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Abstract.  

The long series of multispectral measurements from the Advanced Very High Resolution Radiometer (AVHRR), which began 

in 1979, is now approaching its end, with the last remaining AVHRR sensor currently operating aboard EUMETSAT’s Metop-10 

C satellite. Several Climate Data Records (CDRs) built on AVHRR data now face the end of their observational 

recordEuropean Organization for the Exploitation of Meteorological Satellites ()CDR (CDRs). However, since many modern 

imagers contain AVHRR-heritage spectral channels, a potential for extension of these AVHRR-based climate data records 

exists. This study investigatesd the possibility to simulate original National Oceanic and Atmospheric Administrationgency 

(NOAA)-19 AVHRR channels from the Suomi National Polar-orbiting Platform (NPP) Visible Infrared Imaging Radiometer 15 

Suite (VIIRS) radiances using collocated AVHRR/VIIRS 

datasets from 2012-2013. Spectral Band Adjustments (SBAs) Factors Radiances from the Advanced Very High Resolution 

Radiometer (AVHRR) onboard the NOAA-19 satellite were successfully simulated from Suomi-NPP Visible Infrared Imaging 

Radiometer Suite (VIIRS) radiances using collocated AVHRR/VIIRS datasets from 2012-2013. Spectral Band Adjustment 

Factors (SBAFs) were derived using linear regression and neural networks (NNs). The NN approach produced the best results, 20 

and separating daytime from night-time conditions when simulating AVHRR channel 3B at 3.7 µm was key. Furthermore, 

daytime radiance corrections in this channel must depend on actual surface and cloud reflectances to be realistic, which was 

only achieved by the NN approach. 

The cloud mask, cloud top height, and cloud phase products were produced from the simulated AVHRR radiances using the 

same retrieval methods for NOAA-19 data used to compile the CLARA-A3 climate data record (CDR). CLARA-A3 is the 25 

third edition of the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) CDR with cloud parameters, 

surface albedo, surface radiation, and Top of Atmosphere (TOA) radiation products from AVHRR.  Products were validated 

using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations - Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIPSO-CALIOP) cloud products and agreed well with original CLARA-A3 products, with the best results provided by 

the NN simulation approach. The NN-based approach best reproduced the corresponding products for cloud optical thickness 30 

(COT), cloud effective radius (CRE), liquid water path (LWP), and ice water path (IWP). 
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The CLARA-A3 CDR will be complemented and extended with VIIRS-based products to cover the period 1979-2024 (46 

years). This edition will be known as CLARA-A3.5. Future extensions and editions can follow a similar approach by applying 

the same radiance simulation method to collocated data from the Metop-C AVHRR and the Metop-Second Generation (SG) 

METimage sensors, the first version of the latter scheduled for launch in August 2025. Successful simulation of AVHRR 35 

radiances from METimage and VIIRS data enables the extension of the CLARA CDR extension for several decades using 

observations from VIIRS and METimage.    

1 Introduction 

Successful climate monitoring depends on the availability of long observational time series from reliable and stable observation 

platforms and sensors. Observations with very long temporal coverage (i.e., on century scales) have been mainly restricted to 40 

measurements from land-based surface stations and mostly limited to 2-meter temperature measurements (e.g., Morice et al., 

2021). For even longer perspectives, various proxy observations must be used (e.g., tree ring and sediment climatologies; 

Anchukaitis et al., 2017).  

However, to fundamentally describe and understand climate and climate change, global observations at high spatio-temporal 

resolution are needed. Furthermore, a full range of different meteorological parameters need to be covered. The first steps 45 

towards realizing an observation system with truly global coverage were taken when information from polar and geostationary 

satellites was introduced in the 1960s. These sensors were later upgraded and introduced in operational missions by the end of 

the 1970s (Kidd et al., 2009; Giri et al., 2025). Additional observations with better coverage of ocean surfaces and upper air 

were introduced through various technological developments (Lin and Yang, 2020; WMO, 2024; NDACC, 2024). 

Furthermore, the systematic use of radiation network measurement data (NDACC, 2021) from active and passive remote 50 

sensing instruments at surface stations and on space platforms is now standard (Thies and Bendix, 2011; eoPortal, 2024). All 

these developments made it possible to compile comprehensive and consistent climate datasets by synthesizing data from all 

types of observation platforms in reanalysis datasets (Hersbach et al., 2020). 

Reanalysis datasets are undoubtedly capable of providing the best possible description of the Earth’s atmospheric and surface 

state evolution, at least over the last 3-5 decades, with access to a multitude of global observations and the use of a physically 55 

consistent methodology based on model physics constraints. However, because of the use of data from an ever-changing 

observation system,  (not least after the introduction of several new or improved satellite sensors over the last few decades), 

the uncertainty regarding the existence and magnitude of climate trends in reanalysis results is still considerable (Bengtsson et 

al., 2004; Thorne et al., 2005; de Padua and Ahn, 2024; Tarek et al., 2021). In addition, some important parameters of great 

importance for the Earth’s radiation balance are not yet fully assimilated from observations. This concernsThis concern, in 60 

particular, cloudiness and cloud properties (Yao et al., 2020). Furthermore, the reanalysis dependency on physical constraints 

from the current Numerical Weather Prediction (NWP) model means that the results are not completely independent, since 
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model physics cannot be considered as perfectly describing the real atmosphere/Earth system (as pointed out by Roebeling et 

al., 2025).  

With this background, the value of a long time-series of single sensor observations or measurements for climate studies would 65 

still be high. This concerns, not least, Climate Data Records (CDRs) from satellite platforms, where several of them now cover 

considerably longer periods than the standard World Meteorological Organisation (WMO) climatological 30-year period. The 

Advanced Very High -Resolution Radiometer (AVHRR), operating onboard polar satellites since 1978, provides the longest 

available time series of observations from meteorological satellite imagery. The third edition of the European Organization for 

the Exploitation of Meteorological Satellites (EUMETSAT) Climate Monitoring Satellite Application Facility (CM SAF) CDR 70 

with cloud parameters, surface albedo, surface radiation, and Top of Atmosphere (TOA) radiation products from AVHRR 

(abbreviated CLARA-A3,  seeand described by Karlsson et al., 2023) covers more than four decades of AVHRR observations. 

Neither AVHRR radiances nor AVHRR-derived cloud and radiation products have yet been assimilated in reanalysis datasets, 

which is an additional argument for their value as an independent observation dataset. However, the last AVHRR instrument 

was launched with the EUMETSAT satellite Metop-C in 2018. Thus, the AVHRR era will soon be over. 75 

This paper investigates methods to extend the CLARA CDR with data from the AVHRR successor, the Visible Infrared 

Imaging Radiometer Suite (VIIRS), which is now operational on current polar meteorological satellites from NOAA. If 

methods are successful, the CLARA CDR can be extended by at least 2-3 decades. The paper studies two approaches to 

simulate AVHRR radiances from VIIRS, using Spectral Band Adjustment Factors (SBAFs): 1. using linear regression 2. a 

method using a MultiLayer Perceptron (MLP) neural network. As a further test of success besides ordinary radiance-to-80 

radiance comparisons, the simulated radiances are used to produce the CLARA cloud properties, which are then validated 

using independent cloud observations from the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) onboard the 

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite (Winker et al., 2009).  

Section 2 describes the methodological background and the used datasets. The methodology is then described in detail in Sect. 

3, followed by results in Sect. 4. Further analysis and discussions are presented in Sect. 5, with conclusions given in Sect. 6. 85 

2 Methodological background and selected datasets 

2.1 Introduction to Spectral Band Adjustment Methods 

Adjusting measurements after introducing a slightly modified or new sensor version poses a longstanding challenge that has 

received considerable attention over the years. Most well-known are the activities of the Global Space-based Inter-Calibration 

System (GSICS, WMO 2025), where the primary goal is to ensure a homogeneous behavior of measurement time series of 90 

measurements from a particular sensor or spectral channel. We call this adjustment “Inter-calibration” (Chander et al., 2013a) 

and the purpose here is to provide a homogenous data record without artificial discontinuities. The Fidelity and uncertainty in 

climate data records from Earth Observations project (FIDUCEO) emphasized the difference between homogenized and 

harmonized data sets (Giering et al., 2019) with relevance for the CDR compilationcompilation of climate data records. 
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Harmonized data would implybe corrections to a measurement based on high-quality reference measurements, thus providing 95 

the best possible estimation of the measured radiance. This correction would still allow differences to a similar instrument 

having slightly different spectral responses. However, for a CDR,climate data record which should allow for estimation of 

climate trends estimation, homogenized data seemingly should be the best choice. Homogenized data for a CDR means that 

measurements are corrected with respect to one particular sensor in the measurement series instead of to one high quality 

reference sensor. On the other hand, this could also lead to that sensor accuracy is violationed (if the various sensors have 100 

significant differences in spectral response). Thus, there are pros and cons of both spectral adjustment methods and any of 

them shall be applied with caution. An important aspect is also that radiance differences between two sensors might be caused 

by additional factors other than just differences in spectral responses, e.g. radiance biases or calibration errors. 

TheoreticallyWhenIf focussing on the current problem to simulate AVHRR radiances from VIIRS radiances based solely on 

spectral response differences, no SBAF spectral adjustment methodology will ever be able to simulate AVHRR channels 105 

perfectly, since some parts of the spectrum covered by another AVHRR-heritage sensor channel are simply not observed by 

the corresponding AVHRR channel (and vice versa). However, if channel differences are not very large, corrections may be 

sufficient, depending on the intended applications. Piontek et al. (2023) estimated that linear SBAFs can explain up tomore 

than 80 % of the variance, but the efficiency depends on the selected channels. 

The challenge of extending the time series of satellite measurements or derived products with new instruments is not new and 110 

is closely related to the intercalibration problem (Chander et al., 2013a). For many years, the standard methodology used to 

handle these transitions spectral band adjustments has been to calculateing SBAFs. These can be derived from direct inter-

comparisons of spatio-temporally collocated measurements from the two sensors (for example as described by Meirink et al., 

2013). Relations based on SBAFs can be either linear (Chander et al., 2013b) or non-linear and sometimes more complicated, 

involving more channels than the targeted spectral channel (Villaescusa-Nadal et al., 2019; Claverie, 2023). When collocations 115 

are not possible, spectrometer data can be used for calculations, most often relying on data from the SCanning Imaging 

Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, Bovensmann et al., 1999) or the Infrared 

Atmospheric Sounding Interferometer (IASI, Blumstein et al., 2004) for meteorological applications. Hyperspectral 

observations are then convolved with the narrow-band Spectral Response Function (SRF) to calculate the SBAFs (Piontek et 

al., 2023). The NASA ssatellite cloud and radiation property retrieval system (SatCORPS)atCORPS SBAF tool is a 120 

comprehensive and widely used web-based tool based on this technique, providing SBAFs for a wide range of sensors and 

satellites (NASA, 2016; Scarino et al., 2016).  

