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Abstract. The estimation of greenhouse gas (GHG) emissions from permafrost soils is challenging, as organic matter 

propensity to decompose depends on factors such as soil pH, temperature, and redox conditions. Over lowland permafrost 

soils, these conditions are directly related to the microtopography and evolve with physical degradation, i.e., lowland 20 

thermokarst development (i.e., a local collapse of the land surface due to ice-rich permafrost thaw). A dynamic quantification 

of thermokarst development – still poorly constrained – is therefore a critical prerequisite for predictive models of permafrost 

carbon balance in these areas. This requires high-resolution mapping, as lowland thermokarst development induces fine-scale 

spatial variability (~50 – 100 cm). Here we provide such a quantification, updated for the Stordalen mire in Abisko, Sweden 

for the Stordalen mire, Abisko, Sweden (68°21'20"N 19°02'38"E), which displays a gradient from well-drained stable palsas 25 

to inundated fens, which have undergone ground subsidence. We produced RGB orthomosaics and digital elevation models 

from very high resolution (10 cm) unoccupied aircraft system (UAS) photogrammetry as well as a spatially continuous map 

of soil electrical conductivity (EC) based on electromagnetic induction (EMI) measurements. We classified the land cover 

following the degradation gradient and derived palsa loss rates. Our findings confirm that topography is an essential parameter 

for determining the evolution of palsa degradation, enhancing the overall accuracy of the classification from 41% to 77%, with 30 

the addition of slope allowing the detection of the early stages of degradation. We show a clear acceleration of degradation for 

the period 2019 – 2021, with a decrease in palsa area of 0.9 – 1.1%·a-1 (% reduction per year relative to the entire mire) 

compared to previous estimates of ~0.2%·a-1 (1970 – 2000) and ~0.04%·a-1 (2000 – 2014). EMI data show that this 

degradation leads to an increase in soil moisture, which in turn likely decreases organic carbon geochemical stability and 
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potentially increases methane emissions. With a palsa loss of 0.9 – 1.1%·a-1, we estimate accordingly that surface degradation 35 

at Stordalen might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), of which 

~25% is mineral-interacting organic carbon. Likewise, average annual emissions would increase from ~ 7.1 g-C·m-2·a-1 in 

2019 to ~ 7.3 g-C·m-2·a-1 in 2021 for the entire mire, i.e., an increase of ~1.3%·a-1. As topography changes due to lowland 

thermokarst are fine-scaled and thus not possible to detect from satellite images, circumpolar up-scaling assessments are 

challenging. By extending the monitoring we have conducted as part of this study to other lowland areas, it would be possible 40 

to assess the spatial variability of palsa degradation/thermokarst formation rates and thus improve estimates of net ecosystem 

carbon dynamics. 

1 Introduction 

Arctic air temperature is increasing three to four times faster than the global average increase (AMAP, 2021; Rantanen et al., 

2022) and we are consequently anticipating the near-surface permafrost area to decrease by 2 – 66% for Intergovernmental 45 

Panel on Climate Change (IPCC) scenario RCP2.6 and 30 – 99% for RCP8.5, by 2100 (Fox-Kemper et al., 2021; Meredith et 

al., 2019). Arctic and boreal permafrost region soils and sediments store 1460 – 1600 Gt of organic carbon (OC; Hugelius et 

al., 2014; Strauss et al., 2021), which could release 3 – 41 petagram of carbon as CO2 per 1ºC of global warming by 2100, with 

high confidence to produce a positive feedback and accelerate climate change (Canadell et al., 2021). In particular, northern 

peatlands, which have historically acted as carbon sinks, are expected to turn into carbon sources, with a projected thaw leading 50 

to greenhouse gas (GHG) emissions equivalent to ∼1% of anthropogenic radiative forcing in this century (Hugelius et al., 

2020).  

As the permafrost thaws, excess ground ice melts, along with its associated cementing properties, resulting in surface 

subsidence. This phenomenon is widespread across the arctic permafrost region, with thaw subsidence rates of up to 2 cm·a-1 

in the areas with low ice content and more than 3 cm·a-1 in regions with ice-rich permafrost (Streletskiy et al., 2025). In the 55 

particular areas with large amounts of excess ground ice, we often refer to the development of thermokarst landforms (e.g., 

Heginbottom et al., 2012; Kokelj and Jorgenson, 2013), or abrupt thaw (Turetsky et al., 2020) which are physical degradations 

of the landscape that occur when the ground subsides or collapses with significant consequences for hydrologic and 

biogeochemical cycles. The development of thermokarst landforms is not included in the IPCC models of permafrost GHG 

emissions, yet they constitute nonlinear processes which are expected to intensify and compromise the feasibility of remaining 60 

below 1.5°C or 2°C targeted by the Paris Agreement (Natali et al., 2021). The estimation of GHG emissions from such 

landscapes is challenging, as organic matter propensity to decompose depends on factors such as the soil pH, temperature and 

redox conditions (e.g., Arndt et al., 2013; Canfield, 1994; Hemingway et al., 2019; Keil and Mayer, 2014; Lehmann and 

Kleber, 2015; von Lützow et al., 2008; Li et al., 2023), the latter of which may change drastically following certain thermokarst 

developments. Under the SSP58.5 scenario (the Shared Socio-economic Pathway (SSP) corresponding to very high greenhouse 65 

gas emissions scenario; Fox-Kemper et al., 2021), GHG emissions across 2.5 million km2 of thermokarst landforms could 

https://doi.org/10.5194/egusphere-2025-3788
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

provide an additional and comparable feedback as gradual thaw emissions (Turetsky et al., 2020). These assessments are 

calculated via cumulative net ecosystem carbon balance (NECB) estimates – calculated for different models of abrupt thaw 

succession – which become increasingly negative and directly influenced by the rate of permafrost degradation (transition rate; 

Bosiö et al., 2012; Turetsky et al., 2020).  70 

The approach used to estimate the rate of development of a thermokarst landscape depends on the type of degradation. 

Although dozens of thermokarst types have been described in the literature (e.g., Barry and Hall-McKim, 2018; Burn and 

Lewkowicz, 1990; Farquharson et al., 2019; Godin and Fortier, 2012; Heginbottom et al., 2012; Kokelj et al., 2021; Kokelj 

and Jorgenson, 2013; Lamoureux and Lafrenière, 2009; Lewkowicz, 2007; Lewkowicz and Way, 2019; Olefeldt et al., 2016; 

Patzner et al., 2020; Vonk et al., 2015), we generally consider three main models: (i) hillslope/upland landscapes where 75 

physical degradation leads to slumps, active layer detachments and gullies; (ii) lowland mineral landscapes characterized by 

the formation of thaw lakes, and (iii) lowland organic-rich landscapes with the formation of thaw lakes or wetlands (Turetsky 

et al., 2020).  

Nitze et al. (2018) recently quantified the abundance of different types of disturbances at the Arctic scale, namely (i) lake area 

loss, (ii) fires and (iii) thaw slumps. Still, the reported study techniques only allow mapping of relatively large features (i.e. 80 

several tens of meters). The detection of hillslope thermokarst landscapes is possible using satellite remote sensing (e.g., Kokelj 

et al., 2017; Lantz and Kokelj, 2008; Yang et al., 2023 for monitoring thaw slumps) but remains challenging due to the highly 

dynamic nature and sometimes fine scale1 of those disturbances. Unoccupied aircraft system (UAS) technology makes it easier 

to detect such changes (e.g., de la Barreda-Bautista et al., 2022; Palace et al., 2018; van der Sluijs et al., 2023, 2018), as it 

allows for the collection of imagery with both high temporal and spatial resolutions.   85 

For lowland organic landscapes where thermokarst development leads to the formation of thaw lakes or wetlands, the temporal 

evolution of degradation is even more complicated to study, since landscape deformations occur on very subtle spatial scales, 

i.e. only a few tens of centimeters per year, both horizontally and vertically or several meters lateral erosion per decade (de la 

Barreda-Bautista et al., 2022). Therefore, few studies have been devoted to quantifying this type of physical degradation by 

using remotely sensed image data. Reported rates of degradation are extremely variable, i.e., range from 0.04%·a-1  to 0.7%·a-1 90 

(% reduction per year) of total land cover area (Chasmer and Hopkinson, 2017; Christensen et al., 2004; Rodenhizer et al., 

2022; Turetsky et al., 2020; Varner et al., 2022). This degradation and associated subsidence are most pronounced in the lateral 

zones of stable permafrost patches (Borge et al., 2017; Mamet et al., 2017; Martin et al., 2021; Olvmo et al., 2020; Renette et 

al., 2024). Studies further showed that degradation is observed over larger regions, with 55% of Sweden’s largest palsa 

peatlands currently subsiding (Valman et al., 2024). A few studies suggest an accelerated rate of degradation in more recent 95 

years (de la Barreda-Bautista et al., 2022; Borge et al., 2017; Olvmo et al., 2020), but still require at least ten years of survey 

data to enable palsa loss detection. 

