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Abstract. This study examines whether the predictability of precipitation dynamics in Serbia has been influenced by climate 

change. We apply Generalized Weighted Permutation Entropy (GWPE) to evaluate the temporal structure of daily precipitation 

series using the parameter q, which filters subsets of small (q < 0) and large (q > 0) fluctuations. The analysis covers data from 

14 weather stations between 1961 and 2020.  10 

Entropy values for q = 0 and q = 2, corresponding to Permutation Entropy and Weighted Permutation Entropy respectively, 

remained stable spatially and temporally. In contrast, GWPE values for q = -10 and q = 10, representing the predictability of 

small and large fluctuations, exhibited significant spatial and temporal variation between two 30-year subperiods. Entropy 

values for q = -10 were consistently lower, indicating that small precipitation fluctuations are more predictable than large ones. 

In several locations, significant changes in entropy occurred despite relatively stable annual precipitation amounts. In others, 15 

annual totals varied while entropy remained constant. These findings suggest that climate change has influenced the 

predictability of precipitation in Serbia. By filtering fluctuations across scales, GWPE effectively reveals underlying changes 

that may be masked by standard statistical measures. 

1 Introduction 

The complexity of climate systems is widely recognized by researchers from different areas, such as physics, hydrology and 20 

ecology (Rind, 1999; Mihailović et al., 2014; Dey and Mujumdar, 2022; Almeida-Ñauñay et al., 2021), and the research that 

addresses this aspect of climate has been intensifying over the recent years. In particular, there has been an increasing number 

of publications that address the complexity of climate variables by using the methods developed in complex system science, 

such as fractal and multifractal analysis (Lovejoy and Mandelbrot, 1985; Krzyszczak et al., 2019), methods originated in 

information theory (Silva et al., 2021a), and more recently complex networks (Boers et al., 2019). Precipitation and temperature 25 

are used to describe the climate of certain regions (Da Silva et al., 2019), for climate classification (Peel et al., 2007), and to 

detect possible climate change (Alexander et al., 2006). 

Climate models are widely used to predict future climate conditions, but must be validated against historical observations for 

different temporal and spatial scales to evaluate the models’ performance for future projections (Vautard et al., 2021). 
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Empirical results indicate that climate models perform better in reproducing temporal and spatial patterns of surface 30 

temperature than those of precipitation (Trenberth, 2011; Lagos-Zuniga et al., 2022), thus other aspects such as emergent 

properties that are characteristics of complex systems could contribute to better understanding of the nature of stochastic 

processes that govern spatial and temporal precipitation variability, and help in evaluation of performance of climate models 

and the impact of climate change. Fractal, multifractal, and complex network analyses have been extensively utilized to explore 

the temporal and spatial variability of rainfall, while the potential of information theory-based methods in uncovering aspects 35 

of rainfall dynamics remains less explored. Recently, entropy measures have been applied to characterize irregularities and the 

rate of information flow in hydrological data, providing insights into different regimes and the effects of natural and human-

induced factors (de Carvalho Barreto et al., 2020; Agarwal et al., 2016; Rolim and de Souza Filho, 2025). 

However, these entropy measures lack the ability to capture temporal relationships between successive values in a time series, 

which was incorporated in the Permutation Entropy method introduced by Bandt and Pompe (2002). Rosso et al. (2007) 40 

combined Permutation Entropy with a statistical complexity measure to develop the "Complexity-Entropy Causality Plane" 

(CECP). This tool has proven effective in comparing systems with different degrees of complexity, especially in differentiating 

between noise and chaos. 

In hydrology Permutation entropy methods were used to analyze the nature of stochastic process governing streamflow 

dynamics (Serinaldi et al., 2014; Mihailović et al., 2024), to optimize streamflow monitoring networks (Stosic et al., 2017), to 45 

improve prediction models (Wang et al., 2024) and for detecting hydrological alterations caused by natural and human factors 

