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Abstract. Fast emulators of comprehensive climate models are often used to explore the impact of anthropogenic emissions

on future climate. A new approach to emulators is introduced that predicts means and covariances of monthly averaged climate

variables. The emulator is trained with output from a state-of-the-art climate model and serves as a good first-order represen-

tation for the evolution of spatially resolved climate variables and their variability. For illustrative purposes, the emulator is

applied to predict changes in the mean and variability of monthly values of both temperature and relative humidity as a function5

of global mean temperature changes. However, the approach can be applied to any other variable of interest.

1 Introduction

In the study of climate change, it is crucial to explore the response of the Earth system to a variety of possible future greenhouse

gas emission scenarios and quantify the uncertainties associated with future projections. Despite their limitations, state-of-the-

art Earth System Models (ESMs), such as those participating in the Climate Model Intercomparison Project (CMIP, Eyring10

et al., 2016), remain our most reliable tools for estimating the Earth system response to increased greenhouse gas concentra-

tions. These large-scale models aim to represent as many aspects of the climate system as faithfully as possible. However,

because of the high computational and material costs of running ESMs, these models can only simulate the Earth system re-

sponse to a few potential future scenarios (Tebaldi et al., 2021a). On the other hand, studies of climate mitigation and adaptation

strategies often seek to explore a wide range of possible solutions, creating a need for methods to compare localized impacts15

across a wide range of emissions scenarios (O’Neill et al., 2016b; Waidelich et al., 2024). Our work provides a framework for

the direct emulation of ESMs that captures spatially coherent changes in both the mean and variance of climate variables in

response to different emission scenarios.

Emulators of ESMs have been gaining popularity as a way to facilitate access to climate projections. Here, we consider

the class of emulators trained on the output of ESMs to cheaply and quickly predict the regional climate response to arbitrary20

climate change scenarios. We will not consider other types of emulators that are being actively pursued for other applications,

including climate model downscaling, parametrization of subgrid-scale processes, and model parameter calibration (e.g, Doury

et al., 2023; Li et al., 2019; Lai et al., 2025; Peatier et al., 2022; Tebaldi et al., 2025). From here on, the term emulator will

refer exclusively to the class of emulators trained to extend ESMs to arbitrary future scenarios. The importance of these

emulators is likely to rise due to the increasing computational demands of ESMs: their ever refining spatial resolution, their25
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growing complexity (as embodied by the number of model components and their sophistication), the use of more accurate

numerical methods (Griffies et al., 2020; Souza et al., 2023; Taylor et al., 2023; Silvestri et al., 2024a, b), and the push to run

larger ensembles of simulations differing in initial conditions (Schneider et al., 2024, 2023). Emulators are necessary to both

compress existing information into a more manageable form as well as to bridge the gap between the computational demand of

running a full ESM and the computational hardware available to everyday consumers of climate information. This need is best30

illustrated by the evidence that projections of future emissions are updated every year, while a new deck of ESM simulations

by CMIP takes close to a decade to generate and organize for community sharing.

The simplest and most common emulation technique is pattern scaling (Santer and Wigley, 1990; Huntingford and Cox,

2000; Mitchell, 2003). Pattern scaling estimates spatially resolved changes in climate variables by linearly regressing local

variables on global mean temperature or cumulative emissions. While pattern scaling has been shown to have remarkable35

skill in emulating projected changes in local mean temperatures (Santer et al., 1990; Lütjens et al., 2024), it has no inherent

probabilistic component and is less accurate for other climate variables (Tebaldi and Arblaster, 2014; Tebaldi and Knutti, 2018;

Kravitz and Snyder, 2023). Recent work has been dedicated to constructing machine learning-based climate emulators (e.g.

Watson-Parris et al., 2022; Kitsios et al., 2023; Yu et al., 2024; Christensen et al., 2024) to move beyond the linear assumption

inherent in pattern scaling. However, questions remain about their overall skill compared to linear pattern scaling for certain40

variables (Lütjens et al., 2024). Additionally, their lack of interpretability and the computational cost of model training may

limit their applications.

Significant work has also been dedicated to the extension of linear pattern scaling to account for internal variability in

the climate system and structural uncertainty in ESMs. A shift in a climate variable is only meaningful insofar as it lies

outside the bounds of internal variability. A common approach is to take a large ensemble of climate simulations, either from45

a single model or from a multi-model set, and apply pattern scaling separately to each simulation, deriving a measure of

uncertainty from the resulting ensemble spread (Tebaldi and Knutti, 2018; Zelazowski et al., 2018; Gao et al., 2023; Kravitz

and Snyder, 2023). Examining ensemble spread within a single model is among the most reliable ways of quantifying the

internal variability of the climate system, while inter-model spread includes structural uncertainty (Collins and Allen, 2002;

Tebaldi and Knutti, 2007; McKinnon and Deser, 2018; Tebaldi et al., 2021b; Lehner et al., 2020). Internal variability has50

been shown to dominate uncertainty in climate projections over a decade for regional temperature and much longer for other

variables like regional precipitation (Hawkins and Sutton, 2009, 2011). The concept of Time of Emergence (ToE) can be used

to quantify when a climate signal becomes statistically distinguishable from internal variability (Hawkins and Sutton, 2012;

Tebaldi and Friedlingstein, 2013). In its simplest form, ToE is defined as the first time a climate variable (e.g., ensemble mean

temperature) exceeds a threshold derived from internal variability (often the ensemble variance), which may itself evolve under55

climate change. The interest in ToE underpins the need for emulators to capture both mean trends and internal variability.

The importance of representing internal variability alongside the forced response has spurred innovation in climate model

emulation techniques. Unlike traditional pattern-scaling that yields a single deterministic outcome for a given forcing sce-

nario, new statistical emulators explicitly include stochastic components to mimic the climate system’s inherent variability

(Alexeeff et al., 2018; Beusch et al., 2020; Link et al., 2019; Nath et al., 2022). For example, researchers have augmented60
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pattern-scaling frameworks with residual resampling or autoregressive processes, ensuring that emulator outputs exhibit the

same spatio-temporal covariance structure and ensemble spread as the original ESM runs (Link et al., 2019; Nath et al., 2022).

Such probabilistic emulators can generate many realizations of future climate—at annual or even monthly resolution—each re-

alization capturing different plausible sequences of internal fluctuations superimposed on the long-term trend (Link et al., 2019;

Nath et al., 2022). This approach has been demonstrated in recent studies, from emulating seasonal temperature variability in65

single-model large ensembles (Alexeeff et al., 2018; Goodwin et al., 2020) to producing large multi-model "superensembles"

of regional climate trajectories (Beusch et al., 2020; Alexeeff et al., 2018; Link et al., 2019). The MESMER emulators (Beusch

et al., 2020; Nath et al., 2022) have applied approximate methods (Gaussian copulas) to compute the covariances among differ-

ent climate variables and locations. Covariances between different variables are essential for quantifying the impact of internal

variability on climate projections and to assess compound risks (e.g. high temperature and relative humidity is more problem-70

atic than high temperature and low relative humidity). Covariances between locations are required to estimate variability on a

region beyond the size of an original model grid cell (e.g. the variability over Sub-Saharan Africa is much larger if all regions

experience the same temperature fluctuations than if they are all independent).

Our emulator design for averaged climate fields distills the (often complex) approaches described above. We aim to marry a

robust representation of forced changes with a statistical model of internal variability that accounts for spatial correlations. We75

introduce a generative data-driven emulation method for spatially resolved climate fields and apply it to monthly temperature

and relative humidity. The main innovation of our method is the balance of simplicity alongside robustness in modeling the

lower order statistics of the system. This includes modeling coherent changes in spatial correlations and variances of climate

variables. Importantly, our method is fast, flexible, and interpretable.