                                                           
1 Over the Peel Plateau, Canada, for instance, scar zones range in size from < 1 ha to ~ 33 ha (Brooker et al., 2014; Kokelj et al., 2021; Lacelle et al., 2015; Littlefair 
et al., 2017; Malone et al., 2013; Zolkos et al., 2018; Zolkos and Tank, 2019, 2020). 
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In this study, we revisit the quantification of the rate of palsa degradation between the summers of 2019 and 2021 in the 

Stordalen mire (Abisko, Sweden) using UAS-based photogrammetric surveys. We combine surface properties (obtained from 

color imagery/RGB orthomosaics) with information on micro-topography (relative elevation and slope obtained from digital 100 

surface models) to track the physical degradation of palsa over a two-year period. This enables a short-term quantification of 

palsa loss rates. We then widen our analysis to cover the years 2014 to 2022 by linking the physical degradation of the 

landscape with variation in open water areas. Additionally, we use electromagnetic induction (EMI) on a smaller extent to map 

soil electrical conductivity and infer contrasts in redox conditions, allowing for comparison with topography, orthophoto-

derived vegetation patterns, and classification model results. Ultimately, we use the generated thematic maps to scale up 105 

organic carbon stocks, stability and release in the palsa mire. This multi-scale approach aims to improve our understanding of 

the dynamics of lowland thermokarst development and support future modeling of permafrost-related carbon feedbacks. 

2 Methods 

2.1 Study area and site description 

The Stordalen Mire (68°21'20"N 19°02'38"E) is a peatland located approximately 10 km southeast of the town of Abisko in 110 

northern Sweden. Permafrost is sporadic in the region and confined to peatlands in valley bottoms and to mountain tops. The 

mean annual air temperature measured at the Abisko Scientific Research Station (~10 km from Stordalen) has risen by 2.5 °C 

from 1913 to 2006 and reached the value of 0.6°C in 2006 (Callaghan et al., 2010). The Stordalen mire consists of three distinct 

sub-habitats which represent a gradient of permafrost degradation (Fig. 1a-b; Fig. A. 1a). Those three sub-habitats are 

common to northern wetlands: (i) a well-drained raised palsa with a permafrost core (active layer depth of ~ 50 cm in 2021), 115 

dominated by ericaceous and woody plants, which is referred to as stable palsa, (ii) palsa undergoing active degradation with 

fluctuating water table depth and some active thawing, dominated by Eriphorum spp. and Sphagnum spp., which is referred to 

as a palsa undergoing degradation and (iii) a fully thawed and inundated fen which has undergone full ground subsidence, 

indicated by the presence of sedges such as Eriophorum Spp. and which is referred to as highly degraded (de la Barreda-

Bautista et al., 2022; Siewert, 2018; Sjögersten et al., 2023). The area also includes open water ponds formed during permafrost 120 

thaw (Burke et al., 2019; Chang et al., 2019b, a; Hodgkins et al., 2014; Johansson et al., 2006; Mondav et al., 2014; Patzner et 

al., 2020). As an illustration, measurements within an extent of less than 10 m² (Fig. A. 1a) reveal that the active layer depth 

varies from 50 cm to more than 200 cm from stable palsa to degraded areas (likely reflecting a complete thaw of permafrost 

at depth; Fig. A. 1b) and soil volumetric water content varies accordingly from 20% to 60% (Fig. A. 1c, based on METER 

TEROS 12 probes measurements). 125 
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Figure 1 : Location and photograph of the degradation gradient studied. (a) Map of the study site at the Stordalen mire, Abisko Sweden. 
Map created with ArcMap® 10.8. Basemap sources: National Geographic (© National Geographic et al., 2011) and World Imagery (© Esri 
and Maxar, 2022). The projected coordinate system is EPSG: 3006. Delineation adapted from Christensen et al. (2004) in red; (b) Illustration 130 
of the degradation gradient showing ground subsidence in the field (photo credit: Maxime Thomas) 

 

2.2 Photogrammetric survey 

A fieldwork campaign took place between September 14 and October 10, 2021. To obtain data on surface properties, i.e., 

vegetation, elevation and ground subsidence, we generated a RGB orthomosaic and a digital surface model of the study site 135 

by UAS photogrammetry (UAS: DJI MAVIC 2 PRO L1/L2 PPK). The UAS flight took place on September 17th, 2021 at an 

altitude of 110 m above ground level with a 70% forward overlap and a camera angle of 90°. The perspective centers of the 

camera were georeferenced with centimeter-level precision by post-processing RINEX data from a GNSS base station located 

at Abisko Scientific Research Station (swepos.lantmateriet.se; reference station 0ABI) using RTKlib v.2.3.4 software (see 

Zhang et al., 2019 for post-processing kinematic georeferencing). An orthomosaic and a digital surface model (DSM) have 140 

been derived using Agisoft Metashape professional v1.7.5 from 367 images and lead to an initial resolution of 2.66 cm/pixel 

for the orthomosaic and 5.33 cm/pixel for the DSM.  
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2.3 Additional historical data 

To assess the temporal evolution of the physical degradation in the Stordalen mire, this study incorporates UAS-acquired data 

from years other than 2021.  145 

(i) We primarily used the 2019 orthomosaic and DSM provided by Siewert and Abisko Scientific Research Station 

(2020) on the 14 ha extent of the palsa mire (Fig. 2a; delineation representing  the best compromise between the 

area covered by our UAS data and the polygon initially drawn by Christensen et al., 2004). These datasets were 

collected on August 16th, 2019 and have a spatial resolution of ~4 cm for the orthomosaic and ~8 cm for the 

DSM. For further details on data collection, see de la Barreda-Bautista et al. (2022) and Sjögersten et al. (2023). 150 

Together, the 2019 and 2021 datasets provide complementary topographic information and adequate coverage. 

These were used to develop a classification model for detecting and quantifying the evolution of palsa 

degradation between 2019 and 2021. 

(ii) To capture longer-term trends, we used RGB imagery data spanning from 2014 to 2022, although topographic 

information is unavailable for this dataset. For this analysis, we selected an extent with consistent data availability 155 

(Fig. 2a), except for 2020, when data collection was disrupted due to the COVID-19 pandemic. This dataset 

provides a preliminary estimate of degradation trends from 2014 through 2022. Portions of this data have been 

previously used in (i) Palace et al. (2018) and Varner et al. (2022) for 2014, (ii) Burke et al. (2019) for 2014 and 

2016 and (iii) DelGreco (2018) for the years 2014-2017. Details of these UAS RGB surveys are presented in 

Tab. A. 1. 160 

 2.4 Data processing and classification 

The various pre-processing operations carried out on the data are detailed below:  

(i) Extraction of slopes from DSMs where applicable 

(ii) Projection of all data in the EPSG:3006 projected coordinate system (SWEREF99 TM). 

(iii) Co-registration of all raster imagery to ensure the best overlap from one year to the next. The 2021 dataset was chosen 165 

to be the reference for this study.  