(de Carvalho Barreto et al., 2023; Suriano et al., 2024). For a comprehensive review of the use of Permutation entropy-based 

methods in hydrological studies see a recent article of Mihailović (2025). On the other hand, there are only a few studies that 

use CECP to investigate the complexity of rainfall. Silva et al. (2021b) applied CECP method on monthly rainfall data recorded 

in 133 pluviometric stations in Pernambuco, Northeast Brazil, during the period from 1950 to 2012, and showed the potential 50 

of CECP to distinguish between different rainfall regimes. Tongal (2025) used CECP to improve the detection of hydrological 

communities in the Lake District, Türkiye. Du et al. (2022) used PE along with other entropy measures to examine the rainfall 

complexity in Beijing, China. Based on the monthly precipitation data recorded from 58 meteorological stations between 1968 

and 2017, they observed significant spatial variations in rainfall complexity across the study area. They also found that rainfall 

complexity has been increasing due to both climate variability and human activities. Liu et al. (2020) applied multiscale 55 

permutation entropy to analyze precipitation complexity across 13 major cities in Heilongjiang Province, China. Based on 

monthly data from 1967 to 2016, their findings indicate that water resources and urban living areas significantly influence 

precipitation complexity, exhibiting a negative correlation. 

In this work we investigate whether climate change affects the complexity of precipitation in Serbia, by applying recently 

introduced Generalized Weighted Permutation Entropy method (GWPE) (Stosic et al., 2022), that enables to evaluate the 60 

complexity of temporal fluctuations over a wide range of scales, shedding new light on the underlying process. Previous studies 

related to temporal changes in precipitation in Serbia were based on trend analysis (Milovanović et al., 2017; Luković et al., 

2014), extreme indices (Malinović-Milićević et al., 2016; Tošić et al., 2025) and changes in precipitation seasonality (Stosic 
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et al., 2024a; Amiri and Gocić, 2025). Recently climate variability in Serbia was addressed by using the concept of complexity. 

Mimić et al. (2017) applied two complexity measures, Kolmogorov entropy and Sample entropy, on the daily maximum and 65 

minimum air temperature and the precipitation time series from seven stations in Serbia from the period 1951–2010. They 

found that both Kolmogorov complexity and Sample entropy of the maximum temperature series showed increasing trends for 

all stations, but it was statistically significant only for Kolmogorov entropy. The trends of complexity measures for the 

minimum temperature depend on the location, but without statistical significance except for locations in eastern (Negotin) and 

southern (Vranje) Serbia, where positive trend was found for Kolmogorov entropy and Sample entropy, respectively. For 70 

precipitation series both complexity measures showed decreasing trend which was statistically significant only for the Negotin 

station. 

We address the influence of climate change on the complexity of rainfall dynamics in Serbia trough the GWPE analysis of 

daily precipitation temporal series from 14 synoptic stations. We compare the GWPE curves in complexity/entropy causality 

plane for two 30-year sub-periods: 1961-1990 and 1991-2020. The main objective of this work is threefold, to find i) if 75 

complexity of temporal fluctuations of precipitation in Serbia varies over a wide range of scales; ii) if these properties vary 

spatially; iii) if precipitation complexity is affected by climate change. 

2 Data and methodology 

2.1 Study area and dataset 

Serbia is a continental country located in the western part of the Balkan peninsula in the southeast of Europe, between latitudes 80 

41°50′ and 46°10′ N (Fig. 1). The northern part is mostly flat with low elevation terrain, which gradually turns into hills and 

mountains that surround river valleys as moving towards central and southern part. In the northern part the climate type is 

moderate continental, changing to continental climate in the central part, and modified Mediterranean climate in the southern 

and the southwestern part (Bajat et al., 2015). In the lowlands the mean annual temperature is between 11 and 12 °C and mean 

annual precipitation between 500 and 700 mm, while in the mountains, the mean annual temperature is below 8 °C, and the 85 

mean annual precipitation is above 1000 mm (Vujadinović Mandić et al., 2022). 

The data used in this work is the daily precipitation amount recorded during the period 1961-2020 at 14 stations located across 

Serbia, as shown in Fig. 1. The chosen stations have all the measurements during the study period. The data are provided by 

the Serbian Meteorological Service, which performed technical and critical controls of these measurements. The geographic 

information on the 14 stations is given in Table 1. 90 
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Table 1: Stations with their geographic information (latitudes, longitudes and altitudes). 

