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Abstract. A reliable representation of the diversity of vegetation in terrestrial ecosystems is needed for the accurate simulation 

of present and future biogeochemical cycling and global climate, particularly as climate change affect different vegetation 

types differently. We compare the distributions of crops and of C3 versus C4 photosynthetic pathways in both natural vegetation 

and crops across Earth System Models in the 6th Coupled Model Intercomparison Project (CMIP6). We find a large range in 15 

vegetation type for area, gross primary production (GPP) and carbon stock change in both natural vegetation and croplands 

across the models. Even though 10 of 11 models used Land Use Harmonization (LUH2) crop areas as input data, modeled 

total crop area ranges from -28 to +10 % of the data-based estimate. The C3 and C4 crop areas were -56 to +15 % and -100 to 

+38 % of LUH2 for 2014, respectively. The C4 fraction of total vegetation area in the models is 9-25 %, compared to 17 % in 

observation-based estimates. Total global GPP varies by a factor of two across the models, and the C4 fraction of GPP ranges 20 

from 12 to 27 %. Simulated trends in the fraction of GPP by C3 versus C4 vegetation type (-20 to +29 %) would have changed 

global isotopic discrimination by -0.35 to +0.11 ‰ over 1975-2005, indicating that modeled changes in vegetation type do 

not account for the +0.7 ‰ increase indicated by atmospheric data. Disparity in vegetation types contributes to uncertainty in 

land carbon fluxes and further constraints and improvements in models are needed.  

1 Introduction 25 

The terrestrial biosphere captures ~30 % of anthropogenically emitted CO2 annually  (Friedlingstein et al., 2025) reducing CO2 

accumulation in the atmosphere and the accompanying global warming. However, this CO2 uptake may be sensitive to future 

climate change (Arora et al., 2020). Understanding the mechanisms contributing to the CO2 uptake, including the role of 

different types of vegetation and land use, is essential to understanding potential carbon-climate feedback and future changes 

to the terrestrial carbon cycle.  30 
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The implementation of land use and land use change (LUC) and its impact on vegetation cover and dynamics are important 

components of terrestrial biosphere model development (Hu et al., 2021; Hurtt et al., 2020; Wang et al., 2022). LUC is mainly 

driven by agriculture. The fraction of global land area used for agriculture increased from 14 % in 1850 to about 37 % in 2015 

(Hurtt et al., 2020) and LUC emitted about 118 PgC between 1850 and 2020 (Houghton & Castanho, 2023). In addition to 

CO2 emissions, the biophysical effects of land conversion also drive global temperature rise due to changes in surface albedo 35 

(Arora & Boer, 2010; Houghton et al., 2012). The alteration of the land surface will continue to be significant in the future as, 

for example, it has been projected that 14 % of vegetation and 5 % of soil carbon stocks will be lost to cropland expansion 

globally over 2010-2050 in a “middle-of-the-road” scenario (Molotoks et al., 2018a).   

To represent plant diversity and function, most model developers use plant functional types (PFTs) that group vegetation by 

similar features such as growth form, ecological requirements, and photosynthetic pathways. This helps to account for the 40 

variation in adaptive mechanisms and ecological distribution of different plants (Haxeltine & Prentice, 1996; Hurtt et al., 2020; 

Wullschleger et al., 2014). One important characteristic of plants is their use of either the C3 or C4 photosynthetic pathways. 

In C3 plants the first product of the photosynthetic pathway is a three-carbon molecule called 3-phosphosphoglycerate (3-

PGA), while in C4 vegetation, it is a four-carbon molecule called oxaloacetate. C3 and C4 types also differ in their response to 

changes in soil moisture content, temperature, CO2, and light (Luo et al., 2024). 45 

Under increasing temperature, especially increases above the thermal optimum threshold, productivity in C3 vegetation is 

limited by an increase in photorespiration (Hermida-Carrera et al., 2016), which reduces photosynthetic efficiency in C3 plants. 

