons based on all collocated data for 2012. Notice that since the CPP products are only derived during daytime, the
only difference between the Linear-1a and Linear-1b methods is that the latter also has a distinction between twilight and day.
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Figure 7: Frequency distributions of CPP differences between products based on VIIRS-simulated and real AVHRR
radiances. For reference, also products based on uncorrected VIIRS radiances are shown (green dotted curve = No
SBA in the legend).
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Table 910. Mean Absolute Difference (MAD) for the various Spectral Band Adjustment methods for CPP products
525 based on simulated data versus products based original AVHRR data. Minimum MADs for each CPP product are

shown in bold numbers.

COT [-] CRE [um] LWP [gm-?] IWP [gm?]
No SBA 8.8 3.4 61.1 85.8
Linear-1a 5.9 3.0 49.8 75.9
Linear-1b 5.4 3.0 44.8 67.8
SBA-NN 5.1 2.6 42.0 55.9
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(i.e., underestimated CREs compared to the AVHRR values). SBA corrections improve the results and especially the SBA-

NN method produce a well-defined narrow peak centered at the zero-difference, level. This is also reflected in Table 9 [Formaterat: Teckensnitt:Inte Fet
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5 Discussion

5.1 AVHRR radiance simulations

Our simulations show that radiance simulations based on linear regression methods can only partially remove differences
between original AVHRR and AVHRR-heritage VVIIRS channels. Although correlations between channels are generally high
(especially for the infrared channels), there are obvious remaining non-linear features that linear methods cannot handle
properly. In contrast, the SBAF-NN method handles these non-linear features more accurately when simulating radiances.
Including channel differences and ratioguetas during network training, which is particularly important for downstream
applications, further improves the results.

One very important finding in our study is that for the 3.7 um channel (AVHRR channel 3B), which measures both emitted
thermal and reflected solar radiation during daytime, it is crucial to separate radiance simulations for daytime and night-time
conditions. It is well-known that radiances in this channel behave very differently during night and day. However, it is also
clear that small differences in spectral responses between the original AVHRR channel 3B and the AVHRR-heritage channel
M12 of VIIRS lead to clearly different daytime behaviour of the two channels. This is a consequence of the small difference
in central wavelengths shown in Tables 1 and 2. The lower central wavelength value in M12 means that this channel is slightly
more sensitive to reflected solar radiation, which results in a larger reflectance contribution to the observed brightness
temperature in this channel. Thus, any relation deduced from purely night-time measurements (with only thermal emissions)

will fail if applied to daytime measurements. From this, we also need to emphasize that, even if previously shown results for

cloud screening in Table 6 indicate that good results could be achieved without any spectral band adjustments of VIIRS heritage

(i.e., staying with VIIRS processing of AVHRR-heritage channels without any adaptations to AVHRR data) channels-ferseme

produets, any retrieval that is highly dependent on AVHRR channel 3B need to make spectral band adjustments on the
corresponding VIIRS channel.

Central to this study was the definition of the AVHRR/VIIRS collocation dataset for 2012 and 2013. The fact that NOAA-19
and Suomi-NPP had very similar, but not identical, orbits caused some concern, since it led to an uneven global sample

extraction. The small orbital differences led to the largest orbital track separations in the tropics, resulting in large (less
favourable) angular differences. To avoid too much influence of angular differences, which could lead to differences from
anisotropic reflection and atmospheric absorption effects, we set a maximum viewing angle of 15 degrees for both sensors.
This value was a compromise between the wish of getting samples for all latitudes, but still limiting the effects of differences
due to anisotropic reflection and atmospheric absorption. It allowed samples to be obtained from all latitudes, but the number
of resulting samples also became an increasing function of latitude. Initially, we tried even stricter limits on viewing angles,

but this resulted in only a few samples from very warm surfaces at low latitudes, thereby hampering the neural network training.

5.2 Resulting cloud masks, cloud top heights, and cloud phases
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The CLARA-A3 CDR's cloud detection method depends heavily on radiances in AVHRR channel 3B. As mentioned in the
previous section, the difficulties in handling this channel properly clearly affected validation results based on CALIPSO-
CALIOP cloud products. Using the radiance simulation method Linear-1a resulted in serious errors in night-time cloud
masking, even if daytime results were acceptable. Night-time results clearly improved with the Linear-1b method, but even
more so with the NN-based method.