Abbreviations Stations Latitude Longitude Altitude (m) 

BG Belgrade 44°48’ N 20°28’ E 132 

KG Kragujevac 44°02’ N 20°56’ E 185 

KR Kraljevo 43°44’ N 20°41’ E 215 

LO Loznica 44°33’ N 19°14’ E 121 

NE Negotin 44°13’ N 22°31’ E 42 

NI Niš 43°20’ N 21°54’ E 201 

NS Novi Sad 45°20’ N 19°51’ E 84 

SP Smederevska Palanka 44°22’ N 20°57’ E 122 

SO Sombor 45°47’ N 19°05’ E 88 

SR Sremska Mitrovica 44°58’ N 19°38’ E 81 

VG Veliko Gradište 44°45’ N 21°31’ E 82 

ZA Zaječar 43°53’ N 22°17’ E 144 

ZL Zlatibor 43°39’ N 19°41’ E 1085 

ZR Zrenjanin 45°24’ N 20°21’ E 80 

 

Figure 1: Location of Serbia in Europe (left, 95 
https://commons.wikimedia.org/wiki/File:Location_map_of_Serbia_in_Europe_%282006%E2%80%932008%29.gif) and 
orography of Serbia with locations of meteorological stations (right). 

https://doi.org/10.5194/egusphere-2025-3766
Preprint. Discussion started: 13 August 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

2.2 Generalized weighted permutation entropy 

The Generalized Weighted Permutation Entropy (GWPE) method was recently introduced (Stosic et al., 2022) as the 

generalization of Permutation entropy (PE) (Bandt and Pompe, 2002) and Weighted permutation entropy method (WPE) 100 

(Fadlallah et al., 2013). While PE and WPE evaluate overall predictability of time series, GWPE is capable of distinguishing 

among the predictability of subsets of small/large fluctuations and thus provides a deeper insight into the time series behavior. 

Along with PE, WPE and GWPE, statistical complexity can be defined, and measures of entropy and complexity can be 

represented and jointly analyzed in the Complexity entropy causality plane (CECP) (Rosso et al., 2007). 

In the PE method (Bandt and Pompe, 2002), first overlapping segments  (words) of a given size 𝑑 > 1 are extracted along the 105 

time series 𝑥௧ , 𝑡 = 1, … , 𝑁, denoted as 𝑋௦ = (𝑥௦, 𝑥௦, … , 𝑥௦ାௗିଵ), 𝑠 = 1, … , 𝑁 − (𝑑 − 1). The values within each segment are 

sorted in increasing order 𝑥௦ା௥బ
≤ 𝑥௦ା௥భ

≤ ⋯ ≤ 𝑥௦ା௥೏షభ
, forming the vector of indices 𝑣௦ ≡ (𝑟଴, 𝑟ଵ, … , 𝑟ௗିଵ), which represent 

one of the 𝑑!  possible permutations of integers 0,1, … , 𝑑 − 1, symbolically encoding the original segment. The relative 

frequencies of these permutations 𝜋௜  , 𝑖 = 1, … , 𝑑!  , form the empirical distribution P ≡ {p(𝜋௜) , 𝑖 = 1, … , 𝑑!},  which is used 

to calculate the permutation entropy as 110 

H(P) = − ∑ p(𝜋௜) log p(𝜋௜)ௗ!
௜ୀଵ ,          (1) 

To accurately estimate H(P), the length of the time series should be considerably greater than d! For real-world data, selecting 

the maximum embedding dimension that satisfies T > 5d! is shown to be sufficient to get good statistics (Riedl et al., 2013). 

In the CECP method (Rosso et al., 2007) the Jensen-Shannon divergence  

J(P, U) = ቄH ቂ
௉ା௎

ଶ
ቃ − H ቂ

௉

ଶ
ቃ − H ቂ

௎

ଶ
ቃቅ,         (2) 115 

which measures the distance of the empirical pattern distribution from a uniform distribution, is used to calculate the 

normalized complexity measure 

C(P) =
ு(௉)

ௗ!

௃(௉,௎)

௃೘ೌೣ
,           (3) 

where 𝐽௠௔௫ is the maximum possible value of 𝐽(𝑃, 𝑈) 

𝐽௠௔௫ = −
ଵ

ଶ
ቂ

ௗ!ାଵ

ௗ!
log(𝑑! + 1) − 2 log 2𝑑! + log 𝑑!ቃ         (4) 120 

obtained when only a single pattern is observed. The CECP represents a two-dimensional plot where H(P) is used for the 

horizontal and C(P) for the vertical coordinate. 