In contrast, C4 species overcome photorespiration through their CO2 concentrating mechanism that increases the amount of 

CO2 at the site of carboxylation (da Silva et al., 2020), leading to an abundance of C4 species (natural grasses and crops such 

as maize) in hot areas in the tropics and sub-tropics (Luo et al., 2024). While rising temperature generally favours C4 plants, 50 

rising atmospheric CO2 concentration confers a physiological advantage upon C3 species (Polley et al., 1994) due to a reduction 

in photorespiration and increase in water use efficiency. This CO2 fertilization effect is responsible for the increasing presence 

of C3 woody species in previously C4 dominated grasslands (Luo et al., 2024). Shifts in C3 and C4 species composition and 

carbon fluxes across different regions are projected to continue in future due to changing temperature, water availability and 

increasing CO2 concentration in the atmosphere (Cortés et al., 2021; Smith & Boers, 2023).  55 

A change in the relative contributions of C3 and C4 vegetation to global productivity may contribute to a global trend in stable 

photosynthetic carbon isotope discrimination (Δ) because C3 plants discriminate against carbon-13 more strongly than C4 

plants (Farquhar et al., 1989). Since atmospheric studies have indicated that Δ increased by 0.7 ‰ over 1975-2005 globally 

(Keeling et al 2017), and by 0.4 ‰ over 2000-2011 in the Northern Hemisphere (Peters et al 2018), understanding the effect 

of changes in vegetation type on discrimination would help to quantify the environmental and physiological factors influencing 60 

plant function and resulting discrimination, including soil moisture content, vapour pressure deficit and stomatal conductance 

(Cornwell et al., 2018; Griffis et al., 2010).  

Currently, the relative contribution, and its change over time, of C3 vs C4 vegetation to global terrestrial biosphere productivity 

and their ecological roles in climate change mitigation are not well-known. Using remote sensing products, physiological 
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modeling and crop data, Still et al (2003) found that C3 and C4 area abundances are 87.4 and 18.8 million km2 (17.7 % as C4) 65 

and C3 and C4 gross primary production were 114.7 and 35.3 PgC yr-1 (23 % as C4), respectively, on average for the 1980s and 

1990s. More recently, Luo et al (2024) used global observations of plant photosynthetic pathways, satellite remote sensing, 

and photosynthetic optimality theory to estimate a similar level of C4 area coverage (17.5 %), but a lower fraction of gross 

primary productivity (19.4 %), compared to Still et al (2003). Luo et al (2024) showed that C4 vegetation coverage decreased 

from 17.7 % to 17.1 % over 2001 to 2019 as natural C4 grass cover declined in favor of C3 vegetation, especially C3 trees in 70 

tropical grasslands and savannas. In comparison, across the TRENDY ensemble of dynamic global vegetation models, there 

were large ranges of 7-23 % of vegetation area and 2-40 % of productivity from C4 vegetation (Luo et al. 2024), showing a 

need for better constraints and understanding of C3/C4 vegetation competition and change over time.  

Here we investigate the contribution of vegetation diversity representation to uncertainty in carbon flux simulation in Earth 

System Models. We evaluate the representation of C3 and C4 vegetation over 1850-2014 in 11 Earth System Models used in 75 

the 6th Coupled Model Intercomparison project (CMIP6). We assess the distribution, productivity and carbon content of C3 

and C4 vegetation and compare with observation-based estimates where possible. We also explore the potential trend in global 

carbon isotope discrimination Δ13C due to C3 and C4 vegetation changes simulated in the models.  

        

2 Materials and Methods 80 

2.1 CMIP6 Models Outputs and the LUH v2 Data 

To analyze the CMIP6 models, we obtained the output for the following variables from the CMIP6-ESGF repository 

(https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/): fractions of C3 and C4 vegetation coverage (c3PftFrac and c4PftFrac), 

C3 and C4 crop fraction (cropFracC3 and cropFracC4), total crop fraction (cropFrac), gross primary production (gpp), 

vegetation carbon content (cVeg), soil carbon content (cSoil), grid cell area (areacella), and percentage of each grid cell covered 85 

by land (sftlf). The necessary output was available from 11 models (Table 1). Brief descriptions of the implementation of 

vegetation abundance in each of the 11 models are provided in the Supplementary resources (Materials and Methods S1).  

 

 

Table 1.  Summary of each model’s definition of crop cover and our calculation of C3 and C4 crop cover. More detail 90 

is given in SM Materials and Methods.  

Earth System 

Model 

Land Model C3 Crop Fraction  C4 Crop Fraction Definition of crop cover 

ACCESS-ESM1.5 CABLE cropFracC3 Zero everywhere LUH2 mapped onto PFTs 

CanESM5 CLASS-

CTEM 

cropFracC3 cropFracC4 LUH2 mapped onto PFTs 
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To specify crop cover, ten of the eleven CMIP6 models use the Land Use Harmonization version 2 (LUH2) dataset (Hurtt et 

al 2017, Table 1) so we also analyze the LUH2 data directly here. LUH2 estimates the fractional area and transition of use of 

12 categories at an annual and 0.25° by 0.25° spatiotemporal resolution, starting from the year 850 (Hurtt et al., 2020). Five of 95 

these categories are C3 annual crops, C3 perennial crops, C3 nitrogen fixers crops, C4 annual crops and C4 perennial crops. We 

group these categories into C3 crops and C4 crops, and their sum as total crops.  