The performance of the SBAF-NN cloud mask was even slightly better than the original results from NOAA-19 in the CLARA-
A3 CDR. However, it should be noticed that the previous validation of CLARA-A3 products allowed slightly larger time
differences between AVHRR and CALIPSO observations (i.e., 5 minutes instead of 2 minutes) which probably led to slightly
degraded results for CLARA-A3 compared to using a maximum 2 minutes time difference in both datasets.

Results for the other two CALIPSO-examined cloud products did not show a large variation and the existing variation mostly
was linked to the cloud mask quality.

Results for these three cloud products, based on the different AVHRR simulations and on original AVHRR and uncorrected
VIIRS radiances, generally did not differ very much in the achieved validation results (at least, if not including night-time
results for the method Linear-1a). In fact, they all reside well within the requirements previously set up for CLARA-A3. We
conclude that, for these products, the AVHRR-heritage channels of VIIRS, corrected or not, contain enough information to
provide results close to original AVHRR-based products. Encouraging is also that the good results are stable enough to be
repeated in 2019 for the Suomi-NPP satellite. Results are also good for the VIIRS sensor on NOAA-20 in 2019, although with
some degradation compared to Suomi-NPP. We expect this degradation to some extent due to differences in spectral responses
between the two VIIRS sensors. However, the differences remain small enough to avoid the need for radiance corrections, as
the results still meet CLARA-A3 product requirements.

5.3 Resulting cloud physical parameters

The inter-comparison of original AVHRR-based CPP products and products based on VIIRS-simulated radiances showed that
very accurate AVHRR radiance simulations are more important here than for the previously discussed cloud products. This
concerns the COT parameter (which depends largely on AVHRR channel 1) and the CRE parameter (which depends largely
on AVHRR channel 3B). A simulation of visible and short-wave infrared radiances should preferably be sub-divided into
twilight and daytime categories. However, the most important for the simulation of channel 3B is that the simulation method
must be derived exclusively from day-time data.

The success of the SBAF-NN method compared to the linear methods reveals something very interesting: The neural network
appears capable of applying different radiance correction factors to different objects in simulated channel 3B images. Notice
that only objects able to reflect solar radiation in channel 3B should have a correction factor that differs from the one applied
during night-time (when only thermally emitted radiation is measured). Furthermore, this correction factor should also vary
depending on the reflection efficiency of the object, i.e., the correction factor should be dependent on the object’s reflectance.

Any linear correction method will fail here, since the correction factor is practically always constant, regardless of the object
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in the image. The objects reflecting the most in this channel are typically thick water clouds. Since the linear regression will
produce a nearly constant average correction factor (only slightly moderated by an offset parameter), the correction factor in
this channel is likely too small for thick water clouds and too large for darker objects with low reflectance (e.g., snow-covered
surfaces). This is one explanation for underestimating simulated liquid cloud CRE values, which leads to underestimated LWP
values. Only the SBAF-NN method can correct for this effect.

Figure 811 and Table 10 tegether-illustrate together the capability of the SBAF-NN method to generate different SBAFs in
AVHRR channel 3B for different objects in a VIIRS/VGAC-simulation of AVHRR data over the Greenland area from 21 July
2012. Crosses mark locations in the scene with different cloud and surface types as interpreted by the Polar Platform System
(PPS) cloud type product (Dybbroe et al. 2004). Table 10 shows the resulting SBAF corrections for AVHRR channel 3B for
the Linear-1b and the NN-SBAFSBA-NN methods in all the marked points. Especially, notice the different SBAF corrections
for SBAF-NN for highly reflecting objects (X2, X4 and X7) compared to those for weakly reflecting or non-reflecting objects
(X3, Xs and Xg). It means that the NN is capable of identifying the different behaviour of different objects, thus making a kind
of implicit object type identification when assigning which SBAFs to use.