(iv) Extraction of the area of interest (Fig. 2a). 

(v) Resampling of all data at a spatial resolution of 10 cm × 10 cm. 

(vi) Removal of the bowl-shape effect from elevation data (DSM), to eliminate systematic distortions or artifacts caused 

by sensor or data processing errors, ensuring accurate inter-annual comparison (Fig. A. 2). 170 
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Figure 2: Data processing extents & 2021 input data for classification. (a) Extent of the biennial (2019 – 2021) model (delineation 
representing  the best compromise between the area covered by our UAS data and the polygon drawn by Christensen et al., 2004) in red, 175 
extent for the extended time series (2014-2022) in grey and extent used for electrical conductivity measurements in yellow; (b) Orthomosaic 
composed of red, green and blue bands; (c) Relative elevation after removal of bowl-shape effect (see Fig. A. 2); (d) slope extracted from 
the original digital surface model; the projected coordinate system is EPSG: 3006. 

 

For the biennial (2019 – 2021) model (see Fig. 2a for the spatial extent), a supervised classification was implemented in Python 180 

and consisted of four static classes that remain unchanged from 2019 to 2021, and three dynamic classes that represent the 

evolution of the physical degradation between 2019 and 2021. The static classes include (i) stable palsa surfaces, (ii) areas of 

undergoing or under recent degradation and (iii) degraded areas, which also includes the areas of open water that may not have 

had permafrost conditions for several decades. It should be noted that, for this model of the evolution of degradation between 

2019 and 2021, an 'open water' class is not considered separately due to the fluctuating height of the water table at the time of 185 

the photogrammetric survey2. An additional (iv) class called 'other' includes outcrops, field equipment, planks, buildings, rocks 

and trees. The dynamic classes that capture the evolution of the degradation between 2019 and 2021 include (i) the transition 

from stable palsa in 2019 to palsa undergoing degradation in 2021, (ii) the transition from stable palsa in 2019 to degraded 

areas in 2021, and (iii) the transition from palsa undergoing degradation in 2019 to degraded areas in 2021 (Fig. 3).  

Briefly, the classification process involves  190 

(i) Exclusion of relative elevation and slope values from the datasets for each of the two years (2019 and 2021) that 

deviate from the mean by more than three times the standard deviation. 

                                                           
2 Degraded permafrost zones and open water zones are interchangeable due to fluctuating water table levels. It is therefore 
possible that for some patches, open water in 2019 will become degraded in 2021, and vice versa. These two classes have 
therefore been grouped together. 
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(ii) Calculation of the difference between 2019 and 2021 relative elevation data to obtain the change in relative 

elevation between the two years;  

(iii) Generation of spatial filters from the original bands using pixel windows of varying sizes (Tab. 1): 195 

• Calculation of the mean of pixel values in 3 × 3, 5 × 5 and 7 × 7 moving windows (larger moving windows 

did not improve the accuracy of the classifications); 

• Calculation of the standard deviation of pixel values in 3 × 3, 5 × 5 and 7 × 7 moving windows (larger 

moving windows did not improve the accuracy of the classifications);  

• Application of digital image processing techniques to produce texture attributes based on the gray-level co-200 

occurrence matrix (GLCM; e.g., Hall-Beyer, 2017; Haralick, 1979; Haralick et al., 1973). The calculated 

texture attributes include entropy, angular second momentum, contrast, homogeneity and the standard 

deviation of the GLCM, all applied within a 21 × 21 moving window. These texture indices were calculated 

on all bands, after standardization. 

(iv) Classification using a support vector machine (SVM) algorithm. The normalized data served as input for the 205 

SVM, with a radial basis function (RBF) as kernel and the gamma parameter set as automatic. The training points 

were sampled from polygons drawn as representative of each class (by photointerpretation) and spatially 

distributed across the mire. The distribution of training points for each class is shown in Tab. A. 2 and the data 

distributions for the training areas are shown in Fig. A. 3.  

(v) Refinement of the initial predictions. A set of rules was applied, involving the predicted class and the relative 210 

elevation difference between 2019 and 2021. Firstly, if a pixel was predicted as belonging to one of the dynamic 

classes (i.e., representing the evolution of the degradation between 2019 and 2021) and the corresponding relative 

elevation difference was positive or null (which therefore does not indicate subsidence), the model re-evaluated 

the prediction. In this case, the possible identification was limited to one of the static classes that remain 

unchanged between 2019 and 2021. Conversely, if a pixel was initially assigned to the stable palsa class, and the 215 

value of the relative elevation difference was lower than -30 cm (indicating significant subsidence), the model 

reclassified the pixel by selecting the likeliest identification from the dynamic classes. The reclassification 

process involved examining the decision scores produced by the model for each sample and selecting the class 

with the highest decision score from the set of allowed classes. 

(vi) Post-processing of the classification output with a majority filter of increasing window sizes, to 11 × 11 pixels, 220 

to reduce noise and enhance classification accuracy. Larger filters did not improve the accuracy of the 

classifications.  

 Finally, as validation, 1300 points were randomly sampled across the study area and assigned a ground truth class by manual 

photointerpretation.  

 225 

https://doi.org/10.5194/egusphere-2025-3788
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

Table 1: Input data for the classification model. GLCM = Gray Level Co-Occurrence Matrix. 

input data 
number of bands 

total 2019 2021 relative elevation  
change 2019-2021 

original bands (RGB + relative elevation + slope) 5 5 1 11 
mean spatial filter in 3 × 3, 5 × 5 and 7 × 7 
moving windows 15 15 3 33 

standard deviation spatial filter in 3 × 3, 5 × 5 and 7 × 7 
moving windows 15 15 3 33 

texture 

entropy 5 5 1 11 
angular second momentum 5 5 1 11 
contrast 5 5 1 11 
homogeneity 5 5 1 11 
GLCM standard deviation 5 5 1 11 

     132 
 

To identify representative classes for the evolution of the degradation between 2019 and 2021, we therefore scanned the 

different data for the two years of measurement and observed the changes in morphology. An example of the transition from 

stable palsa in 2019 to degraded permafrost in 2021 is presented in Fig. 3.  230 

2.5 Performance evaluation of classification models 

We used overall accuracy (eq. 1) as a key metric for assessing the quality of the model. Additionally, calculations of precision 

(eq. 2), recall/detection rate (eq. 3) and F-score (eq. 4) were performed to assess the predictive quality of the different classes.  

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑂𝑂𝑂𝑂) =  
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑖𝑖

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖
(2) 235 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑖𝑖

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖
(3) 

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

 (4) 

Where i is the class, TP stands for true positive, FP stands for false positive, FN stands for false negative  
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 240 
Figure 3: Example of physical degradation between 2019 and 2021 in the Stordalen mire (Abisko, Sweden). (a) 2019 data from Siewert 
and Abisko Scientific Research Station (2020); (b) Data from this study. From left to right: orthomosaic, relative elevation and slope. Relative 
elevation data are corrected after removal of the bowl-shape effect; the projected coordinate system is EPSG: 3006. 

 

For the model based on the 2014 – 2022 UAS time series (see Fig. 2a for the spatial extent), we used data at a spatial resolution 245 

of 5 cm × 5 cm and produced one separate classification for each available year, with the following 4 classes: (i) stable palsa 

surfaces, (ii) degraded areas, (iii) open water and (iv) the class 'other', which includes outcrops, field equipment, planks, 

buildings, rocks and trees. From the original spectral bands, we used spatial filters on pixel windows of different sizes: (i) the 

mean of pixel values in 3 × 3, 5 × 5 and 7 × 7 moving windows, (ii) the standard deviation of pixel values in 3 × 3, 5 × 5 and 

7 × 7 moving windows, (iii) the GLCM additional texture features entropy, angular second momentum, contrast, homogeneity 250 

and the standard deviation of the GLCM in a 21 × 21 moving window.   