2.2 The challenge: Bridging differences between the spectral channels of AVHRR and VIIRS 

Table 1 lists the AVHRR channels simulated in this study. Notice that our target reference sensor is the third version of this 

sensor (AVHRR/3) as carried by the NOAA-19 satellite. The choice of the NOAA-19 AVHRR for deriving SBAFs is not 125 

critical, since in the CLARA-A3 CDR, the visible channels of individual AVHRRs were intercalibrated using the method 

described in Heidinger (2018). This approach directly links the NOAA-19 AVHRR radiances to all previous historic AVHRR 
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versions, eliminating the need for further inter-calibration. The choice of the AVHRR onf NOAA-19 as our primary 

targetreference sensor is natural, since we want to replace the loss of NOAA-19 observations in the afternoon orbit after 2012 

due to orbital drift. Section 2.5 provides an even stronger motivation for choosing NOAA-19. It should also be mentioned that 130 

the reference radiances forrom the NOAA-19 AVHRR should be considered as harmonized data, since their quality and 

evolution over time has been optimized for this particular AVHRR sensor by a method described by Heidinger  (2018).   

In this study, we are not interested in simulating AVHRR channel 3A, as shown in Table 1. The reason is that satellites carrying 

the VIIRS sensor follow an afternoon orbit, a sun-synchronous path with a daytime equator crossing shortly after noon. For 

all earlier satellites used in the CLARA-A3 CDR, where AVHRR is in a similar orbit to VIIRS, only AVHRR Channel 3B 135 

was available (active). AVHRR observations have a swath width of 2600 km, and the horizontal resolution is approximately 

1.1 km at the nadir. However, it is much coarser (approximately 6 km) at the swath edges. Cracknell (1997) provides more 

details on the AVHRR imager. 

 

Table 1: Main AVHRR/3 sensor spectral characteristics. To be noticed is that AVHRR Channel 3A (marked in 140 

italics) is not subject to spectral conversion here (see text for explanation). 

Channel name Central wavelength Spectral interval 

Channel 1 0.630 µm 0.58-0.68 µm 

Channel 2 0.862 µm 0.725-1.00 µm 

Channel 3A 1.61µm 1.58-1.64 µm 

Channel 3B 3.74 µm 3.55-3.93 µm 

Channel 4 10.80 µm 10.3-11.3 µm 

Channel 5 12.00 µm 11.5-12.5 µm 

 

  

Table 2 gives the complete set of medium resolution channels (M-channels) of the VIIRS imager (described in more detail by 

Hillger et al., 2013). The swath width is 3,000 km, the horizontal resolution is 750 m at the nadir, and only slightly less (1.6 145 

km) at the swath edges due to an oversampling scanning technique that is different from AVHRR. The AVHRR-heritage 

channels are marked in blue in Table 2. In theory, AVHRR channel 2 may be simulated using a combination of channels M6 

and M7. However, saturation problems with channel M6 (as reported by Cao et al., 2013) produce unrealistic measurements, 

making it unsuitable for this purpose.  

  150 
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Table 2: Main spectral characteristics of the medium resolution (M) channels of the VIIRS sensor. AVHRR-heritage 

cha 

VIIRS  

channel name 

Central wavelength Spectral interval Corresponding  

AVHRR channel 

M1 0.412 µm 0.402-0.422 µm - 

M2 0.445 µm 0.436-0.454 µm - 

M3 0.488 µm 0.478-0.498 µm - 

M4 0.555 µm 0.545-0.565 µm - 

M5 0.672 µm 0.662-0.682 µm Channel 1 

M6 0.746 µm 0.739-0.754 µm Channel 2 

M7 0.865 µm 0.846-0.885 µm Channel 2 

M8 1.240 µm 1.230-1.250 µm - 

M9 1.378 µm 1.371-1.386 µm - 

M10 1.610 µm 1.580-1.640 µm Channel 3A 

M11 2.250 µm 2.225-2.275 µm - 

M12 3.700 µm  3.691-3.709 µm Channel 3B 

M13 4.050 µm 3.973-4.128 µm - 

M14 8.550 µm 8.400-8.700 µm - 

M15 10.763 µm 10.263-11.263 µm Channel 4 

M16 12.013 µm 11.538-12.488 µm Channel 5 

nnels are marked in blue. Notice that the channels marked in italics are not used (see text for explanation). 

 155 

For a better visualization of the differences between the two sensor’s channels, we can study the differences in spectral 

responses as illustrated in Fig. 1. It is clear that there are indeed substantial differences for most channels, except possibly for 

AVHRR channels 4 and 5. However, the different wavelength scales at the x-axes in the plots in Fig. 1 tend to exaggerate 

differences for some channels (e.g., AVHRR channel 1) and underrate differences for other channels (e.g., AVHRR channel 

2). AVHRR channel 2 shows the most significant difference, with a broader spectral coverage than the VIIRS AVHRR heritage 160 

channels (M6 and M7).  
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Figure 1: Comparison of spectral responses for AVHRR (NOAA-19) and AVHRR-heritage channels of VIIRS (Suomi-NPP). 

Spectral response curves of AVHRR channels are given in blue to be compared with the response curves from VIIRS channels in 

red. Corresponding AVHRR-heritage channel notations (M5, M6, M7, M8, M12, M15 and M16) are provided at their central 165 

wavelengths along the x-axis.  The grey curves give the atmospheric transmittance for reference.  

2.3 VGAC – Reduced resolution VIIRS data 

The CLARA-A3 CDR is based on the archived global AVHRR dataset stored in a format called Global Area Coverage (GAC) 

with a horizontal resolution of approximately 4 km (Kidwell, 1991). The CLARA-A3 CDR is based on AVHRR data with a 

coarser resolution than the nominal horizontal resolution. The archived global AVHRR dataset is stored in a format called 170 

Global Area Coverage (GAC) with a horizontal resolution of approximately 4 km (Kidwell, 1991). Extending CLARA-A3 

with VIIRS-derived products requires resampling VIIRS data to an equivalent horizontal resolutionformat. This process 

benefits from a resampled VIIRS dataset already developed at NOAA (Knapp et al., 2019). This format is called VIIRS Global 

Area Coverage (VGAC), and VIIRS data in this format are currently available for almost the entire Suomi-NPP and some 

years of the NOAA-20 data record. The horizontal resolution is 3.9 km, and the resampling procedure (e.g., radiance averaging) 175 

is improved compared to the original GAC format for AVHRR. VGAC data have already been tested for use in CDR 

production (Wang et al., 2023; Seo et al., 2023). For this study, we used Suomi-NPP VGAC data from 2012, 2013, and 2019, 

as well as NOAA-20 VGAC data from 2019. 
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2.4 Selected approach 

This study initially tested various SBAF relations, primarily sourced from NASA (2016). Results were acceptable for most 180 

AVHRR channels, but for some channels (especially channel 3B at 3.7 µm), we detected encountered serious 

deviationsproblems in using the VIIRS-based simulations, which caused specific problems for various applications of the 

simulated radiances. For example, night-time cloud detection significantly overestimated the amount of low-level clouds 

amounts. The cloud detection method used (CMAPROB, described by Karlsson et al., 2020) is a probabilistic method using 

all AVHRR channels. AVHRR channel 3B is considered the most crucial channel for the performance of this method’s 185 

performance, especially at night. Only minor deviations from the original AVHRR channel 3B radiances significantly affect 

the results at night. The encountered problems encountered were likely caused by the limitation of IASI in not 

providingobserving radiances for wavelengths shorter than 3.62 µm. Since the spectral responses of AVHRR channel 3B and 

VIIRS band M12 spectral responses both allow for significant contributions at wavelengths shorter than 3.62 µm for shorter 

wavelengths (see Fig. 1), this limitation can be substantial, especially since this affects in particular the contribution from 190 

reflected solar radiation which rapidly increases with decreasing for shorter wavelengths in this wavelength region. An effort 

to describe these contributions using Radiative Transfer Model (RTM) calculations was applied in the satCORPS tool, but this 

forcedwas donemade using through assumptions, making results more uncertain.  

Due to the problems encountered with NASA-derived SBAFs, which negatively impacted crucial cloud detection and 

downstream CLARA products, calculating SBAFs from collocated AVHRR and VIIRS radiances emerged as the preferred 195 

approach. Due to the uncertainties encountered for the NASA-derived SBAFs for this channel, we decided to proceedcarry on 

by calculating SBAFs from collocated AVHRR- and VIIRS-observed radiances. In practice this means that the derived spectral 

band adjustments might be composed by more than just the effects of differences in spectral responses, since we cannot 

separate these effects from other effects (e.g. radiance biases or calibration errors) when doing collocations. For this reason, 

we will in the remainder of the text use the term Spectral Band Adjustments (SBAs) instead of SBAFs. Derived results should 200 

also be considered as harmonized radiances and not homogenized, following the FIDUCEO terminology.   

2.5 Selected collocation and validation datasets 

Since VIIRS on the Suomi-NPP satellite was launched already in 2011 (with useful data delivered from January 2012 onwards), 

collocations with AVHRR measurements have been possible for more than a decade (Fig. 2). However, the only satellite 

allowing nearly simultaneous overpasses covering the entire globe was NOAA-19. In 2012 and 2013, NOAA-19 had nearly 205 

the same orbital configuration as Suomi-NPP, with a daytime equator crossing overpass time near 01:30 PM (i.e., local solar 

time 13:30 in Fig. 2). After 2013, the orbital drift of the NOAA-19 satellite gradually restricted available collocations to higher 

latitudes. Notice also that for later satellites carrying VIIRS (i.e., NOAA-20 launched in 2018 and NOAA-21 launched in 

2022), these satellites still have fixed equator crossing times at 01:30 PM. Consequently, no global collocations with AVHRR 

were anymore possible.   210 
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Figure 2: Local solar times at equator observations for all AVHRR-carrying NOAA satellites from TIROS-N to NOAA-19 and 215 
EUMETSAT’s METOP A/B/C satellites. Shown are all data that were used for the CLARA-A3 CDR processing. The figure shows 

ascending (northbound) equator crossing times for afternoon satellites (NOAA-7 to NOAA-19) and descending (southbound) 

equator crossing times for morning satellites (NOAA-12 to NOAA-17 and METOP A/B/C). Corresponding night-time observations 

take place 12 hours earlier/later. To be noticed is that Suomi-NPP has a stable orbit with equator crossing time at 13:30.  