These results show the advantage of the NN approach in absorbing information, not only from the closest AVHRR-heritage
channel, but from a larger set of VIIRS channels for making it possible to give different objects different effective SBAF
corrections. For example, notice that snow surfaces, which should hardly be SBA=-corrected at all according to Table 10, are
known to have very low reflectance in AVHRR channels 3A and 3B. Thus, when including also channel M10 in the training
process, this could help in identifying snow surfaces with higher confidence than if using solely channel M12 in this spectral
region. Another example is the inclusion of VIIRS channel M14 in the training process, a channel which is not available at all
on AVHRR. This channel is partly affected by water vapour absorption and this might potentially be useful for getting a better
treatment of the simulation of brightness temperature differences between AVHRR channels 4 and 5, {generally affected by
both water vapour absorption and differences in cloud transmissivities).
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Figure 88: Excerpt of a VIIRS/VGAC-simulated AVHRR orbit from Suomi-NPP 21 July 2012 (with first orbit
scanline at 15:16 UTC). The scene shows Greenland, the Labrador Sea and adjacent Canadian islands (with southern
direction upwards) in a colour composite (left) based on VIIRS-simulated AVHRR channels 3B, 4, and 5 and a
corresponding PPS cloud type classification (right). SBAF corrections for the Linear-1b and NN-SBA-NNF methods
for the marked positions are given in Table 10.

Table 10%: Resulting SBAF corrections (i.e., adjustment factor compared to uncorrected VIIRS channels) for
simulation methods Linear-1b and NN-SBAFSBA-NN for markup points in Fig. 811,

Markup point and, SBAF Linear-1b SBA-NN - [Formaterat: Teckensnitt: 10 pt, Teckenfarg: Text 1
associated cloud or, 3.7um 3.7 um [ Formaterad tabell
surface type \ {Formaterat: Teckenfarg: Text 1

{ Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1

N\ { Formaterat: Teckenfarg: Text 1

o A

Xa: Snow (wet) 0.993 0.999 { Formaterat: Teckensnitt:10 pt, Teckenférg: Text 1
Xz: Very low (Stratus) 0.992 0.987
X3: Cloud-free ocean 0.992 1.000
Xa: Medium level clouds 0.992 0.985
Xs: Very high clouds 0.992 1.000
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Xes: Snow (dry) 0.993 0.999
X7: Low (Stratocumulus) 0.993 0.992
Xs: Ice-covered ocean 0.993 0.998

5.4 Prospects for remaining CLARA-A3 products

We have shown that NOAA-19 AVHRR radiances can be simulated from Suoeumi-NPP VIIRS/VGAC radiances and that
they can be used to produce cloud products with the same or even better quality than the original products included in the
CLARA-A3 CDR. Whether the other CLARA-A3 products (i.e., surface albedo, surface radiation, and TOA radiation) can
also be reproduced successfully from VIIRS/VGAC data remains to be investigated. Preliminary tests based on the SBAF-NN
radiance simulations have been performed for all products with promising results. However, more extensive validations need
to take place, which is outside this paper's scope. Nevertheless, there is no reason to believe in the failure of the remaining
products if basic radiances and cloud products are produced with high quality.

6 Conclusions

AVHRR radiances from the NOAA-19 satellite have been successfully simulated from Suomi-NPP VIIRS/VGAC radiances
in 2012-2013 when observations from the two satellites could be collocated efficiently in both time and space. Two methods
based on linear regression for each channel and one method based on an MLP neural network have been tested. The latter was
trained using all AVHRR-heritage channels on VIIRS plus a few additional channels. Special attention was given to day and
night differences, while constraints on channel differences and channel ratioguetas were applied to the neural network.

The neural network approach achieved the best results for all individual channels. We found it crucial to separate daytime from
night-time results when simulating AVHRR channel 3B at 3.7 um. The small spectral response differences between AVHRR
channel 3B and the VIIRS M12 channel, leading to a smaller effective central wavelength for the VIIRS channel, meant that
different simulation methods had to be used for day and night. Furthermore, radiance corrections during daytime had to depend
on the actual object reflectance to be realistic. Only the neural network approach was able to achieve this.