A sufficiently large ensemble of initial conditions is necessary to infer non-stationary statistical information. For this reason,80

we choose to emulate the evolution of climate variables generated by a CMIP-class model, specifically MPI-ESM1.2 LR

(v1.2.01p7) (Mauritsen et al., 2019; Olonscheck et al., 2023), that ran a large ensemble (50 members) of simulations for a

number of emissions scenarios (see Section 2 for details). We emphasize that throughout this work, when referring to an

ensemble or ensemble mean, we are considering only a single-model ensemble (e.g. an initial-condition ensemble). We do not

intend for these methods to be applied to multi-model ensembles.85

Our approach assumes that the internal variability of the climate system is well-approximated by a finite number of spatial

modes. We define these modes using Empirical Orthogonal Function (EOF) decomposition (Lorenz, 1956; Kutzbach, 1967;

Barnston and Livezey, 1987a); see Hannachi et al. (2007) for a comprehensive review of the technique’s history. EOF modes

have been shown to effectively capture the dominant patterns of variability of the Earth system (Barnston and Livezey, 1987b;

Hannachi et al., 2007). The modes are ranked according to the fraction of overall variability they capture. The leading EOF90

modes represent patterns that span large geographical regions. While EOF modes can, with some limitations (Monahan et al.,

2009), be interpreted physically, here they are only used as a data reduction technique. Using a subset of leading EOF modes (or

basis functions) as a fixed-in-time orthogonal basis for the projection of ESM data, we model the statistics of EOF amplitude

coefficients as a function of global mean temperature (similar to pattern scaling). We further model the covariance of all the
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EOF coefficients as a function of global mean temperature, thus also addressing correlations among the spatial modes, and95

therefore modeling a coherent spatial structure of the variables of interest.

We illustrate our approach for two variables: surface temperature and surface relative humidity. Still, the approach is agnostic

to the variables being emulated. It can easily be applied to any monthly variables from any single ESM ensemble, so long as

their EOF amplitude statistics are mostly described by their means and covariances. Furthermore, we show how to convert

the means and covariances of EOF amplitudes to point-wise means and variances at a fixed location on Earth as well as those100

averaged over larger regions. Our probabilistic emulator is computationally efficient and, once trained, can be run many times

at little additional cost on modest hardware such as single-core CPUs. This computational expedience allows us to generate a

synthetic large ensemble for the exploration of internal variability of the climate system (as represented by the ESM), similar

to Castruccio et al. (2019).

We apply our emulator to monthly data. Monthly climate projections are important for understanding detailed impacts of105

climate change, such as changes in the seasonal cycle and other phenomena of agricultural relevance (Guo et al., 2002; Odjugo,

2010; Osborn et al., 2016a; Kemsley et al., 2024). Most emulators to date have been developed to reproduce annual (e.g.

Goodwin et al., 2020; Beusch et al., 2020) and seasonal (e.g. Holden et al., 2014; Alexeeff et al., 2018) averages of climate

variables, while few have looked at reproducing monthly data (Osborn et al., 2016b; Castruccio et al., 2019; Nath et al.,

2022). Impact models sometimes require even higher temporal and spatial fidelity, in which case the emulator presented herein110

provides a framework that can be applied towards those cases as well.

We condition our emulator on the global, ensemble, and yearly mean temperature, which we refer to as "global mean tem-

perature" for short. This procedure is in line with the precedent among other emulators of spatially-resolved climate variables,

which are commonly conditioned on global mean temperature (e.g., Osborn et al., 2016b; Alexeeff et al., 2018; Goodwin et al.,

2020). Global mean temperature is generally understood to be approximately linear in cumulative emissions (Matthews et al.,115

2009; Masson-Delmotte et al., 2021), given a smoothly-changing system and ignoring, e.g., the time-lagged response to radia-

tive forcing, or the impact of short-lived aerosols and nonlinear feedbacks like those from melting ice. This simple relationship

underpins the utility of a global mean temperature-based emulator. However, one could easily go further by relying on Sim-

ple Climate Models (SCMs, e.g. Meinshausen et al. (2011); Lembo et al. (2020); Leach et al. (2021); Bouabid et al. (2024);

Dorheim et al. (2024)) to translate arbitrary emission pathways into novel trajectories of global mean temperature (beyond the120

ones represented by the ESM runs used for training). Our emulator would then use these trajectories to generate realizations

of spatially resolved monthly temperatures and relative humidity under those emission scenarios. We comment that often the

global mean temperature anomaly from a preindustrial period is used rather than the actual global mean temperature, but here

we will use the absolute global mean temperature.

Our paper is organized as follows: in Section 2, we introduce the dataset used in this work. Section 3 discusses the EOF-based125

coarse-graining procedure applied to the data. In Section 4 we discuss the details of the emulator design and the regression

problem. In Section 5, we show the emulator’s ability to replicate the data’s statistics under climate change. Finally, in Section

6, we discuss the broader implications of this work and propose future directions for constructing complementary emulator

models.
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Figure 1. Yearly global mean temperature in the MPI-ESM1.2-LR model ensemble. Each dashed line represents one of 50 initial-condition

ensemble members, and the solid line shows the ensemble mean. Different colors correspond to the historical 1850–2014 period and the

three future scenarios considered in this study: SSP5-8.5, SSP2-4.5, and SSP1-1.9. The future period spans 2015–2100. The historical period

lasts 165 years, and the future period—86 years.

2 Data130

To train our emulator, we use the output from the MPI-ESM1.2-LR (v1.2.01p7) ESM model (Mauritsen et al., 2019; Olon-

scheck et al., 2023), which contributed to CMIP6. We chose this model because of the large number of simulations (ensemble

members) it ran for each emission scenario: 50 simulations are run for each scenario, differing only in their initial conditions. A

large ensemble is necessary to separate a model’s internal variability from the anthropogenic signal (Collins and Allen, 2002;

Tebaldi et al., 2021b; Lütjens et al., 2024). In the CMIP6 model set, only three ESMs submitted ensembles of 30 or more135

members: MPI-ESM1.2-LR, EC-Earth3, and CanESM5. Among these, the MPI model is the only one with an equilibrium

climate sensitivity to greenhouse gas emissions within the "likely" range determined by multiple lines of evidence (Hausfather

et al., 2022) and with the entire ensemble available for open download. Analysis performed in Lütjens et al. (2024) on the

same MPI dataset suggests that an emulation method that uses polynomial fitting, such as ours, captures the evolution of the

ensemble mean climate variables even if trained on few ensemble members (in terms of emulation error). However, an ESM140

with many ensemble members is necessary to train the emulation of internal variability (Tebaldi et al., 2021b).

Each MPI-ESM1.2-LR ensemble member is run for the historical period, spanning 165 years between 1850–2014, and for

various future warming scenarios spanning the 86-year future period 2015-2100. We consider output from simulations of three

future scenarios from the ScenarioMIP experiments: SSP5-8.5, SSP2-4.5, and SSP1-1.9. The ScenarioMIP experiments are

plausible futures corresponding to different climate mitigation and cooperation narratives (O’Neill et al., 2016a; Tebaldi et al.,145

2021a). Figure 1 reports the global mean temperature profiles of the historical period and the three future scenarios considered

in this work for each of the 50 MPI-ESM1.2-LR ensemble members.
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Figure 2. Surface temperature histograms of the non-monotonic SSP1-1.9 scenario corresponding to similar global mean temperatures

(T g = 289.3 K) but for two different time intervals: 2018− 2022 (blue bars) and 2093− 2097 (red bars). Histograms are constructed for

selected locations (top row) and hemisphere averages (bottom row) and for January (left) and July (right). The histograms mostly overlap,

lending support to the choice of parameterizing the distributional change (and hence lower-order statistical changes) for a fixed month with

only T g .