The UKESM1 model uses the LUH2 crop cover data with some modifications including simulation of competition between 

C3 and C4 vegetation using the dynamic vegetation model TRIFFID (Top-down Representation of Interactive Foliage and 

Floral Including Dynamics, Sellar et al., 2019, Clark et al., 2011). Other models use the LUH2 data more directly, but 100 

differences can result from mapping the LUH2 data onto the model’s PFTs, land cover and grid maps.  

In CNRM-CM6.1, the crop cover is based on the ECOCLIMAP‐II database (Voldoire et al., 2019) CNRM‐CM6‐1 adopts a 

vegetation cover map that is fixed to its present‐day distribution, so that temporal changes in crop area are not included. The 

reasoning for using a fixed distribution is that the carbon cycle is not fully resolved in the model and there is uncertainty in 

impacts of land use and land cover change on carbon flux (Faroux et al., 2013; Voldoire et al., 2019).  105 

 

2.2 Global Land Vegetation Cover, Productivity, and Carbon Content 

We analysed changes in the vegetation cover for all 11 CMIP6 models by calculating the gridded annual area fraction for C3 

and C4 vegetation for each year 1850-2014, which we also separated into crops, natural and total vegetation. We also calculated 

gridded annual gross primary production (GPP), vegetation and ecosystem carbon content for C3 and C4 vegetation in crops, 110 

natural and total vegetation in each model. We combined gridded estimates into global totals. 

CESM2 CLM5.0 cropFrac * c3PftFrac  cropFrac * c4PftFrac LUH2 mapped onto PFTs 

CESM2-WACCM CLM5.0 cropFrac * c3PftFrac  cropFrac * c4PftFrac LUH2 mapped onto PFTs 

CMCC-CM2-SR5 CLM4.5 cropFracC3 Zero everywhere LUH2 mapped onto PFTs 

CMCC-ESM2 CLM4.5 cropFracC3 Zero everywhere LUH2 mapped onto PFTs 

CNRM-CM6-1 ISBA‐CTRIP cropFrac * c3PftFrac  cropFrac * c4PftFrac ECOCLIMAP‐II fixed 

CNRM-ESM2.1 ISBA‐CTRIP cropFrac * c3PftFrac  cropFrac * c4PftFrac LUH2 mapped onto PFTs 

MPI-ESM-1-2-HAM JSBACH cropFracC3 cropFracC4 LUH2 mapped onto PFTs 

MPI-ESM1-2-LR JSBACH cropFracC3 cropFracC4 LUH2 mapped onto PFTs 

UKESM1 JULES-

TRIFFID 

cropFracC3 cropFracC4 LUH2 mapped onto PFTs 

with C3/C4 competition 

from TRIFFID 
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We calculated annual maps of area fraction of C3 crops (cropFracC3) and C4 crops (cropFracC4). Most models included the 

cropFracC3 and cropFracC4 variables that could be used directly (Table 1). Some models had to be treated differently, due to 

the output provided. ACCESS-ESM1.5 and the CMCC models did not provide cropFracC4 and their cropFracC3 was equal to 

the total crop fraction (cropFrac), so we specified the fraction of C4 crops to be zero everywhere. The CESM2 models did not 115 

provide cropFracC3 and cropFracC4 variables, but they did provide c3PftFrac or c4PftFrac (the fractions for total vegetation), 

so cropFracC3 and cropFracC4 were calculated by multiplying cropFrac by c3PftFrac or c4PftFrac. In CNRM-CM6-1 and 

CNRM-ESM2.1, the cropFracC3 and cropFracC4 variables were identical to the c3PftFrac and c4PftFrac variables, which 

appears to be an error in the output. So in CNRM-CM6-1 and CNRM-ESM2.1 cropFracC3 and cropFracC4 were calculated 

by multiplying cropFrac by c3PftFrac or c4PftFrac.  120 

To calculate the fractions of natural C3 and C4 vegetation, we subtracted cropFracC3 and cropFracC4 from c3PftFrac or 

c4PftFrac (the total C3 and C4 vegetation fractions). Therefore, for each grid cell we had the fractional area of C3 and C4 crops 

and of C3 and C4 natural vegetation. 

The GPP from C3 or C4 vegetation was not provided so we estimated these by multiplying total GPP with the area fractions. 