Selected NOAA-19 cloud products (cloud mask, cloud top height, and cloud phase) in the CLARA-A3 CDR were produced
from the VIIRS/VGAC-simulated radiances based on the same retrieval methods as used when compiling CLARA-A3. The
resulting products were validated using CALIPSO-CALIOP cloud products and compared to the original CLARA-A3
products. Product qualities agreed well with original CLARA-A3 products and are clearly within product requirements. In
addition, the cloud microphysical products COT, CRE, LWP, and IWP were well reproduced when based on the neural
network-simulated radiances.

In order to check the validity of the derived spectral adjustments on a longer timescale, it is suggested to reqularly repeat the

validation efforts on derived cloud products based on new observations from active sensors on EarthCARE (lllingworth et al.,
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2015) and similar missions in the future. In addition, reqular checks of Ssimultaneous Naadir Ogbservations (SNOs) at high

latitudes between VIIRS and IASI (and its successors) can also help in deducing the infrared bands spectral responses’ stability.

The possibility to make similar checks for VIIRS and METimage visible bands seems unfortunately not possible from the
Tropospheric Ozone Monitoring Instrument (TROPOMI, Veefkind et al., 2012), the-successerof SCIAMACHY. due to very
limited spectral coverage of the AVHRR-heritage channels. The Ocean Color Instrument (OCI) on the PACE mission

(Plankton, Aerosol, Cloud, ocean Ecosystem; Gorman et al., 2019) and the EMIT sensor (Earth Mineral dust source
Investigation) aboard the International Space Station offer potential sources of suitable reference measurements. Sentinel-3’s
Ocean and Land Colour Instrument (OLCI; Donlon et al., 2012) can also provide reference data. While OLCI is not fully
hyperspectral, it includes 21 bands within the 0.4—1.0 um range and operates with a 10:00 AM equator overpass time.

CLARA-A3 will be complemented and extended with the VIIRS/VGAC-based products to cover the period 1979-20224 (446
years) and this edition will be named CLARA-A3.5. Interestingly, for the future, the same radiance simulation approach could
be applied on radiances from the upcoming METimage sensor on the EPS-SG satellites with an expected first launch in August
2025. This satellite will have nearly the same equator crossing time as the current Metop-C satellite with the last AVHRR
sensor onboard. This would enable collocations in the same way as the currently used collocations of NOAA-19 and Suomi-
NPP data. If AVHRR-radiances can be successfully simulated from METimage data, the CLARA CDR can be extended by
several decades based on measurements from VIIRS and METimage sensors. Finally, the possibility to also use MODIS-based

simtiations 6F AVHRR data simulations can be considered to improve observational coverage for some earlier years in the
CLARA CDR (e.qg., for 1999-2001 when the-orbital-driftof NOAA-16 orbital drift was considerable). However, highest
priority is to secure-an-extension-ofthe a CDR extension with VIIRS and METimage data.
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Appendix A: Coefficients for linear regression methods

Table Al: Linear regression parameters for method Linear-1a based on all data (i.e., merged training datasets 1 and 2

705 in Table 3). For details on channel wavelengths for the two sensors, see Table 1 and Table 2.

AVHRR Simulated from Slope Offset, Number of “
Channel VIIRS channel, observations
Channel 1 (%) M5 0.8534 1.8517 19,010,195
Channel 2 (%) M7 0.8507 1.1157 19,010,195
Channel 3B (K) M12 0.9734 6.1707 41,474,568
Channel 4 (K) M15 1.0006 -0.0378 41,474,568
Channel 5 (K) M16 0.9906 2.1505 41,474,568

Table A2: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2

in Table 3) but restricted to DAY conditions._For details on channel wavelengths for the two sensors, see Table 1 and