The Weighted Permutation Entropy (WPE) (Fadlallah et al., 2013) introduced to account for the amplitude of the values in the 

segments. Instead of using relative pattern frequencies, WPE calculates probability as 

p(𝜋௜) =
∑ ௪ೞೞ,ഏೞసഏ೔

∑ ௪ೞೞ
,           (5) 125 
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where 𝑤௦ = 1/𝑑 ∑ (𝑥௦ାଵ − 〈𝑥௦〉)ଶௗିଵ
௜ୀ଴  is the variance, and 〈𝑥௦〉 = 1/𝑑 ∑ 𝑥௦ାଵ

ௗିଵ
௜ୀ଴  is the average of the values observed in 

segment. The WPE and the corresponding CECP extension (WCECP) are then implemented using the above Eqs. (1-4) 

These methods have proven valuable, with applications spanning fields such as medicine (Deng et al., 2015), finance (Zunino 

et al., 2010), ecology (Sippel et al., 2016), geophysics (Konstantinou et al., 2022), and hydrology (de Carvalho Barreto et al., 

2023). Additionally, some studies (Xiaet et al., 2016) have demonstrated that the weighted variants outperform the original 130 

methods. 

The Generalized Weighted Permutation Entropy (GWPE) method has been recently proposed (Stosic et al., 2022) as an 

extension of the earlier approaches, incorporating both PE and WPE as particular cases. It is achieved through the probability 

definition 

p(𝜋௜ , 𝑞) =
∑ ௪ೞ

೜/మᇲ
ೞ,ഏೞసഏ೔

∑ ௪ೞ
೜/మᇲ

ೞ
,           (6) 135 

where −∞ < 𝑞 < ∞ is a continuous scaling parameter. The prime in the summation indicates that the segments with strictly 

zero variance 𝑤௦ are omitted. The scaling parameter 𝑞 acts as a “magnifying glass”, where negative q values emphasize small 

fluctuations, and positive q values enhance large fluctuations. The PE method corresponds to GWPE for 𝑞 = 0, and WPE 

corresponds to GWPE for 𝑞 = 2.  Although it was only recently introduced, GWPE has already found applications in data 

analysis in several studies (Stosic et al., 2024b; Stosic and Stosic, 2024; Duarte et al., 2025). Moreover, it was shown in ref. 140 

(Duarte et al., 2025) that GWPE outperformed PE and WPE in distinguishing between different sleep stages from EEG signals. 

3 Results and discussion 

Mean annual precipitation for two subperiods for all 14 stations and the change from the first to second period is presented in 

Fig. 2, while spatial distribution of these values across Serbia is shown in Fig. 3. In both periods annual precipitation varies 

between 550 mm and 1050 mm. In the first period (1961-1990) the lowest precipitation (550-650 mm) was observed in the 145 

northern lowland part (Sombor, Zrenjanin, Novi Sad, Sremska Mitrovica), in valleys along the rivers Velika Morava in the 

central part (Smederevska Palanka, Kragujevac), Južna Morava in the southern part (Niš) and in the eastern part (Negotin and 

Zaječar). The intermediate precipitation (650-750 mm) was observed in the region along the Danube River (Belgrade, Veliko 

Gradište) and in Zapadna Morava valley (Kraljevo), while the highest precipitation (800-1000 mm) was observed in the 

western mountainous region (Loznica, Zlatibor). The lowest average precipitation was observed in Zrenjanin (555.8 mm) and 150 

the highest in Zlatibor (964.1 mm). In the second period (1991-2020) the precipitation increased in most of Serbian territory 

with largest increase in Novi Sad (151 mm). In Sremska Mitrovica, Veliko Gradište, Negotin, Zaječar and Kraljevo the mean 

annual precipitation did not change in the second period. The lowest average precipitation was observed in Zrenjanun (597.2 

mm) and the highest in Zlatibor (1030.4 mm). 

 155 
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Figure 2: Mean annual precipitation for two periods (1961-1990 and 1991-2020) for 14 stations in Serbia. 