A validation dataset of 300 points was randomly sampled over the study area and assigned a ground truth class by manual 

photointerpretation, for each year of data. The predicted surface areas of each class were estimated by pixel counts. We used 

confusion matrices to correct for misclassification bias in the output maps (Czaplewski and Catts, 1992; Hay, 1988). In the 

following, all predicted areas presented were corrected using the confusion matrices. 255 
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2.6 Electro-magnetic induction measurements 

We hypothesized that the electrical properties of the soil would vary along the degradation gradient. This is because soil 

electrical conductivity (EC) is influenced by several factors, including soil texture (primarily clay content), water content, 

salinity, which depends on nutrients, salts, and pH, organic matter type and proportion, soil structure and density, and soil 

temperature (Doolittle and Brevik, 2014; McNeill, 1980). To investigate these electrical properties, we focused on a 0.2 ha 260 

sub-area (Fig. 2a) and employed electromagnetic induction (EMI) due to its non-invasive nature, efficiency in covering 

relatively large areas, and ability to provide continuous conductivity measurements. This approach allows for the identification 

of spatial heterogeneities in soil properties along the degradation gradient. The instrument used was the EM38, manufactured 

by Geonics Limited (Ontario, Canada). The EM38 measures soil EC to a depth of 2 m below the sensor, with maximum 

sensitivity at approximately 30 – 40 cm (Heil and Schmidhalter, 2017). The EC is estimated using the McNeill model (McNeill, 265 

1980), which is widely applied in EMI surveys. This model assumes that the Low Induction Number (LIN) hypothesis is valid, 

meaning that the instrument response is linearly related to soil EC. For our study site, we verified that the LIN hypothesis 

holds, as demonstrated by our results. Data collection was conducted by pulling the EM38 on a plastic sledge at a height of a 

few centimeters above the ground surface. This configuration minimizes soil disturbance while maintaining consistent sensor-

to-soil spacing. EMI data and corresponding GNSS positions for 1083 points were recorded using a rugged laptop and a 270 

custom-made acquisition program. Continuous EC data were interpolated by kriging of the point values after logarithmic 

transformation, using a combined nugget and exponential model with a maximum prediction distance of 8 m. 

2.7 Use of the classified landscape for scaling up organic carbon stocks 

The thematic maps created in this study were used to establish the potential variation in organic carbon stock subsequent to 

palsa degradation between 2019 and 2021. For each degradation stage (i.e., stable palsa, palsa undergoing degradation and 275 

degraded areas), we used the measurements presented in Patzner et al. (2020), which give – for each stage – a characterization 

of total organic carbon (TOC) content and dithionite/citrate extractable carbon, which is here referred to as mineral-associated 

organic carbon (MAOC). The study also provides access to the bulk densities and thicknesses associated with the different 

horizons. Using these data, OC stocks �𝑘𝑘𝑘𝑘OC
𝑚𝑚2 � were calculated for each degradation stage (eq. 5). This assessment was made 

for a constant mass of mineral matter for each stage, in order to take subsidence and compaction into account (Table B. 1; 280 

eq. B1). The stock difference between the two years (𝑘𝑘𝑘𝑘OC) consists in the difference between the stocks in 2019 and 2021, 

weighted by their respective surface areas for each year (eq. 6). These calculations were carried out for TOC and MAOC. The 

results consist of a TOC or MAOC stock that is made vulnerable annually as a result of palsa degradation. The actual timing 

of OC loss remains unknown. 

OC stock �
𝑘𝑘𝑘𝑘OC

𝑚𝑚2 �
𝑗𝑗 degradation stages

= � bulk density𝑖𝑖  �
𝑘𝑘𝑘𝑘soil

𝑚𝑚3 � × thickness𝑖𝑖  (𝑚𝑚) ×  OC content𝑖𝑖 �
𝑘𝑘𝑘𝑘OC

𝑘𝑘𝑘𝑘soil
�

𝑖𝑖 horizons

(5) 285 
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∆ OC stock (𝑘𝑘𝑘𝑘OC)

= � OC stock𝑗𝑗  �
𝑘𝑘𝑘𝑘OC

𝑚𝑚2 � × surface area𝑗𝑗2021 (𝑚𝑚2)
𝑗𝑗 degradation stages

− � OC stock𝑗𝑗  �
𝑘𝑘𝑘𝑘OC

𝑚𝑚2 � × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗2019(𝑚𝑚2) (6) 
𝑗𝑗 degradation stages

 

3 Results and discussion 290 

3.1 Information on topography is critical for detecting permafrost degradation 

Several tests have been conducted to determine which parameters provide the best classification results for palsa degradation 

between 2019 and 2021. The results reveal that topography is a critical factor for achieving optimal model performance. 

Classification using only RGB imagery data (i.e. 6 spectral bands but no topography information) gives an overall accuracy of 

41%. When relative elevation data are added for both years (to reach 8 bands in total), the overall accuracy increases to 67%. 295 

The addition of slope data further improves classification, raising the overall accuracy to 76%. The slope additionally doubles 

the F-scores of both the areas undergoing or under recent degradation and the dynamic classes, which makes it particularly 

valuable for short-term detection of palsas degradation. When the difference in relative elevation between 2019 and 2021 is 

included (to reach a total of 11 bands), the overall accuracy reaches 77%. The relative importance of the different bands are 

shown on Fig. C. 1a. For comparison, the use of relative elevation and slope to perform a land cover classification over the 300 

Stordalen catchment was also done by Siewert (2018) and resulted in an overall accuracy of 74%. Other studies have shown 

that relative elevation is an essential parameter for differentiating otherwise so heterogeneous tundra landscapes, e.g., in 

permafrost-affected soils of the Lena River Delta (Siewert et al., 2016) or in thermokarst-affected terrain types in the periglacial 

Lena–Anabar coastal lowland (Grosse et al., 2006). 

By adding data from the mean spatial filters (3 × 3, 5 × 5 and 7 × 7 window sizes; for a total of 44 bands), the overall accuracy 305 

increased to 79%. Incorporating mean spatial filters over larger windows does not increase classification quality. The addition 

of standard deviation or texture attributes only improves the classification slightly. Adding standard deviation spatial filters 

improves the overall accuracy to 80%, as does the standard deviation of the GLCM, while the addition of angular second 

momentum, entropy, contrast or homogeneity increases overall accuracy by only 1%, i.e., to 80.8%. In the following, we will 

retain only the 'homogeneity' texture parameter, as it enables to reach the highest overall accuracy, while the combination of 310 

the texture parameters brings it down to 78%. We believe that GLCM texture attributes contribute little to our model, as 

topography information already provides a level of morphological information and spatial patterns.  

Then, initial predictions were refined using elevation differences and model scores to ensure alignment with domain knowledge 

(see section 2.4). As a result, the overall accuracy improved to 81.3%. As a final post-processing step, the classification result 

was filtered using windows of increasing size up to 11 × 11 pixels, to reduce noise and enhance classification consistency. The 315 
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evolution of the model's performance for each class is shown in Fig. C. 1b. These combined operations result in a map with 

an overall accuracy of 83% (Fig. 4a). The best predicted classes are stable palsa, degraded areas and the class ‘other’ with F-

scores of 82%, 89% and 83%, respectively. These are followed by palsa undergoing degradation (35%), the evolution from 

stable palsa to palsa undergoing degradation (40%), and the evolution from palsa undergoing degradation to degraded areas 

(30%). The class with the poorest performance is the direct transition from stable palsa to degraded areas, with an F-score of 320 

27% (see confusion matrix in Tab. 2). The low F-scores for dynamic classes can be attributed primarily to the fact that these 

classes have intermediate properties between those of the 'stable', 'undergoing' and 'degraded' classes, making them difficult to 

differentiate. On the other hand, if we aggregate – for 2019 – the classes 'stable -> undergoing' and 'stable -> degraded' together 

with the 'stable' class as well as the 'undergoing -> degraded' class with the 'undergoing' class and vice versa for 2021, we 

obtain overall accuracies of 84% and 86% for 2019 and 2021, respectively. We also obtain significantly improved F-scores, 325 

i.e., 49% and 48% for the 'undergoing degradation' class in 2019 and 2021, respectively (see confusion matrices in Tab. C. 1; 

Tab. C. 2).  

