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Abstract. Observed declines in oceanic oxygen (O₂) over recent decades are subject to substantial uncertainty due to internal 10 

climate variability (ICV) and limited observational coverage. Here, we quantify how observational uncertainty affects the 

assessment of both historical and future ocean deoxygenation by combining multiple observational datasets with a large 

ensemble simulation of the Max Planck Institute Earth System Model (MPI-ESM). We find that observational biases in ICV 

can amplify global and regional O₂ variability by 150%–500% in annual time series over the past 50 years. The combined 

effect of ICV and sampling bias can also introduce deviations of 5%–25% in estimated multi-decadal O₂ trends. Moreover, 15 

time-dependent changes in observational coverage complicate the interpretation of historical O₂ trends. Our results 

underscore the crucial need for a sustained, globally uniform ocean observing system to monitor long-term deoxygenation, 

assess its impact on marine ecosystems, and detect the anthropogenic signal in O₂ trends. We further show that near-future 

trend detection will remain sensitive to ICV, and observational gaps may distort the detection of scenario-based projections 

of O₂ trends, especially in the context of climate mitigation efforts. 20 

1 Introduction 

Multiple, independent lines of evidence show that the ocean has lost oxygen (O2) in recent decades (Ito et al., 2017, 2024b; 

Ito, 2021; Helm et al., 2011; Roach and Bindoff, 2023; Schmidtko et al., 2017; Sharp et al., 2024). This observed 

deoxygenation is projected to accelerate with the ongoing ocean warming (Bopp et al., 2013, 2017; Cocco et al., 2013; 

Gruber, 2011; Keeling et al., 2010; Kwiatkowski et al., 2020; Laffoley and Baxter, 2019). With many marine organisms 25 

already living at their aerobic threshold (Deutsch et al., 2024), further loss of O2 stands to precipitate species loss across wide 

regions, with profound implications for marine ecosystems and global fisheries (Breitburg et al., 2018; Levin, 2018). 

Accurate projection of the spatial distribution, magnitude, and timing of deoxygenation will be crucial for managing living 

marine resources, as well as for potentially motivating mitigation efforts (Bindoff et al., 2020). Confidence in such 

projections is gained, in part, through their faithful representation of observed changes over the historical era, a benchmark 30 
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rarely met by state-of-the-art Earth System Models (ESMs), most of which do not reproduce the observed changes in O2 

concentrations over the past 50 years (Oschlies et al., 2017, 2018; Stramma et al., 2012). However, there is only medium 

confidence in observed O2 trends because the magnitudes of the global and regional O2 loss diverge substantially between 

observationally based estimates (Bindoff et al., 2020; IPCC Special Report on the Ocean and Cryosphere, Chapter 5, page 

471), which reduces the ability to accurately assess model fidelity and improvement. 35 

 

Disagreement in observational estimates of ocean O2 arises due to substantial uncertainties associated with spatiotemporal 

gaps in observational coverage and statistical methods used to fill the data gaps (Bindoff et al., 2020). In part, this 

uncertainty is also due to natural, background internal climate variability (hereafter ICV) (Bindoff et al., 2020; Long et al., 

2016), which acts to obscure forced, anthropogenic signals in the climate system that require decades of observations for 40 

detection of a trend (Henson et al., 2017; Long et al., 2016; Rodgers et al., 2015; Schlunegger et al., 2020). It remains an 

open question as to what extent the disagreement between observational estimates and historical projections of ESMs is due 

to sampling artifacts, ICV, and the interplay between these two sources of uncertainty. 

 

Sampling bias and ICV are sources of uncertainty that will continue to confound the detection of trends, even with the 45 

anticipated expansion of the global observing system (Moltmann et al., 2019). The presence of such uncertainty poses a 

challenge to assessing the oceans' evolving aerobic capacity, a crucial task for monitoring ecosystem health, and discerning 

the impacts of climate mitigation efforts on oxygen levels (Hoegh-Guldberg et al., 2018; Gulev et al., 2021). It remains an 

open question as to what extent the expansion of the global observing system will enhance the monitoring of trends in ocean 

O2. 50 

 

To address these two open questions, we utilize global compilations of gridded observational datasets (Ito et al., 2017, 

2024b; Ito, 2022; Roach and Bindoff, 2023) and the Max Planck Institute for Meteorology Grand Ensemble (MPI-GE), 

comprising 100-member ensemble simulations with MPI-ESM 1.1 (Maher et al., 2019). Using the large ensemble simulation 

as a testbed, we then quantify the influence of historical sampling bias on the reconstructed O2 variability and trend. Second, 55 

we examine how future observing plans may influence the detection of ocean deoxygenation and its response to climate 

mitigation efforts. In this ensemble modeling study, we focus on the annual mean dataset to analyze interannual to decadal 

variability of O2 from both the gridded observational dataset and the ensemble simulations. The gridded observational 

dataset is based on limited ocean measurements. The early gridded observational dataset (Ito et al., 2017) contains 

spatiotemporal gaps (i.e., no complete global gap filling has been conducted, which retains non-data regions as they are). 60 

More recent gridded observational dataset is based on advanced gap-filling methods, including machine learning methods 

with complete spatiotemporal gap fillings (Ito et al., 2024b; Roach and Bindoff, 2023; Sharp et al., 2024). Here, we focus on 

the uncertainty due to spatiotemporal gaps based on the early gridded observational dataset (Ito et al., 2017). This will enable 

us to address the combined uncertainty associated with spatiotemporal gaps and ICV using an ensemble modeling approach. 
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The potential biases related to complete global gap filling, such as those introduced by interpolation methods (e.g. Ito et al., 65 

2024a), are not addressed in this ensemble modeling study. 

2 Methods 

2.1 Large Ensemble Simulations and Observational Dataset, Comparison Considering Data Gaps 

The large ensemble simulation is based on the Max Planck Institute Earth System Model version 1.1 (MPI-ESM 1.1) in low 

resolution (LR) configuration (Giorgetta et al., 2013). The atmospheric model, ECHAM6, has a T63/1.9 degree horizontal 70 

resolution (Stevens et al., 2013), and the ocean model, MPI-OM, has an approximately 1.5 degree horizontal resolution 

(Jungclaus et al., 2013). The 100 ensemble members were generated under CMIP5 historical and RCP scenario forcing 

(including RCP2.6, RCP4.5, and RCP8.5), extending from 1850 to 2099 (after 2005, RCP scenario forcing is applied). Each 

member starts from slightly different initial conditions generated by the pre-industrial control simulation. The MPI-OM 

incorporates the Hamburg Ocean Carbon Cycle model (HAMOCC 5.2) for ocean biogeochemistry (Ilyina et al., 2013). The 75 

land biogeography is represented by the model JSBACH (Reick et al., 2013). Details on the MPI’s large ensemble 

simulations, the Grand Ensemble Simulations (MPI-GE), are on the project website 

(https://mpimet.mpg.de/en/research/modeling/grand-ensemble) and in the description paper (Maher et al., 2019). The 

ensemble modeling approach enables us to separate the signals emerging from the external forcing (e.g., greenhouse gases, 

volcanic eruptions, etc.) and ICV (Deser et al., 2020; Lehner et al., 2020; Maher et al., 2019). The signal that emerges from 80 

the external forcing is called the “forced response”, defined as the ensemble mean, and the ICV is represented as the spread 

of ensemble members. Thereby, we can discern the role of ICV on decadal to multi-decadal trends. 