 

Figure 3: Spatial distribution of mean annual precipitation in Serbia, for two periods: (1961-1990 and 1991-2020) and change from 
first to second period (Difference). 160 

 

The GWPE method was applied on precipitation anomalies (deseasonalized) series 𝑦௜,௝ = ൫𝑥௜,௝ − 𝜇௜൯/𝜎௜   where 𝑥௜,௝  is the 

precipitation value recorded on a given calendar day  i  of year j, 𝜇௜ and 𝜎௜ are mean and standard deviation calculated for each 

calendar day 𝑖 over the years 𝑗 of the observation period. GWPE curves in two-dimensional entropy complexity plane for all 

stations and for two considered sub-periods are presented in Fig. 4 and Fig. 5, respectively. In both periods and across all 165 

locations, entropy values are consistently lower for q < 0, indicating higher predictability of small fluctuations.  
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Figure 4: GWPE curve (entropy/complexity as a function of magnification parameter q) for 14 stations in Serbia for the first sub-
period (1961-1990). The full lines represent the theoretical bounds for segment size of w=6 days (Martin et al., 2006). 
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Zlatibor Zrenjanin  

  

 

Figure 5: GWPE curve (entropy/complexity as a function of magnification parameter q) for 14 stations in Serbia for the second sub-170 
period (1991-2020). The full lines represent the theoretical bounds for segment size of w=6 days (Martin et al., 2006). 

A notable exception is observed in Sremska Mitrovica during the second period, where the curve that describes behavior of 

small fluctuations (𝑞 < 0) lies below that for large fluctuations (𝑞 > 0).   This implies that, for subsets of fluctuations with 

identical entropy values, the larger fluctuations exhibit greater complexity. In all cases, Weighted permutation entropy (WPE) 

values are lower than their corresponding Permutation entropy (PE) values, while associated complexity values are 175 

comparatively higher. Considering statistical complexity, it is observed that for q > 0, the points are located in the right side 

of the GWCECP plane, where the decrease of entropy is followed by the increase of statistical complexity, while for q < 0 

points are mostly located in the left side of CWCECP plane where both entropy and statistical complexity simultaneously 

decrease/increase. These observations are further supported by the complexity-entropy-scale causality boxes (CESCB) (Stosic 

et al., 2022), which plot entropy, complexity, and magnification factor q as coordinates in the three-dimensional space, as 180 

depicted in Fig. 6 and Fig. 7. 
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Figure 6: Three-dimensional GWPE causality box for 14 stations in Serbia for the first sub-period (1961-1990). 
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Zlatibor Zrenjanin  

  

 

Figure 7: Three-dimensional GWPE causality box for 14 stations in Serbia for the second sub-period (1991-2020). 185 

The values of GWPE and GWPEC for q = -10, q = 10, q = 0, and q = 2 for all stations and for two considered sub-periods are 

presented in Table 2 and Table 3, respectively. It is seen that GWPE and GWPEC values for q = 0 and q = 2 which correspond 

to the PE and WPE methods respectively, remain relatively stable across stations and time intervals. In contrast, the values of 

entropy (GWPE) and statistical complexity (GWPEC) for q = -10 and q = 10 exhibit noticeable variation both spatially and 

temporally between the two 30 years periods. 190 

For enhanced interpretability, the GWPE and GWPEC results for all stations and both sub-periods and the change from the 

first to second period are shown in Fig. 8 and Fig. 9 respectively. It is seen from Table 2 and Fig. 8 that GWPE values at q = -

10 are consistently lower across both periods, indicating greater predictability of small fluctuations of precipitation. 

In the first sub-period small fluctuations (q = -10) exhibited the highest predictability (lowest GWPE values) in Sombor 

(0.012), Zaječar (0.014), Loznica (0.022), and Kragujevac (0.072), while the lowest predictability (highest GWPE values) was 195 

observed in Smederevska Palanka (0.419), and Niš (0.383). Between the first and second sub-periods, entropy values, and 

consequently, predictability of rainfall fluctuations changed across stations. An increase in entropy (reflecting decreased 

predictability) was noted in Kragujevac, Negotin, Niš, Sremska Mitrovica, Veliko Gradište, and Zrenjanin. Conversely, 

predictability improved (entropy decreased) at Belgrade, Kraljevo, Smederevska Palanka, and Zlatibor. The remaining stations 