Our goal is to develop an emulator that predicts changes in the mean and covariance of climate fields as a function of

emissions. The first step in the process is to represent the statistics as a function of (or, more appropriately, conditioned on)

global, ensemble, and yearly mean temperature and hence cumulative emissions (see Masson-Delmotte et al. (2021)). As150

mentioned above, the ensemble mean is calculated over a single model with multiple realizations. Following standard practice,

we will refer to the global, ensemble, and yearly mean surface temperature as "global mean temperature" throughout the text,

denoted T̄g .

We select the historical experiment and the SSP5-8.5 high-warming scenario for training the emulator because together they

span the widest range of global mean temperatures. This leaves SSP2-4.5 and SSP1-1.9 as the validation sets for regression,155

see Section 5. SSP2-4.5 features milder monotonic warming that levels off at the end of the century (through the elimina-

tion of emissions), while SSP1-1.9 features a peak in global mean temperature around mid-century followed by a decrease

to end-of-historical-period temperatures by 2100 (as a consequence of negative emissions), see Figure 1. Because we are de-

veloping an emulator conditioned only on global mean temperature from a scenario with monotonically increasing emissions

(without accounting for emissions history or other memory effects), it is important to test its performance in scenarios with160

non-monotonic emissions. Such scenarios are of ever-increasing interest to mitigation and adaptation studies and policy. We

emphasize that our approach is purely data-driven and should not be used to extrapolate statistics in climates outside of its

global mean temperature training range.
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To presume that time-dependent climate statistics for different emissions scenarios can be parameterized by a state-dependent

(i.e., time-independent or history-independent) scalar quantity is a strong assumption but one that is justified a posteriori for165

the cases considered in this work, see Figure 2 and, later on, Figures 7 and 8. Figure 2 shows histograms of surface temperature

data in the MPI model for selected locations (top row) and hemisphere averages (bottom row) in January (left) and July (right).

Two 5-year windows in the SSP1-1.9 future scenario are compared: 2018−2022 (in blue) and 2093−2097 (in red). The SSP-

1.1.9 scenario is non-monotonic, and these two periods correspond to similar global mean temperatures of around T g = 289.3

K, separated by an intermediate 70-year period of higher temperatures. We observe that, for the most part, the histograms for170

the two periods overlap. We thus conclude that a state-dependent parametrization of climate statistics is not unreasonable for

our purposes.

Before delving into the specific details of the emulator formulation, it is crucial to first understand the underlying rationale

guiding our approach. Our key assumption is that the statistics of climate system fields, in our case the EOF modal amplitudes

a (see Section 3), can be represented by a probability density for every possible state, with time and emissions history replaced175

by the global mean temperature T g and seasonal information such as the month m:

ρ(a, t|emissions)→ ρ(a|T g,m). (1)

This assumes that conditioning on global mean temperature serves as an informative parametric form to characterize the

changing distribution of the climate-relevant quantities. In the application described in the following sections, we do not

consider the full probability distribution and instead assume that only the first two moments—means and covariances—can be180

represented as functions of global mean temperature.

We illustrate our approach for monthly mean surface (2m) temperature and monthly mean surface (2m) relative humidity.

These are the ‘tas’ and ‘hurs’ variables, respectively, in the CMIP6 nomenclature. The MPI-ESM1.2-LR model has a horizontal

resolution in the atmosphere of 1.8°. We use the model output on its original 192× 96 lat-lon grid. We calculate the global

mean temperature (used to condition the emulator) by globally averaging the 2m temperature variable.185

3 Coarse-Graining

We coarse-grain the representation of the temperature and relative humidity fields, using Empirical Orthogonal Functions

(EOFs) as a dimensionality reduction technique. EOF decomposition has been used in previous emulator work for both di-

mensionality reduction (Holden and Edwards, 2010; Holden et al., 2015; Yuan et al., 2021) and more generally as a method

of generating an uncorrelated projection basis (Link et al., 2019). More recently, Falasca et al. (2024a) and Falasca et al.190

(2024b) have demonstrated how modal amplitudes of EOFs (under the additional assumption that they can be approximated

as multivariate Gaussian distributions) can be used to interpret patterns of variability and teleconnections through data-driven

approaches.

We compute the EOF basis ϕ through a singular value decomposition of our data in the historical period of one of the

ensemble members. The resulting basis constitutes 165×12 = 1980 EOFs ordered by the magnitude of the singular values. We195
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discard the last 980 basis functions, leading to a total of 1000 basis functions ϕi(x), i ∈ [1,1000]. The notation (x), which we

use throughout this work, indicates that EOF basis functions are spatially resolved, i.e. functions of the location x. We use the

same basis set for all months and compute EOFs separately for each variable of interest. We project data from every scenario

and every ensemble member onto our constant basis.

The choice to work with the leading EOFs is not only one of convenience to reduce the data size. It is also motivated by200

evidence that the projections of climate models are more reliable at larger scales (Gleckler et al., 2008). Finer-scale details

captured by high order EOFs–such as full temperature distributions at a point–are better modeled using different approaches,

such as downscaling from coarse-grained information. In probabilistic jargon, we divide the set of modal amplitudes a into

modes corresponding to large scale coarse structures aC and "fine scale modes" aF . The probability distribution for climate

variables (for a fixed global mean temperature T g and month m) can then be decomposed as the product of two conditional205

distributions:

ρ(aC ,aF |T g,m) = ρ(aF |aC ,T g,m)ρ(aC |T g,m). (2)

Our work focuses on approximating the means µ and covariances C of ρ(aC |T g,m), the distribution of aC as a function of the

global mean temperature Tg and month m. Armed with the means and covariances of the modes aC , one can then reconstruct

means and variances of the original fields both locally or averaged over some area, as we will see in Section 4.2. In addition,210

if the statistics of the variables of interest are Gaussian, means and covariances are sufficient to reconstruct whole probability

density functions (see Appendix A).

Approximating fine-scale structures conditioned on coarse-grained variables, i.e., approximating ρ(aF |aC ,T g,m), is left to

future work. In downscaling excersises, it is typically assumed that

ρ(aF |aC ,T g,m)≈ ρ(aF |aC), (3)215

i.e., information about the coarse scales may be sufficiently informative to parameterize the distribution of the fine scales.

4 Regression

After projecting the ESM data into the EOF space, we model the EOF coefficients as a function of global mean temperature (see

also Holden and Edwards, 2010; Bruckner et al., 2003) and proceed to emulate their means and covariances. The method can

be applied to any variables regardless of their distributions insofar as one is only interested in the means and covariances220

of any linear functional of the variable field, see Section 4.2. Despite not requiring a Gaussian approximation, we will often

overlay histograms of variables from the MPI model with Gaussian histograms with the means and covariances generated by

our emulator. This is an arbitrary, yet somewhat constrained choice because a Gaussian distribution is among the most natural

ways to visualize a distribution parameterized solely by its mean and variance. It so happens, however, that the EOF amplitudes

of monthly average temperature and relative humidity have approximately Gaussian distributions. This is to be expected from225

the multivariate version of the central limit theorem which states that any variable that is the average of many independent
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realizations of the same process has a Gaussian distribution. In our case we average in time, over a month, and in space by the

coarse-graining implied by the EOF decomposition.