Since NOAA-19 and Suomi-NPP had slightly different orbital altitudes and thus slightly different orbital periods, simultaneous 220 

observations (in this case, limited to within 2 minutes) occurred approximately every 15th day. Considering some data losses 

for both satellites, this resulted in a total collocation dataset of 115 Suomi-NPP orbits and corresponding NOAA-19 orbits for 

the two years. At most, pixel data were separated by 3 km, and maximum satellite zenith angles of up to 15 degrees to avoid 

too much influence from directional effects. Collocations were calculated using nearest neighbour matching with the 

Pyresample module in the Pytroll software package (Raspaud et al., 2018). 225 

Table 3 lists the training and validation datasets used.  

  



11 

 

 

Table 3: Description of the used training and validation datasets. The table shows the number of selected Suomi-NPP 

and NOAA-20 orbits being compared with the corresponding AVHRR radiances and cloud products, alternatively (for 230 

cloud product validation) the number of orbits being validated with CALIPSO cloud products. See text for details. 

Dataset Number of orbits Period 

 

Training dataset 1 

Suomi-NPP 

 

65 

 

2012: Feb, Apr, Jun, Jul, Aug, 

Oct, Nov, Dec 

2013: Jan, Mar, May, Jul, Sep, 

Nov  

 

Training dataset 2 

Suomi-NPP 

 

34 2013: Feb, Apr, Jun, Aug, Oct, 

Dec 

 

Radiance validation dataset 

Suomi-NPP 

 

16 2012: Jan, Mar, May, Sep 

 

Cloud product validation dataset 

Suomi-NPP 

 

Cloud product validation dataset 

NOAA-20 

 

Cloud property inter- 

comparison dataset Suomi-NPP 

 

289 

 

 

274 

 

 

48 

2012, 2013, 2019: All months 

 

 

2019: All months 

 

 

2012: All months 

 

 

The linear SBAF regression methods utilized the entire training dataset (dataset 1 and 2). For the Neural Network (NN) 

approach, training dataset 1 was used for the actual training and dataset 2 was used as a “during training validation dataset” to 235 

decide when to stop the training. The radiance validation dataset was used to evaluate the performance of all SBAF approaches.  

For the NN training, special handling of the AVHRR channel 3B for very low brightness temperatures (BT) had to be applied. 

The original AVHRR data have a rather poor radiometric resolution at very low temperatures, while the corresponding data 
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from the M12 channel of VIIRS are much improved compared to the AVHRR data. The poor radiometric resolution for 

AVHRR in this channel often led to missing data or a very large spread of realized BTs. It was decided not to let the network 240 

learn this type of irregular behaviour of AVHRR. Thus, data points with missing channel 3B data or data with BTs below 220 

K were slightly modified using a simple relation between VIIRS and AVHRR BTs. Before training, the AVHRR BTs for these 

pixels were set to original VIIRS M12 BTs plus the difference between AVHRR Channel 4 and VIIRS M15 BTs, hereby 

assuming that the difference in BTs for 11 µm channels should be the same as the difference for 3.7 µm channels. This would 

stop the network from trying to learn these deficiencies of AVHRR Channel 3B for colder temperatures than 220 K. 245 

In addition to validating the VGAC-simulated AVHRR radiances, inspecting the performance of certain CLARA products 

derived from these radiances proved necessary. As noted earlier, achieving a perfect simulation of AVHRR radiances is 

theoretically impossible. Therefore, it was important to check if the derived products were good enough to comply with 

CLARA product requirements. Thus, we produced the CLARA-A3 cloud products from the simulated AVHRR radiances. 

Comparisons with original NOAA-19 products (cloud property inter-comparison dataset in Table 3) and cloud datasets from 250 

the CALIPSO satellite (cloud product validation datasets in Table 3) were used to investigate them. More details on cloud 

product validations are given in Section 3.3. 

 

3 Detailed description of applied spectral band adjustment methods and validation procedures 

3.1 Spectral Bband aAdjustment (SBA) methods 255 

We have tested two different Spectral Band Adjustment (SBA) methods for the simulation of NOAA-19 AVHRR radiances 

from Suomi-NPP VIIRS radiances: 

1. SBAFs derived from linear regression 

2. SBAFs derived from a MultiLayer Perceptron (MLP) neural network 

 260 

Method 1 is the classical regression method, often used in inter-calibration applications relating two nearby spectral 

channels, in which where measurements can be collocated during an overlapping period. (e.g., for harmonizing channels 

from the same sensor but on different satellites). The two training data sets described in Table. 3 were merged and used to 

estimate the regression parameters. The method has been applied with two different configurations: 

 265 

Linear-1a: Linear regression based on all training samples for individual channels 

Linear-1b: Linear regression separating results for day, night, and twilight 

 

Configuration Linear-1b accounts for the fact some channels might behave differently during the day and night. This 

concerns, in particular, AVHRR channel 3B at 3.7 µm, which measures exclusively thermally emitted radiation at night but 270 
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both thermally emitted and reflected solar radiation during the day. We have defined night as solar zenith angles (SZAs) 

above 89⁰, twilight for SZAs between 80-89⁰, and day as SZAs below 80⁰.  

Appendix A provides linear regression parameters for both methods. 

 

Method 2 (hereafter described as the NN-based method or SBAF-NN) explores whether multichannel information from 275 

VIIRS can be used to simulate individual AVHRR channel radiances, taking illumination conditions into account (in the 

same way as for method Linear-1b). The NN-based method was trained on all training samples, allowing dependence on 

multiple input channels for each target channel, separated by night, twilight, and daytime conditions. The following section 

further describes this method and its training. 

3.2 Definition and training of the SBA-NNMLP network 280 

This study used Multilayer perceptrons of the type Quantile Regression Neural Networks (QRNN, Pfreundshuh et al., 2018, 

Cannon, 2011). These have been successfully used to retrieve cloud top height parameters from polar satellite imagery 

(Håkansson et al., 2019) in the EUMETSAT Nowcasting Satellite Application Facility (NWC SAF) project. The resulting 

cloud top height products were also used later in CLARA-A3. Separate networks were trained for day, night, and twilight 

conditions. As input to the AVHRR training, the network had the individual channels (as reflectances and brightness 285 

temperatures), channel differences (i.e., brightness temperature differences, BTDs), and channel ratioquotas from VIIRS (e.g., 

M10 reflectances divided by M6 reflectances). As truth to train against, the same variables for AVHRR were used (Table 4). 

However, channels at 1.6 µm and 8.5 µm are not available on NOAA-19 AVHRR, which were consequently used only as 

input to the network. We omitted the variables concerning reflective channels during night-time conditions. The reason for 

using primarily channel differences and ratioquotas between channels in the training, rather than just the original set of all 290 

individual channels, is that many of the downstream applications for deriving CLARA products (e.g., cloud mask, cloud optical 

thickness, effective radii, and surface albedo) rely heavily on relations between two or more AVHRR channels. Thus, 

simulating these relations between channels as closely as possible is important.  

The networks were trained for three distribution quantiles: of 16 %, 50 %, and 84 %, which estimate the retrieval error. The 

Sequential model form Keras/Tensorflow (Joseph et al., 2021) defined the networks, with the MLP settings detailed in Table 295 

5. The code for the training and the resulting networks is available on Github (https://github.com/foua-pps/sbafs_ann). Table 

C1 in Appendix C6 provides the details on the final networks.   

The data underwent thinning before training. The input data range was calculated and divided into 10 equal bins for each 

variable, from which 1,000 data points were randomly selected per bin. Bins with fewer than 1,000 points were supplemented 

with additional random selections to reach exactly 400,000 data points for the night-time network and 700,000 for each daytime 300 

and twilight network. Data thinning aimed to give rare but important data points, such as cloud-free snow-covered surfaces 

and hot deserts, larger representation in the training data. 

 

https://github.com/foua-pps/sbafs_ann
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Table 4: Training variables for the MLP network. 

Variables 

Reflectance at 0.6 µm 

RatioQuota of 0.6 µm and 0.9 µm reflectances 

Brightness temperature at 11 µm 

BTD between 12 µm and 11 µm 

BTD between 3.7 µm and 11 µm 

BTD between 8.5 µm and 11 µm 

RatioQuota of 1.6 µm and 0.6 µm reflectances 

 

Table 5: MLP network settings. 310 

Multi- Layer Perceptron Model Setting Value 

Number of hidden layers 2 

Number of neurons per hidden layer 15 

Learning rate 0.02 

Patience 30 

Momentum 0.9 

Decay 

Activation function for hidden layers 

Kernel initializer 

10-6 

Tanh 

glorot uniform 

 

 

Table 6: Configuration file names for finally chosen MLP networks. 

Configuration file  Time of day 

 

ch7_satz_max_15_SUNZ_0_80_tdiff_120_sec_20241204.yaml 

 

DAY 

ch7_satz_max_15_SUNZ_80_89_tdiff_120_sec_20241204.yaml TWILIGHT 

ch4_satz_max_15_SUNZ_90_180_tdiff_120_sec_20241204.yaml NIGHT 
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3.3 Evaluation methods 

The results for the simulated radiances are primarily evaluated by inter-comparing radiances in scatter plots and calculating 315 

appropriate scores of radiance agreement. This evaluation is based on the Radiance validation dataset in Table 3.  

An equally important way of evaluating the results is to investigate the impact on some central CLARA CDR cloud products, 

to verify that the products derived from simulated AVHRR radiances fulfilled essential CLARA-A3 CDR product 

requirements. A favourable condition for the chosen period was the possibility of collocating VIIRS and AVHRR orbits with 

observations from the CALIPSO satellite (also having equator crossing times near 01:30 PM). Consequently, cloud products 320 

derived from VIIRS-simulated AVHRR data could be efficiently validated using CALIPSO-CALIOP cloud products (Winker, 

2018). Thus, validation results for the cloud parameters cloud fractional cover (CFC in %), cloud top height (CTH, in meters) 

and cloud phase (CPH, meaning the percentage of liquid phase cloud tops) could be derived. The validation methods were the 

same as those described by Karlsson and Håkansson (2018).  