Novi Sad, Sombor, Zaječar, and Loznica, showed no change in entropy values. Among all stations, Belgrade exhibited the 200 

most substantial gain in predictability, with entropy decreasing from 0.360 to 0.138, while Negotin recorded the most 

significant loss, with entropy rising from 0.138 to 0.360. At these locations, although the average annual precipitation remained 

stable in the second sub-period, significant changes were observed in the predictability of small fluctuations, suggesting that 
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even in the absence of mean precipitation shifts, underlying complexity and short-term variability can evolve markedly. In 

contrast, at Novi Sad, where the most pronounced increase in precipitation occurred, predictability of small fluctuations 205 

remained unchanged, indicating a decoupling between precipitation volume and temporal structure. 

The predictability of small rainfall fluctuations is crucial for estimation of hydrological impacts such as surface moisture 

retention and evapotranspiration dynamics (Yan et al., 2021; Cui et al., 2022). It is also important for agricultural planning as 

predictable light rainfall helps optimize irrigation and planting time. Prolonged low intensity rainfall can trigger urban 

landslides and significantly contribute to soil erosion (Dunkerley, 2021). Spatial patterns reveal an increase in the predictability 210 

(lower entropy values) of small precipitation fluctuations across northern and eastern Serbia, which could be associated with 

increasing local atmospheric order. In contrast, the central and western regions show a decline in predictability suggesting 

increased climatic irregularity or external forcing mechanisms that elevate entropy (Fig. 8a). 

For all stations and both sub-periods, entropy values at q = 10 are consistently higher than those at q = -10, indicating that 

large precipitation fluctuations are less predictable than small ones. This reduced predictability poses challenges for 215 

agricultural planning, water resource management, and the implementation of mitigation strategies for hydrological extremes 

such as floods and droughts (Sultan et al., 2005; Butterworth et al., 1999; Zhou et al., 2023). 

 

Table 2: The values of GWPE for q=-10, q= 0, and q=2, q=10, for14 stations in Serbia for the first sub-period (1961-1990). 

 1961-1990 1991-2020 
City q=-10 q=0 q=2 q=10 q=-10 q=0 q=2 q=10 
Belgrade 0.360 0.982 0.961 0.787 0.138 0.981 0.961 0.790 
Kragujevac 0.072 0.980 0.958 0.813 0.211 0.979 0.959 0.803 
Kraljevo 0.355 0.983 0.959 0.765 0.310 0.982 0.960 0.636 
Loznica 0.022 0.981 0.958 0.747 0.023 0.980 0.967 0.790 
Negotin 0.237 0.978 0.949 0.756 0.568 0.976 0.950 0.810 
Nis 0.383 0.981 0.956 0.812 0.441 0.980 0.962 0.795 
Novi Sad 0.257 0.982 0.961 0.783 0.265 0.981 0.963 0.838 
Smederevska Palanka 0.419 0.982 0.960 0.773 0.323 0.983 0.964 0.804 
Sombor 0.012 0.979 0.966 0.777 0.083 0.978 0.962 0.785 
Sremska Mitrovica 0.331 0.982 0.961 0.780 0.403 0.981 0.965 0.428 
Veliko Gradište 0.359 0.981 0.959 0.783 0.488 0.979 0.955 0.801 
Zaječar 0.014 0.978 0.953 0.790 0.045 0.975 0.959 0.826 
Zlatibor 0.325 0.982 0.963 0.823 0.293 0.980 0.962 0.815 
Zrenjanin 0.318 0.981 0.957 0.810 0.422 0.984 0.965 0.835 

 220 

While entropy values at q = 10 show limited spatial variation across stations (Fig. 8b) there are evident temporal changes 

between the two sub-periods (Table 2). A slight increase in entropy values was observed at seven stations, predominantly in 

the eastern (Negotin, Veliko Gradište, Zaječar) and northern (Novi Sad, Zrenjanin) regions suggesting a decline in the 

predictability of large fluctuations, while three stations exhibited a slight entropy reduction, indicating improved predictability. 