We are now ready to describe our emulation approach in detail. Section 4.1 describes the procedure for fitting to data, and

Section 4.2 describes how to utilize the emulator and its relation to pattern scaling.230

4.1 Emulator Details

Following the EOF-based dimensionality reduction of the ESM training data, we develop and train a stochastic emulator of

spatially resolved monthly temperature and relative humidity fields. As stated previously, obtaining the set of estimated EOF

coefficients â requires estimating a mean µ̂ and covariance Ĉ as a function of global mean temperature T̄g and month index

m, i.e.,235

µ̂(T̄g,m) and Ĉ(T̄g,m). (4)

Since each month is modeled separately, we will drop the notation m with the implicit understanding that any regression is for

a fixed month. Throughout this work, we use the notation ·̂ to denote an emulator-derived estimate of a quantity, in contrast to

the ESM-derived "ground truth". The large ensemble of MPI model simulations offers a robust way to estimate the means and

covariances since we view, for a fixed month and year, every individual ensemble member as a realization of a high-dimensional240

distribution parameterized solely by the month and global mean temperature.

The dependence of the means µ̂ on T̄g is modeled as a quadratic function

µ̂ = µ̂0 + µ̂1T̄g + µ̂2T̄
2
g . (5)

This approximation yields a better overall fit than a linear function, see Figure 3 and Appendix B. Higher-order polynomial fits

or neural networks could be used to improve on the results presented here but may also overfit the data.245

Modeling the covariance of the EOF coefficients as a function of global mean temperature requires more care. When fitting

the mean of each EOF mode, one can use standard methods for curve fitting, such as least squares. Parameterizing a covariance

matrix as a function of global mean temperature is more subtle since all the matrix entries must conspire together to yield a

symmetric positive definite matrix. Thus we choose to represent the dependence of the covariance matrices Ĉ on T̄g as

Ĉ = L̂L̂
T

and L̂ = L̂0 + L̂1T̄g. (6)250

This functional form guarantees that Ĉ is symmetric positive definite because it is the product of a matrix L̂ and its transpose.

In Equation 6 each entry of L̂ is modeled as a linear function of T̄g , leading to a quadratic model for the covariance:

Ĉ(T g) = L̂0L̂
T

0 +
(
L̂0L̂

T

1 + L̂1L̂
T

0

)
T̄g + L̂1L̂

T

1

(
T̄g

)2
. (7)

As with the means, it is possible to go beyond a linear representation for L̂, though one would run the risk of overfitting. This

parametric form yields a representation of how the internal variability changes as a function of global mean temperature, and255

hence time and emissions scenario (under appropriate assumptions).
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Figure 3. Regression of mean (top row) and covariance (bottom row) of the surface temperature EOF amplitudes as a function of global,

ensemble, and yearly mean temperature in January. Estimates from the MPI model ensemble simulations are shown as purple points, while

the blue lines are the emulator fits. The quadratic fits capture both the linear trends and the slight curvature.

To find L̂0 and L̂1 we minimize the loss function

Loss(L̂0,L̂1) =
∑

T̄g

∥Ĉ(T̄g)−C(T̄g)∥2, (8)

where Ĉ is given by Eq.7 and ∥ · ∥ is an appropriately chosen norm. In our case, we used a Frobenius norm (minimizing

the square distance between each matrix entry), but other choices would likely yield good answers as well. This minimiza-260

tion was performed in JAX (Bradbury et al., 2018), on an H100 Nvidia GPU using automatic differentiation and Kingma

and Ba (2014)’s "ADAM" for optimization. The minimization was initialized with a constant covariance matrix, i.e., C =
1

251

∑2100
year=1850 C(year). This choice was implemented by taking L̂1 = 0 and obtaining L̂0 from the Cholesky factorization

of C. To perform the regression for the covariance matrix, we used the fact that the covariance can be computed separately for

each year (over the set of all ensemble realizations) and each year has an associated global mean temperature.265

We illustrate the result of the regression procedure for surface temperature in Figure 3. The top row represents the regression

for the ensemble mean EOF coefficients, and the bottom row shows the regression problem for the covariance matrix between

EOF modes, both for January. We first describe the top row. The purple dots are the projected modal amplitudes for a few sample

EOFs plotted at each year for all ensemble members of the MPI data for the historical and SSP5-8.5 scenario. The bottom

row is obtained by calculating the covariance between sample modal amplitudes for each year separately using all ensemble270

members. These data are then regressed against each year’s global, ensemble, and temporal mean of surface temperature (T̄g).

From Figure 3, we see that the trends are well captured by performing the regression (in blue). As mentioned before, we use a

quadratic model for the mean of the EOF coefficients and a quadratic fit for the entries of the covariance matrix. The covariance

data are much noisier but still display overall trends captured through the regression.
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4.2 Reconstructing Statistics of Interest from EOF Amplitudes275

We can reconstruct spatially resolved statistics of the variables of interest for a fixed month m and global mean temperature

T g by making use of the EOF basis ϕ(x). In this basis, any variable of interest, such as surface temperature T , is given by

T̂ (x) =
N∑

i=1

âiϕi(x) (9)

where N is the total number of EOF modes used (in our case N = 1000). Our emulator generates the means and covariances

of the EOF amplitudes âi. The ensemble mean of T̂ at a fixed location x is therefore given by280

⟨T̂ (x)⟩=
N∑

i=1

µ̂iϕi(x) (10)

and its variance at the same point is given by

⟨T̂ (x)2⟩− ⟨T̂ (x)⟩2 =
∑

ij

Ĉijϕi(x)ϕj(x). (11)

In fact, for any linear functional L acting on the temperature field T̂ , e.g., a regional average / zonal average / average of a

patch of land such as North America or Africa, the ensemble mean and variance is given by285

⟨L[T̂ ]⟩=
N∑

i=1

µ̂iL[ϕi] and ⟨L[T̂ ]2⟩− ⟨L[T̂ ]⟩2 =
∑

ij

ĈijL[ϕi]L[ϕj ]. (12)

Thus, the mean and variance of any linear functional of temperature (or whatever field is being emulated) can be computed

from the mean and covariance of all the EOF coefficients and the action of the linear functional on the basis functions. It is

worth repeating that the EOF covariances are essential to estimate the variance of arbitrary functionals. Fitting the variance of

each EOF as a function of global mean temperature is not sufficient. Equation 12 illustrates that the entire covariance structure290

of the EOF amplitudes is key for computing regional statistics beyond the mean.

Extending the calculation to higher-order statistics or nonlinear functionals requires additional assumptions. For example,

assuming that the EOF coefficients can be modeled as a multivariate Gaussian would supply the necessary information to

extend means and covariances to higher-order statistics; see discussion in Appendix 4.1. We leave such an extension for future

work.295

4.3 Relationship to Pattern Scaling

It is instructive to compare our approach to linear pattern scaling. Linear pattern scaling predicts the temperature at every

location as a linear function of the global, yearly, and ensemble mean temperature (Santer and Wigley, 1990). In equations,

this means the spatial temperature field is a linear function

⟨T̂ (x)⟩= T0(x) +T gT1(x) (13)300
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for appropriately chosen T0 and T1. These spatial patterns are often obtained explicitly by performing pointwise linear regres-

sion; T1(x) is the fixed spatial anomaly "pattern" of the namesake.