 

We use four observation-based global O2 datasets that have been publicly available. We use the gridded annual O2 dataset 

from Ito et al., (2017) (hereafter, Ito17) as the basis for sub-sampling. The Ito17 dataset is based on the World Ocean 85 

Database 2013 (Boyer et al., 2013). The O2 data from the World Ocean Database 2013 is binned to annual mean bases, 

quality control is applied, and the data is interpolated using a Gaussian weight onto a one-degree grid. The long-term 

climatology (1950-2015) has been subtracted from the data. Therefore, the Ito17 dataset consists of O2 anomalies (ΔO2). 

Note that, despite the interpolation procedures, the Ito17 data have not been fully gap-filled; therefore, regions with no data 

in 1-degree bins remain as missing values (Fig. 1b). We utilize this information on the observational data gaps for sub-90 

sampling the model output. We also include a more recent gridded observational dataset from three different publications 

(Ito 2022; Ito et al., 2024b; Roach and Bindoff, 2023). Hereafter, we refer to the three datasets as Ito22, Ito24, and RB23. 

These gridded observational datasets (Ito22, Ito24, and RB23) are fully gap-filled using spatiotemporal interpolation and 

machine learning techniques. The gridded dataset of Ito22 is provided at a 1-degree resolution, excludes data from the Arctic 

Ocean, and covers the period from 1965 to 2020, based on annual O2 anomalies (ΔO2). RB23 has a native resolution of 0.5 95 

degrees, which we interpolated to 1 degree for this analysis. It spans the period from 1955 to 2018 with annual mean values. 
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Ito24 is available at a 1-degree resolution and covers the period from 1965 to 2020 with monthly data. For consistency, we 

calculated annual means from the monthly data for our analysis. Long-term mean calculations for all datasets were 

performed from the earliest available period (1955 or 1965) up to 2015. All analyses in this study are based on the annual O2 

anomaly data (ΔO2), which is calculated by subtracting the long-term climatology. No detrending has been applied, as we 100 

focus on both including signals from external forcing (e.g., greenhouse gases, volcanic eruptions) and ICV.  

 

To facilitate comparison between observed estimates of ΔO2 and those of the large ensemble simulations, we sub-sampled 

the annual model output based on the time-varying data coverage information from the gridded annual dataset of Ito et al., 

(2017) (Fig. 1b, and d). This allows us to quantify the observational sampling bias in estimating the ICV and forced 105 

response. In this study, we focus on O2 near the thermocline (at around 300m depth), which is commonly used in 

observational and modeling studies of ocean deoxygenation (Oschlies et al., 2017; Schmidtko et al., 2017; Stramma et al., 

2012). The O2 minimum begins to emerge near the thermocline, and the observed low-frequency variability and trend of 

thermocline O2 are among the challenging ocean biogeochemical properties to simulate by current models (Oschlies et al., 

2017; Stramma et al., 2012). We note that there is no consensus for a standard ocean deoxygenation metric from previous 110 

studies (Bopp et al., 2013; Cabré et al., 2015; Kwiatkowski et al., 2020; Oschlies et al., 2017, 2018; Stramma et al., 2012; 

Takano et al., 2023). The O2 metric we use here focuses on the upper ocean, which may be more crucial for marine 

ecosystems. With spatiotemporal sub-sampling in mind for the large ensemble simulations, we construct weighted-area mean 

ΔO2 time series from both observations and all 100 ensemble simulations. The sub-sampling analysis is extended to assess 

near-future deoxygenation under three different climate change scenarios (RCP2.6, RCP4.5, and RCP8.5) (Meinshausen et 115 

al., 2011). Further details on sub-sampling methods will be introduced in the latter sections. 

 

The spatiotemporal data coverage based on the Ito17 dataset is summarized in a spatial map and a time series plot (Fig. 1b 

and the bar chart in Fig. 1d). Fig. 1b shows the temporal data coverage at 1-degree resolution, consistent with the 

methodology used in the supplementary information of Ito et al. (2017) and reproduced here using publicly available data. 120 

Temporal coverage is quantified by counting the number of available annual data points at each grid cell. The count is then 

divided by 58 (the number of years from 1958 to 2015) and multiplied by 100 to obtain the percentage coverage for each 

grid point. The global time series of spatial coverage represents the proportion of 1-degree ocean grid cells that contain data 

in each year (Fig. 1d). A value of 100% indicates that all ocean grid cells have data in that year. For each year from 1958 to 

2015, we assess whether the spatial coverage exceeds 50%. The total number of such years (up to 58) is displayed in the 125 

upper right corner of Fig. 1d and is referred to as the Spatiotemporal Coverage Metric (STCM). The global STCM is 26. 

This metric can also be calculated regionally and will be used to rank ocean regions based on their spatiotemporal data 

coverage. Over the 1958–2015 historical period, the North Atlantic Ocean has the highest STCM (55), while the South 

Pacific Ocean has the lowest (8). 
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2.2 Observational Sub-sampling of the 100-Member MPI-GE 130 

To address the gaps in observational data coverage, we developed a sub-sampling method. We applied it to annual model 

output from the MPI-GE, 100 ensemble simulations from an Earth System Model. We note that the month-to-month 

variability (including seasonal cycles) is not addressed in our study, and the focus is on annual to decadal variability, partly 

because of the limitation in output frequency of the three-dimensional ocean biogeochemical variables; only annual model 

output is available for most of the simulations (Maher et al., 2019). One potential bias could stem from the fact that more 135 

measurements are taken in a particular season (e.g., more observations in summer compared to winter in certain regions), 

which is not considered in this study. This could impact the observed signal, possibly underestimating the annual variability 

in the observations. We first subtracted the long-term climatology (1950-2015) from all annual mean model output (i.e., O2, 

temperature, and salinity) to calculate the annual anomaly data. Temperature and salinity are needed for calculating oxygen 

saturation and Apparent Oxygen Utilization (AOU) (explained in an upcoming section). We utilize the annual anomaly data 140 

from the model at 310m (denoted as △O2_300) from 1958 to 2015 for analysis in this study. The annual time-dependent sub-

sampling mask based on the Ito17 dataset had been projected onto MPI-OM’s native grid (GR15, approximately 1.5 degrees) 

using the nearest neighborhood interpolation method. Finally, we applied the time-dependent sub-sampling mask to △O2_300 

fields from the model output. It is important to note that the Ito17 dataset is based on global compilations of bottle and CTD 

data, which are then subject to a gap-filling procedure. Reconstruction of a gridded observational-like dataset from models 145 

requires high-resolution model output in both time and space to extract data points closely approximating the locations of 

data contained in the original database. Therefore, the gap-filling method is not directly applied to the model output due to 

the limitation in the spatiotemporal resolution of the model output. Instead, we begin our discussion by analyzing gridded 

products and focusing on the broader consequences of limited observational data coverage. Therefore, we do not address 

bias due to gap-filling methods in this study. 150 

 

The primary diagnostic we use in this study is △O2_300 (△O2 at 300m for the gridded observational dataset and at 310m for 

the model output). Weighted-area mean △O2_300 time series are calculated using two different approaches from MPI-GE. 