The most pronounced changes occurred at Kraljevo (central region) where entropy decreased from 0.765 to 0.636, and Sremska 225 
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Mitrovica (northern region) which showed a substantial decrease from 0.780 to 0.428. These results indicate an improvement 

in the predictability of large precipitation fluctuations at these locations during the second sub-period, despite the stability in 

average annual precipitation. In contrast, Zlatibor and Sombor experienced an increase in precipitation over the same period, 

yet the predictability of large fluctuations remained unchanged, highlighting once again a decoupling between precipitation 

volume and its temporal dynamics. 230 

 

Table 3: The values of GWPEC for q=-10, q= 0, and q=2, q=10, for14 stations in Serbia for the second sub-period (1991-2020). 

 1961-1990 1991-2020 
City q=-10 q=0 q=2 q=10 q=-10 q=0 q=2 q=10 
Belgrade 0.314 0.042 0.091 0.350 0.128 0.044 0.091 0.354 
Kragujevac 0.070 0.047 0.099 0.338 0.187 0.049 0.097 0.343 
Kraljevo 0.319 0.040 0.095 0.364 0.273 0.043 0.093 0.355 
Loznica 0.022 0.046 0.100 0.371 0.022 0.047 0.078 0.334 
Negotin 0.210 0.052 0.118 0.368 0.419 0.058 0.117 0.339 
Nis 0.336 0.047 0.102 0.340 0.375 0.049 0.091 0.345 
Novi Sad 0.235 0.044 0.093 0.362 0.245 0.046 0.089 0.309 
Smederevska Palanka 0.347 0.043 0.094 0.360 0.287 0.042 0.085 0.336 
Sombor 0.012 0.049 0.080 0.347 0.082 0.052 0.090 0.336 
Sremska Mitrovica 0.286 0.044 0.093 0.347 0.347 0.044 0.084 0.318 
Veliko Gradište 0.292 0.045 0.095 0.350 0.367 0.051 0.103 0.350 
Zaječar 0.014 0.053 0.109 0.366 0.045 0.059 0.098 0.320 
Zlatibor 0.274 0.043 0.086 0.330 0.260 0.048 0.089 0.332 
Zrenjanin 0.287 0.046 0.101 0.345 0.354 0.039 0.082 0.312 
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 235 

 
Figure 8: GWPE for q = -10 (a) and q = 10 (b) for14 stations in Serbia for two periods (1961-1990 and 1991-2020) and change from 
first to second period. 
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 240 

Figure 9: GWPEC for q = -10 (a) and q = 10 (b) for14 stations in Serbia for two periods (1961-1990 and 1991-2020) and change from 
first to second period (Difference). 

 

4 Conclusions 

Understanding of temporal and spatial patterns of precipitation and their alterations under the changing climate is crucial for 245 

climate impact studies. While statistical methods remain the primary tools for evaluation of these changes, recent findings 
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suggest that emergent properties arising from complex interactions among processes that govern climate variability, may also 

be influenced by climate change. 

The objective of this study was to examine whether one of such emergent property, complexity, is characteristic of precipitation 

time series in Serbia, and whether it has been affected by climate change. To this end, we applied the Generalized Weighted 250 

Permutation Entropy (GWPE) method to precipitation records from 14 weather stations distributed cross Serbia, spanning the 

period 1961-2020. 

The main results of this work are: i) GWPE values for q = 0 and q = 2 which corresponding to Permutation entropy (PE) and 

Weighted permutation entropy (WPE) respectively, remain relatively stable across stations and time intervals; ii) GWPE values 

describing the predictability of small (q = -10) and large (q = 10) precipitation fluctuations exhibited noticeable spatial and 255 

temporal variation between the two 30-year periods; iii) GWPE values at q = -10 were consistently lower across both periods, 

indicating greater predictability of small precipitation fluctuations. In some cases, significant changes in entropy values 

occurred despite stable annual precipitation totals. Conversely, in other locations, entropy values remained steady even as 

annual totals varied, suggesting the decoupling between precipitation volume and its underlying temporal structure. These 

findings suggest that the complexity of precipitation dynamics in Serbia (measured via GWPE) has been influenced by climate 260 

change. 

The GWPE shows strong potential to capture hidden variability in precipitation behavior and detect climate-related impacts 

that may be masked if focusing only on traditional statistical averages. Future work should compare these results with outputs 

from climate models under various emission scenarios, complementing classical statistical analyses to help identify the most 

suitable model or ensemble for climate change studies in this region. 265 
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