We now show how to connect the ensemble mean of our emulator to pattern scaling. Summing over all EOF modes ϕi, our

emulator for fixed temperature at a location x yields,

⟨T̂ (x)⟩=
N∑

i=1

µ̂iϕi(x) =
N∑

i=1

[µ0,i + T gµ1,i +
(
T g

)2
µ2,i]ϕi(x) (14)305

=
N∑

i=1

µ0,iϕi(x) +T g

N∑

i=1

µ1,iϕi(x) +
(
T g

)2
µ2,i

N∑

i=1

µ2,iϕi(x) (15)

≡ T0(x) +T gT1(x) +
(
T g

)2
T2(x), (16)

where

T0(x) =
N∑

i=1

µ0,iϕi(x), T1(x) =
N∑

i=1

µ1,iϕi(x) and T2(x) =
N∑

i=1

µ2,iϕi(x). (17)

Thus our emulator would reduce to linear pattern scaling for the ensemble mean temperature at a point if we were to sum over310

all EOF modes and choose a linear fit, rather than a quadratic one, for the mean of their amplitudes (i.e. force T2 to be zero);

we illustrate this in Appendix C.

Our approach, however, expands over pattern scaling in three important ways. First, our focus is on performing regression

on modal amplitudes of the largest and most robust spatial patterns of the climate model output, which are given by suitably

coarse-grained basis functions rather than pointwise measurements. We use a sufficiently large basis such that we can still315

represent pointwise values but ignore small-scale spatial patterns, whose representations in ESMs are typically quite uncertain.

Second, our emulator produces more than the ensemble mean since it also accounts for covariances across EOF modes.

This is no trivial point since the value of a physical variable is meaningless without an estimate of its uncertainty, or internal

variability. For example, as mentioned in the Introduction, estimates of the time when the forced climate response of a climate

variable emerges from internal variability (the ToE) require emulators of both means and variances. It may be argued that the320

linear pattern scaling approach can also be used to predict the temperature variance at each location as a linear function of

the global, yearly, and ensemble mean temperature. However, a new linear fit must be computed if one wishes to estimate

the variance over a wider region (for example) because it requires knowing correlations between different points. With our

emulator, we can reconstruct a much larger range of statistics of the field in question from the mean and covariance estimates

of the modal amplitudes without any additional fitting.325

Third, our emulator can "generate" higher order statistics under the assumption that they are functions of lower-order statis-

tics such as means and covariances. For example, all statistics of multivariate Gaussian probability distributions are described

by knowing its mean and covariance.
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5 Validation

Now that we have described the design of our emulator, it is time to validate its performance. The emulator is trained on the330

historical period and the SSP5-8.5 future scenario of the MPI ESM-1.2-LR model. The testing is performed by (a) applying it

to other scenarios run by the MPI model that were not used in training and (b) using it to compute various statistics of interest.

We use the SSP2-4.5 and SSP1-1.9 as our "test" scenarios.

5.1 Spatial Error

We begin by exploring the patterns of error in the emulator and comparing them across training and test scenarios. To under-335

stand the spatial distribution of error, we show in Figure 4 the averaged absolute difference between our emulator-predicted

mean temperature and the ensemble mean of the data over the historical period, SSP5-8.5, SSP2-4.5, and SSP1-1.9. In formulas,

this is

Error(x) =
1

duration

scenario end∫

scenario start

∣∣∣∣∣
1
12

∑

m

(
⟨T (x,m,t,ω)⟩− µ̂(x,m,T g(t))

)
∣∣∣∣∣dt (18)

where ⟨·⟩ denotes an average over ensemble members ω. We have explicitly written down the dependence of the ESM tem-340

perature T on the month m, spatial location x, and year t and the emulator estimate T̂ on the same variables, but with time t

replaced with the appropriate global mean temperature T g evaluated at the specified year. The integral is taken over a specified

future scenario across all the years encompassed by that scenario.

The emulator is quite accurate across the majority of the globe, especially when assessed relative to the internal variability

of the system. For all scenarios, the largest errors are found in the high latitudes. There are also additional errors over Africa,345

India, and the southeast tip of Australia. Relative to the spatially-varying temperature variability, however, only some of these

errors are significant. Figure 5 illustrates the averaged pointwise standard deviation of surface temperature for each scenario

shown in Figure 4. The standard deviation is calculated across ensemble members, then averaged over time for each scenario.

The variability of temperature is by far the largest in the polar regions; in these regions it is much larger than the errors of the

emulator. Likewise, the errors over India and particularly the Himalayas coincide with regions of high temperature variance.350

Thus, when assessed relative to the internal variability of the ESM, the only significant emulation errors are those in equatorial

Africa, in south-eastern Australia, and in the North Atlantic (for low-emissions scenarios).

We expect the errors in spatial patterns to change upon using non-polynomial regression for the mean or a different set of

basis functions. However, we argue against such an approach because we suspect that these errors reflect regional changes

that depend on variables beyond global mean temperature such as changes in dynamics due to the disappearance of sea ice in355

the northern hemisphere and changes in the hydrological cycle in the low latitudes. A more promising strategy would be to

formulate an emulator that takes large-scale variables beyond the global mean temperature as input, but this is left for future

work. For present purposes, we are encouraged by the fact that the spatial errors are largely consistent across all future scenario

cases. This indicates that our emulator is effectively generalizing to scenarios for which it wasn’t specifically trained.
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Figure 4. Absolute difference between pointwise emulated temperature and the ensemble mean from the MPI model averaged over all time

for four different scenarios: the historical period (top left), SSP5-8.5 (top right), SSP1-1.9 (bottom left), and SSP2-4.5 (bottom right). The

maximum temperature difference in the period 2015 to 2100 is 1.4 K for SSP5-8.5, 0.3 K for SSP1-1.9 and 1.4 K for SSP2-4.5. The emulator

was trained on the historical period and SSP5-8.5; SSP2-4.5 and SSP1-1.9 are "test" scenarios.

In Appendix B we additionally explore the temporal error of the emulator and reconfirm that the emulator skill is improved360

significantly by our choice of using a quadratic, rather than linear, regression of EOF mean amplitudes on global mean temper-

ature. In Appendix C we report on the temporal error of the emulator’s representation of temperature standard deviation. While

these tests are commonly used in the assessment of emulators, they are limited in scope. In the next section we illustrate a ma-

jor advantage of our emulator: its ability to quantify the significance of shifts in the mean and variability of climate variables

averaged over different spatial regions.365
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Figure 5. Pointwise standard deviation of surface temperature in the MPI model averaged over all months and over each scenario, laid out as

in Figure 4. The standard deviation is calculated across ensemble members for each time step. Note the high variability in the polar regions.

5.2 Spatial Statistics

As stated in Section 4.2, it is possible to reconstruct spatial statistics of any observable of our system as long as it is a linear

function of the variables we emulate. The statistics of the zonal average at a fixed latitude for temperature in January from

the MPI model (purple) are reconstructed in Figure 6 for a range of similar global mean temperatures taken over the historical

period to have higher fidelity statistics. The corresponding predictions from the emulator are in blue. The emulator reconstructs370

very accurately the mean and variance for all latitudes (top row). In the bottom row, we compare the whole distributions of

zonally averaged temperature at a few sample latitudes. Here, the emulated distributions are derived using the mean and covari-

ances by assuming a multivariate Gaussian distribution for the EOF coefficients (see Appendix A for an extended discussion

on Gaussianity). It is remarkable that such close agreement is achieved, given that the regression focuses on the mean and

covariance of the EOF amplitudes rather than directly on the zonal averages. We emphasize, once again, that the emulator must375

predict the full covariance matrix for all EOF amplitudes–the main innovation of our work–to accurately capture the zonally

averaged statistics of surface temperature at each latitude, as demonstrated in Equation 17.