 

 
Figure 4: Classification model for the evolution of landscape physical degradation between 2019 and 2021. This model uses 55 bands 330 
as input data, namely (i) 11 bands with original data (3 spectral bands, relative elevation and slope for the years 2019 and 2021 as well as 
the difference in relative elevation between 2019 and 2021) along with (ii) 3 × 11 bands of the mean spatial filter over windows of increasing 
size, i.e. 3 × 3, 5 × 5 and 7 × 7, and finally (iii) the 11 bands from the texture attribute ‘homogeneity’. The classification output was then 
filtered with a moving window of 11 × 11 pixels. (a) Output landcover map; (b) Rate of change of the stable palsa area for 1970-2000 
(Christensen et al., 2004), 2000-2014 (Varner et al., 2022) and 2019 – 2021 (this study). Rates are expressed as a proportion of the entire 335 
mire (% reduction per year). The surface area for 2019-2021 are corrected using the confusion matrix. 
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Table 2: Confusion matrix for the classification model & precision, recall and F-score for each cover class. This model uses 55 bands 
as input data, namely (i) 11 bands with original data (3 spectral bands, relative elevation and slope for the years 2019 and 2021 as well as 
the difference in relative elevation between 2019 and 2021) along with (ii) 3 × 11 bands with spatial filters (mean & standard deviation) over 340 
windows of increasing size, i.e. 3 × 3, 5 × 5 and 7 × 7, and finally (iii) the 11 bands from the texture attribute ‘homogeneity’. The classification 
output was then filtered with a moving window of 11 × 11 pixels. 
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other 55 0 3 7 1 0 0 66  83% 83% 83% 
stable palsa 2 294 6 25 0 1 2 330  89% 76% 82% 

undergoing degradation 1 22 18 22 1 1 2 67  27% 49% 35% 
degraded areas 8 65 10 702 1 1 12 799  88% 91% 89% 

stable  undergoing 0 1 0 1 3 1 1 7  43% 38% 40% 
stable  degraded 0 2 0 3 0 2 0 7  29% 25% 27% 

undergoing  degraded 0 1 0 10 2 2 7 22  32% 29% 30% 
  66 385 37 770 8 8 24 1298     

3.2 Palsa degradation accelerates in the Stordalen mire and can be tracked over two years of data 

When we compare the rate of palsa degradation for the period 2019 – 2021 in Stordalen with past studies, we observe a clear 

acceleration. More specifically, the study by Christensen et al. (2004) reported a rate of disappearance of stable palsa zones 345 

averaging 0.2%·a-1 (relative to the total land cover area, i.e., degradation rate as a proportion of the entire mire) between 1970 

and 2000, based on vegetation distribution from infrared aerial photographs. Varner et al. (2022) estimated an average palsa 

loss of 0.04%·a-1 between 2000 and 2014 (the 2014 dataset being based on 2014 WorldView 2 satellite imagery), suggesting 

a deceleration in palsa loss after 2014 relative to the earlier assessment at Stordalen (i.e., 1970 – 2000; Christensen et al., 

2004). In this study, we revisit these estimates for the period 2019 – 2021 and we obtain a decrease in palsa surface area of 350 

0.9%·a-1 to 1.1%·a-1 (Fig. 4b). This suggests that the rate of permafrost degradation in the Stordalen mire is approximately 5 

times faster in recent years compared to previous periods. Besides, for Stordalen and two other mires in the same valley, de la 

Barreda-Bautista et al. (2022) mapped lateral erosion of 3.1 – 9.3 m between 1960 and 2018 with slower rates of 

0.03 – 0.12 m·a-1 between 1960 and 2002 and thereafter and acceleration with the highest rates between 2002 and 2018 with 

0.18 – 0.32  m·a-1. This confirms the increasing rate of palsa loss in the mire. 355 

In Turetsky et al. (2020), the rate of degradation from permafrost peatlands into either active thaw lakes or wetlands was 

assessed to be 0.2%·a-1  (relative to the total land cover area). Yet this is the only study that attempts - on an Arctic scale - to 

estimate the changes in greenhouse gas emissions (via cumulative net ecosystem carbon balance estimates) caused by the 
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development of these thermokarst landscapes. According to the published literature and from this study, however, a permafrost 

peatlands degradation rate of 0.2%·a-1 appears to be a fairly conservative estimate in comparison with 0.58%·a-1 from 2000 to 360 

2015 (of plateau to wetland conversion in the Northwest Territories, Canada; Chasmer and Hopkinson, 2017), ~0.7%·a-1  

between 2008 and 2018 (of formation of thermokarst depressions in central Alaska; Rodenhizer et al., 2022) and 0.9%·a-1 to 

1.1%·a-1 (this study).  

If we base calculations on the extent of the palsas alone (i.e., palsa degradation rate as a proportion of the initial palsa areal 

extent), our study shows a decrease of 3.5%·a-1, which compares with 0.6%·a-1  - 1.2%·a-1 (from the 1950s to the 2010s, with 365 

the largest lateral change rates observed after 2000) study by Borge et al. (2017) in northern Norway and average rates of 

0.71%·a-1 to 1.25%·a-1 between 1955 and 2016 in the Vissátvuopmi palsa complex in Sweden (Olvmo et al., 2020). Average 

palsa areal losses of 0.5%·a-1 to 2.8%·a-1 can also be noted in the eastern Selwyn/western Mackenzie Mountains in Canada 

(Mamet et al., 2017), with the decline following a non-linear pattern. All of these studies suggest that palsa degradation is 

likely to continue, with a non-linear decline, probably at a higher rate than today (Borge et al., 2017; Mamet et al., 2017; 370 

Olvmo et al., 2020; Renette et al., 2024). Recent modeling studies besides state that environmental or climate spaces for palsas 

and peat plateaus are threatened by imminent loss at a circumpolar scale (Fewster et al., 2022; Leppiniemi et al., 2023).  

Such assessments of palsa loss rates and development of lowland thermokarst are critical prerequisites for predictive models 

of permafrost carbon balance from such landscapes. In this study and from available literature, we show that there is still much 

uncertainty surrounding these estimates beyond local scales, leading to a potential mis-evaluation of the impact of lowland 375 

thermokarst on the permafrost carbon balance. From this study, we are confident in asserting that with only biennial data from 

photogrammetric surveys, we can trace the evolution of palsa degradation. In order to monitor this state of degradation, the 

method proposed here could be extended to cover a large number of study sites without requiring extensive computing capacity. 

3.3 Palsa degradation means higher levels of humidity 

Using the classification model from the broader temporal view (2014 – 2022; Fig. 5), we observe a trend towards an increase 380 

in the area of fully thawed and inundated fen. The surface area of stable palsa decreased at an average rate of 2.2 ± 1.1 %·a-1 

between 2014 and 2022 (95% confidence interval (CI); R² = 0.79). The degraded areas (fen) have in turn increased at an 

average rate of 2.2 ± 1.5%·a-1 (95% CI; R² = 0.69). Finally, we note that the fraction of the open water class has more than 

doubled in size between 2014 and 2022, with an average increase of 0.3 ± 0.4%·a-1 (95 % CI; R² = 0.31). These rates of surface 

area change appear to be higher, but remain within the same order of magnitude as the biennial model (2019-2021). It should 385 

be noted that the spatial extent is not identical to that presented in section 3.2 (see Fig. 2a). Furthermore, the model from the 

2014 – 2022 UAS time series does not use terrain morphology data (relative elevation and slope) for classification. As a result, 

its quality indicators (Fig. 5a) are weaker than for the biennial model (Tab. 2), for which topography data were used. We 

believe, however, that it can provide indication of trends, and has the advantage of enabling tracking of the 'open water' class 

surface area, which is not possible with the biennial model.  390 

 

https://doi.org/10.5194/egusphere-2025-3788
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