One uses sub-sampled model output that is masked according to the observational data coverage information from 1958-

2015, as introduced in the previous section (Section 2.1 and Fig. 1b and 1d). The other approach utilizes all of the model 155 

output in time and space (i.e., full sampling, with no sampling bias) (see Fig. 1a and 1c for the global mean time series based 

on two different approaches). Feeding in the spatial and temporal sparsity of the observational coverage allows us to 

compare the observational and model estimates of △O2_300 variability and trend. The advantage of this sub-sampling 

approach is that the model then also includes a potential bias due to uneven sampling in both time and space. This could 

eventually influence the estimate of △O2_300 trends, which is an essential indicator of ocean deoxygenation. 160 
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2.3 Ensemble Statistics 

Within the ensemble members, we calculate the △O2_300 time series for both full-sampled (e.g., Fig. 1a) and sub-sampled 

(e.g., Fig. 1c) cases. We quantify the ICV based on the spread of ensemble members calculated as the ensemble standard 

deviation. The uncertainties due to ICV have been quantified in other large ensemble modeling studies, and this metric is 

commonly used to estimate the range of ICV based on large ensemble simulations (Deser et al., 2020; Lehner et al., 2020; 165 

Maher et al., 2019). To quantify the impact of limited sample size on ICV of △O2_300, we calculate the ensemble standard 

deviation (SD) for each year for both full- and sub-sampled △O2_300 time series and then take the ratio of the ensemble SD of 

the two cases as written as follows: 

 

𝐸𝑛𝑠	𝑆𝐷!"#$% =	
𝑆𝐷&'()&"*+,-.
𝑆𝐷/',,)&"*+,-.

=
* 1
𝑀 − 1∑ (𝑥*,&'()&"*+,-. − 𝑥&'()&"*+,-.1111111111111111)12

*34

* 1
𝑀 − 1∑ (𝑥*,/',,)&"*+,-. − 𝑥/',,)&"*+,-.1111111111111111)12

*34

 170 

 

The subscripts sub and full denote sub-sampled and full-sampled members, m is the ensemble member, and the overbar 

denotes the ensemble mean. M equals 100, as that is the number of ensemble members for MPI-GE. Note that the Ens SD 

ratio (and sub-sampled and full-sampled SDs are all time-dependent. The presentation of the Ens SD ratio (e.g., Fig. 1d, red 

line) is multiplied by 100 and expressed as a percentage.  175 

 

To estimate multi-decadal ocean deoxygenation, we calculated linear trends using the least squares method, applied to both 

the time series and the gridded datasets that combine observations with ensemble simulations. The results are summarized in 

box-and-whisker plots (Fig. 3), patterns (Fig. 4), and histograms (Fig. 6), which are based on linear trends derived from time 

series of △O2_300. Model estimates include both fully sampled cases (without sampling bias) and observationally sub-180 

sampled cases. The spread of linear trends in the box-and-whisker plots represents the range of trends attributable to ICV, 

effectively illustrating the ensemble probability density function (PDF) of linear trends from ensemble members. The 

ensemble mean of these trends corresponds to the component driven by the forced response. 

2.4 Oxygen Saturation and Apparent Oxygen Utilization (AOU) Calculations 

To quantify the effects of oxygen saturation-driven changes and circulation-biology-driven changes in oceanic dissolved 185 

oxygen, we utilized temperature and salinity data from the ocean reanalysis and model output. The ocean reanalysis is from 

the ECMWF ORA-S4 (Balmaseda et al., 2013), following the observational study by Ito et al., 2017. The oxygen saturation 

(O2,sat) calculation is based on Weiss’s formula (Weiss et al., 1970), the same formula used in the model (Ilyina et al., 2013). 

The circulation-biology driven change in dissolved oxygen is quantified using Apparent Oxygen Utilization (AOU), defined 

as follows, 190 
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𝐴𝑂𝑈 =	𝑂1,&"#(𝑇, 𝑆) −	𝑂1 

 

O2 is the dissolved oxygen concentration from observations or model output, O2,sat is calculated using temperature (T) and 

salinity (S), and AOU is the residual between the two. In this study, we focus on analyzing O2,sat, and AOU anomalies at 195 

around 300m (denoted as △O2,sat_300 and △AOU_300) following △O2_300. 

 

 
 

Figure 1: Temporal evolution of global mean oxygen anomalies at approximately 300 m depth, derived from four 200 

observational datasets (at 300 m) and large ensemble simulations (at 310 m, MPI-GE). Panels a) and c) show simulated 

△O2_300 time series based on a) fully sampled model output and c) observationally sub-sampled model output, respectively, 

for the period 1958–2015. In panels a) and c), gray lines represent △O2_300 time series from 100 ensemble members 

(historical simulations extended with RCP8.5 to 2015). The black solid line shows the ensemble mean (forced response), and 

the black dashed line indicates the time series from ensemble member #20. Member #20 shows the largest negative global 205 

△O2_300 trend and is highlighted as an example of pronounced ocean deoxygenation. Colored solid lines correspond to 

observational datasets: Ito et al. (2017) (Ito17), Ito (2022) (Ito22), Roach and Bindoff (2023) (RB23), and Ito et al. (2024b) 

(Ito24). Panel b) shows the percentage of annual data coverage at each grid point from 1958–2015, based on the gridded O2 
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data from Ito17 at 300 m. Panel d) presents the global spatial coverage as a percentage of 1-degree ocean grid cells 

containing data for each year (100% indicates full coverage). The red line in panel d) shows the ratio of ensemble standard 210 

deviation (Ens SD ratio) of the global mean △O2_300 time series (see Section 2.3 for details). The STCM is the 

Spatiotemporal Coverage Metric (STCM) (see Section 2.1 for details). 

3 Quantifying Observational Sampling Uncertainties 

3.1 Global and Regional Variability of Dissolved Oxygen near the Thermocline 

We first examine the △O2_300 time series from the ensemble simulations and assess observational sampling biases in both 215 

global and regional annual △O2_300 anomalies, based on the large ensemble simulations (see Section 2.3 for details). The 

regional partitions follow Schmidtko et al. (2017) (Fig. 2a). We compare the simulated △O2_300 with four gridded 

observational datasets derived from various sources, including bottle samples, CTD casts, and Argo floats. These datasets 

show substantial differences in their △O2_300 time series (Figs. 1ac and 2), primarily due to differences in data sources, 

coverage, and gap-filling methods. The Ito17 dataset exhibits significant temporal and spatial gaps (Figs. 1b, 1c), which may 220 

lead to higher apparent interannual and decadal variability due to the limited gap-filling and smoothing capabilities. In 

contrast, the Ito22 dataset applies global interpolation and a five-year running mean to address data gaps, resulting in a 

smoother temporal and spatial evolution of △O2_300 (Figs. 1ac, 2; green lines). We regard Ito22 as a conservative estimate of 

oxygen variability and trends. The more recent datasets, Ito24 and RB23, fall between these two in terms of variability and 

trend. They show similar decadal trends in △O2_300 but differ in interannual variability (Figs. 1ac, 2; orange and red lines), 225 

reflecting differences in data sources (e.g., the inclusion of BGC-Argo in Ito24) and gap-filling approaches. Keeping these 

observational differences and spatiotemporal gaps in mind, we further analyze the simulated △O2_300 variability and trend in 

comparison with these four datasets. 

 

In general, the variability of both global and regional △O2_300 in observations is broadly consistent with the spread of 230 

ensemble model simulations (ICV), particularly when the effect of observational data gaps is considered (Figs. 1ac and 2). 