The processing of CLARA CDR cloud products is based on the software package for the Polar Platform System (PPS), 325 

originally developed within the EUMETSAT NWC SAF project (https://www.nwcsaf.org/web/guest/home). PPS enables 

cloud product processing for a wide range of imagers. The shift from one sensor to another is generally dealt with by adjusting 

pre-calculated cloud detection thresholds, atmospheric corrections and other adaptations from mainly RTTOV-simulations 

utilizing each sensors’ spectral response functions.     

We used a variety of validation scores depending on the investigated parameters (all scores described in detail by Karlsson 330 

and Håkansson, 2018). For the cloud mask evaluation, we first converted cloud probabilities to a binary cloud mask using the 

probability threshold of 50 %. Then, we calculated the overall cloud fractional cover (CFC) to be compared with the CFC 

calculated from the CALIPSO cloud products. Validation scores mean error (bias in percentage points - %), dimensionless Hit 

Rate and Kuipers scores were then calculated. Since the CALIOP cloud lidar on CALIPSO is more sensitive to cloud 

occurrence than AVHRR, the Kuipers and Hit Rate scores were also calculated for CALIOP observations with the thinnest 335 

clouds excluded (i.e., excluding contributions from cloud layers with cloud optical thicknesses < 0.20). For CTH, the cloud 

top of the topmost cloud layer detected by CALIOP was used as the validation reference. Computed validation scores for CTH 

were mean error and mean absolute error (both in meters). Also here, the effect of removing the thinnest clouds from the 

CALIPSO dataset was studied, but now using a slightly relaxed cloud optical thickness threshold of 0.4, claiming that the 

prospect of retrieving a cloud top height requires that clouds are also detected with reasonable confidence.   340 

Notice that the Suomi-NPP/CALIPSO matchups for the years 2012-2013 (i.e., basically the Cloud product validation dataset 

for Suomi-NPP in Table 3) are independent of the AVHRR/Suomi-NPP matchups (i.e., the two training datasets for Suomi-

NPP) in the same period. More clearly, the likelihood of simultaneous nadir observations from all three platforms is extremely 

low.  

https://www.nwcsaf.org/web/guest/home
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In addition to evaluating the performance of cloud products for 2012 and 2013, we also made the same validation effort based 345 

on CALIPSO data for all months in 2019. The purpose was mainly to choose a period with more independent data, well 

separated in time from the two years when SBAF methods were initially derived. Thus, we wanted to see if the results were 

still valid for Suomi-NPP data 6 years later. In addition, we also wanted to see if the next VIIRS sensor on NOAA-20, with 

slightly different spectral responses for some involved channels, would produce results with similar quality. This validation 

effort used data from cloud validation datasets from 2019, as shown in Table 3. 350 

As a final confirmation that simulated CLARA-A3 cloud products would perform satisfactorily overall, we also made inter-

comparisons between original and simulated AVHRR cloud property products for the NOAA-19/Suomi-NPP matchups in the 

year 2012. Cloud property products COT, CRE, LWP, and IWP could not be validated in the CALIPSO validation study. 

Comparing them with original AVHRR products indicates their validity, even though the validation dataset (i.e., the Cloud 

property inter-comparison dataset in Table 3) partly includes cases used for training the methods. The analysis also computes 355 

agreement scores similar to those defined for the radiance inter-comparisons.   

4 Results 

4.1 Results for simulated AVHRR radiances 

Table 2 shows how Suomi-NPP VIIRS-simulated AVHRR radiances compare to the original NOAA-19 AVHRR radiances 

for the 2012 radiance validation dataset.  360 

Figure 3 shows scatterplots with results of the simulated AVHRR reflectances for the two visible AVHRR channels (Channels 

1 and 2, see Table 1). For the linear regressions, we only show results of version Linear-1b, since the two linear versions give 

almost identical results for the visible channels. Results are compared with original reflectances from AVHRR and VIIRS. It 

is clear that original channel reflectances are highly correlated in both sensors, although VIIRS reflectances are generally 

slightly higher than AVHRR reflectances. The relatively large spread around the identity line is largely explained by remaining, 365 

but small collocation errors in space and time. Furthermore, sampling differences in how radiances are averaged in AVHRR 

GAC and VIIRS VGAC Ffield Fof vViews (FOVs) can also contribute to the scatter. 

Simulations with the linear method improves the agreement (i.e., brings results closer to the identity line) in Fig. 3 for both 

channels, but appear to create overcompensated results for high reflectances.  The NN-based method delivers the best results, 

effectively removing most of the off-diagonal deviations observed in the linear method.  370 
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Figure 3: Radiance inter-comparisons for AVHRR channels 1 (0.6 µm, upper panels) and 2 (0.9 µm, bottom panels). 

Original AVHRR vs VIIRS reflectances (%) are shown in the leftmost column. AVHRR vs VIIRS-simulated 

reflectances are shown by the central and rightmost columns. The center column shows results from the Linear-1b 

method, while the rightmost column shows simulated results from the SBAF-NN SBA-NN method.    375 
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Figure 4: Radiance inter-comparisons for AVHRR channel 3b (3.7 µm, uppermost panels), channel 4 (11 µm, middle 

panels) and channel 5 (12 µm, lowermost panels). The figure shows merged results for all daytime categories. Original 380 

AVHRR vs VIIRS brightness temperatures (K) are shown in the leftmost column. AVHRR vs VIIRS-simulated 
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brightness temperatures are shown by the central and rightmost columns. The center column shows results from the 

Linear-1b method, while the rightmost column shows simulated results from the SBAF-NN method.    

 

As seen in Fig. 1, the spectral responses for VIIRS and AVHRR for the infrared channels 4 and 5 are very similar, which is 385 

also verified by the results in the middle and bottom panels of Fig. 4. Original and simulated results for the two AVHRR 

channels are here more or less identical. Some deviations are, however, seen for AVHRR channel 3B (upper panel in Fig. 4) 

and the NN-based method is somewhat better than the linear method for reducing these deviations. 

Although AVHRR simulations for the infrared and shortwave-infrared channels appear to agree well with the original AVHRR 

radiances in Fig. 4, we must emphasize that for some CLARA applications (like cloud detection), the quality of simulated 390 

AVHRR channel differences is very important. Similarly, estimating surface albedo in CLARA requires accurate inter-channel 

relations (i.e., reflectance ratioquotas) between the two visible channels.  Fig. 5 closes in on those features. 

The close-up of differences and ratiosquotas in Fig. 5 reveals deviations from the identity line for both original and simulated 

results. The brightness temperature differences for the three original infrared and short-wave infrared channels are relatively 

large. The linear approach somewhat improves the agreement, but the NN-based method can almost completely remove the 395 

differences. The linear method cannot improve the agreement for the reflectance ratioquota, while the NN-based method 

provides an excellent agreement. 
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 Figure 5: Results for selected channel differences and ratioquotas. The figure shows merged results for all three 

daytime categories. Uppermost panels: Results for original and simulated brightness temperature differences (K) 400 

between AVHRR channels 4 and 5 (11-12 µm). Middle panels: Results for original and simulated brightness 
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temperature differences (K) between AVHRR channels 4 and 3B (11-3.7 µm). Lowermost panels: Results for original 

and simulated reflectance ratioquota between AVHRR channels 2 and 1 (0.9/0.6 µm). Original AVHRR and VIIRS 

relations are shown in the leftmost column, results for the Linear-1b method in the middle column, and results for the 

NN-based method in the rightmost column.    405 

 

Figure 6 summarises the quality (uncertainty) of simulated results, i.e., the difference distribution between simulated and real 

AVHRR results for the studied methods based on the same datasets as in Figs. 3, 4, and 5. Notice that the figure also shows 

results for the previously illustrated channel differences and ratioquotas, and results for the Linear-1a method (not shown in 

Figs. 4 and 5). For reference, the figure also shows the original deviation between AVHRR and VIIRS channels. 410 

We immediately notice that the SBAF-NN method is superior to all other methods by showing the highest frequency at the 

zero-difference level (blue curves in Fig. 6). This method creates no secondary peaks, and the distribution is clearly non-

Gaussian (i.e., the grey distribution indicated in Fig. 6 is Gaussian with the same bias and standard deviation). Notice, in 

particular, this method has excellent results for channel differences and ratioquotas (lowest row in Fig. 6).  

Results in Fig. 6 clearly show that AVHRR channel 3B simulations require separate handling of day and night measurements. 415 

If the simulation method is not different between day and night (i.e., as in Linear-1a), the error difference clearly peaks outside 

the zero level (e.g., green curves in the leftmost plots in the middle and bottom rows in Fig. 6).  

Tables A2.1-A2.4 in Appendix B summarize all results for selected overall statistical measures. Appendix B also provides 

results sub-divided for day, night, and twilight conditions.  

 420 
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Figure 6: Frequency distributions of differences between simulated and real AVHRR radiances. For reference, also the 

original AVHRR and VIIRS channel deviations are shown (yellow dotted curve = No SBAF in the legend). The upper 
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two panels show results for all 5 AVHRR channels, while the bottom panels show results for BTDs (channel 4 – channel 425 

5) and channel 4 – channel 3B) and reflectance ratioquota (channel 2 divided by channel 1).   

 

4.2 CALIPSO-based validation of derived CLARA cloud products for 2012 and 2013 

Tables 67-89 show the results from the CALIPSO-CALIOP validation of three CLARA-A3 cloud products based on 

VIIRS/VGAC-simulated AVHRR radiances. Section 3.3 describes the general validation setup and the validation scores used. 430 

The tables contain validation results for seven eight different validation setups: 

 

1. NOAA-19 CLARA-A3 

Achieved validation results in a previous validation of CLARA-A3 products for products generated from the NOAA-

19 AVHRR instrument over 2012-2013. These results are included, since this study aims to produce results from 435 

VIIRS/VGAC data compatible with earlier NOAA-19 AVHRR-based products.  

2. PPS VIIRS VGAC No SBAF 

Validation results based on uncorrected AVHRR-heritage channels of VIIRS/VGAC data in 2012-2013. Notice that 

this category means that PPS cloud products have been produced in the VIIRS environment (i.e., applying pre-

calculated cloud detection thresholds, atmospheric corrections and other adaptations using spectral responses of the 440 

five AVHRR-heritage channels of VIIRS). 

3. VGAC No SBA 

Similar to the previous category but now based on PPS cloud products produced in the AVHRR environment (i.e.,  

applying pre-calculated cloud detection thresholds, atmospheric corrections and other adaptations using spectral 

responses of the original five NOAA-19 AVHRR channels). This environment is also used for all following 445 

categories. 

4. VGAC Linear-1a 

Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the method Linear-1a in 2012-

2013. 