We applied the same procedure to estimate vegetation carbon content and total ecosystem carbon content by vegetation type. 125 

In Luo et al. (2024) it was found that the per unit area photosynthetic rate of C4 grass was generally higher than for C3 

vegetation, so these calculations may overestimate the proportion assigned to C3 vegetation. 

 

 

2.3 Global Stable Carbon Isotopic Discrimination 130 

To estimate how the simulated changes in C3 and C4 fractions of GPP influenced the global isotopic discrimination, we 

estimated discrimination assuming fixed values for discrimination by C3 and C4 vegetation. This neglects any environmental 

or physiological effects on discrimination to isolate the potential effect from changes in C3 and C4 fractions of GPP alone. The 

annual global isotopic discrimination was calculated by the following weighted average with GPP: 

Δ  = (GPPC3 ΔC3 + GPPC4 ΔC4)/( GPPC3 + GPPC4)      (1) 135 

Here, GPPC3 and GPPC4 are the integrated GPP for all C3 and C4 vegetation each year, and ΔC3 and ΔC4 are the fixed stable 

carbon isotope discrimination for C3 and C4 respectively. Click or tap here to enter text.We also calculated the global natural 

isotopic discrimination (Δnat) using the natural C3 and C4 GPP for all the models using the same weighted average approach. 

To calculate the effect of crops on the global annual isotopic discrimination (Δcrop), we subtracted Δnat from Δtot.  

ΔC3 and ΔC4 were specified as the means of C3 and C4 plant leaf isotopic discrimination observations from the database of 3987 140 

species published by Cornwell et al. (2018), which are 20.7 ‰ for ΔC3 and 6.3 ‰ for ΔC4 (Fig. 1). The two peaks in the 

histogram are assumed to correspond to the highest count for the species with either the C3 and C4 photosynthetic pathways. 

A breakpoint of 12.5 ‰ was chosen for C3 and C4 based on the midpoint between the two peaks and then the means were 

calculated from the two distributions. 

 145 
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Figure 1: Stable carbon isotopic discrimination in leaves from database published by Cornwell et al (2018).  

3 Result  

3.1 Crop Abundance and its Change Over Time 

Based on the LUH2 dataset averaged over 1970-2014, the highest C3 crop abundance is in agricultural regions in central North 150 

America, southwest Europe, southeast and south Asia, Sub-Saharan Africa, southeast South America and southern Australia 

(Figures 2 and 3) (Hurtt et al., 2020). The fractional crop area is between 60 and 100 % in these regions. For C4 crops, the 

highest abundance is in the Great Plains in North America, Sub-Saharan Africa, southwest Asia and southeast Asia (Fig. 2).  

The models that do not use LUH2 data directly, UKESM1 (which used LUH2 indirectly) and CNRM-CM6-1, show differences 

with LUH2 (Figures 2 and 3). UKESM1 underestimates C3 crops in Sub-Saharan and central Africa and in southeast Asia, 155 

particularly in India, which is likely due to a lack of precipitation in UKESM1 in these areas (Sellar et al 2019). UKESM1 

estimates more C4 crop coverage than LUH2, particularly in Asia (Figure 2 and 3 and Table S1). Crop coverage in UKESM1 

is about 10 % lower than LUH2 between the equator and 30°N (Fig. 3). CNRM-CM6-1 has less C4 crop cover in Europe and 

Africa, but more in North and South America, compared to LUH2 (Figures 2 and 3).  

Between 1970 and 2014, there were decreases in crop coverage in North America, Europe, Southern Africa, Chile, Japan and 160 

New Zealand but increases in South and Southeast Asia, Africa and South America (Figure 3b and S1). The largest increases 

of 10 % or more were concentrated around the eastern region of south America, especially in Brazil, the southern fringes of 

the Sahara Desert (sub-Saharan Africa) and southeast Africa. The largest decreases of more than 20 % were across the corn-

belt of the United States and in southwest and central Europe. Changes in crop area in UKESM1 were consistent with LUH2 
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except in the low latitudes of the Northern Hemisphere, where increases in C3 crops in Africa and Asia were underestimated, 165 

compared to LUH2 (Figure 3b and S1). 

 

 

Figure 2: Mean percentage of earth surface covered by Crops between 1970 and 2014 For C3 and C4 in LUH2 and UKESM1-0-LL. 

Other models not shown use the LUH2 crop variables directly for their crop coverage and change.  170 

 

 

Figure 3: Mean and change in crop coverage averaged over latitude between 1970 and 2014. (a) Mean crop coverage (b) change in 

crop coverage.   