Formaterat: Teckenfarg: Text 1

Formaterat: Teckenfarg: Text 1

[ Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1

Formaterat: Teckenfarg: Text 1

| Formaterad tabell

[ Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1

o

o

710 Table 2.
AVHRR Simulated from Slope Offset, Number of < [Formaterat: Teckenfirg: Text 1
Channel VIIRS channel, observations | Formaterad tabell
[ Formaterat: Teckenfarg: Text 1
Channel 1 (%) M5 0.8960 1.7118 15,102,309 - =
[ Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1
Channel 2 (%) M7 0.8907 0.5547 15,102,309 [Formaterat- Teckenfarg: Text 1
Channel 3B (K) M12 0.9817 3.0744 15,102,309 [Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1
Channel 4 (K) M15 0.9926 2.0934 15,102,309
Channel 5 (K) M16 0.9774 5.6555 15,102,309
715
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Table A3: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2

in Table 3) but restricted to TWILIGHT conditions. For details on channel wavelengths for the two sensors, see Table

720 1and Table 2.

AVHRR Simulated from Slope Offset, Number of « [ Formaterat: Teckenfarg: Text 1
Channel VIIRS channel, observations [ Formaterat: Teckenfarg: Text 1
[Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1
Channel 1 (%) M5 0.6710 4.5075 3,904,507 =
[Formaterat: Teckenférg: Text 1
Channel 2 (%) M7 0.7120 3.7473 3,904,507 ( Formaterad tabell
Channel 3B (K) M12 0.9973 -0.7479 3,904,507 [ Formaterat: Teckensnitt: 10 pt, Teckenfarg: Text 1
Channel 4 (K) M15 1.0024 -0.5164 3,904,507
Channel 5 (K) M16 0.9967 0.6742 3,904,507

Table A4: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2

in Table 3) but restricted to NIGHT conditions. For details on channel wavelengths for the two sensors, see Table 1 and

725 Table 2.
AVHRR Simulated from Slope Offset, Number of “ [ Formaterat: Teckenfdrg: Text 1
Channel VIIRS channel, observations | Formaterad tabell
Ch 13B (K M12 0.9948 1.3254 21,971,492 [ rormaterat: Teckenferg: Text 1
anne * ' ' T [ Formaterat: Teckensnitt:10 pt, Teckenfarg: Text 1
Channel 4 (K) M15 1.0042 -0.9186 21,971,492 [ Formaterat: Teckenfarg: Text 1
Channel 5 (K) M16 0.9962 0.7373 21,971,492 [
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730 Appendix B: Detailed score statistics for radiance and image feature simulations

Table B1: Radiance validation scores (for quantity VIIRS — AVHRR) for DAY (4 307 482 samples). Shown are values

of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-mean-
squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every tested

simulation method. Individual best scores are highlighted in bold numbers.