5. VGAC Linear-1b 450 

Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the method Linear-1b in 2012-

2013. 

6. VGAC SBAF-NN 

Validation results based on VIIRS/VGAC-simulation of AVHRR channels based on the SBAF-NN method in 2012-

2013. 455 

7. VGAC SNPP 2019 SBAF-NN 
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Validation results based on Suomi-NPP VIIRS/VGAC-simulation of AVHRR channels based on the SBAF-NN 

method in 2019. 

8. VGAC NOAA-20 2019 SBAF-NN 

Validation results based on NOAA-20 VIIRS/VGAC-simulation of AVHRR channels based on the SBAF-NN 460 

method in 2019. 

 

The tables also show the original requirements defined for the three cloud products when compiling the CLARA-A3 CDR in 

the rightmost column. Products generated from VIIRS/VGAC-simulated products should also fulfill these target requirements. 

Notice that in the CLARA-A3 evaluation, the removal of contributions from detected very thin clouds by CALIPSO-CALIOP 465 

was applied based on the COT threshold of 0.2 for CFC and 0.4 for CTH. The use of different COT thresholds here is motivated 

by the wish to avoid the thinnest clouds detected by the cloud masking procedure, since these are always the most difficult 

clouds to deal with for any CTH retrieval. Results from the same procedure are also included in the tables.  

 

Table 6.6. Validation scores for Cloud Fractional Cover (CFC): bias [%], Kuipers score, and hitrate (both [-]). See text 470 

and Sect. 3.3 for details. 

Parameter NOAA-19 
CLARA-A3 

 

PPS  
VIIRS  

VGAC 
No SBA 

VGAC 
Linear-1a 

VGAC 
Linear-1b 

VGAC 
SBA-NN 

VGAC 
SNPP 
2019 

SBA-NN 

VGAC 
NOAA-20 

2019  
SBA-NN 

CLARA-A3 
Product  
require-

ment 

Total #  
Orbits 

1026 497 497 497 497 497 289 274  

Total # FOVs 6 355 780 3 468 354 3 468 354 3 468 354 3 468 354 3 468 351 1 891 597 1 804 134  
          
CFC bias -11.03 % -10.46 % -7.47 -6.11 % -10.20 % -9.74 % -10.37 % -9.43 % - 
CFC bias  
(COT > 0.2) 

-0.22 % 0.28 % 3.27 % 4.63 % 0.55 % 1.00 % 0.67 % 1.63 % 5 % 

CFC Kuipers 0.687 0.701 0.639 0.606 0.688 0.695 0.694 0.687 - 
CFC Kuipers  
(COT > 0.2) 

0.706 0.712 0.646 0.638 0.710 0.700 0.701 0.685 0.6 

CFC Hitrate 0.825 0.833 0.822 0.814 0.829 0.834 0.831 0.833 - 
          

 

Table 78. Validation scores for Cloud Top Height (CTH): bias and mean absolute error (both [m]). Total number of 

used orbits and samples are given in Table 67. See text and Sect. 3.3 for details. 

Parameter NOAA-19 
CLARA-A3 

PPS 
VIIRS 

VGAC 
No SBA 

VGAC 
Linear-1a 

VGAC 
Linear-1b 

VGAC  
SBA-NN 

VGAC 
SNPP 
2019 

SBA-NN 

VGAC 
NOAA-20 

2019  
SBA-NN 

CLARA-A3 
Product  
require-

ment 

CTH bias -900 m -1049 m -1129 m -504 m -501 m -598 m -633 m -408 m - 
CTH bias  
(COT > 0.4) 

807 m 644 m 641 m 1166 m 1143 m 1034 m 1122 m 1288 m 800 m 



25 

 

CTH mean 
abs error 

1664 m 1678 m 1755 m 1560 m 1538 m 1541 m 1673 m 1656 m - 

          

 475 

Table 89. Validation scores for Cloud Phase (CPH, here the fraction of liquid clouds): bias [%], Kuipers score, and 

hitrate (both [-]). Total number of used orbits and samples are given in Table 67. See text and Sect. 3.3 for details. 

Parameter NOAA-19 
CLARA-A3 

PPS 
VIIRS 

VGAC 
No SBA 

VGAC 
Linear-1a 

VGAC 
Linear-1b 

VGAC  
SBA-NN 

VGAC 
SNPP 
2019 

SBA-NN 

VGAC 
NOAA-20 

2019  
SBA-NN 

CLARA-A3 
Product  
require-

ment 

CPH mean 
bias 

-1 % -4 % -0.06 % -1 % 1 % 0 % 0 % 2 % 5 % 

CPH Kuipers 0.67 0.66 0.66 0.69 0.68 0.68 0.67 0.68 0.6 
CPH Hitrate 0.84 0.83 0.83 0.85 0.85 0.84 0.84 0.84 - 

 

 

 

If comparing results in columns “PPS VIIRS” and “VGAC No SBA” for CFC in Table 6, we notice that to process VIIRS data 480 

for AVHRR-heritage channels in the correct PPS VIIRS environment generally gives better results than when processing these 

data in the AVHRR PPS environment. It proves that there is indeed a need to apply spectral band adjustments to properly use 

VIIRS-based data in the AVHRR PPS environment. Some signs of this is also seen for CPH results in Table 8 while it is more 

difficult to judge the changes seen for CTH results in Table 7. 

Regarding CFC results, it is clear that all methods (except possibly Linear-1a which actually worsens results further) perform 485 

well, indeed much better than the CLARA-A3 requirements and very close to the achieved validation results for CLARA-A3. 

The SBAF-NN method has the best overall scores for the VIIRS/VGAC simulations validated against all CALIPSO-detected 

clouds. A closer look at results (not shown here) reveals that clearly better results are mainly explained by superior CFC 

performance during night conditions.  

Results for CTH in Table 78 are also somewhat similar for all methods, but it is difficult to draw conclusions based exclusively 490 

on the bias parameter. As Håkansson et al. (2018) pointed out, the cloud top distribution is largely bi-modal with peaks for 

low-level and high-level clouds. Since determining high-level cloud tops is much more difficult than for low-level cloud tops 

(i.e., high-level clouds are predominantly semi-transparent), the actual distribution of low-level and high-level clouds in the 

validation dataset has therefore great importance for the bias results. Consequently, the error structure is generally non-

Gaussian, making the bias parameter inappropriate as a measure of uncertainty. A more reliable uncertainty parameter here is 495 

the mean absolute error. We notice that all results based on simulated AVHRR data are in line with or even slightly better than 

the AVHRR reference results from CLARA-A3. 

For the CPH product results in Table 89, the differences in the results between the various products are even smaller, so no 

method can be determined as clearly standing out compared to any other method.  
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It is encouraging is to see that the method found to best simulate AVHRR radiances according to the previous section (the 500 

SBAF-NN method), also appears to perform well based on Suomi-NPP and NOAA-20 data from 2019. Only a minor 

degradation appears visible for NOAA-20, which has a VIIRS sensor with slightly different spectral channel responses 

compared to Suomi-NPP.     

4.3 Inter-comparing original AVHRR-based and VIIRS/VGAC simulated cloud physical products for 2012 

Only some of the CLARA-A3 cloud products can be validated using CALIPSO-CALIOP. The cloud physical products (CPP) 505 

of CLARA-A3 consist not only of the CPH product (validated in the previous section), but also of the CWP product, sub-

divided into cloud liquid water path (LWP) and ice water path (IWP). COT and CRE are needed for their generation. Even if 

we cannot easily validate these products from independent data, comparing the original AVHRR-based products with the 

VIIRS/VGAC-generated products in the used AVHRR/VIIRS collocation dataset is possible. Here, we show such inter-

comparisons based on all collocated data for 2012. Notice that since the CPP products are only derived during daytime, the 510 

only difference between the Linear-1a and Linear-1b methods is that the latter also has a distinction between twilight and day. 
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 515 

 

 

 

Figure 7: Frequency distributions of CPP differences between products based on VIIRS-simulated and real AVHRR 

radiances. For reference, also products based on uncorrected VIIRS radiances are shown (green dotted curve = No 520 

SBA in the legend). 
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Table 910. Mean Absolute Difference (MAD) for the various Spectral Band Adjustment methods for CPP products 

based on simulated data versus products based original AVHRR data. Minimum MADs for each CPP product are 525 

shown in bold numbers. 

 COT [-] CRE [µm] LWP [gm-2] IWP [gm-2] 

No SBA 8.8 3.4 61.1 85.8 
Linear-1a 5.9 3.0 49.8 75.9 
Linear-1b 5.4 3.0 44.8 67.8 
SBA-NN 5.1 2.6 42.0 55.9 

 

 

Figure 7 shows frequency distributions of the difference between VIIRS-simulated CPP products and original AVHRR-

based CPP products for all SBA-methods. The figure also shows resulting frequencies for the case when no spectral band 530 

adjustments are applied (i.e., the No SBA case). Table 9 summarizes the resulting mean absolute deviations (MAD) for the 

different cases. 

It is clear from Fig. 7 that if no SBA-corrections are made, the difference distributions of the two fundamental parameters 

COT and CRE (i.e., fundamental for the calculation of LWP and IWP) are not symmetrically distributed around the zero-

difference value. Especially the CRE difference distribution appears biased with a secondary peak for negative differences 535 

(i.e., underestimated CREs compared to the AVHRR values). SBA corrections improve the results and especially the SBA-

NN method produce a well-defined narrow peak centered at the zero-difference level. This is also reflected in Table 9 

showing minimum MADs for the SBA-NN method. the results for COT. We notice an increasing underestimation of 

COT for increasing COT values for the Linear-1a method. Results improve for the Linear-1b method, showing that 

the separation of twilight and daytime results has some importance. However, results for the SBAF-NN method show 540 

the highest correlation and the smallest RMSE values. Notice that the different number of samples for the three 

methods is linked to different resulting cloud masks.  

Figure 8 shows CRE results. Both linear methods underestimate this parameter for higher CRE values, while the best 

agreement is seen for the SBAF-NN. Artefacts in the form of vertical and horizontal lines result from using minimum 

and maximum boundary values for liquid and ice cloud phases in the CRE retrieval method (NWC/PPS, 2022).  545 

 

Figures 9 and 10 show the three methods’ derived LWP and IWP values. The pattern in the results for COT and 

CRE (i.e., increasing underestimation for increasing parameter values) repeat for both linear methods, since the 

water path parameters originate from the product of COT and CRE for clouds with either liquid or frozen cloud 

tops. Again, the SBAF-NN method shows the best results, especially for IWP.  The varying number of samples for 550 

each plot comes from using different cloud masks and cloud phase determination from the three methods.   
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5 Discussion 

5.1 AVHRR radiance simulations 

Our simulations show that radiance simulations based on linear regression methods can only partially remove differences 555 

between original AVHRR and AVHRR-heritage VIIRS channels. Although correlations between channels are generally high 

(especially for the infrared channels), there are obvious remaining non-linear features that linear methods cannot handle 

properly. In contrast, the SBAF-NN method handles these non-linear features more accurately when simulating radiances. 