Although the △O2_300 variability from the Ito17 dataset tends to lie near the edge or even outside of the ensemble spread in 

some regions, the other three datasets generally fall within the model range. The global △O2_300 time series from ensemble 

member #20 closely resembles the observed △O2_300 time series, suggesting that ICV could explain multi-decadal 

deoxygenation trends similar to those observed. However, it is essential to consider how temporal and spatial variations in 235 

data coverage influence the observed time series. When the data coverage decreases in certain years, the global and regional 

△O2_300 time series tend to exhibit pronounced positive or negative peaks, reflecting signals from specific regions. This 

feature is apparent in both observational datasets, particularly highlighted in the Ito17 dataset, as well as in ensemble 

simulations. Moreover, unresolved physical and biogeochemical processes in the model may also affect regional △O2_300 
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variability. Limited spatial coverage in observations can emphasize localized features, making the observed time series more 240 

sensitive to regional anomalies. Therefore, without accounting for observational sampling biases, direct comparisons 

between modelled and observed △O2_300 variability may be misleading. Sub-sampling the model output based on the 

spatiotemporal coverage of observational data increases the ensemble spread, indicating that sampling bias has a significant 

impact on ICV estimation. 

 245 

It should also be noted that observational datasets are subject to uncertainties arising from factors such as quality control 

procedures, high-frequency variability, and the methods used for gap filling and spatiotemporal interpolation (Ito et al.,  

2022, 2024a, 2024b; Roach and Bindoff, 2023; Schmidtko et al., 2017). The magnitude of these uncertainties could range 

from -10 to 10 mmol/m³ (Schmidtko et al., 2017) and is generally of the same order as the ICV spread derived from 

ensemble simulations. This highlights the need for caution when directly comparing observational data with model outputs. 250 

Furthermore, the △O2_300	 variance in the fully sampled case tends to align more closely with the Ito22 dataset, likely because 

the spatial and temporal gaps have been filled using interpolation and smoothing techniques, which suppress variability. 

Similarly, ensemble simulations subjected to full spatiotemporal sampling also exhibit smoothed and attenuated variability 

(Fig. 1a). 

 255 
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 275 

Figure 2: Temporal evolution of regional mean oxygen anomalies at approximately 300 m depth, derived from four 

observational datasets (at 300 m) and large ensemble simulations (at 310 m, MPI-GE). Panel a) displays a map with regional 

partitioning overlaid on the percentage of annual data coverage at each grid point from 1958 to 2015 (the same as in Fig. 1b).  

Panels b) to k) show simulated △O2_300 time series based on observationally sub-sampled model output for the period 1958–

2015. In the upper rows in panels b) to k), gray lines represent △O2_300 time series from 100 ensemble members (historical 280 

simulations extended with RCP8.5 to 2015). The black solid line shows the ensemble mean (forced response), and the black 

dashed line indicates the time series from ensemble member #20. Member #20 shows the largest negative global △O2_300 

trend and is highlighted as an example of pronounced ocean deoxygenation. Colored solid lines correspond to observational 

datasets: Ito et al. (2017) (Ito17), Ito (2022) (Ito22), Roach and Bindoff (2023) (RB23), and Ito et al. (2024b) (Ito24). In the 

lower rows in panels b) to k), the gray bar charts present the regional spatial coverage as a percentage of 1-degree ocean grid 285 

cells containing data for each year (100% indicates full coverage). The red lines in panels b) to k) show the ratio of ensemble 

standard deviation (Ens SD ratio) of the regional mean △O2_300 time series (see Section 2.3 for details). The STCM is the 

Spatiotemporal Coverage Metric (STCM) (see Section 2.1 for details). 

 

To quantify the uncertainty in ICV arising from observational sampling bias, we calculate the ratio of ensemble standard 290 

deviations (ens SD ratio) between the observationally sub-sampled and fully sampled cases, using 100 ensemble members. 

The ensemble SD represents the magnitude of ICV variability captured within the large ensemble simulation. By comparing 

the SDs of the two sampling approaches, we assess the extent to which spatiotemporal data gaps introduce uncertainty into 

ICV estimates (see Section 2.3). When the ens SD ratio (Figs. 1ac and 2) exceeds 100%, the ICV of △O2_300 at that time is 

overestimated relative to the fully sampled case; conversely, ratios below 100% indicate underestimation. The ens SD ratio 295 

varies over time and generally remains above 100%, but can exceed 500% in certain regions, particularly when observational 

coverage is sparse. This result highlights that spatiotemporal gaps in observations introduce a time-varying bias into the 

△O2_300 time series, most often leading to overestimation of ICV. Although rare, there are cases where the ens SD ratio drops 

below 100%, indicating a potential underestimation of ICV. For example, this occurs in Fig. 2d for the Equatorial Atlantic 

around 1998 and in Fig. 2f for the Equatorial Pacific around 2010, possibly due to disproportionate sampling of regions with 300 

inherently low ICV. Importantly, these over- and underestimations of ICV are not apparent from observational datasets 

alone, due to their limited spatial and temporal coverage and difficulties in disentangling ICV from observational datasets. 

Thus, these sampling-related biases represent a form of hidden uncertainty, uncertainties that can only be revealed when 

combining observational data with ensemble-based modeling. Therefore, caution is warranted when interpreting ICV 

estimates based solely on observational datasets. 305 

 

Another notable feature is the decrease in spatial data coverage observed in many regions since the 1980s (Figs. 1d and 2). 

This reduction is associated with an overall increase in the ensemble SD ratio, suggesting that time-varying hidden 
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uncertainty may affect estimates of the long-term trend in △O2_300. Moreover, extremely sparse data coverage at certain 

times can lead to artificial signals in the △O2_300 time series, due to large fluctuations in the ICV range, as observed in the 310 

ensemble-based time series analyses. For example, the spike detected in the South Pacific Ocean in 2002 (Fig. 2k) may be a 

result of sampling bias due to the limited number of observations. The ensemble spread notably widens in this year, 

highlighting the potential influence of sampling variability on ICV estimates. These data gaps could thus introduce biases 

into the △O2_300 time series, complicating the detection and interpretation of long-term oxygen trends. Consistently across 

regions, the ens SD ratio of △O2_300 tends to increase as spatial data coverage decreases (Figs. 1d and 2). This relationship 315 

highlights the importance of considering observational sampling effects, particularly when evaluating linear trends in 

△O2_300 to assess ocean deoxygenation. 

3.2 Effects of Observational Sampling Bias on Dissolved Oxygen Trend 

To assess the impact of observational sampling bias on the estimated trends of △O2_300, we analyze both observational data 

and ensemble simulations, applying the same spatiotemporal data gaps (Figs. 1b and 1d), over two distinct periods: 1981–320 

2000 (representing a 20-year, shorter-term trend) and 1961–2010 (representing a 50-year, longer-term trend). The 20-year 

period was selected because the observed global △O2_300 concentration shows a marked decline after the 1980s (Figs. 1a and 

1c). Additionally, on this timescale, the influence of ICV on the linear trend is relatively large, as the △O2_300 spectrum 

exhibits enhanced variance at decadal scales (Ito and Deutsch, 2010). Short-term trends are therefore more sensitive to ICV-

related uncertainties than longer-term trends. Including the 50-year period allows us not only to provide a longer-term 325 

comparison but also to place our findings in the context of previous studies on the detection and quantification of 

anthropogenic deoxygenation, based on both observational and modeling approaches (e.g., Ito et al., 2017; Oschlies et al., 

2017). 