Channel or Method median MAE IQR bias RMS Slope Offset Corre-
feature lation
|o.5 um (%) SBAF-NN -0.091 3.700 3878 -0.219 6.331 0.961 1.157 0.970
Linear-1b 0.310 3.941 4.652 0.052 6.444 0.945 1.969 0.969
Linear-1a -0.905 4.278 5.394 -1.401 6.675 0.901 2.096 0.969
No-correction -1.926 5.107 6.840 2.228 7.500 1.055 0.287 0.969
|0.9 Hm (%) SBAF-NN -0.134 3.817 4.060 -0.290 6.464 0.953 1.341 0.968
Linear-1b -0.175 4.403 5.605 -0.110 6.904 0.933 2.229 0.963
Linear-1a -0.774 4.646 5.988 -1.094 7.054 0.891 2.715 0.963
No-correction 3.318 5.929 7.690 3.557 8.398 1.048 1.880 0.963
3.7 um (K) SBAF-NN 0.008 1.779 2.093 -0.122 2.899 0.972 7.802 0.987
Linear-1b -0.180 2.617 3.582 -0.343 3.805 0.933 18.523 0.978
Linear-1a 0.606 2.694 3.646 0.384 3.829 0.926 21.488 0.978
No correcction 1.820 3.096 3.520 1.806 4.176 0.951 15.736 0.978
11 pm (K) SBAF-NN -0.070 1.528 1.024 -0.008 3371 0.983 4711 0.986
Linear-1b -0.072 1.564 1114 -0.035 3.378 0.973 7.279 0.986
Linear-1a -0.043 1521 0.977 -0.007 3.382 0.981 5.190 0.986
No correction -0.170 1.542 0.980 -0.131 3.384 0.980 5.224 0.986
12 pm (K) SBAF-NN -0.073 1.504 1.000 -0.001 3311 0.982 4.908 0.986
Linear-1b -0.134 1.557 1.160 -0.035 3.324 0.972 7.499 0.986
Linear-1a -0.065 1512 0.991 0.011 3.334 0.985 4.019 0.986
No correction 0.290 1.596 1.060 0.389 3377 0.994 1.886 0.986
0.9 pm/0.6 pm (-) SBAF-NN -0.000 0.054 0.051 -0.001 0.123 0.896 0.104 0.952
Linear-1b -0.024 0.079 0.088 -0.022 0.147 1.013 -0.035 0.942
Linear-1a -0.001 0.068 0.082 0.007 0.139 0.976 0.031 0.943
No-correction 0.026 0.096 0.088 0.062 0.237 1.299 -0.239 0.937
11 pm — 12 pm (K) SBAF-NN -0.001 0.217 0.230 -0.007 0.395 0.910 0.124 0.947
Linear-1b 0.032 0.266 0.344 -0.001 0.426 0.817 0.265 0.941
Linear-1a 0.030 0.279 0.385 -0.018 0.434 0.794 0.280 0.941
No correction -0.420 0.566 0.620 -0.520 0.732 0.739 -0.141 0.915
11 pm— 3.7 pm (K) SBAF-NN -0.049 1.981 2165 0.114 3272 0.908 1143 0.940
Linear-1b 0.255 2.754 3.444 0.308 4127 1.060 1.120 0.928
Linear-1a -0.554 2.879 3.657 -0.391 4213 1.065 0.498 0.926
No-correction -1.890 3.343 3.530 -1.937 4575 1.070 -0.992 0.929
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735
Table B2: Radiance validation scores (for quantity VIIRS — AVHRR) for TWILIGHT (852 881 samples). Shown are
values of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-

mean-squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every
tested simulation method. Individual best scores are highlighted in bold numbers.

Channel or Method median MAE IQR bias RMS Slope Offset Corre-
feature lation
|0.6 Hm (%) SBAF-NN -0.191 3.902 5.275 -0.289 5.832 0.893 3.996 0.932
Linear-1b -1.280 6.778 9.636 0.128 9.355 0.705 11.981 0.813
Linear-1a 4.246 8273 9.519 7.205 12.654 0.897 11.356 0.813
No-correction 10.386 13.618 10.982 13.177 17.863 1.051 11.137 0.813
0.9 um (%) SBAF-NN -0.312 4.490 5.865 -0.490 7.164 0.880 4.642 0.927
Linear-1b -0.894 7.233 10.089 0.215 10.395 0.752 10.774 0.839
Linear-1a 2.568 7.739 9.445 5.192 12.374 0.899 9.512 0.839
No-correction 9.207 13.059 11.397 12.267 17.911 1.056 9.869 0.839
3.7 pm (K) SBAF-NN 0.132 0.972 1.222 0.129 1518 0.977 6.114 0.990
Linear-1b -0.223 1.458 22271 0.137 2010 0.980 5.213 0.983
Linear-1a 0.569 1.533 2226 0.886 2.190 0.957 11.988 0.983
No correction 1.210 1.879 2.230 1.582 2.556 0.983 5.977 0.983
|11 um (K) SBAF-NN 0.028 0.707 0.697 0.033 1.285 0.991 2.248 0.996
Linear-1b 0.018 0.658 0.574 0.012 1.257 0.992 1.890 0.996
Linear-1a 0.052 0.663 0.585 0.041 1.258 0.991 2.365 0.996
No correction -0.060 0.665 0.590 -0.071 1.259 0.990 2-401 0.996
12 pm (K) SBAF-NN 0.019 0.712 0.694 0.028 1.299 0.991 2.293 0.996
Linear-1b -0.026 0.671 0.599 -0.010 1.276 0.992 1.879 0.996
Linear-1a -0.070 0.691 0.670 -0.054 1.279 0.986 3.348 0.996
No correction 0.120 0.682 0.580 0.138 1.284 0.996 1.209 0.996
0.9 um/0.6 pm (-) SBAF-NN -0.003 0.041 0.053 -0.004 0.063 0.832 0.170 0.916
Linear-1b 0.005 0.054 0.080 0.005 0.076 0.660 0.357 0.886
Linear-1a -0.050 0.069 0.079 -0.051 0.091 0.690 0.269 0.883
No-correction -0.032 0.060 0.079 -0.031 0.082 0.703 0.277 0.876
11 um — 12 pm (K) SBAF-NN 0.008 0.138 0.194 0.005 0.213 0.910 0.068 0.957
Linear-1b 0.039 0.158 0.224 0.022 0.229 0.852 0.126 0.952
Linear-1a 0.115 0.189 0.235 0.095 0.253 0.860 0.193 0.948
No correction -0.190 0.241 0.250 -0.209 0.320 0.836 -0.094 0.946
11 pm - 3.7 um (K) SBAF-NN -0.101 0.873 1.057 -0.096 1.410 0.971 -0.297 0.981
Linear-1b 0.293 1412 2.163 -0.125 1.946 1130 0.761 0.979
Linear-1a -0.466 1.441 2131 -0.845 2.106 1128 0.033 0.979
No-correction -1.240 1.867 2.140 -1.653 2.544 1127 -0.786 0.979
740
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Table B3: Radiance validation scores (for quantity VIIRS — AVHRR) for NIGHT (5 758 113 samples). Shown are
values of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-