Including channel differences and ratioquotas during network training, which is particularly important for downstream 

applications, further improves the results. 560 

One very important finding in our study is that for the 3.7 µm channel (AVHRR channel 3B), which measures both emitted 

thermal and reflected solar radiation during daytime, it is crucial to separate radiance simulations for daytime and night-time 

conditions. It is well-known that radiances in this channel behave very differently during night and day. However, it is also 

clear that small differences in spectral responses between the original AVHRR channel 3B and the AVHRR-heritage channel 

M12 of VIIRS lead to clearly different daytime behaviour of the two channels. This is a consequence of the small difference 565 

in central wavelengths shown in Tables 1 and 2. The lower central wavelength value in M12 means that this channel is slightly 

more sensitive to reflected solar radiation, which results in a larger reflectance contribution to the observed brightness 

temperature in this channel. Thus, any relation deduced from purely night-time measurements (with only thermal emissions) 

will fail if applied to daytime measurements. From this, we also need to emphasize that, even if previously shown results for 

cloud screening in Table 6 indicate that good results could be achieved without any spectral band adjustments of VIIRS heritage 570 

(i.e., staying with VIIRS processing of AVHRR-heritage channels without any adaptations to AVHRR data) channels for some 

products, any retrieval that is highly dependent on AVHRR channel 3B need to make spectral band adjustments on the 

corresponding VIIRS channel.  

Central to this study was the definition of the AVHRR/VIIRS collocation dataset for 2012 and 2013. The fact that NOAA-19 

and Suomi-NPP had very similar, but not identical, orbits caused some concern, since it led to an uneven global sample 575 

extraction. The small orbital differences led to the largest orbital track separations in the tropics, resulting in large (less 

favourable) angular differences. To avoid too much influence of angular differences, which could lead to differences from 

anisotropic reflection and atmospheric absorption effects, we set a maximum viewing angle of 15 degrees for both sensors. 

This value was a compromise between the wish of getting samples for all latitudes, but still limiting the effects of differences 

due to anisotropic reflection and atmospheric absorption. It allowed samples to be obtained from all latitudes, but the number 580 

of resulting samples also became an increasing function of latitude. Initially, we tried even stricter limits on viewing angles, 

but this resulted in only a few samples from very warm surfaces at low latitudes, thereby hampering the neural network training.         

 

5.2 Resulting cloud masks, cloud top heights, and cloud phases 
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The CLARA-A3 CDR's cloud detection method depends heavily on radiances in AVHRR channel 3B. As mentioned in the 585 

previous section, the difficulties in handling this channel properly clearly affected validation results based on CALIPSO-

CALIOP cloud products. Using the radiance simulation method Linear-1a resulted in serious errors in night-time cloud 

masking, even if daytime results were acceptable. Night-time results clearly improved with the Linear-1b method, but even 

more so with the NN-based method. 

The performance of the SBAF-NN cloud mask was even slightly better than the original results from NOAA-19 in the CLARA-590 

A3 CDR. However, it should be noticed that the previous validation of CLARA-A3 products allowed slightly larger time 

differences between AVHRR and CALIPSO observations (i.e., 5 minutes instead of 2 minutes) which probably led to slightly 

degraded results for CLARA-A3 compared to using a maximum 2 minutes time difference in both datasets. 

Results for the other two CALIPSO-examined cloud products did not show a large variation and the existing variation mostly 

was linked to the cloud mask quality. 595 

Results for these three cloud products, based on the different AVHRR simulations and on original AVHRR and uncorrected 

VIIRS radiances, generally did not differ very much in the achieved validation results (at least, if not including night-time 

results for the method Linear-1a). In fact, they all reside well within the requirements previously set up for CLARA-A3. We 

conclude that, for these products, the AVHRR-heritage channels of VIIRS, corrected or not, contain enough information to 

provide results close to original AVHRR-based products.  Encouraging is also that the good results are stable enough to be 600 

repeated in 2019 for the Suomi-NPP satellite. Results are also good for the VIIRS sensor on NOAA-20 in 2019, although with 

some degradation compared to Suomi-NPP. We expect this degradation to some extent due to differences in spectral responses 

between the two VIIRS sensors. However, the differences remain small enough to avoid the need for radiance corrections, as 

the results still meet CLARA-A3 product requirements.  

 605 

5.3 Resulting cloud physical parameters 

The inter-comparison of original AVHRR-based CPP products and products based on VIIRS-simulated radiances showed that 

very accurate AVHRR radiance simulations are more important here than for the previously discussed cloud products. This 

concerns the COT parameter (which depends largely on AVHRR channel 1) and the CRE parameter (which depends largely 

on AVHRR channel 3B). A simulation of visible and short-wave infrared radiances should preferably be sub-divided into 610 

twilight and daytime categories. However, the most important for the simulation of channel 3B is that the simulation method 

must be derived exclusively from day-time data. 

The success of the SBAF-NN method compared to the linear methods reveals something very interesting:  The neural network 

appears capable of applying different radiance correction factors to different objects in simulated channel 3B images. Notice 

that only objects able to reflect solar radiation in channel 3B should have a correction factor that differs from the one applied 615 

during night-time (when only thermally emitted radiation is measured). Furthermore, this correction factor should also vary 

depending on the reflection efficiency of the object, i.e., the correction factor should be dependent on the object’s reflectance. 

Any linear correction method will fail here, since the correction factor is practically always constant, regardless of the object 
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in the image. The objects reflecting the most in this channel are typically thick water clouds. Since the linear regression will 

produce a nearly constant average correction factor (only slightly moderated by an offset parameter), the correction factor in 620 

this channel is likely too small for thick water clouds and too large for darker objects with low reflectance (e.g., snow-covered 

surfaces). This is one explanation for underestimating simulated liquid cloud CRE values, which leads to underestimated LWP 

values. Only the SBAF-NN method can correct for this effect.  

Figure 811 and Table 10 together illustrate together the capability of the SBAF-NN method to generate different SBAFs in 

AVHRR channel 3B for different objects in a VIIRS/VGAC-simulation of AVHRR data over the Greenland area from 21 July 625 

2012. Crosses mark locations in the scene with different cloud and surface types as interpreted by the Polar Platform System 

(PPS) cloud type product (Dybbroe et al. 2004). Table 10 shows the resulting SBAF corrections for AVHRR channel 3B for 

the Linear-1b and the NN-SBAFSBA-NN methods in all the marked points. Especially, notice the different SBAF corrections 

for SBAF-NN for highly reflecting objects (X2, X4 and X7) compared to those for weakly reflecting or non-reflecting objects 

(X3, X5 and X6). It means that the NN is capable of identifying the different behaviour of different objects, thus making a kind 630 

of implicit object type identification when assigning which SBAFs to use.  

These results show the advantage of the NN approach in absorbing information, not only from the closest AVHRR-heritage 

channel, but from a larger set of VIIRS channels for making it possible to give different objects different effective SBAF 

corrections. For example, notice that snow surfaces, which should hardly be SBAF-corrected at all according to Table 10, are 

known to have very low reflectance in AVHRR channels 3A and 3B. Thus, when including also channel M10 in the training 635 

process, this could help in identifying snow surfaces with higher confidence than if using solely channel M12 in this spectral 

region. Another example is the inclusion of VIIRS channel M14 in the training process, a channel which is not available at all 

on AVHRR. This channel is partly affected by water vapour absorption and this might potentially be useful for getting a better 

treatment of the simulation of brightness temperature differences between AVHRR channels 4 and 5, (generally affected by 

both water vapour absorption and differences in cloud transmissivities).   640 
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Figure 88: Excerpt of a VIIRS/VGAC-simulated AVHRR orbit from Suomi-NPP 21 July 2012 (with first orbit 

scanline at 15:16 UTC). The scene shows Greenland, the Labrador Sea and adjacent Canadian islands (with southern 645 

direction upwards) in a colour composite (left) based on VIIRS-simulated AVHRR channels 3B, 4, and 5 and a 

corresponding PPS cloud type classification (right). SBAF corrections for the Linear-1b and NN-SBA-NNF methods 

for the marked positions are given in Table 10. 

 

Table 101: Resulting SBAF corrections (i.e., adjustment factor compared to uncorrected VIIRS channels) for 650 

simulation methods Linear-1b and NN-SBAFSBA-NN for markup points in Fig. 811. 

Markup point and  

associated cloud or  

surface type 

SBAF Linear-1b 

3.7 µm 

SBA-NN 

3.7 µm 

 

X1: Snow (wet) 

 

0.993 

 

0.999 

X2: Very low (Stratus) 0.992 0.987 

X3: Cloud-free ocean 0.992 1.000 

X4: Medium level clouds 0.992 0.985 

X5: Very high clouds 0.992 1.000 
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X6: Snow (dry) 0.993 0.999 

X7: Low (Stratocumulus) 0.993 0.992 

X8: Ice-covered ocean 0.993 0.998 

 

 

5.4 Prospects for remaining CLARA-A3 products 

We have shown that NOAA-19 AVHRR radiances can be simulated from Suooumi-NPP VIIRS/VGAC radiances and that 655 

they can be used to produce cloud products with the same or even better quality than the original products included in the 

CLARA-A3 CDR. Whether the other CLARA-A3 products (i.e., surface albedo, surface radiation, and TOA radiation) can 

also be reproduced successfully from VIIRS/VGAC data remains to be investigated. Preliminary tests based on the SBAF-NN 

radiance simulations have been performed for all products with promising results. However, more extensive validations need 

to take place, which is outside this paper's scope. Nevertheless, there is no reason to believe in the failure of the remaining 660 

products if basic radiances and cloud products are produced with high quality. 

6 Conclusions 

AVHRR radiances from the NOAA-19 satellite have been successfully simulated from Suomi-NPP VIIRS/VGAC radiances 

in 2012-2013 when observations from the two satellites could be collocated efficiently in both time and space. Two methods 

based on linear regression for each channel and one method based on an MLP neural network have been tested. The latter was 665 

trained using all AVHRR-heritage channels on VIIRS plus a few additional channels. Special attention was given to day and 

night differences, while constraints on channel differences and channel ratioquotas were applied to the neural network. 