 

A comparison of △O2_300 trends between the observationally sub-sampled and fully sampled ensemble members shows a 330 

tendency for trend overestimation in data-sparse regions, both for the 20-year and 50-year periods (Figs. 3a and 3b). For 

global △O2_300 trends, a standard metric used in previous studies (e.g., Schmidtko et al., 2017), the ranges of the 20-year and 

50-year trends are 0.32 and 0.12 mmol m⁻³ yr⁻¹ for the sub-sampled cases, and 0.27 and 0.09 mmol m⁻³ yr⁻¹ for the fully 

sampled cases, respectively (Figs. 3a and 3b; values indicated above box plots). Although the range of trends slightly 

increases in the sub-sampled cases, this increase is much smaller than the amplification seen in the ens SD ratio shown in 335 

Fig. 1d and 2. While the ens SD ratio, reflecting variability in the △O2_300 time series due to sampling bias, can reach up to 

500%, the corresponding increase in trend range is limited to approximately 150%. Notably, both increases and decreases in 

trend ranges are also observed in some data-dense regions, such as the North Atlantic and Pacific Oceans (e.g., Fig. 3a, Natl 

and NPaci), suggesting that uncertainties in the △O2_300 time series do not directly scale to the 20-year trend estimates. This 

may be because trend estimates are sensitive to the choice of start and end years (Fay et al., 2014; McKinley et al., 2011) and 340 
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because multi-decadal averaging reduces the influence of high-frequency variability that contributes to ensemble spread 

(Schlunegger et al., 2019, 2020). 

 

 

 345 
 

Figure 3: Box-whisker plots of linear trends in observed and simulated global and regional △O2_300, oxygen saturation 

(△O2_sat_300), and apparent oxygen utilization (-△AOU_300) over two periods: 1981–2000 and 1961–2010. Panels a)–f) show 

box-whisker plots of global and regional trends based on both fully sampled and sub-sampled time series. The regions are 

ordered from most data-rich (e.g., the North Atlantic Ocean) to most data-sparse (e.g., the South Pacific Ocean), according to 350 

the Spatiotemporal Coverage Metric (STCM; see Section 2.1). The plots display the ensemble mean and range of △O2_300, 

△O2_sat_300, and -△AOU_300 trends across all ensemble members for fully sampled cases (dark-colored boxes) and sub-

sampled cases (light-colored boxes). Black and gray crosses indicate trends from ensemble member #20, based on fully 

sampled and sub-sampled time series, respectively. Member #20 shows the largest negative global △O2_300 trend and is 
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highlighted as an example of pronounced ocean deoxygenation. Colored circles represent observed trends for △O2_300 and -355 

△AOU_300 from four datasets: Ito et al. (2017) (Ito17), Ito (2022) (Ito22), Roach and Bindoff (2023) (RB23), and Ito et al. 

(2024b) (Ito24). The △O2_sat_300 values are calculated from temperature and salinity data from ECMWF ORA-S4 and are 

used in all -△AOU_300 calculations. Note that △AOU_300 values are multiplied by −1 to align the sign convention with 

△O2_300 changes. 

 360 

To further evaluate the robustness of the observational sampling strategy, we analyze the contributions of thermal and 

biogeochemical mechanisms to the △O2_300 trends (Figs. 3c-f). Specifically, we decompose △O2_300 trends into a saturation-

driven component (△O2,sat_300), primarily determined by the ocean’s thermal state, and a component driven by circulation and 

biological processes, represented by apparent oxygen utilization (-△AOU_300). Our results suggest that, outside the Arctic 

Ocean, △O2,sat_300 is not the dominant driver of multi-decadal deoxygenation. Instead, the large ensemble simulations 365 

indicate that the pronounced deoxygenation observed during the 1980s–1990s is primarily attributed to changes in 

circulation and biology, as reflected in the magnitude of the -△AOU_300 component, a finding consistent with previous 

studies (Ito et al., 2017; Takano et al., 2023). Overall, the sub-sampled ensemble △O2_300 trends closely match the fully 

sampled trends, with sub-sampling introducing a bias of approximately 5%–25% in most regions (Fig. 3). This relationship 

holds not only for total △O2_300 trends but also for the individual components, △O2,sat_300 and -△AOU_300, except for the 370 

△O2,sat_300 trend in the Arctic, where deviations are larger. The equatorial Atlantic Ocean is the only region where the 50-year 

ensemble trends consistently show positive values (i.e., box plots in the positive range in Fig. 3b). Although tropical 

oxygenation is a common feature in future Earth system model (ESM) projections (Bopp et al., 2013; Cabré et al., 2015; 

Kwiatkowski et al., 2020; Takano et al., 2018), it has yet to be confirmed in observational records, possibly due to masking 

by both sub-sampling bias and ICV. Alternatively, this feature may reflect a systematic bias in model projections. 375 

 

The observed global △O₂_300 decreased by approximately 6 mmol m⁻³ over the 20 years after the 1980s, following a period 

of relative stability during the 1960s and 1970s (black lines in Figs. 1a and 1c; see also Ito et al., 2017). Our analysis 

suggests that this decline cannot be entirely attributed to the forced response alone, implying a substantial contribution from 

ICV. Supporting this, the ens SD ratio increased after the 1980s, reaching around 200% by the year 2000 (Fig. 1d). This 380 

increase coincides with the period of pronounced observed decline in global △O2_300. The 20-year observed global △O2_300 

trends during the 1980s partly fall outside the range of trends simulated by the ensemble, which accounts for ICV (Fig. 3a). 

Specifically, two observational estimates (Ito17 and RB23) exceed the simulated range, while the other two (Ito22 and Ito24) 

remain within it, underscoring the uncertainties inherent in the observed trends. Regional observations indicate that the 

global decline is driven by consistent negative trends across multiple regions. In most regions, the observed 20-year △O2_300 385 

trends fall below the lower quartile (25th percentile) of the ensemble distribution (see colored circles in Figs. 3a and 3b), 

though this varies by dataset. Ensemble simulations highlight the North Atlantic and North Pacific as key contributors to the 
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global decline, partly due to higher data coverage in these regions. The 20-year trends in these basins frequently reach values 

below -0.4 mmol m3 yr-1. While most observed regional trends fall within the ensemble range, the models generally fail to 

reproduce the magnitude of the global observed △O2_300 trend reported by three datasets (Ito17, RB23, and Ito24). This 390 

discrepancy likely arises because strong negative trends in different regions do not always occur simultaneously in individual 

ensemble members. This point is exemplified by ensemble member #20, which exhibits the largest negative global △O2_300 

trend (see, for instance, the South Atlantic trends for member #20, marked by black and gray crosses in Fig. 3). The 50-year 

global △O2_300 trend exhibits similar behavior, although regional trends differ slightly from the 20-year results (Figs. 3a and 

3b). As expected, the magnitudes of 50-year trends are smaller, yet the influence of ICV remains significant in many regions, 395 

as indicated by the comparison between the forced trend and the ensemble spread over the 1961–2010 period. 