 
Figure 5: Classification model results based on imagery data spanning from 2014 to 2022. (a) Evolution of the surface areas (corrected 
using the confusion matrix) of the 4 classes, i.e. (i) stable palsa, (ii) degraded areas (fully thawed fen), (iii) open water and (iv) the class 
'other', which includes field equipment, planks, buildings, rocks and trees. Bar colors represent years. Percentages above the bars represent 395 
the F-score. The overall accuracy of each of the annual classifications is also shown. (b) Extract (clip) of original data for each available 
year. 
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Electrical conductivity (EC) data obtained from electromagnetic induction (EMI) range from 4.1 to 7.8 mS/m over the survey 

area (Fig. 6a) and are well aligned with relative elevation and the predicted degradation classes (Fig. 6b-e). This range of 400 

values allows for the use of the Low Induction Number (LIN) hypothesis, enabling the estimation of soil EC from the quad-

phase component of the measured field, as the LIN assumption is met (McNeill, 1980). The EC values are relatively low, 

reflecting the absence or minimal presence of clay and low salinity. This observation aligns with the hydrological regime of 

the area, where surface water is primarily rain-fed, with limited inputs from mineralized groundwater or subsurface flow (e.g., 

Henrion et al., 2024). The central part of the area exhibits the lowest EC values, which correspond to the highest elevation and 405 

stable palsa area. This pattern is consistent with the hydrological gradient, as higher elevations typically exhibit better drainage, 

reducing water content and, consequently, EC. Electrical conductivity patterns also align with the distribution of vegetation 

types, as shown in the RGB orthophoto (Fig. 6d). Notably, areas with more developed vegetation correspond to areas with 

higher EC values, likely due to increased water and nutrient availability in these zones, which supports greater plant growth. 

A clear linear relationship is observed between EC and relative elevation (R² = 51%; Fig. 6e), further emphasizing the influence 410 

of micro-topography on soil hydrology and conductivity. Significant differences in EC are also observed between the different 

degradation classes (p-values from Kruskal-Wallis test < 10⁻³; Fig. 6f). Degraded areas consistently exhibit higher EC values 

compared to stable palsa, further supporting the role of water content as a key factor driving changes in EC. Since high EC is 

indicative of increased water content (assuming other factors such as clay content, salinity, and soil mineralogy remain 

constant), these data suggest that palsa degradation induces a net increase in soil moisture. This process is likely to shift the 415 

soil environment toward more anaerobic conditions, reducing organic matter geochemical stability (e.g., Monhonval et al., 

2023; Patzner et al., 2020), but also favoring processes such as methanogenesis (e.g., Varner et al., 2022), which could have 

significant implications for greenhouse gas emissions. 
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Figure 6: Evolution of electrical conductivity data and comparison with the results of the biennial classification model (between 2019 420 
and 2021). (a) Continuous map of electrical conductivity obtained by simple kriging of point data; (b) Relative elevation data corrected by 
removal of the bowl-shape effect; (c) Classification model results for 2021 (see Fig. 4b for the entire model); (d) RGB imagery data for 
2021; (e) Linear regression between electrical conductivity and relative elevation for the different classes; (f) Boxplots of the evolution of 
electrical conductivity as a function of the class. Data processing extent as in Fig. 2a. Color code as in Fig. 4. 
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 425 

3.4 Implications of palsa degradation for both organic carbon stability and greenhouse gas emissions 

The land-cover is generally a very important predictor for both the distribution of organic carbon and GHG emissions (e.g., 

Siewert, 2018; Varner et al., 2022). For first order estimates of the evolution of OC stocks or GHG emissions in Stordalen, we 

used a space for time approach using the thematic maps developed in this study (section 3.2). To this end, Patzner et al. (2020) 

showed a drop in the concentration of TOC and MAOC along the degradation gradient in the Stordalen mire. Using estimates 430 

of the surface area degraded between 2019 and 2021, we calculated that – for the 14 ha of this study site and for a palsa depth 

of 23 cm – palsa degradation results in 24 metric tons of TOC becoming vulnerable to decomposition, including 6 metric tons 

of MAOC (calculations details are available in Tab. B. 1 – Tab. B. 2). This corresponds to a balance of -1.6%·a-1 relative to 

the TOC stock in 2019 and -3.3%·a-1 relative to the MAOC stock in 2019. They consist of TOC or MAOC stocks that are 

made vulnerable annually as a result of palsa degradation and represent first order estimates. The actual proportion and timing 435 

of OC export or GHG emissions remain unknown. With regard to GHG emissions, Sjögersten et al. (2023) showed a substantial 

increase in methane emissions from stable palsa surfaces plant communities to degrading and inundated plant communities 

highlighting the importance of not only the degree of degradation, but also the vegetation community composition dictating 

magnitudinal differences in CH4 emissions. Varner et al. (2022) showed that the net radiative forcing of the Stordalen mire 

shifted from a slightly negative value before 2000 to a strongly positive value after that date, and increased again in 2014. As 440 

a result of accelerated degradation (section 3.2), we can expect the radiative forcing to become even more positive through 

increased CH4 emissions, as the mire turns wetter (section 3.3). Likewise, Łakomiec et al. (2021) measured field-scale CH4 

emissions at Stordalen of 2.7 ± 0.5 and 8.2 ± 1.5 g-C·m-2·a-1 (mean annual emissions) for the palsa and thawing surfaces, 

respectively. With the palsa degradation rates calculated in this study, this would mean that the average annual emissions 

would increase from ~ 7.1 g-C·m-2·a-1 in 2019 to ~ 7.3 g-C·m-2·a-1 in 2021 for the entire mire, i.e., an increase of ~1.3%·a-1. 445 

3.5 From local to Arctic scale 

Predicting the response of permafrost terrains to climate change and disturbances beyond local scales is extremely difficult 

(Nicolsky et al., 2017). Discrepancies very often exist between circumpolar-scale and local scale models. This is for instance 

the case for total organic carbon maps between local estimates (e.g., Fuchs et al., 2015; Palmtag et al., 2015; Siewert, 2018) 

that show much lower or higher results than circumpolar estimates (Hugelius et al., 2013, 2014). The large-scale estimates 450 

used in global or regional models fail to reflect the heterogeneity observed in this typical Arctic environment, where soil 

properties are highly variable on scales of a few tens of centimeters and often defined by landforms and their degradation 

trajectory (Siewert et al., 2021), as is the case in Abisko and in many other Arctic environments. Yet, the importance of 

wetlands for organic carbon stocks at the arctic scale has long been pointed out (e.g., Siewert, 2018). When the temporal 

evolution component is added, these global estimates are even more difficult to achieve. In the present study, we saw that the 455 

parameters of relative elevation and slope (and their evolution) were key components in detecting the formation of thermokarst 
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in lowland peat rich landscapes. However, digital elevation models across the Arctic are generated from multi-annual data, 

e.g. 15 years for ArcticDEM (Porter et al., 2023). Although efforts are being made to generate annual elevation models e.g. 

for the Greenland Ice Sheet (Winstrup et al., 2024), such circumpolar-scale data are not yet available. Still, similar studies 

could be conducted on multiple thermokarst landscapes across the arctic and at different latitudes. This approach would provide 460 

valuable insight into the variability of degradation rates, which could then be included in models such as those used in Turetsky 

et al. (2020) or Hugelius et al. (2020). A promising approach is the use of InSAR to detect thermokarst and quantify permafrost 

degradation as well as resulting GHG emissions (van Huissteden et al., 2021; Sjögersten et al., 2023; Valman et al., 2024), but 

de la Barreda-Bautista et al. (2022) highlight the relevance to use UAS data to ground truth such efforts. A further avenue for 

monitoring the development of thermokarst landscapes on a circumpolar scale would be to measure the evolution of soil 465 

moisture over time. In that respect, drone-borne ground-penetrating radar (GPR) has demonstrated significant potential for 

high-resolution mapping of soil electrical conductivity and soil moisture (Wu et al., 2019; Wu and Lambot, 2022). Unlike 

other proximal or remote sensing sensors, which are limited to surface property characterization, GPR provides depth-resolved 

information, enabling the detection of subsurface changes linked to permafrost degradation, such as increases in soil moisture 

and ground subsidence.  470 

4 Conclusions 

We investigated a gradient of lowland thermokarst development at Stordalen mire, Abisko, Sweden, from well-drained stable 

palsas to inundated fens, which have undergone ground subsidence. We have conducted an evaluation of palsa degradation 

through time based on photogrammetric surveys providing access to RGB imagery and topography (relative elevation and 

slope) data between 2019 and 2021, and a coarser evaluation with RGB imagery only between 2014 and 2022. Our results lead 475 

to the following conclusions: 

(1) Topography is a critical parameter for determining the evolution of palsa degradation. Including relative elevation 

and slope data increases the overall classification accuracy from 41% to 77%, highlighting the value of topographic 

information for identifying palsa degradation. Slope further enables better detection of the early stages of degradation. 