3.2 Global Trends in Vegetation Coverage 175 

The models incorporating LUH2 have similar patterns in C3 and C4 crop coverage over 1970-2014; however, the total area of 

crops in these models differed from LUH2 by -19 to +3 % (Fig. 4, Table S1). CanESM5 was the most consistent with LUH2. 

Inconsistences among the models that use the LUH2 dataset may be due to how the data were pre-processed before 
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incorporation into the model, due to grid spacing or due to differences in the model PFTs compared to LUH2 categories, 

particularly as some models did not include C4 crops. Also, since the variables cropFracC3 and cropFracC4 were not available 180 

for all models, our calculations of the crop fractions may have produced discrepancies. The magnitude of area abundance for 

C3 and C4 crop and natural vegetation for the years 1970 and 2014 are provided in the supplementary materials (Table S2). 

There is a strong positive trend in the area of croplands from 1850 until 2014 (Fig. 4a). Total crop area rose by 200 % in LUH2 

and models using LUH2 data. Crop area in UKESM1 was lower than LUH2 but increased in greater proportion, from 3 to 10 

million km2 (217 %). In CNRM-CM6 total crop area was fixed at ~14 million km2, similar to LUH2 in the 1990s.  185 

While representing a smaller fraction of total crop area (10-45%), the area of C4 crops increased in greater proportion (>300 

%) than C3 crops (160 %) in the LUH2 data (Fig. 4). In the CESM2 models, C3 crop area is lower and C4 crop area is higher 

than in LUH2, despite the model using LUH2 data, although this may be affected by our calculation from the variables provided 

(Table 1). In UKESM1, C3 crop area was much smaller than LUH2 while its C4 crop area was larger (Fig. 4). UKESM1 C3 

crop area peaked between the 1980s and 90s before declining slightly in the 2000s, in contrast to LUH2 where it continued to 190 

increase after 2010. UKESM1 C4 crop area rose through 2014, when it was about 42 % higher than LUH2. CNRM-CM6-1 

had a fixed C4 crop fraction of 24 %, slightly higher than the C4 crop fraction in LUH2 in the 1990s. ACCESS-ESM1-5, 

CMCC-ESM2 and CMCC-CM2-SR5 do not have C4 crops so their total crop area is equivalent to the C3 crop area. 

The area of natural vegetation decreases in all models from 1850 until 1940-70, when four models (CNRM-ESM2-1, 

UKESM2, and the MPI models) start increasing while the others continue decreasing. Natural vegetation is similarly 195 

dominated by C3, with 9-23 % of natural vegetation as C4 in 2014, and most of the decline in natural vegetation area is in C3 

vegetation. The trend in natural C4 vegetation area is inconsistent across the models. In CanESM5 and ACCESS-ESM1-5, the 

natural C4 vegetation area decreased over 1850-2014, while for the MPI-ESM models the natural C4 vegetation area increased 

especially from 1990. For the CESM2 and CMCC models, the natural C4 vegetation area was constant until the early 2000s 

before falling slightly. Compared to Luo et al (2024)’s estimate of the area of natural C4 vegetation for 2000-14, UKESM1 is 200 

quite consistent, while other models simulate up to 15 % larger and up to 63 % smaller areas (Fig. 4h).   
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Figure 4: Global temporal trends in vegetation area from 1850 to 2014 in CMIP6 models. Trend of the area covered by (a) total crop, 

(b) total natural vegetation (c) total global vegetation, (d) C3 crops, (e) C3 natural vegetation, (f) total C3 vegetation, (g) C4 crop, (h) C4 205 
natural vegetation and (i) total C4 vegetation. All models except CNRM-CM6-1 used LUH2 data to inform their crop coverage. ACCESS-

ESM1-5, CMCC-ESM2 and CMCC-CM2-SR5 do not have C4 crops. 

For the total vegetation area, four models have distinct positive trends from the late 1960s through to 2014 (CNRM-ESM2.1, 

UKESM1 and the MPI models) (Fig. 4c), driven mostly by increase in C4 natural vegetation (Fig. 4h). In the other models the 

increase in crop area is balanced by the decreased in area covered by natural vegetation. The estimated total vegetated area 210 

from the European Space Agency Climate Change Initiative (ESA-CCI) for 2000-2014 is matched by the CMCC models, 

while the CESM2 models simulate larger vegetated areas and all other models simulate smaller vegetated areas. The ESA CCI 

data shows a small increase that may be caused by the replacement of bare ground by natural grasses (Fig. S5).  
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3.3 Global Trends in Gross Primary Production  

While all the models simulate an increase in GPP, the magnitude and contribution by vegetation type differ (Figure 5). The 215 

total GPP for all the models increased steadily until the 1960s and then grew sharply for the rest of the historical period (Fig. 