Until now, we have focused on surface temperature statistics, but applying the methodology to other variables is straightfor-

ward. As an example, we apply the method to surface relative humidity. We show the emulator prediction and the MPI data
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Figure 6. Spatially coarse emulator statistics. The purple color indicates data coming from the MPI model over the historical training period

with similar global mean temperatures, and in blue, the emulator prediction for the same period. The top panel shows the ensemble mean

and variance of the zonally averaged surface temperature field at each latitude, where the shading corresponds to three standard deviations.

In the bottom panel, we show histograms at several fixed latitudes and compare the empirical distribution of the MPI data to the emulator

prediction with an additional Gaussian assumption (for plotting purposes).

in Figure 7 for two of the twelve months. We show the probability distributions of surface temperature (top row) and relative380

humidity (bottom row) averaged over land and ocean separately, where, to visualize the emulator estimates, we have assumed

a multivariate Gaussian form for the distributions. We re-emphasize that the assumption of Gaussianity is only necessary for

generating full distributions, but the emulation of mean and covariances remains valid even for variables with non-Gaussian

statistics. For example, our emulator can be used to emulate the mean and covariance of pointwise precipitation, but a Gaussian

approximation would fail to reproduce its full distribution, which is known to depart strongly from Gaussian. We compare the385

temperature and relative humidity distributions for the years 1850 and 2050, where the latter is taken from the SSP2-4.5 sce-

nario. While this scenario was not used in training, the emulator prediction for 2050 closely matches the MPI data. This further

supports the generalizability of the emulator to arbitrary future scenarios. See Figure D2 in Appendix D for the same statistics

as Figure 7 but for the SSP5-8.5 training scenario. Inspection of probability distributions can be used to determine whether

the shifts in the mean values of temperature and relative humidity over this century are significant or not. For temperature, we390

see that the distribution shifts towards a warmer climate are outside the internal variability. For relative humidity, the shifts

in its mean value are in accordance with the expectation that relative humidity will decrease over land in a warmer climate
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Figure 7. Distribution of temperature (top row) and relative humidity (bottom row) for the months of January (left) and July (right) under

historical and SSP2-4.5 scenarios averaged over land and ocean. The emulator (solid line) captures the shift under climate change in mean

and variance of the data distributions (histograms). For plotting purposes, we use our emulator’s mean and variance prediction as input to a

Gaussian distribution.

and increase over the ocean (Byrne and O’Gorman, 2016). However, the distributions shows that these shifts in mean relative

humidity are outside the internal variability in July, but not in January.

Having shown that our emulator both captures spatial statistics and generalizes to previously unseen future scenarios, we395

proceed to illustrate how it might be used in practice. Figure 8 repeats the analysis of Figure 7 but for pointwise statistics at

two locations. We can use the emulator to observe the localized effects of climate change under SSP2-4.5. We see apparent

shifts in the pointwise temperature distributions (top row), but less so for relative humidity (bottom row), where in all cases,

the shifts in mean are well within the variance of internal variability. The relative heights of the distributions within a given

panel offer a quick way to assess whether the variance has shifted. For example, there seems to be an increase in variance in400

the top left panel, and a decrease in variance in the top right panel. For both temperature and relative humidity, we see that

shifts of means and variances are well captured. We re-emphasize that our emulator produces means and covariances which, for

convenience, we plot as Gaussian distributions. Even in cases where the underlying distribution is non-Gaussian, the emulator

captures the evident trends in mean and variance. Overall, the pointwise variance is well-represented by our model; see Figure

C2 in Appendix C for a quantitative metric. Appendix E further illustrates how the emulator can be used to study an arbitrary405

warming scenario outside of the SSP framework.
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Figure 8. Similar to Figure 7, but for pointwise statistics at different locations on Earth rather than averaged over ocean and land. The

emulator represents the overall trends in mean and variances even when the distributions are non-Gaussian.

6 Conclusions

We introduced an emulator for the evolution of the means and covariances of climate variables and applied it to spatially

resolved monthly averaged temperature and relative humidity. This emulator provides a simple and computationally efficient

method for extending the MPI-ESM1.2-LR global climate model to arbitrary warming scenarios while retaining the ability410

to quantify the significance of trends by modeling covariances. Computational efficiency is achieved by compressing the data

onto the leading 1000 EOF modes of variability, reducing its memory footprint by two orders of magnitude compared to the

training dataset. This dimensionality reduction is not a significant limitation, as Earth System Models have substantially greater

fidelity at large scales than at fine spatial resolution.

The emulator is designed to capture changes in the mean and covariance structure of climate fields as a function of global415

mean temperature. We assume that EOF covariances vary smoothly with temperature. However, this assumption may break

down in regions or timescales where localized processes—such as abrupt sea ice loss or monsoon regime shifts—introduce

discontinuities in the covariance structure. Capturing such transitions may require future extensions that incorporate non-

smooth, regime-dependent components.

Several straightforward extensions of the proposed emulator are possible. These include applying the method to additional420

climate fields, adopting alternative basis functions, using higher-order regression schemes, or incorporating additional pre-

dictors beyond global mean temperature. The framework can also be generalized to capture correlations between different

variables (e.g., temperature and relative humidity) by modeling joint EOF amplitudes or post hoc correlations. Temporal co-

herence could similarly be introduced, for example, by estimating autocovariances of EOF amplitudes across months.
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Figure 9. Potential ecosystem for coupled emulator models. FairGP (Bouabid et al., 2024) is an example of a simple climate model (SCM)

that translates emissions scenarios to global mean temperature. DiffESM (Bassetti et al., 2024) is an example of a model that emulates daily

values of climate fields conditioned on monthly mean temperature.

The emulator framework we introduced cannot be easily extended to statistics beyond mean and covariances. Estimating even425

the three-point correlation of a high-dimensional distribution becomes cumbersome, requiring the computation and storage of

a tensor with N3 points if one uses a basis of N EOF amplitudes. Generally, a multivariate distribution of size N necessitates

the storage of Nn points for an n-point correlation, rapidly becoming intractable for large N or n. To emulate higher order

statistics, like weather extremes, generative models like diffusion-based emulators (Song et al., 2020) may be better suited.

These approaches are well equipped to capture higher-order correlations. However, this added flexibility comes with increased430

cost and training requirements which may limit their use in applications that demand fast inference and interpretability on

limited hardware.

More generally, the present work lays the foundation for specialized downstream emulators. For example, one could con-

dition a high-resolution or extreme-event emulator on monthly temperature fields produced by our framework. This would

integrate well with existing techniques, including Generalized Extreme Value theory or machine-learning-based generative435

models. Recent work such as Bassetti et al. (2024) and Christensen et al. (2024) illustrates how such hybrid frameworks might

be developed. Figure 9 sketches a potential ecosystem of interconnected emulators. A simple climate model (e.g., FaIR-GP,

Bouabid et al. 2024) translates emissions scenarios into global mean temperature trajectories. These are passed to an emulator

of monthly-averaged spatial fields such as the one developed here. The final stage would use a downscaling model to recon-

struct finer-grained or daily fields. Limitations of this pipeline framework include the assumption that all regional statistics440

are determined by the global mean temperature and the challenge of capturing spatially heterogeneous forcing agents such as

aerosols.