The neural network approach achieved the best results for all individual channels. We found it crucial to separate daytime from 

night-time results when simulating AVHRR channel 3B at 3.7 µm. The small spectral response differences between AVHRR 

channel 3B and the VIIRS M12 channel, leading to a smaller effective central wavelength for the VIIRS channel, meant that 670 

different simulation methods had to be used for day and night. Furthermore, radiance corrections during daytime had to depend 

on the actual object reflectance to be realistic. Only the neural network approach was able to achieve this.  

Selected NOAA-19 cloud products (cloud mask, cloud top height, and cloud phase) in the CLARA-A3 CDR were produced 

from the VIIRS/VGAC-simulated radiances based on the same retrieval methods as used when compiling CLARA-A3. The 

resulting products were validated using CALIPSO-CALIOP cloud products and compared to the original CLARA-A3 675 

products. Product qualities agreed well with original CLARA-A3 products and are clearly within product requirements. In 

addition, the cloud microphysical products COT, CRE, LWP, and IWP were well reproduced when based on the neural 

network-simulated radiances.   

In order to check the validity of the derived spectral adjustments on a longer timescale, it is suggested to regularly repeat the 

validation efforts on derived cloud products based on new observations from active sensors on EarthCARE (Illingworth et al., 680 
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2015) and similar missions in the future. In addition, regular checks of Ssimultaneous Nnadir Oobservations (SNOs) at high 

latitudes between VIIRS and IASI (and its successors) can also help in deducing the infrared bands spectral responses’ stability. 

The possibility to make similar checks for VIIRS and METimage visible bands seems unfortunately not possible from the 

Tropospheric Ozone Monitoring Instrument (TROPOMI, Veefkind et al., 2012), the successor of SCIAMACHY, due to very 

limited spectral coverage of the AVHRR-heritage channels. The Ocean Color Instrument (OCI) on the PACE mission 685 

(Plankton, Aerosol, Cloud, ocean Ecosystem; Gorman et al., 2019) and the EMIT sensor (Earth Mineral dust source 

Investigation) aboard the International Space Station offer potential sources of suitable reference measurements. Sentinel-3’s 

Ocean and Land Colour Instrument (OLCI; Donlon et al., 2012) can also provide reference data. While OLCI is not fully 

hyperspectral, it includes 21 bands within the 0.4–1.0 µm range and operates with a 10:00 AM equator overpass time. 

CLARA-A3 will be complemented and extended with the VIIRS/VGAC-based products to cover the period 1979-20224 (446 690 

years) and this edition will be named CLARA-A3.5. Interestingly, for the future, the same radiance simulation approach could 

be applied on radiances from the upcoming METimage sensor on the EPS-SG satellites with an expected first launch in August 

2025. This satellite will have nearly the same equator crossing time as the current Metop-C satellite with the last AVHRR 

sensor onboard. This would enable collocations in the same way as the currently used collocations of NOAA-19 and Suomi-

NPP data. If AVHRR-radiances can be successfully simulated from METimage data, the CLARA CDR can be extended by 695 

several decades based on measurements from VIIRS and METimage sensors. Finally, the possibility to also use MODIS-based 

simulations of AVHRR data simulations can be considered to improve observational coverage for some earlier years in the 

CLARA CDR (e.g., for 1999-2001 when the orbital drift of NOAA-16 orbital drift was considerable). However, highest 

priority is to secure an extension of the a CDR extension with VIIRS and METimage data.” 

 700 
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Appendix A: Coefficients for linear regression methods 

Table A1: Linear regression parameters for method Linear-1a based on all data (i.e., merged training datasets 1 and 2 

in Table 3). For details on channel wavelengths for the two sensors, see Table 1 and Table 2. 705 

AVHRR  

Channel 

Simulated from  

VIIRS channel 

Slope Offset Number of  

observations 

Channel 1 (%) M5 0.8534 1.8517 19,010,195 

Channel 2 (%) M7 0.8507 1.1157 19,010,195 

Channel 3B (K) M12 0.9734 6.1707 41,474,568 

Channel 4 (K) M15 1.0006 -0.0378 41,474,568 

Channel 5 (K) M16 0.9906 2.1505 41,474,568 

 

 

Table A2: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2 

in Table 3) but restricted to DAY conditions. For details on channel wavelengths for the two sensors, see Table 1 and 

Table 2. 710 

AVHRR  

Channel 

Simulated from  

VIIRS channel 

Slope Offset Number of  

observations 

Channel 1 (%) M5 0.8960 1.7118 15,102,309 

Channel 2 (%) M7 0.8907 0.5547 15,102,309 

Channel 3B (K) M12 0.9817 3.0744 15,102,309 

Channel 4 (K) M15 0.9926 2.0934 15,102,309 

Channel 5 (K) M16 0.9774 5.6555 15,102,309 

 

 

 

 

 715 
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Table A3: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2 

in Table 3) but restricted to TWILIGHT conditions. For details on channel wavelengths for the two sensors, see Table 

1 and Table 2. 720 

AVHRR  

Channel 

Simulated from  

VIIRS channel 

Slope Offset Number of  

observations 

Channel 1 (%) M5 0.6710 4.5075 3,904,507 

Channel 2 (%) M7 0.7120 3.7473 3,904,507 

Channel 3B (K) M12 0.9973 -0.7479 3,904,507 

Channel 4 (K) M15 1.0024 -0.5164 3,904,507 

Channel 5 (K) M16 0.9967 0.6742 3,904,507 

 

 

Table A4: Linear regression parameters for method Linear-1b based on all data (i.e., merged training datasets 1 and 2 

in Table 3) but restricted to NIGHT conditions. For details on channel wavelengths for the two sensors, see Table 1 and 

Table 2. 725 

AVHRR  

Channel 

Simulated from  

VIIRS channel 

Slope Offset Number of  

observations 

Channel 3B (K) M12 0.9948 1.3254 21,971,492 

Channel 4 (K) M15 1.0042 -0.9186 21,971,492 

Channel 5 (K) M16 0.9962 0.7373 21,971,492 
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Appendix B: Detailed score statistics for radiance and image feature simulations 730 

Table B1: Radiance validation scores (for quantity VIIRS – AVHRR) for DAY (4 307 482 samples). Shown are values 

of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-mean-

squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every tested 

simulation method. Individual best scores are highlighted in bold numbers. 

Channel or 

feature 

Method median MAE IQR bias RMS Slope Offset Corre-

lation 

0.6 µm (%) SBAF-NN -0.091 3.700 3.878 -0.219 6.331 0.961 1.157 0.970 

 Linear-1b 0.310 3.941 4.652 0.052 6.444 0.945 1.969 0.969 

 Linear-1a -0.905 4.278 5.394 -1.401 6.675 0.901 2.096 0.969 

 No-correction -1.926 5.107 6.840 2.228 7.500 1.055 0.287 0.969 

0.9 µm (%) SBAF-NN -0.134 3.817 4.060 -0.290 6.464 0.953 1.341 0.968 

 Linear-1b -0.175 4.403 5.605 -0.110 6.904 0.933 2.229 0.963 

 Linear-1a -0.774 4.646 5.988 -1.094 7.054 0.891 2.715 0.963 

 No-correction 3.318 5.929 7.690 3.557 8.398 1.048 1.880 0.963 

3.7 µm (K) SBAF-NN 0.008 1.779 2.093 -0.122 2.899 0.972 7.802 0.987 

 Linear-1b -0.180 2.617 3.582 -0.343 3.805 0.933 18.523 0.978 

 Linear-1a 0.606 2.694 3.646 0.384 3.829 0.926 21.488 0.978 

 No correcction 1.820 3.096 3.520 1.806 4.176 0.951 15.736 0.978 

11 µm (K) SBAF-NN -0.070 1.528 1.024 -0.008 3.371 0.983 4.711 0.986 

 Linear-1b -0.072 1.564 1.114 -0.035 3.378 0.973 7.279 0.986 

 Linear-1a -0.043 1.521 0.977 -0.007 3.382 0.981 5.190 0.986 

 No correction -0.170 1.542 0.980 -0.131 3.384 0.980 5.224 0.986 

12 µm (K) SBAF-NN -0.073 1.504 1.000 -0.001 3.311 0.982 4.908 0.986 

 Linear-1b -0.134 1.557 1.160 -0.035 3.324 0.972 7.499 0.986 

 Linear-1a -0.065 1.512 0.991 0.011 3.334 0.985 4.019 0.986 

 No correction 0.290 1.596 1.060 0.389 3.377 0.994 1.886 0.986 

0.9 µm/0.6 µm (-) SBAF-NN -0.000 0.054 0.051 -0.001 0.123 0.896 0.104 0.952 

 Linear-1b -0.024 0.079 0.088 -0.022 0.147 1.013 -0.035 0.942 

 Linear-1a -0.001 0.068 0.082 0.007 0.139 0.976 0.031 0.943 

 No-correction 0.026 0.096 0.088 0.062 0.237 1.299 -0.239 0.937 

11 µm – 12 µm (K) SBAF-NN -0.001 0.217 0.230 -0.007 0.395 0.910 0.124 0.947 

 Linear-1b 0.032 0.266 0.344 -0.001 0.426 0.817 0.265 0.941 

 Linear-1a 0.030 0.279 0.385 -0.018 0.434 0.794 0.280 0.941 

 No correction -0.420 0.566 0.620 -0.520 0.732 0.739 -0.141 0.915 

11 µm – 3.7 µm (K) SBAF-NN -0.049 1.981 2.165 0.114 3.272 0.908 -1.143 0.940 

 Linear-1b 0.255 2.754 3.444 0.308 4.127 1.060 1.120 0.928 

 Linear-1a -0.554 2.879 3.657 -0.391 4.213 1.065 0.498 0.926 

 No-correction -1.890 3.343 3.530 -1.937 4.575 1.070 -0.992 0.929 
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 735 

Table B2: Radiance validation scores (for quantity VIIRS – AVHRR) for TWILIGHT (852 881 samples). Shown are 

values of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-

mean-squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every 

tested simulation method. Individual best scores are highlighted in bold numbers. 