5c). The increase in GPP in crops is linked to the area increase, while the GPP change in natural vegetation is decoupled from 

the change in area. In CNRM-CM6-1 with a fixed vegetation cover, the trend of C3, C4 and total crop GPP is not as strong 

compared to other models especially before the 1970 (Fig. 5a, d and g). They increased by 32 %, 27 %, and 18 % respectively 

compared to the ensemble mean increase of 195 %), 251 % and 209 % respectively (Fig. 5a, d and g). The increasing GPP 220 

trend in natural vegetation is likely dominated by the CO2 fertilization effect in C3 vegetation. The models disagree on the 

magnitude of total global GPP, ranging from 80 PgC yr-1 in CNRM- ESM2.1 to 150 PgC yr-1 in MPI-ESM (-20 to + 29 %) in 

2014  (Gier et al., 2024; Arora et al., 2020) (Fig 6c).  

For GPP in natural vegetation, there are large ranges of 54-100 PgC/yr simulated for C3 vegetation and 9-23 PgC/yr simulated 

for C4 vegetation across the models before 1970 (Fig. 5e and h). Despite the decrease in natural C3 vegetation area before 1970, 225 

the C3 GPP trend is generally either weakly negative or unchanging until the 1970 (Fig. 5e). Then all models increase steadily 

over 1970-2014. In natural C4 vegetation, there is generally an increase in GPP since 1850, but the increase is not at the same 

rate in all the models. It is weaker in ACCESS-ESM1-5, CanESM5 and UKESM1 (Fig. 5h). Three models show a decrease in 

natural C4 GPP over 2000-14 (ACCESS-ESM1-5 and the CESM2 models).  

The proportion of total GPP by C4 vegetation in the models is 12-27 % (Fig. 5i and S7), compared to 23 % in Still et al. (2003) 230 

and 19 % in Luo et al (2024). Compared to other model simulations, the range was 2-40 % in TRENDY models (Luo et al. 

2024), and 18-27 % in previous modelling studies (Farquhar & Lloyd, 1993; Fung et al., 1997). 
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Figure 5: Temporal trend in gross primary production (GPP) between 1850 and 2014. Trend of GPP of (a) total crop, (b) total natural 235 
vegetation (c) total global vegetation, (d) C3 crops, (e) C3 natural vegetation, (f) total C3 vegetation, (g) C4 crop, (h) C4 natural vegetation 

and (i) total C4 vegetation. 

3.4 Trends in Global Vegetation and Land Carbon Stock 

The vegetation carbon stock (Cveg) in crops increased consistently in 10 of the 11 models, at least doubling in magnitude for 

the historical period. This increase was generally less than the increase in area (Fig. 4a) and GPP (Fig. 5a). In CNRN-CM6-1 240 

that used fixed vegetation cover, the Cveg in crops decreased until the late 1990s before increasing slightly for the rest of the 

period. The magnitude of vegetation carbon content in crops ranged widely, from 26 PgC in CMCC-ESM2 to 66 PgC to in 

CNRM-CM6-1 in 2014 (Fig. 6a). 
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In natural vegetation, most models simulated a negative trend in Cveg until the late 1970s before reversing the trend and 

increasing sharply for the remainder of the historical period (Fig. 8b). In two models, natural Cveg was relatively constant until 245 

the 1970s (CNRM-CM6-1 and CMCC-ESM2). Again, the models do not agree on the magnitude of natural Cveg, which ranges 

from 328 PgC in MPI-ESM1.2-LR to 573 PgC in ACCESS-ESM1.5 with a mean of 415.04 PgC in 2014 (Fig. 6b).  

 

 

Figure 6: Temporal Trend in global vegetation carbon content between 1850 and 2014. Absolute values of carbon content in (a) crops, 250 
(b) natural vegetation and (c) total vegetation. Carbon accumulation since 1850 in (d) crop, (e) natural vegetation and (f) total vegetation. 

Gibbs and Ruesch (2008) above and below ground vegetation carbon stock estimate of 492.3 PgC is based on a map created using the 

International Panel on Climate Change (IPCC) Good Practice Guidance for reporting national greenhouse gas inventories, to serve as a 

benchmark to guide policies aimed at reducing carbon emissions from land-use change and also enhance simulation of carbon stock in ESMs. 