3.3 Effects of Observational Sampling Uncertainties on Spatial Patterns of Dissolved Oxygen Trend 

The large ensemble simulations and observed △O2_300 trends exhibit diverse spatial patterns at both the 20-year and 50-year 

timescales, mainly driven by internal climate variability (ICV) (Fig. 4). Although trend magnitudes are generally larger over 

the shorter term, ICV strongly influences both timescales, as shown by comparisons between single ensemble members and 400 

the forced response (Figs. 4ab, 4ef). For comparison, we selected ensemble member #20, which displays the largest negative 

global △O2_300 trend among the 100 ensemble members (see global ocean in Figs. 3ab). To recall, this member’s global 

△O2_300 timeseries most closely resembles the observed △O2_300 timeseries. The ensemble member shows diverse patterns, 

with both strong negative and positive regional trends. The forced response contributes locally, such as near oxygen 

minimum zones (OMZs) and parts of the Southern Ocean, but ICV largely determines the overall trend patterns. The 405 

observational trend based on Ito17 is notably spatially heterogeneous compared to the model results (Figs. 4g-h), likely 

reflecting sparse and uneven observational coverage. This heterogeneity is also evident in comparisons between fully 

sampled and observationally sub-sampled ensemble cases (Figs. 4a-d). In contrast, the mean trend from the three recent 

observational datasets (Ito22, RB23, and Ito24; Figs. 4ij) appears more spatially smooth. This may result from the ensemble 

averaging of datasets, which tends to smooth regional differences. Nonetheless, negative trends in the North Pacific, tropical 410 

Pacific, and Southern Ocean appear consistent across datasets. Our results also indicate that sampling bias can lead to sign 

reversals in some regions. For example, in the central equatorial and southeastern Pacific, the 50-year trend differs between 

sampling cases (Figs. 5a–d). Another factor contributing to spatial heterogeneity may be model limitations in resolving 

mesoscale processes, such as eddies, which coarse-resolution models do not capture. Furthermore, the model tends to 

underestimate both the variability and trends of △O2_300 within OMZs when compared to observations (Figs. 4a-d, 4g-j). 415 

Similar biases have been reported in other CMIP5 and CMIP6 models (Cabré et al., 2015; Ilyina et al., 2013; Séférian et al., 

2020). In MPI-ESM 1.1, OMZ extent is generally overestimated (see also Fig. A1). In these regions, near-zero 

climatological oxygen levels suppress oxygen consumption, which may reduce the variability and trend amplitude of O2_300. 

Finally, the number of observations used in our sub-sampled trend analysis varies across grid points. In some areas, limited 

observational coverage may result in local △O2_300 trends appearing opposite to the true underlying trend, a limitation not 420 
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apparent when examining observational data alone. We also note that our assessment of sampling bias is based on model 

ensemble simulations, which may overestimate the confidence in the ability of sampling bias correction to accurately capture 

regional trend directions. 

 

 425 
 

Figure 4: Spatial patterns of △O2_300 trends over two periods, 1981-2000 (20-year) and 1961-2010 (50-year), from a single 

ensemble member (#20), the forced trend (ensemble mean), and observational datasets. Panels a) and b) show the 20-year  

and 50-year trends from ensemble member #20, based on fully sampled data. Panels c) and d) show the corresponding trends 
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from ensemble member #20, based on observationally sub-sampled data. Panels e) and f) display the fully sampled trends 430 

based on the ensemble mean (forced trend). Sub-sampling is applied to the model output at each grid point and time step, 

and linear trends are calculated from the sub-sampled time series. Ensemble member #20, selected for having the largest 

negative global △O2_300 trend among the 100 ensemble members, is highlighted as an example of pronounced ocean 

deoxygenation. Panels g) and h) show △O2_300 trends derived from the Ito17 observational dataset. Panels i) and j) present 

trends based on the mean of three observational datasets: Ito22, RB23, and Ito24. 435 

4 Implications of Near-Future Observational Sampling Bias for Interpreting Global Deoxygenation 

4.1 Extending Sub-Sampling to Near-Future Projections 

The Biogeochemical Argo (BGC-Argo) program (https://biogeochemical-argo.org/) is an international initiative that deploys 

free-drifting robotic floats to collect high-quality biogeochemical data from the global ocean. The program aims to establish 

and maintain a global array of approximately 1,000 autonomous profiling floats for long-term ocean monitoring 440 

(Biogeochemical-Argo Planning Group, 2016). With current and planned BGC-Argo deployments in mind, we designed a 

set of hypothetical sub-sampling experiments using model outputs from near-future projections (2020–2039). The overview 

of these experimental designs is presented in Fig. 5. The experiments explore the potential impacts of limited observational 

coverage on estimating near-future decadal △O2_300 trends. We conducted three types of sub-sampling experiments - sustain, 

plan, and cut - based on random sampling from the native model output (MPI-OM), with an approximate horizontal 445 

resolution of 1.5 degrees (~150 km). These scenarios reflect varying assumptions about the future evolution of BGC-Argo 

float coverage after 2020 (Stoer et al., 2023). We applied a Python random number generator to select model grid points 

annually, with sample locations varying over time. 

 

• In sustain, the sample size remains fixed at N = 460 (the approximate number of floats in 2020, Stoer et al., 2023) 450 

throughout the 20-year period (2020–2039). 

• In plan, the sample size gradually increases from N = 460 to N = 1,059 by 2028, reaching the global coverage target 

of ~1,000 floats, and remains stable thereafter. 

• In cut, we simulate a hypothetical scenario where the sample size drops by half in 2026 (from N = 834 in 2025 to N 

= 417), representing an unforeseen reduction in measurements. 455 

 

These sub-sampling scenarios are designed to test: (1) if the sampling effort remains unchanged, (2) if it increases as planned 

until 2028 and stabilizes afterward, and (3) if it unexpectedly declines from 2026. We assess how these scenarios affect the 

estimation of near-term ocean deoxygenation by analyzing their impact on the 20-year (2020-2039) linear trend of △O2_300. 
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Our experiments assume that, given the model’s horizontal resolution (approximately 1.5 degrees), each grid cell represents 460 

variability over at least that scale. By comparison, the original Argo design was based on a horizontal decorrelation scale of 

about 300 km (about 3 degrees), treating individual profiles as statistically independent at that spacing. Thus, the model 

resolution nominally resolves finer-scale variability than the Argo sampling design. However, actual ocean decorrelation 

scales vary widely (25–400 km), depending on region, depth, and dynamics (Purkey and Johnson, 2010). Hence, a 1.5-

degree scale may overlook finer features or anisotropic patterns. Finally, we assume that BGC-Argo floats remain stationary 465 

and sample from fixed model grid points, following the approach used in Majkut et al. (2014) for surface CO₂ studies. While 

simplifying the experimental design, this assumption may introduce bias into the reconstructed data fields (Kamenkovich et 

al., 2011). 

 

 470 
 

Figure 5: Schematic illustration of the three sub-sampling experiment designs based on model output. The time series plot 

illustrates the evolution of sample numbers under various scenarios (sustain, plan, and cut), inspired by current and planned 

BGC-Argo deployments (Biogeochemical-Argo Planning Group, 2016; Stoer et al., 2023). The maps provide examples of 

randomly selected sample locations corresponding to different total sample sizes. 475 
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4.2 Implications of Future Observational Sampling Bias for Quantifying Near-Future Global Deoxygenation 

What are the potential consequences of limited observational coverage on detecting near-future deoxygenation under global 

warming? Using three near-future sub-sampling experiments (see Section 4.1) based on large ensemble simulations, we 

assess how varying sampling sizes influence the detection of dissolved oxygen (△O2_300) trends from 2020-2039. We begin 

with the fully sampled case (Fig. 6d), comparing the ensemble-mean global △O2_300 trends across three emission scenarios, 480 

RCP2.6, RCP4.5, and RCP8.5. As expected, the RCP8.5 scenario shows the strongest negative △O2_300 trend due to 

intensified warming. The magnitude of the ensemble mean global △O2_300 trend decreases by 34% between RCP8.5 and 

RCP2.6 (from −0.064 mmol m⁻³ yr⁻¹ in RCP8.5 to −0.022 mmol m⁻³ yr⁻¹ in RCP2.6). Climate mitigation under RCP2.6 thus 

appears to significantly reduce the likelihood of detecting negative △O2_300 trends: the detection probability drops from 

91.0% in RCP8.5 to 68.0% in RCP2.6. Despite differences in mean trend values, the spread (standard deviation) of 20-year 485 

trends among ensemble members remains similar across scenarios, ranging from 0.039 to 0.046 mmol m⁻³ yr⁻¹. The 

ensemble probability density functions (PDFs) of the global △O2_300 trends are approximately symmetric across scenarios, 

as indicated by the nearly equal probabilities of trends falling above or below the ensemble mean (μ) (e.g., probabilities > μ 

and < μ in Fig. 6). 