mean-squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every
745  tested simulation method. Individual best scores are highlighted in bold numbers.

Channel or Method median MAE IQR bias RMS Slope Offset Corre-
feature lation
|3.7 um (K) SBAF-NN -0.069 1.164 1.208 -0.085 1.988 0.995 1215 0.996
Linear-1b -0.073 1.185 1.255 -0.013 1.998 0.992 2127 0.996
Linear-1a -0.902 1.554 1.672 -0.768 2.205 0.970 6.955 0.996
No correction 0.010 1.178 1.240 0.022 2.000 0.997 0.805 0.996
|11 um (K) SBAF-NN -0.038 0.925 0.788 -0.042 1772 0.996 1.050 0.997
Linear-1b -0.020 0.925 0.788 -0.000 1772 0.995 1.332 0.997
Linear-1a -0.080 0.945 0.834 -0.054 1775 0.991 2.205 0.997
No correction -0.200 0.971 0.850 -0.172 1.783 0.991 2.241 0.997
12 pm (K) SBAF-NN -0.046 0.905 0.773 -0.052 1.732 0.996 1.064 0.997
Linear-1b -0.044 0.939 0.874 -0.007 1.748 0.996 0.963 0.997
Linear-1a -0.086 0.956 0.930 -0.043 1.750 0.991 2.374 0.997
No correction 0.190 0.970 0.890 0.239 1.768 1.000 0.226 0.997
11 pm — 12 pm (K) SBAF-NN 0.007 0.172 0.216 0.009 0.281 0.954 0.061 0.972
Linear-1b 0.052 0.248 0.368 0.007 0.343 0.829 0.197 0.964
Linear-1a 0.028 0.245 0.368 -0.010 0.343 0.838 0.170 0.963
No correction -0.320 0.443 0.480 -0.411 0.581 0.779 -0.166 0.948
11 um - 3.7 um (K) SBAF-NN 0.023 0.615 0.646 0.043 1.071 0.925 -0.100 0.959
Linear-1b 0.027 0.640 0.708 0.013 1.091 0.950 -0.081 0.958
Linear-1a 0.830 1.066 1.006 0.714 1.379 0.952 0.622 0.951
No-correction -0.270 0.706 0.730 -0.194 1122 0.944 -0.300 0.957
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Table B4: Radiance validation scores (for quantity VIIRS — AVHRR) for ALL cases (10 918 476 samples but for visible
750 channels and features 5 160 363 samples). Shown are values of median error (median), mean absolute error (MAE),

interquartile range (IQR), mean error (bias) and root-mean-squared error (RMSE) for the simulation of each AVHRR
channel and each channel combination, and for every tested simulation method. Individual best scores are highlighted
in bold numbers.