Spawn et al (2020) estimate the above and below ground global terrestrial vegetation biomass at 423.3 PgC by merging different landcover-255 
specific global maps generated from remote sensing products into one global vegetation carbon stock map at 300m spatial resolution for the 

year 2010. Erb et al (2018) estimated that the actual mean global carbon stock is 450 (range of 380 to 536 PgC) by analysing the impact of 

vegetated land-cover conversion and land management on the global carbon state of the biosphere ecosystems.  
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3.5 Global Trends in Stable Carbon Isotope Discrimination 

The models disagree on the magnitude and trend of Δtot, Δnat and Δcrop (Fig 7), based on fraction of GPP from C3 and C4 260 

vegetation (Equation 1). As a result of the 12-27 % range in C4 fraction of total GPP, the global total discrimination ranges 

from 16.9 to 19.5 ‰ (Table S2) in 2014 across the models, compared to 16.5 ‰ in Still et al. (2003). Models simulate no 

change (CESM2 models), slightly increasing Δtot (ACCESS-ESM1.5 and CNRM-CM6.1) or decreasing Δtot (all other models). 

The strongest decreases in Δtot were in the MPI models which had the strongest increases in C4 vegetation area (Fig. 7). 

Compared to the strong positive trend in global discrimination trend derived by Keeling et al (2017) from atmospheric δ13C 265 

data, the effect of vegetation change in the models was much smaller or had the opposite sign (Fig 7).  

The models also disagree on the sign and magnitude of the trends in Δnat (17 to 19.42 ‰) and Δcrop (-0.7 to 0.33 ‰, Table S2).  

Among models with decreasing Δtot, the trend is primarily driven by Δnat in the MPI models but by Δcrop in UKESM1 and 

CanESM5 models.  

 270 

  

Figure 7: Trend of global stable carbon isotopic discrimination between 1850 and 2014. 10-year average discrimination of (a) total 

vegetation (Δtot), (b) difference in Δtot from 1850, (c) component of difference due to natural vegetation (Δnat) and (d) due to crops (Δcrop).  
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4 Discussion 

By examining the components of global vegetation area, GPP and carbon stocks by vegetation type, we find that CMIP6 275 

models span a large range for nearly all variables. Some models showed stronger gains in GPP and carbon stocks in natural C3 

vegetation, while for others the strongest gains were in either crop or natural C4 vegetation. Therefore, better quantification of 

vegetation types and more consistency in models would improve future carbon modelling. For example, total vegetated areas 

in some models that are much lower than the ESA-CCI estimate (Harper et al., 2023) and total C4 vegetated areas in some 

models that are much lower than the Luo et al. (2024) estimate can probably be ruled out. However, the spread across models 280 

in many cases reflects the lack of observational constraints. 

Even though nearly all of the models use LUH2 for input data, their crop area and particularly its attribution to C3 and C4 

vegetation are not consistent. While most models underestimated total crop area compared to LUH2 (Fig. 4a), another data-

based cropland map (Potapov et al., 2022) estimates lower crop areas that overlap some of the CMIP6 models’ crop areas. 

Therefore, the spread in crop area in the models may be consistent with the uncertainty in actual crop area.  A limitation of 285 

some current models is that they do not include C4 crops, this carbon fluxes associated with C4 crops cannot be simulated in 

those models. In future, the total crop area is likely to increase (Molotoks et al., 2018; O’Neill et al., 2016) so that agriculture 

will become an even stronger influence on carbon fluxes.  

While increasing crop area leads to increased GPP in crops, this does not translate to an increase in total carbon stocks in 

vegetation because the expansion of croplands leads to reduction of forested land and CO2 emissions (Gasser et al., 2020; Lam 290 

et al., 2021; Luo et al., 2024). West et al (2010) estimated that the replacement of a unit of natural vegetated land by crop will 

lead to the loss of double the amount of CO2 uptake in croplands (-12 million kg km-2 vs. +6.3 million kg km-2). As such, in 

some models the accumulation of carbon in crop vegetation did not outweigh the loss in natural vegetation over 1850-2014 

and there was a net loss of carbon. In other models there was a net loss followed by a net gain in recent decades, due to strong 

gains in carbon in natural vegetation (Fig. 7). Observation-based estimates also disagree on the carbon stock changes in 295 

vegetation, with Bar-On et al. (2025) finding little to no change in vegetation carbon stocks over 1992-2019 while (Pan et al., 

2011; 2024) found significant gains. 