Projections accounting for model spread, such as those emulated in this work, are vital to designing effective solutions to

climate adaptation (Hansen et al., 2012; Deser et al., 2012; Woodruff, 2016). While the present emulator is trained on a par-

ticular Earth System Model (MPI-ESM1.2-LR), the methodology is broadly applicable to any model ensemble with sufficient445

realizations. Moreover, such model-trained emulators can serve as physically consistent priors that are further constrained with

observational data to reduce structural model bias, as demonstrated in Immorlano et al. (2025).
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Appendix A: Statistics of EOF Amplitudes and Pointwise Quantities

We mention in Section 3 that under certain assumptions, it is possible to translate the means and covariances produced by

our emulator into higher-order statistics. For example, leading EOFs represent averages of the original variables over large665

swaths of Earth and, as such, are generally well-represented as multivariate Gaussians from central limit theorem arguments.

Both monthly and spatial averaging make the multivariate statistics of the EOF amplitudes more Gaussian than the original

variables. To substantiate this ansatz, we leverage evidence from the literature that spatially coarse-grained and monthly mean

temperatures follow a Gaussian distribution (e.g., Schär et al. (2004); Hansen et al. (2010); Schneider et al. (2015); Falasca et al.

(2024a, b)). The multivariate Gaussian assumption is more appropriate for smoothly varying variables like temperature and670

relative humidity than for variables like precipitation, which have a much more nonlinear response to temperature fluctuations

and non-Gaussian statistics (Legates, 1991).

Although not necessary for the work in the main text, we will show that we can represent many statistics of interest by

assuming that aC is well represented by a multivariate Gaussian, i.e.

ρ(aC |T g,m)≈N (µ(T g,m),C(T g,m)), (A1)675
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where the coarse statistical variables aC are approximated as a Gaussian distribution, denotedN , with means µ and covariances

C as a function of the global mean temperature T g and month m.

For example, we show in Figure A1 the distributions of EOF modes at selected locations of surface temperature in purple,

chosen from a subset of the historical period of the MPI ensemble with similar global mean temperatures. The figure illustrates

the four most "non-Gaussian" modes/locations and one "most Gaussian" mode/location. Specifically, the modes and locations680

were selected by constructing histograms for every location and mode, finding the locations/modes with the most positive/neg-

ative kurtosis and skewness (four total) and one location with skewness and kurtosis closest to zero. We show in blue the result

of the emulator mean and variance prediction for the statistics under a Gaussian assumption.

We see from Figure A1 that even the most "non-Gaussian" EOF coefficients (top row) display a familiar bell-shaped curve,

whereas the different locations for pointwise statistics display non-Gaussian features (bottom row). A subtle point now arises.685

All distributions of the EOF coefficients appear to be quasi-Gaussian. Furthermore, point statistics can be reconstructed from

the EOF mode statistics and the EOF basis through a linear sum. Lastly, sums of Gaussian random variables are Gaussian.

Reconciling these three facts with the non-Gaussian point statistics of the bottom row in Figure A1 requires non-Gaussian

higher-order correlations between the different EOF modes. These non-Gaussian correlations ought to be captured to emulate

the tails of the distributions at a location; this could be achieved with other data-driven methods such as "score-matching" or690

Markov models (see Souza, 2024a, b; Giorgini et al., 2024; Bassetti et al., 2024; Christensen et al., 2024). In this work, we

focus on robust spatially coarse-grained and lower-order statistics. This focus allows us to ignore these higher-order moment

effects.

In summary, while a multivariate Gaussian assumption is not necessary for our emulator, it can be justified for the variables

considered. The addition of this assumption would allow for the inference of higher-order statistics beyond the variance.695

Appendix B: Linear emulator

In constructing our emulator we used a quadratic function to regress the mean EOF coefficients onto T̄g , see Equation 5.

However, we also experimented with using a linear function to perform the same regression:

µ̂ = µ̂0 + µ̂1T̄g. (B1)

We found the linear emulator to result in a slightly worse fit, which we illustrate in Figure B1. In the top row of Figure B1, we700

plot the difference in the yearly and ensemble-averaged global temperature emulation error between the linear and quadratic

emulators as a function of time. Emulators using an increasing number of EOF modes (10, 100, 1000) are plotted in different

colors. At each time along the horizontal axis, the errors for both emulators are computed with respect to T g from the MPI

ensemble for the year in question; the error of the quadratic emulator is then subtracted from that of the linear emulator. In
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Figure A1. Statistics of surface temperature EOF modes and selected locations. In purple, we show the histograms of data collected over the

historical period of the MPI ensemble with similar global mean temperatures. In blue, we show the fit given by the emulator described in this

work. The EOF amplitudes populate the top row, and the bottom row constitutes point locations. The locations and modes were selected for

being the least Gaussian, except for Mode 412 and location 99.39◦,−0.93◦ which are the most Gaussian.

formulas, we are comparing (for each year) between the two emulators705

temporal error(T, T̂ ) =
√√√√√ 1

4π

2π∫

θ=0

π∫

ϕ=0

∣∣∣∣∣
1
12

∑

m

(
⟨T (x,m,t,ω)⟩− µ̂(x,m,T g(t))

)
∣∣∣∣∣

2

sin(ϕ)dθdϕ, (B2)

where ⟨·⟩ to denotes an ensemble average. The spatial average is taken over the surface of Earth, with x = (θ,ϕ), and t here

denotes a fixed year. We emphasize that the training for both emulators is performed on the historical period and SSP5-8.5,

whereas our "test" is with respect to SSP1-1.9 and SSP2-4.5.710

Note that for a small number of modes, the linear and quadratic emulators perform about the same. As we increase the

number of modes, however, the quadratic emulator has significantly lower errors in future scenarios where nonlinear effects

become more prominent. The only significant exception is the historical period, in which the quadratic emulator appears to

overfit to large volcanic events. The bottom row of Figure B1 illustrates the origin of the improvement in fit yielded by the

quadratic emulator. Here we repeat the plots in Figure 3 for the three "most quadratic" modes (where the regression error715

difference between the linear and quadratic fit was maximal). The EOF coefficients of these modes—and many others—have

a distinct quadratic dependence on T̄g , which is not captured by a linear emulator.

We additionally compare the spatial error, as defined in Equation 18, of the linear and quadratic emulators. Figure B2 shows

the same spatial errors over the different scenarios as Figure 4, but for the linear emulator. Comparing the two figures, one

observes a significant reduction in errors for the quadratic emulator, most notably in the Arctic, the North Atlantic, South Asia,720

and Sub-Saharan Africa.
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Figure B1. Difference in regression error between linear and quadratic emulators. Top row: difference in regression (emulation) error for

ensemble and yearly averaged surface temperature as a function of time for different scenarios. Error of the quadratic emulator is subtracted

from that of the linear emulator, so positive values indicate higher error in the linear emulator. Bottom row: fit comparison between quadratic

and linear emulators for the three "most quadratic" EOF modes, analogous to Figure 3.

Appendix C: Comparison to linear pattern scaling

To demonstrate that the linear version of our emulator, as described above in Appendix B, reduces to a form of a linear pattern

scaling emulator for mean temperature at a single location, we plot in Figure C1 the temporal error defined in Equation B2

as a function of time for an increasing number of EOF modes used in the emulator (10, 100, 1000). We compare the error725

of performing linear regression pointwise (i.e. applying pattern scaling) on the ensemble mean in the historical period and

SSP5-8.5 to the error of the mean generated by our linear emulator. We re-emphasize that the training for both emulators is

performed on the historical period and SSP5-8.5, whereas our "test" is with respect to SSP1-1.9 and SSP2-4.5.