(2) We observe a clear acceleration of degradation in Stordalen between 2019 and 2021, with a decrease in stable palsa 480 

area of 0.9%·a-1 – 1.1%·a-1 compared to previous studies for 1970 – 2000 (~0.2%·a-1) and 2000 – 2014 (~0.04%·a-1).  

(3) Our coarser evaluation based solely on RGB imagery leads to higher rates though of the same order of magnitude for 

the period 2014 – 2022 (i.e., 2.2 ± 1.1 %·a-1), and likewise demonstrates a twofold increase in the surfaces of open 

water. Electromagnetic induction data also supports the increase in soil moisture as palsas degrade, which is likely to 

alter the soil environment towards more anaerobic conditions. 485 

(4) By combining the rates of palsa degradation from this study with existing data on carbon concentration, stability and 

release from the study site, we calculated that palsa degradation at Stordalen might lead to a pool of 12 metric tons of 

organic carbon exposed annually for the topsoil (23 cm depth), of which ~25% is mineral-interacting organic carbon. 
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Likewise, average annual emissions would increase from ~ 7.1 g-C·m-2·a-1 in 2019 to ~ 7.3 g-C·m-2·a-1 in 2021 for 

the entire mire, i.e., an increase of ~1.3%·a-1. 490 

(5) Scaling this approach to the circumpolar Arctic poses a major challenge. Small topographic changes associated with 

thermokarst development are not captured by satellite images, making the detection of this process challenging. 

Applying the methodology developed in this study to cover a large number of study sites would allow to assess the 

spatial variability of degradation rates and thus serve as an input for net ecosystem carbon balance models.
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Appendix A | Additional methodological information 495 

 

 
Figure A. 1: Conceptual model and illustration of the permafrost degradation gradient at the Stordalen Mire. (a) measuring grid 
along the gradient (photo: S. Opfergelt; Sept 30, 2021) where point-to-point distance is indicated for scale; (b) evolution of active layer depth 
along the gradient; (c) evolution of the volumetric water content along the gradient 500 
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Table A. 1: Summary of the different unoccupied aircraft system (UAS) data used in this study. agl = above ground level 

year day of 
survey UAS Sensor Flight 

altitude 

Original 
resolution 
(m) 

refs 

2014 July 11 Robota Triton XL Panasonic Lumix-GM1 70 m agl 0,03 × 0,03 

dataset: Palace et al. (2019) 
previously used in Burke et 
al. (2019); DelGreco (2018); 
Palace et al. (2018); Varner et 
al. (2022) 

2015 July 11 Robota Triton XL Panasonic Lumix-GM1 70 m agl 0,03 × 0,03 
dataset: Palace et al. (2022a) 
previously used in DelGreco 
(2018) 

2016 July 12 Robota Triton XL Panasonic Lumix-GM1 70 m agl 0,03 × 0,03 
dataset: Palace et al. (2022b) 
previously used in Burke et 
al. (2019); DelGreco (2018) 

2017 July 25 Robota Triton XL Panasonic Lumix-GM1 70 m agl 0,03 × 0,03 

dataset: DelGreco et al. 
(2022) 
previously used in DelGreco 
(2018) 

2018 July 28 Robota Triton XL Panasonic Lumix-GM1 70 m agl 0,02 × 0,02 dataset: Palace et al. (2025a) 

2019 August 16 Sensefly Ebee Canon G9x 98 m agl 0,04 × 0,04 
dataset: (Siewert and Abisko 
Scientific Research Station, 
2020) 

2021 September 
17 

DJI MAVIC 2 
PRO L1/L2 PPK 

1” CMOS, 20 MP 
Lens: FOV: about 77° (35 
mm) 
Format Equivalent: 28 mm 
Aperture: f/2.8–f/11 

110 m agl 0,05 × 0,05 dataset: Thomas et al. (2025) 

2022 July 15 Phantom 4 RTK+ 

1" CMOS, 20 MP 
Lens: FOV: 84° (35 mm) 
Format Equivalent: 24 mm 
Aperture: f/2.8–f/11 

100 m agl 0,06 × 0,06 dataset: Palace et al. (2025b) 
first time use in this study 
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Figure A. 2: Removing of the bowl-shape effect from elevation data (DSM) for (a) 2019 and (b) 2021. The processing involves 
(i) extraction of the original elevation band on a regular 5 m x 5 m grid; (ii) on this grid, exclusion of the data that diverge by more than 3 505 
times the standard deviation, and calculation of the second-order trend from those data that from the original elevation data; (iii) calculation 
of residuals by subtraction of the 2nd-order trend from the original data. The result represents the relative elevation data (corrected DSM) 
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Table A. 2: Distribution of training points for each class. 

Class Number of points for training 
other (outcrops, wooden plancks, field material, rocks, etc.) 1752 
stable palsa 1995 
palsa undergoing degradation 1470 
degraded areas 1984 
stable palsa 
 
palsa undergoing degradation 

1069 

stable palsa 
 
degraded areas 

1159 

palsa undergoing degradation  
 
degraded areas 

1075 
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 510 
Figure A. 3: Distribution of the selected input data values across the training areas of the classification model, namely (a-b) red color, 
(c-d) green color, (e-f) blue color, (g-h) relative elevation data corrected by removal of the bowl-shape effect, (i-j) slope values derived from 
the original DSM and (k) the difference in relative between 2019 and 2021. DSM = digital surface model. Color code as in Fig. 4.
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Appendix B | Tables for scaling up organic carbon stocks 

Table B. 1: Method for scaling up organic carbon stocks from the use of the classified landscape. TOC = total organic carbon; 515 
MAOC = mineral-associated organic carbon. Thickness, bulk density, TOC and MAOC data from Patzner et al. (2020). OH = organic 
horizon; TZ = transition zone; MH = mineral horizon. 

degradation  
stage Horizon Thickness  

(m) 
Thickness  

(m) 

bulk 
density  
(kg/m³) 

Total  
organic 
carbon  
(TOC) 
(%wt) 

Mineral-
associated  

organic 
carbon 

(MAOC) 
(%wt) 

Mass of soil/sediment 
(kg/m²) Stock 

of TOC 
(kg/m²) 

Stock of 
MAOC 
(kg/m²) total organic mineral 

stable  
palsa 

OH 0,04 

0,23 

30 42,4% 0,1% 1 

90 

1 

18 

0 

72 

0,51 0,00 
0,05 30 42,3% 0,2% 2 1 0 0,63 0,00 

TZ 0,01 80 31,2% 3,1% 1 0 0 0,25 0,02 
0,03 80 35,5% 5,3% 2 1 1 0,85 0,13 

MH 0,04 840 13,6% 2,7% 34 8 26 4,57 0,92 
0,06 840 7,3% 1,4% 50 6 44 3,66 0,68 

undergoing 
degradation 

OH 0,07 
0,13 

80 33,3% 1,6% 6 
82 

3 
10 

2 
72 

1,87 0,09 
TZ 0,05 1290 5,8% 2,3% 65 6 58 3,71 1,46 
MH 0,01 1740 0,8% 0,0% 12 0 11 0,10 0,00 

degraded  
areas 

OH 0,04 
0,08 

210 23,5% 0,0% 8 
77 

3 
5 

5 
72 

1,97 0,00 
TZ 0,03 1970 1,6% 0,0% 59 2 57 0,96 0,00 
MH 0,01 1720 0,4% 0,0% 9 0 9 0,03 0,00 

 

mineral matter stock �
𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚2 �
𝑖𝑖
 