The range in global GPP was even larger than the range in vegetated area across the models, both for total (GPP: -23 to +37 

% vs area: -11 to +8 %, compared to the model mean) and for C3 (GPP: -24 to +32 vs area: -19 to +8 %) vegetation types. In 

C4 natural vegetation, there was also disagreement over the trend in GPP, with some models showing increases in GPP in grid 300 

cells dominated by C4 (>75 %, Fig. S6; a-d), and others showing decreases. These inconsistencies indicate that models’ 

parametrizations, simulated climate and other factors (Campbell et al., 2017; Hou et al., 2022; Lavergne et al., 2022; 

Zscheischler et al., 2014) are at least as important as vegetation area for GPP simulation. Therefore, achieving consistency in 

area for vegetation types is not sufficient and improved understanding and representation of C3 and C4 GPP in models is 

needed. 305 
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The range in total area fraction of C4 vegetation of 10-26 % in the CMIP6 models spans the observation-based estimates of 

17.1-17.7 % (Still et al. 2003; Luo et al. 2024) and has a similar range as the dynamic global vegetation models in the TRENDY 

project (7-23 %; Luo et al. 2024). Since the observation-based estimates are quite consistent, model simulations of carbon 

fluxes can likely be improved by detailed comparison and specification of C4 vegetation cover in particular PFTs in models to 

improve their correspondence to observational estimates.  310 

The trends in C3 vs C4 contributions to GPP simulated by CMIP6 models produced differing trends in isotopic discrimination 

(Fig. 7). They did not produce strong increasing trends as found by analysis of atmospheric δ13C data (Keeling et al. 2017; 

Peters et al. 2018). Since the effect of vegetation change on discrimination varied widely across the CMIP6 models, it is still 

uncertain how much vegetation changes could add to or oppose changes in discrimination caused by environmental or 

physiological effects. In particular, since the GPP trend in the models (11 to 18 %, Fig. S8) is weaker than the CO2 fertilization 315 

effect over the 20th century based on carbonyl sulphide data (+30 %; Campbell et al. 2017), there may have been a more 

positive C3 vegetation-driven trend in discrimination in reality than in the models. Since the CMIP6 models did not provide 

output for GPP and carbon stocks for C3 and C4 vegetation or for crops and natural vegetation, we had to scale total GPP and 

carbon stocks by the area fractions of each vegetation type for grid cells with mixed vegetation. This calculation may not 

represent the models’ actual attribution precisely, since C3 vegetation typically has higher carbon density and C4 vegetation 320 

can have higher GPP relative to area (Luo et al. 2024). Incorporating more detailed vegetation information from the models 

would improve the accuracy of the calculations. 

6 Discussion 

We analysed vegetation changes for C3 and C4 photosynthetic pathways in natural vegetation and crops in 11 CMIP6 models 

over the historical period of 1850 to 2014. Except for one model that used a fixed vegetation distribution, the models include 325 

the expansion of agriculture using LUH2 data. Still, there is a significant variation in the fraction of area and GPP allocated to 

crops in these models, and the UKESM1 model strongly underestimated crops in Asia and Africa, likely due to biases in 

simulated climate. The C4 fraction of vegetated area has remained relatively constant in the models, though there is a large 

range in simulated C4 area fraction of 9 to 13 million km2 in 2014 while observation based estimates are quite consistent at 

17.1 - 17.7 % (Luo et al. 2024; Still et al. 2003). Overall, we found that the total vegetation area in most models is not changing, 330 

but the global vegetation composition is changing in favour of crops. Expansion of crops has negative implications for the 

carbon sink capacity of the terrestrial biosphere. Whereas all the models agree that C3 vegetation and total global GPP is 

increasing, the magnitude of the increase spans a large range. In C4 vegetation, the models disagree magnitude of GPP but also 

the sign of its trend, especially in natural vegetation, implying that the model parametrizations for the simulation of C4 GPP 

need improvement. The strong positive trend in UKESM1 C4 crop and MPIs C4 natural vegetation area clearly drives the 335 

decline of their global discrimination trend, an effect which is not as pronounced in other models’ vegetation categories, 

however, due to the large uncertainty in vegetation area abundance and GPP, it will be difficult to accurately determine how 
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consistent this influence is on global isotopic discrimination trend. The mean of vegetation carbon contents in the model 

generally agrees with observation-based estimates. We have shown in this study that carbon flux simulation in current ESMs 

includes uncertainties in different components, reducing these uncertainties will require more observational constraints and 340 

more robust and realistic model representations.  

Appendices 

Appendix A contains the supplementary material.  
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The code (Jupyter notebooks) used for the analysis of the CMIP6 models data and for the data visualization can be found in 345 

the following Github repository: https://github.com/jovwemuvwose/CMIP6_Model_Analysis_Project_2025 and Zenodo at: 
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