Channel or 

feature 

Method median MAE IQR bias RMS Slope Offset Corre-

lation 

0.6 µm (%) SBAF-NN -0.191 3.902 5.275 -0.289 5.832 0.893 3.996 0.932 

 Linear-1b -1.280 6.778 9.636 0.128 9.355 0.705 11.981 0.813 

 Linear-1a 4.246 8.273 9.519 7.205 12.654 0.897 11.356 0.813 

 No-correction 10.386 13.618 10.982 13.177 17.863 1.051 11.137 0.813 

0.9 µm (%) SBAF-NN -0.312 4.490 5.865 -0.490 7.164 0.880 4.642 0.927 

 Linear-1b -0.894 7.233 10.089 0.215 10.395 0.752 10.774 0.839 

 Linear-1a 2.568 7.739 9.445 5.192 12.374 0.899 9.512 0.839 

 No-correction 9.207 13.059 11.397 12.267 17.911 1.056 9.869 0.839 

3.7 µm (K) SBAF-NN 0.132 0.972 1.222 0.129 1.518 0.977 6.114 0.990 

 Linear-1b -0.223 1.458 2.227 0.137 2.010 0.980 5.213 0.983 

 Linear-1a 0.569 1.533 2.226 0.886 2.190 0.957 11.988 0.983 

 No correction 1.210 1.879 2.230 1.582 2.556 0.983 5.977 0.983 

11 µm (K) SBAF-NN 0.028 0.707 0.697 0.033 1.285 0.991 2.248 0.996 

 Linear-1b 0.018 0.658 0.574 0.012 1.257 0.992 1.890 0.996 

 Linear-1a 0.052 0.663 0.585 0.041 1.258 0.991 2.365 0.996 

 No correction -0.060 0.665 0.590 -0.071 1.259 0.990 2-401 0.996 

12 µm (K) SBAF-NN 0.019 0.712 0.694 0.028 1.299 0.991 2.293 0.996 

 Linear-1b -0.026 0.671 0.599 -0.010 1.276 0.992 1.879 0.996 

 Linear-1a -0.070 0.691 0.670 -0.054 1.279 0.986 3.348 0.996 

 No correction 0.120 0.682 0.580 0.138 1.284 0.996 1.209 0.996 

0.9 µm/0.6 µm (-) SBAF-NN -0.003 0.041 0.053 -0.004 0.063 0.832 0.170 0.916 

 Linear-1b 0.005 0.054 0.080 0.005 0.076 0.660 0.357 0.886 

 Linear-1a -0.050 0.069 0.079 -0.051 0.091 0.690 0.269 0.883 

 No-correction -0.032 0.060 0.079 -0.031 0.082 0.703 0.277 0.876 

11 µm – 12 µm (K) SBAF-NN 0.008 0.138 0.194 0.005 0.213 0.910 0.068 0.957 

 Linear-1b 0.039 0.158 0.224 0.022 0.229 0.852 0.126 0.952 

 Linear-1a 0.115 0.189 0.235 0.095 0.253 0.860 0.193 0.948 

 No correction -0.190 0.241 0.250 -0.209 0.320 0.836 -0.094 0.946 

11 µm – 3.7 µm (K) SBAF-NN -0.101 0.873 1.057 -0.096 1.410 0.971 -0.297 0.981 

 Linear-1b 0.293 1.412 2.163 -0.125 1.946 1.130 0.761 0.979 

 Linear-1a -0.466 1.441 2.131 -0.845 2.106 1.128 0.033 0.979 

 No-correction -1.240 1.867 2.140 -1.653 2.544 1.127 -0.786 0.979 

 740 
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Table B3: Radiance validation scores (for quantity VIIRS – AVHRR) for NIGHT (5 758 113 samples). Shown are 

values of median error (median), mean absolute error (MAE), interquartile range (IQR), mean error (bias) and root-

mean-squared error (RMSE) for the simulation of each AVHRR channel and each channel combination, and for every 

tested simulation method. Individual best scores are highlighted in bold numbers. 745 

Channel or 

feature 

Method median MAE IQR bias RMS Slope Offset Corre-

lation 

3.7 µm (K) SBAF-NN -0.069 1.164 1.208 -0.085 1.988 0.995 1.215 0.996 

 Linear-1b -0.073 1.185 1.255 -0.013 1.998 0.992 2.127 0.996 

 Linear-1a -0.902 1.554 1.672 -0.768 2.205 0.970 6.955 0.996 

 No correction 0.010 1.178 1.240 0.022 2.000 0.997 0.805 0.996 

11 µm (K) SBAF-NN -0.038 0.925 0.788 -0.042 1.772 0.996 1.050 0.997 

 Linear-1b -0.020 0.925 0.788 -0.000 1.772 0.995 1.332 0.997 

 Linear-1a -0.080 0.945 0.834 -0.054 1.775 0.991 2.205 0.997 

 No correction -0.200 0.971 0.850 -0.172 1.783 0.991 2.241 0.997 

12 µm (K) SBAF-NN -0.046 0.905 0.773 -0.052 1.732 0.996 1.064 0.997 

 Linear-1b -0.044 0.939 0.874 -0.007 1.748 0.996 0.963 0.997 

 Linear-1a -0.086 0.956 0.930 -0.043 1.750 0.991 2.374 0.997 

 No correction 0.190 0.970 0.890 0.239 1.768 1.000 0.226 0.997 

11 µm – 12 µm (K) SBAF-NN 0.007 0.172 0.216 0.009 0.281 0.954 0.061 0.972 

 Linear-1b 0.052 0.248 0.368 0.007 0.343 0.829 0.197 0.964 

 Linear-1a 0.028 0.245 0.368 -0.010 0.343 0.838 0.170 0.963 

 No correction -0.320 0.443 0.480 -0.411 0.581 0.779 -0.166 0.948 

11 µm – 3.7 µm (K) SBAF-NN 0.023 0.615 0.646 0.043 1.071 0.925 -0.100 0.959 

 Linear-1b 0.027 0.640 0.708 0.013 1.091 0.950 -0.081 0.958 

 Linear-1a 0.830 1.066 1.006 0.714 1.379 0.952 0.622 0.951 

 No-correction -0.270 0.706 0.730 -0.194 1.122 0.944 -0.300 0.957 
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Table B4: Radiance validation scores (for quantity VIIRS – AVHRR) for ALL cases (10 918 476 samples but for visible 

channels and features 5 160 363 samples). Shown are values of median error (median), mean absolute error (MAE), 750 

interquartile range (IQR), mean error (bias) and root-mean-squared error (RMSE) for the simulation of each AVHRR 

channel and each channel combination, and for every tested simulation method. Individual best scores are highlighted 

in bold numbers. 

Channel or 

feature 

Method median MAE IQR bias RMS Slope Offset Corre-

lation 

0.6 µm (%) SBAF-NN -0.102 3.733 4.104 -0.230 6.251 0.956 1.339 0.969 

 Linear-1b 0.180 4.410 5.280 0.065 7.009 0.929 2.607 0.959 

 Linear-1a -0.227 4.938 5.760 0.022 7.978 0.911 3.242 0.947 

 No-correction 3.0043 6.514 7.989 4.038 9.985 1.067 1.629 0.947 

0.9 µm (%) SBAF-NN -0.153 3.928 4.356 -0.323 6.585 0.947 1.617 0.965 

 Linear-1b -0.231 4.871 6.202 -0.056 7.592 0.917 2.952 0.952 

 Linear-1a -0.333 5.157 6.373 -0.055 8.176 0.904 3.430 0.944 

 No-correction 4.176 7.107 8.580 4.996 10.578 1.063 2.721 0.944 

3.7 µm (K) SBAF-NN 0.035 1.392 1.523 -0.083 2.362 0.990 2.698 0.995 

 Linear-1b -0.098 1.771 2.046 -0.132 2.852 0.976 6.262 0.993 

 Linear-1a -0.419 2.002 2.665 -0.184 2.953 0.974 6.735 0.992 

 No correction 0.410 1.989 2.460 0.847 3.082 1.001 0.580 0.992 

11 µm (K) SBAF-NN -0.045 1.146 0.855 -0.023 2.504 0.992 2.118 0.994 

 Linear-1b -0.028 1.156 0.902 -0.013 2.506 0.988 3.113 0.994 

 Linear-1a -0.051 1.150 0.856 -0.028 2.509 0.989 2.945 0.994 

 No correction -0.170 1.172 0.860 -0.148 2.514 0.988 2.981 0.994 

12 µm (K) SBAF-NN -0.051 1.127 0.839 -0.026 2.457 0.992 2.165 0.994 

 Linear-1b -0.070 1.161 0.959 -0.018 2.469 0.989 2.934 0.994 

 Linear-1a -0.076 1.155 0.922 -0.023 2.476 0.990 2.654 0.994 

 No correction 0.220 1.194 0.930 0.290 2.505 0.999 0.508 0.994 

0.9 µm/0.6 µm (-) SBAF-NN -0.001 0.052 0.051 -0.001 0.116 0.894 0.105 0.951 

 Linear-1b -0.018 0.075 0.089 -0.017 0.138 1.004 -0.021 0.939 

 Linear-1a -0.008 0.068 0.085 -0.003 0.132 0.966 0.031 0.940 

 No correction 0.017 0.090 0.090 0.047 0.219 1.279 -0.235 0.931 

11 µm – 12 µm (K) SBAF-NN 0.004 0.187 0.219 0.003 0.327 0.935 0.081 0.962 

 Linear-1b 0.043 0.248 0.344 0.005 0.371 0.830 0.212 0.955 

 Linear-1a 0.038 0.254 0.364 -0.005 0.376 0.823 0.210 0.954 

 No correction -0.340 0.476 0.530 -0.438 0.631 0.759 -0.146 0.934 

11 µm – 3.7 µm (K) SBAF-NN 0.005 1.174 1.059 0.060 2.232 0.946 -0.310 0.968 

 Linear-1b 0.063 1.534 1.420 0.119 2.765 1.020 0.254 0.957 

 Linear-1a 0.522 1.811 2.010 0.156 2.890 1.069 0.633 0.959 

 No-correction -0.500 1.837 1.880 -0.995 3.070 1.092 -0.363 0.961 
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Appendix C: Specification of derived MLP networks for day, night and twilight 

 

Table C16: Configuration file names for finally chosen MLP networks. 

Configuration file  Time of day 

 

ch7_satz_max_15_SUNZ_0_80_tdiff_120_sec_20241204.yaml 

 

DAY 

ch7_satz_max_15_SUNZ_80_89_tdiff_120_sec_20241204.yaml TWILIGHT 

ch4_satz_max_15_SUNZ_90_180_tdiff_120_sec_20241204.yaml NIGHT 
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Code availability 

The code for the network training and the resulting networks can be found on Github (https://github.com/foua-pps/sbafs_ann). 
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