As we increase the number of modes, the error in the approximation becomes similar to the pointwise error when utilizing

pattern scaling. In the limit of using all EOF modes, we expect this error to match that of pattern scaling. This is to be expected:730

a few modes corresponding to large-scale patterns cannot represent the ensemble mean’s spatial structure in scenarios outside

the historical period. This error is due to a combination of two factors. The basis functions are constructed over the historical

period, and secondly, even though we fit to SSP5-8.5 data for the EOF amplitudes, there is less data corresponding to warmer
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Figure B2. Average regression error of a linear emulator for ensemble and yearly averaged surface temperature as a function of space for

different scenarios. Same as Figure 4, but for a linear emulator instead of a quadratic one.

temperatures. Thus, the emulator underperforms when it sees less data. With more modes (and hence a more complete basis

for representing functions), we see that the generalization error of going to different SSP scenarios matches the error of the735

historical period. Additionally, the quadratic version of the emulator described in the main text improves upon the errors shown

in Figure C1, see Figure B1. We illustrate the error of the linear emulator here for the sake of an accurate comparison with

pattern scaling.

As discussed in the main text, a major advantage of our emulator over a method like pattern scaling is the direct emulation

of covariances. To help illustrate this, we additionally plot in Figure C2 the temporal error of the ensemble-averaged standard740

deviation of January surface temperature as a function of time and for an increasing number of modes. In formulas, this is
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Figure C1. Regression error for ensemble and yearly averaged surface temperature as a function of time for different scenarios for a linear

emulator. Different colors correspond to the historical 1850–2014 period (maroon) and the three future scenarios considered in this study:

SSP5-8.5 (red), SSP2-4.5 (pink), and SSP1-1.9 (purple). The future period spans 2015–2100. The historical period lasts 165 years, and the

projected period—86 years. We show the root mean square error of pattern-scaling on the left and increasing the number of modes used

in the linear emulator in the subsequent rightward panels. As we increase the number of modes, the error in capturing pointwise statistics

decreases.

analogous to Equation B2:

Temporal Error(σT,m, σ̂T,m) =

√√√√√ 1
4π

2π∫

θ=0

π∫

ϕ=0

|σT,m− σ̂T,m|2 sin(ϕ)dθdϕ. (C1)

For a given number of modes, the standard deviation errors are approximately constant as a function of time. This illustrates

that almost the entirety of the emulator’s error in representing variance comes from the EOF approximation. Accordingly, as745

the number of EOF modes included increases, the error decreases.

Appendix D: Extended validation

In this appendix we provide additional figures in support of the validation of our emulator design, see Section 5 in the main

text.

Since our emulator captures each month separately, we can investigate a-posteriori shifts in the ensemble average seasonal750

temperature cycle. In Figure D1, we show the seasonal emulator prediction for the upper and southern hemisphere averages

separately, where the blue corresponds to a global mean temperature in the historical period and the orange corresponds to

the end of the SSP5-8.5 scenario. The amplitude of seasonal variation changes by approximately one Kelvin in the northern

hemisphere and is smaller in the southern hemisphere. This asymmetry reflects the larger fraction of land in the northern

hemisphere (land warms more than the ocean because it is drier and less efficient at cooling through latent heat release).755
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Figure C2. Regression error for ensemble averaged January surface temperature standard deviation as a function of time for different

scenarios. Same as last three panels of Figure C1, but for the standard deviation of temperature in January.

Figure D1. Monthly emulator output for global quantities. We show the emulator prediction for the global average (left), northern hemisphere

average (middle), and southern hemisphere average (right), as well as two global mean temperatures, T g = 288(K) (blue) and T g = 293(K)

(orange). The solid line indicates the ensemble average, and the shaded region indicates three standard deviations. We see a shift in the

seasonal cycle for a warmer climate. In particular, in the past northern hemisphere, January has become similar to April.
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Figure D2. Distributional shifts under climate change for land and ocean spatial averages in SSP5-8.5. Same as Fig. 7, but here we compare

the historical and SSP5-8.5 scenarios.

Additionally, Figures D2 and D3 show the same statistics as Figures 7 and 8, respectively, but for the training scenario

SSP5-8.5.

Finally, Figures D4 and D5 illustrate, for surface temperature, the differences between the emulator and the original MPI

data in 2100 across the three future scenarios. Figure D4 shows the year-average mean surface temperature, while Figure D5

shows the standard deviation of surface temperature in January. These spatial patterns are similar between the emulator and the760

data.

Appendix E: Emulator Usage and Case Study

Thus far we have only used pre-defined SSP scenarios to illustrate the generalizability of the emulator. In practice, however,

the main application of an emulator is in quickly and cheaply inferring the behavior of an ESM in arbitrary scenarios. Figure

E1 illustrates a case study for such an application. We define an arbitrary new climate change scenario in terms of the global765

mean temperature. This scenario, which is shown in the first column, grows exponentially at a rate significantly slower than

that of SSP5-8.5, with an end of century global mean temperature 3 degrees Celsius above the 1850-1900 average. One could

imagine that this scenario is the result of a slight reduction of emissions, driven by changing economic incentives but without

strong international cooperation on climate goals. If we follow the course set out by this scenario, how soon would we be able

to see the effects of emission reduction relative to the worst-case path of SSP5-8.5? In other words, when will the diverging770

scenarios yield significantly different climate statistics, and how will this vary across different locations on Earth? Questions

such as these are relevant as they can help quantify the timescale of local changes from global climate policy. Similar questions

have been explored in the BRACE project (O’Neill et al., 2018), but focusing only on two pre-defined scenarios.
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Figure D3. Distributional shifts under climate change for different locations in SSP5-8.5. Same as Fig. 8, but here we compare the historical

and SSP5-8.5 scenarios.

To answer these questions, we examine the statistics for temperature and relative humidity at two geographic locations:

(88.1W, 40.1N) in the Midwestern United States, near Chicago, and (84.4E, 23.3N) in Jharkand in northwestern India. In the775

second and third columns of Figure E1 we show, for the Midwestern US and northwestern India, respectively, the distributions

of temperature (top) and relative humidity (bottom) at the end of the century (in 2100) for all months. We plot, for both SSP5-

8.5 and the new scenario, the mean monthly values ± 2 standard deviations as estimated by the emulator. For both locations,

the variance provides critical context for assessing whether a change in mean is significant. Note that, for both variables, the

difference between the two scenarios is much more prominent in NW India. In contrast, in the Midwest US the differences780

between the scenarios are largely within the range of internal variability of the model; e.g., although there is a change in mean

in relative humidity in August, accounting for variance suggests that that change is not statistically significant. The emulator

additionally resolves seasonal differences in the influence of the mitigated scenario; e.g., for relative humidity in NW India,

there is a significant difference between the scenarios only in the winter months November-April.
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Figure D4. Emulator representation of yearly-average mean surface temperature in 2100. Emulator representation on the left, MPI model

data on the right for comparison.
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Figure D5. Emulator representation of January standard deviation of surface temperature in 2100. Emulator representation on the left, MPI

model data on the right for comparison.
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Figure E1. Case study: Using the emulator to assess impacts of emissions reduction. On the left we define a new scenario (blue) in global

mean temperature. In the second and third columns ribbon plots show monthly mean temperature (top) and relative humidity (bottom) ±2σ

in 2100 in SSP5-8.5 and the new scenario for two locations: NW India and Midwest US. This illustrates the importance of internal variability

in climate assessment.
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