 490 

Examining global △O2_300 trends from the near-future sub-sampling experiments (Fig. 6), we find that the forced response is 

consistently overestimated across all scenarios in “sustain”, ranging from 117% to 180%. This bias is most pronounced 

under the RCP2.6 scenario, suggesting that the assessment of mitigation impacts on global △O2_300 trends could be 

significantly distorted if observational coverage remains at the 2020 level (Fig. 6a). The planned expansion of the BGC-Argo 

network appears effective in reducing this bias, bringing the forced response estimates closer to those obtained in the fully 495 

sampled (model truth) case (Fig. 6bc). Interestingly, even when the number of samples drops sharply after 2026 (as in the 

"cut" experiment), both the estimated forced trend and the probability of detecting negative global △O2_300 trends remain 

nearly unchanged across scenarios (Fig. 6bc). This suggests that, at the global scale, a relatively uniform spatial sampling 

may sustain detection skill despite a reduction in the number of observations. However, this finding is based on global 

averages; regional analyses may reveal a different sensitivity to sampling changes. We also note that in both the “plan” and 500 

“cut” experiments, the probability of detecting negative global △O2_300 trends decreases slightly (by 4%–8%) in the RCP4.5 

and RCP8.5 scenarios compared to the fully sampled case. These results highlight that time-dependent variations in sampling 

effort can influence global trend estimates, particularly under scenarios of strong warming, and emphasize the need for 

careful data treatment and trend analysis. Finally, it is essential to acknowledge that this assessment concentrates solely on 

the global △O2_300 metric. The detection and interpretation of regional △O2_300 trends may exhibit stronger sensitivity to 505 

changes in sampling coverage. 
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 510 
 

Figure 6: Histograms and probability density functions (PDFs) of 20-year linear trends (2020–2039) of simulated global 

△O2_300 from ensemble members under three future emission scenarios and three sub-sampling experiments (see Section 4.1 

for details). Panels a) - c) show histograms and PDFs of global △O2_300 trends for the “sustain” (a), “plan” (b), and “cut” 

(c) sub-sampling experiments, each for three scenarios: RCP2.6 (green), RCP4.5 (orange), and RCP8.5 (red). Panel d) 515 

presents the same analysis as panels a)–c), but for the fully sampled case. Summary statistics of the 20-year trend 

distributions are shown in each panel, including the ensemble mean trend (μ), the ensemble spread (standard deviation, σ), 

the probabilities of positive and negative global △O2_300 trends (> 0 and < 0), and the probabilities of trends exceeding or 

falling below the ensemble mean (> μ and < μ). 

5 Summary and Discussion 520 

The expansion of the global ocean observing system is progressing, supported by the introduction of new autonomous 

platforms such as biogeochemical floats (e.g., BGC-Argo) and gliders equipped with ocean biogeochemical sensors 

(Biogeochemical-Argo Planning Group, 2016; Claustre et al., 2020; Stoer et al., 2023). The scientific community aims to 

deploy approximately 1,000 biogeochemical floats in the coming years to monitor ocean biogeochemistry and marine 

ecosystem stressors (Biogeochemical-Argo Planning Group, 2016; Germineaud et al., 2019). Our assessment of historical 525 

observational biases in dissolved oxygen, together with recent findings by Gloege et al. (2021) on air-sea CO2 flux, suggests 

that spatiotemporal data gaps must be carefully considered when designing observing systems, interpreting observational 

data, and constructing ocean biogeochemical metrics such as area-weighted time series. Changes in the number and 

distribution of observations can introduce additional uncertainties, posing challenges for the interpretation of global and 

regional mean-based indicators. 530 

 

In this study, we find that spatiotemporal gaps in observations can introduce significant bias into estimates of internal 

climate variability (ICV) in oceanic O₂. This bias can substantially inflate the apparent magnitude of ICV, increasing it by up 

to 150% at the global scale and by more than 500% in data-sparse regions when interpreting historical △O2_300 trends. 
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Considering observational sampling bias, our analysis reveals that the combined effect of ICV and sampling bias can 535 

introduce a deviation of 5%–25% in estimated multi-decadal △O2_300 trends. Furthermore, our results suggest that the 

observed decline in △O2_300 cannot be fully explained by the forced response alone, indicating a significant contribution from 

ICV, with sampling bias adding further uncertainty. Although uncertainties in the △O2_300 time series do not translate 

directly into uncertainties in multi-decadal trend estimates, the calculated trends may still depend on the selected analysis 

period (Fay et al., 2014; McKinley et al., 2011). Additionally, time-varying changes in observational coverage may introduce 540 

unexpected uncertainties in assessing long-term trends of deoxygenation. 

 

Observed decadal variability and the decline in global △O2_300 levels may be biased by signals originating from data-dense 

regions, such as the North Atlantic and North Pacific Oceans, where ICV is substantial. A reduction in observational 

coverage after the 1980s could also introduce spurious signals, potentially affecting both global and regional △O2_300 trend 545 

estimates. Power spectrum analysis of the large ensemble simulations (figure not shown) suggests that ICV may also 

influence the temporal variability of the regional △O2_300 time series. To accurately assess the spectral characteristics of 

regional △O2_300 variability, a more uniform observational sampling is required, an objective that cannot be achieved without 

expanding both the number and spatial coverage of observations. 

 550 

Our study suggests that ICV and sampling bias play a significant role in explaining the magnitude of historical ocean 

deoxygenation. This has important implications for interpreting the apparent bias in Earth System Models (ESMs), which 

often simulate less deoxygenation than observed during the historical period. Specifically, if the historical △O2_300 trend 

contains a substantial contribution from ICV, and if this contribution is overstated due to sampling bias, then the 

underestimation of historical deoxygenation by ESMs may reflect insufficiently simulated variability (Oschlies et al., 2017, 555 

2018), rather than deficiencies in representing the forced deoxygenation trend itself. In multi-member ESM ensemble mean, 

such as those in CMIP experiments, ICV averages out over decadal timescales, resulting in a small contribution to ensemble 

mean trends. Therefore, if observed ICV enhances negative △O2_300 trends, CMIP ensembles may systematically 

underestimate historical deoxygenation for reasons unrelated to model fidelity. This bias is further compounded when 

limited observational coverage skews trend estimates toward more negative values. The effect is exacerbated if the simulated 560 

magnitude of ICV is also underestimated. 