=  �bulk density𝑖𝑖  �
𝑘𝑘𝑘𝑘soil

𝑚𝑚3 � × thickness𝑖𝑖  (𝑚𝑚)� − ��bulk density𝑖𝑖  �
𝑘𝑘𝑘𝑘soil

𝑚𝑚3 �× thickness𝑖𝑖  (𝑚𝑚) × OC content𝑖𝑖 �
𝑘𝑘𝑘𝑘OC

𝑘𝑘𝑘𝑘soil
�� × 1,724 �

𝑘𝑘𝑘𝑘organic matter

𝑘𝑘𝑘𝑘OC
��  (𝐵𝐵1)520 
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Table B. 2: Results of scaling up organic carbon stocks from the use of the classified landscape. TOC = total organic carbon; 
MAOC = mineral-associated organic carbon. Surfaces in 2019 and 2021 from Fig. 4. 

degradation  
stage 

Thickness 
(m) 

surface 
2019 
(ha) 

Stock of TOC 
2019 
(ton) 

Stock of MAOC 
2019 
(ton) 

surface  
2021 
(ha) 

Stock of TOC 
2021 
(ton) 

Stock of MAOC 
2021 
(ton) 

stable  
palsa 

0,04 

4,50 

23 

471 

748 

0 

79 

87 

4,18 

21 

438 

724 

0 

74 

81 

0,05 29 0 27 0 
0,01 11 1 10 1 
0,03 38 6 36 5 
0,04 206 41 191 38 
0,06 165 31 153 29 

undergoing 
degradation 

0,07 
0,49 

9 
28 

0 
8 0,47 

9 
27 

0 
7 0,05 18 7 17 7 

0,01 0 0 0 0 

degraded  
areas 

0,04 
8,41 

166 
249 

0 
0 8,74 

172 
259 

0 
0 0,03 81 0 84 0 

0,01 3 0 3 0 
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Appendix C | Additional results 

 525 
Figure C. 1: Performance evaluation of the biennial (2019 – 2021) model. (a) Mean permutation importance of each input data in the 
model, measured as the decrease in accuracy when the input data values are randomly shuffled. The error bars indicate the standard deviation 
of importance across 10 permutations. (b) Evolution of the overall accuracy and F-scores of the classes based on the input data for the 
classification. Mean spatial filter = mean of pixel values in 3 × 3, 5 × 5 and 7 × 7 moving windows. Homogeneity = texture attribute 
‘homogeneity’ based on the gray-level co-occurrence matrix applied within a 21 × 21 moving window. Domain knowledge 530 
reevaluation = refinement using elevation differences and model scores to ensure alignment with domain knowledge (see section 2.4). 
majority filter = filter using windows of increasing size up to 11 × 11 pixels, to reduce noise and enhance classification consistency. 
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Table C. 1: Confusion matrix for the classification model & precision, recall and F-score for each cover class after classes aggregation 
for 2019. This model uses 55 bands as input data, namely (i) 11 bands with original data (3 spectral bands, relative elevation and slope for 
the years 2019 and 2021 as well as the difference in relative elevation between 2019 and 2021) along with (ii) 3 × 11 bands with spatial 535 
filters (mean & standard deviation) over windows of increasing size, i.e. 3 × 3, 5 × 5 and 7 × 7, and finally (iii) the 11 bands from the texture 
attribute ‘homogeneity’. The classification output was then filtered with a moving window of 11 × 11 pixels. 
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other 60 2 3 5 70  86% 86% 86% 
stable palsa 5 242 8 33 288  84% 73% 78% 

undergoing degradation 2 33 50 34 119  42% 57% 49% 
degraded areas 3 56 26 736 821  90% 91% 90% 

  70 333 87 808 1298     
 
Table C. 2: Confusion matrix for the classification model & precision, recall and F-score for each cover class after classes aggregation 
for 2021. This model uses 55 bands as input data, namely (i) 11 bands with original data (3 spectral bands, relative elevation and slope for 540 
the years 2019 and 2021 as well as the difference in relative elevation between 2019 and 2021) along with (ii) 3 × 11 bands with spatial 
filters (mean & standard deviation) over windows of increasing size, i.e. 3 × 3, 5 × 5 and 7 × 7, and finally (iii) the 11 bands from the texture 
attribute ‘homogeneity’. The classification output was then filtered with a moving window of 11 × 11 pixels. 
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other 60 1 4 5 70  86% 86% 86% 
stable palsa 4 216 5 27 252  86% 74% 79% 

undergoing degradation 2 20 37 29 88  42% 55% 48% 
degraded areas 4 55 21 808 888  91% 93% 92% 

  70 292 67 869 1298     
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Code availability 545 

The code for the biennial model (2019-2021) is available on https://doi.org/10.14428/DVN/SX6TYV (Open Data @ 

UCLouvain, V1). 

Data availability 

All digital data, i.e. orthomosaics and digital elevation models, are available:  

• 2014: Palace, M., Herrick, C., DelGreco, J., Varner, R.K., Finnell, D., Garnello, A.J. (2019). Unmanned Aerial 550 

Imagery over Stordalen Mire, Northern Sweden, 2014, https://doi.org/10.7910/DVN/SJKV4T, Harvard Dataverse, 

V1 

• 2015: Palace, M., DelGreco, J., McArthur, K., Herrick, C., Varner, R.K. (2022a). Unmanned Aerial Imagery over 

Stordalen Mire, Northern Sweden, 2015, https://doi.org/10.7910/DVN/NUXE30, Harvard Dataverse, V1 

• 2016: Palace, M., Herrick, C., Varner, R.K. (2022b). Unmanned Aerial Imagery over Stordalen Mire, Northern 555 

Sweden, 2016, https://doi.org/10.7910/DVN/IAXSRD, Harvard Dataverse, V1 

• 2017: DelGreco, J., Palace, M., Herrick, C., Varner, R.K. (2022). Unmanned Aerial Imagery over Stordalen Mire, 

Northern Sweden, 2017, https://doi.org/10.7910/DVN/NZWLHE, Harvard Dataverse, V1 

• 2018: Palace, M., Herrick, C., Sullivan, F. (2025a). Unmanned Aerial Imagery over Stordalen Mire, Northern 

Sweden, 2018. https://doi.org/10.7910/DVN/2JXWVW, Harvard Dataverse, V1 560 

• 2019: Siewert, M. - Abisko Scientific Research Station (2020). UAV - RGB orthomosaic from Stordalen, 2019-08-

16. Swedish Infrastructure for Ecosystem Science (SITES). 

https://hdl.handle.net/11676.1/U4o8KrPkEiKw5RsfiCJZeEgX  

• 2021: Thomas, Maxime; Villani, Maëlle; du Bois d’Aische, Eléonore; Hirst, Catherine; Lundin, Erik; Van Oost, 

Kristof; Vanacker, Veerle; Opfergelt, Sophie, 2025, "RGB orthomosaic, digital surface model and slope over 565 

Stordalen Mire, Northern Sweden, 2021", https://doi.org/10.14428/DVN/MGNYNN, Open Data @ UCLouvain, V1 

• 2022: Palace, M., Herrick, C., Sullivan, F., Varner, R., (2025b). Unmanned Aerial Imagery over Stordalen Mire, 

Northern Sweden, 2022. https://doi.org/10.7910/DVN/G9Y8WC, Harvard Dataverse, V1 
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