Channel or Method median MAE IQR bias RMS Slope Offset Corre-
feature lation
|o.5 um (%) SBAF-NN -0.102 3733 4.104 -0.230 6.251 0.956 1.339 0.969
Linear-1b 0.180 4.410 5.280 0.065 7.009 0.929 2.607 0.959
Linear-1a -0.227 4.938 5.760 0.022 7.978 0.911 3.242 0.947
No-correction 3.0043 6.514 7.989 4.038 9.985 1.067 1.629 0.947
|0.9 Hm (%) SBAF-NN -0.153 3.928 4.356 -0.323 6.585 0.947 1.617 0.965
Linear-1b -0.231 4871 6.202 -0.056 7.592 0.917 2.952 0.952
Linear-1a -0.333 5.157 6.373 -0.055 8.176 0.904 3.430 0.944
No-correction 4176 7.107 8.580 4.996 10.578 1.063 2721 0.944
3.7 um (K) SBAF-NN 0.035 1.392 1523 -0.083 2.362 0.990 2.698 0.995
Linear-1b -0.098 177 2.046 -0.132 2.852 0.976 6.262 0.993
Linear-1a -0.419 2.002 2.665 -0.184 2.953 0.974 6.735 0.992
No correction 0.410 1.989 2.460 0.847 3.082 1.001 0.580 0.992
11 pm (K) SBAF-NN -0.045 1.146 0.855 -0.023 2.504 0.992 2118 0.994
Linear-1b -0.028 1.156 0.902 -0.013 2.506 0.988 3113 0.994
Linear-1a -0.051 1.150 0.856 -0.028 2.509 0.989 2.945 0.994
No correction -0.170 1172 0.860 -0.148 2514 0.988 2.981 0.994
12 um (K) SBAF-NN -0.051 1127 0.839 -0.026 2457 0.992 2.165 0.994
Linear-1b -0.070 1.161 0.959 -0.018 2.469 0.989 2.934 0.994
Linear-1a -0.076 1.155 0.922 -0.023 2.476 0.990 2.654 0.994
No correction 0.220 1.194 0.930 0.290 2.505 0.999 0.508 0.994
0.9 pm/0.6 pm (-) SBAF-NN -0.001 0.052 0.051 -0.001 0.116 0.894 0.105 0.951
Linear-1b -0.018 0.075 0.089 -0.017 0.138 1.004 -0.021 0.939
Linear-1a -0.008 0.068 0.085 -0.003 0.132 0.966 0.031 0.940
No correction 0.017 0.090 0.090 0.047 0.219 1279 -0.235 0.931
11 pm — 12 pm (K) SBAF-NN 0.004 0.187 0.219 0.003 0.327 0.935 0.081 0.962
Linear-1b 0.043 0.248 0.344 0.005 0.371 0.830 0.212 0.955
Linear-1a 0.038 0.254 0.364 -0.005 0.376 0.823 0.210 0.954
No correction -0.340 0.476 0.530 -0.438 0.631 0.759 -0.146 0.934
11 pm - 3.7 um (K) SBAF-NN 0.005 1174 1.059 0.060 2232 0.946 -0.310 0.968
Linear-1b 0.063 1.534 1.420 0.119 2.765 1.020 0.254 0.957
Linear-1a 0.522 1811 2.010 0.156 2.890 1.069 0.633 0.959
No-correction -0.500 1.837 1.880 -0.995 3.070 1.092 -0.363 0.961
755
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Appendix C: Specification of derived MLP networks for day, night and twilight

Table C16: Configuration file names for finally chosen MLP networks.

Configuration file Time of day
ch7 satz max_ 15 SUNZ 0 80 tdiff 120 sec 20241204.yaml DAY
ch7_satz_max_15_SUNZ 80_89 tdiff 120 sec_20241204.yaml TWILIGHT
ch4 satz max_15 SUNZ 90 180_tdiff 120 sec 20241204.yaml NIGHT
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Code availability

The code for the network training and the resulting networks can be found on Github (https://github.com/foua-pps/sbafs_ann).
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