 

The discrepancy between observed and simulated △O2_300 trends may also arise from limitations within ocean 

biogeochemical models. Common deficiencies in CMIP6-class models include the inability to represent key ecosystem 

processes, such as changes linked to ocean acidification (Doney et al., 2009; Hoegh-Guldberg et al., 2010), shifts in 565 

phytoplankton size structure (Barton et al., 2016), diel vertical migration of zooplankton (Bianchi et al., 2013), variable 

stoichiometric ratios (Galbraith et al., 2015; Kwiatkowski et al., 2018), heterogeneous reactivity of particulate organic 

carbon (Aumont et al., 2017), temperature-dependent remineralization (Laufkötter et al., 2017; Segschneider and Bendtsen, 
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2013), and particle aggregation and sinking dynamics (Maerz et al., 2020). These biological and biogeochemical processes 

influence O₂ variability and trends across a range of timescales. Additionally, models with coarse spatial resolution, such as 570 

those used in our study, struggle to resolve key physical processes, including mesoscale and submesoscale eddies and the 

equatorial current system (Getzlaff et al., 2013; Gnanadesikan et al., 2013). A more detailed overview of these limitations 

and their potential impacts is provided by Oschlies et al. (2017, 2018). Moving forward, analyses of CMIP6 multi-model 

ensembles, especially those including more advanced biogeochemical schemes (Séférian et al., 2020), may help clarify 

where and how such limitations affect our understanding of oxygen variability and trends. 575 

 

Using idealized future sub-sampling experiments based on current and planned BGC-Argo float deployments 

(Biogeochemical-Argo Planning Group, 2016; Stoer et al., 2023), we show that the estimation of the forced △O2_300 trend is 

not substantially biased by the limited and time-varying sample size of the present and near-future observing networks, at 

least over the next two decades under business-as-usual and intermediate scenarios. The recent expansion of the BGC-Argo 580 

network over the past five years appears to be effective in reducing sampling bias, as demonstrated by our sub-sampling 

experiments with large ensemble simulations (Fig. 6). This is particularly relevant for assessing decadal-scale ocean 

deoxygenation under climate mitigation efforts. However, accurately quantifying ICV with a limited number of observations 

remains both systematically challenging and essential for reliable estimation of the near-future forced O₂ trend. Our findings 

emphasize the importance of ongoing efforts to strengthen global ocean biogeochemical monitoring, including ship-based 585 

programs (e.g., GO-SHIP program; Sloyan et al., 2019), BGC-Argo, and glider observations, for improving both global and 

regional assessments of O₂ variability. Our results also highlight that globally uniform sampling, as currently planned, can 

help reduce uncertainty in detecting the forced trend. Moreover, large ensemble simulations of Earth System Models (ESMs) 

offer valuable methodological platforms for evaluating observational strategies under global warming. Strengthening 

collaboration between observational programs and ensemble modeling will be essential for guiding future ocean monitoring 590 

in a changing climate. Although climate mitigation is expected to slow the long-term pace of ocean deoxygenation (Hoegh-

Guldberg et al., 2018), our analysis shows that near-future (2020–2039) decadal-scale assessments will likely remain 

uncertain due to ICV. Climate mitigation may reduce the magnitude of the forced negative O₂ trend, shifting its probability 

distribution towards less negative or even positive values. Nevertheless, the probability of observing a negative trend 

remains high, ranging from 68% to 91% depending on the scenario (Fig. 6). Accurate monitoring of such decadal-scale O₂ 595 

variability is critical not only for trend detection but also for understanding impacts on marine organisms and evaluating their 

capacity for adaptation and acclimation under long-term climate change. 

 

Assessing decadal trends is crucial for monitoring and informed decision-making, particularly in interpreting the near-term 

effects of carbon emission reductions over the next few decades (IPCC, 2018). While the ocean may respond to climate 600 

change mitigation efforts, this response could be obscured by strong trends driven solely by ICV (Marotzke, 2019; Spring et 

al., 2020). To avoid misinterpreting the impacts of mitigation, ICV-driven trends must be carefully quantified. The outcomes 
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of emission reduction efforts over the coming decades may have significant implications for marine biodiversity, partly 

because marine ecosystems strongly depend on oceanic oxygen levels (Bindoff et al., 2020; Levin et al., 2015, 2018; 

Sperling et al., 2016). The physiological impacts on marine life (Pörtner et al., 2017), ecological shifts, and habitat 605 

compression (Sato et al., 2017) expected in the near-future will likely result from the combined effects of anthropogenic 

change and the influence of ICV on oxygen distributions and related environmental factors, such as ocean temperature 

(Deutsch et al., 2015, 2024). 

 

Deoxygenation co-occurs with other human-driven changes in ocean biogeochemistry, such as pollution and ocean 610 

acidification, which interact with one another (Doney, 2010). Disentangling the magnitude of underlying drivers is a crucial 

step in understanding how their compounding effects impact marine organisms and ecosystems. For O2, our results indicate 

that this requires a broadly distributed observing network to quantify the uncertainties imposed by ICV. 

Data availability 

The access information for MPI’s large ensemble simulations, the Grand Ensemble Simulations (MPI-GE), can be found on 615 
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dataset (in NetCDF format) from Ito et al., (2017) can be found through this link 

(https://o2.eas.gatech.edu/Itoetal_GRL_2017/o2_aan_mcl1950-2016_0147_QC3.nc). The access information for the three 

observational dissolved oxygen datasets can be found in the references: Ito (2022), Ito et al. (2024b), and Roach and Bindoff 
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Appendix A: Model Evaluations 

A1 Climatological Distributions of Dissolved Oxygen near the Thermocline 640 

We conducted a climatological evaluation of simulated subsurface oxygen (O₂) using globally comprehensive observations 

to verify the realism of our model results. Overall, the large ensemble simulation from MPI-ESM1.1 (MPI-GE) reproduces 

the broad-scale climatological distribution of O₂ at around 300 m depth (O₂_300), near the thermocline. However, notable 

regional biases remain (Fig. A1). The spatial correlation coefficient is R = 0.91, and the root mean square error (RMSE) is 

36.8 mmol m⁻³. MPI-ESM1.1 tends to overestimate the O₂_300 deficit in tropical Oxygen Minimum Zones (OMZs), a known 645 

bias among CMIP models (Cabré et al., 2015; Ilyina et al., 2013; Séférian et al., 2020). The model may also underestimate 

the internal climate variability (ICV) of O₂_300 in these regions, likely because the simulated climatological mean state of 

O₂_300 is close to anoxic conditions in tropical OMZs (Fig. A1). In the tropical Pacific, the model fails to simulate the 

westward extent of low O₂_300 seen in observations, resulting in a positive bias in the eastern tropical Pacific (Fig. A1). This 

climatological bias could influence regional estimates of O₂_300 variability, expressed as ensemble or temporal standard 650 

deviation (Section 3). Other biases include over-oxygenated water in the subpolar North Pacific and underestimated O₂_300 

levels in the mid-latitude Southern Ocean, where sub-Antarctic surface water forms. The cause of high oxygen 

concentrations in the subpolar North Pacific is unclear, but it may be related to weak upwelling in the model, which reduces 

the supply of oxygen-poor deep water. In the mid-latitude Southern Ocean, the unclear, but it may be related to weak 

upwelling in the model, which reduces the deficit, may result from weak surface and intermediate water mass formation, 655 

limiting oxygen supply from the surface to the ocean interior. These biases, related to upwelling, water mass formation, and 

the O₂_300 mean state, may also affect O₂_300 variability in these key regions. 
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 660 

Figure A1: Climatological O2_300 distributions from the model (ensemble mean of MPI-GE) and observations, World Ocean 

Atlas 2018 (Garcia et al., 2018).  
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