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Abstract. Glacier and valley winds are typical characteristics of the microclimate of glacierised valleys. The speed of such

winds determines the turbulent heat flux, which contributes to ice melt. Sparse in-situ meteorological measurements and the

inability of large-scale climate data products to capture such local winds introduce uncertainty into glacier- to global-scale

mass-balance calculations. Here, we propose an empirical model having three parameters, namely, the mean wind speed, the

sensitivity of the diurnal winds to temperature, and a response time, to predict the mean summertime diurnal wind speed on5

valley glaciers based only on reanalysis temperature. Utilising data from 28 weather stations on 18 valley glaciers across the

globe, we show that the model reproduces the observed mean summertime diurnal wind speed reasonably well. Furthermore,

we show that the three model parameters can be estimated at any glacier using a few topographic variables, allowing prediction

of wind speed on ungauged glaciers. A leave-one-out analysis of the stations suggests a root-mean-squared error of 0.76 ms−1

on average, which is a ∼300% improvement over a standard reanalysis product. The performance of the model is largely10

independent of the number of stations available for calibration, as long as it is 20 or more. More work is needed to explain

the physical mechanisms underlying the predictability of the mean diurnal wind speed on ungauged glaciers based solely on

reanalysis temperature and a few topographic variables. The presented model can improve wind speed estimates on ungauged

glaciers, leading to better glacier mass-balance calculations at various spatial scales.

1 Introduction15

The microclimate of a glacierised valley has a characteristic system of local winds consisting of a glacier wind and a valley

wind (e.g., Oerlemans, 2010). Glacier wind is a shallow (of the order of ∼ 101 m), persistent, katabatic wind flowing down-

valley, consisting of air cooled by the ice surface acted upon by a down-slope buoyancy forcing (Oerlemans, 2010). Away from

the glacier, as the valley floor and the hillsides are heated up during the day by solar insolation, the buoyancy forcing acts

up-slope, leading to a daytime up-valley valley wind that is relatively deeper (of the order of ∼ 102 m) (Nickus and Vergeiner,20

1984; Vergeiner and Dreiseitl, 1987; Broeke, 1997a, b). Near the glacier termini, glacier and valley winds compete with each

other at the surface level during the day (e.g., Cai et al., 2007). The buoyancy forcing in the valley, and consequently the
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valley wind, changes sign at night (e.g., Mannouji, 1982). This leads to a diurnal cycle of valley winds with up-valley (down-

valley) flow during the day (night). Both of these winds fall under the general category of thermally driven slope winds (Farina

and Zardi, 2023), which can be described approximately using the steady-state Prandtl model (Prandtl, 1952). This model25

describes the vertical profile of slope winds via a dynamic equilibrium between buoyant force and friction, and reproduces

the characteristic wind speed maxima or jet at a height of a few meters above the surface (e.g., Oerlemans, 2010). With a

thermodynamic approach to the problem, a simple energy exchange model was also successfully used to describe the effect of

katabatic cooling due to glacier wind on the variation of 2m-air temperature along the flow-line of glaciers (Greuell and Böhm,

1998; Ayala et al., 2015). During the ablation season, a linear relation between instantaneous glacier wind speed and ambient30

air temperature has been empirically observed (e.g., Björnsson et al., 2005). Similar trends have also been reported for valley

winds (e.g., Mannouji, 1982). This may imply that the buoyancy forces scale with the horizontal temperature gradient between

the valley and the surrounding terrain (Miller et al., 2003).

Accurate knowledge of instantaneous wind speed on glaciers is important for energy- and mass-balance studies, as surface

winds mediate energy and mass exchanges between the atmosphere and glacier surface (Cuffey and Paterson, 2010; Stigter35

et al., 2018). For example, the latent heat fluxes due to these winds determine sublimation rates of snow, which can cause up

to ∼ 10–90% of the total glacier melt (e.g., Yáñez San Francisco et al., 2025; Stigter et al., 2018; Mandal et al., 2022), and are

the dominant source of ablation for high-altitude glaciers in arid regions (Mandal et al., 2022). The net turbulent heat fluxes

due to these winds can cause up to ∼ 10–35% of the total melt on some glaciers in the Himalaya (e.g., Azam et al., 2014), the

Alps (e.g., Oerlemans et al., 1999), and Alaska (e.g., Klok et al., 2005). The turbulent fluxes are also important in the context40

of the climate response of glaciers. This is because the response of glaciers to the temperature change is largely determined

by the corresponding changes in the long-wave radiation balance and those in the turbulent heat fluxes (Oerlemans, 2001).

The near-surface lapse rate on a glacier surface varies depending on the presence of glacier or valley winds (Shea and Moore,

2010), which has important consequences for the accuracy of the glacier melt as estimated using simple temperature-index

models (Hock, 1999, 2003). The presence of extensive supra-glacial debris cover favours valley winds over the ablation zone45

(Collier et al., 2015), which also influences the glacier energy balance and the moisture transport along the valley (Lin et al.,

2021).

The above discussion highlights the importance of accurate wind speed estimates for glacier energy- and mass-balance

studies. However, the number of glaciers where in-situ meteorological measurements are (publicly) available is probably of

the order of ∼ 102 or less. This means a majority of ∼ 2.75× 105 glaciers on earth are ungauged. On these glaciers, coarse-50

scale reanalysis wind-speed products need to be used to estimate turbulent heat fluxes (e.g., Rupper and Roe, 2008; Rye

et al., 2010). Even on the small minority of the glaciers, where weather stations are present, the data are often available for

a relatively short period, or have gaps. On such glaciers, coarse-scale reanalysis data (e.g., Arndt et al., 2021; Kronenberg

et al., 2022) have to be used in conjunction with the weather station data. The coarse ≳10-km resolution reanalysis products

do not capture local-scale winds, and heavily underestimate their speed, and therefore, the associated turbulent fluxes (Draeger55

et al., 2024). The reanalysis temperature estimates on the other hand, owing to a longer spatial correlation length, are relatively

more accurate (Draeger et al., 2024). Various down-scaling methods are typically applied to these coarse-scale wind-speed
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products to estimate the local-scale winds. Statistical down-scaling models (Dujardin and Lehning, 2022; Hu et al., 2023),

which essentially fit coarse-resolution climate products to point-scale weather-station data, do not work well on data-scarce

mountain glaciers. Physically based methods (e.g., Burlando et al., 2007) that rely on simple scaling relations between local60

and large-scale climate variables cannot be applied on glacierised valleys as they do not incorporate the microclimatic effects

of glaciers. Dynamical down-scaling (Goger et al., 2022; Draeger et al., 2024; Tiwari and Bush, 2025) requires high-resolution

regional climate model simulations, which are computationally intensive and are impractical for regional- to global-scale

studies. Thus, there is a clear need for a simple physically-based model of wind speed on glaciers that can be applied to

ungauged mountain glaciers globally.65

This study proposes a simple model to estimate the mean diurnal cycle of wind speed during summer on any glacier, solely

based on easy-to-access reanalysis temperature and topographic data. In-situ data from a set of 28 on- or near-glacier weather

stations worldwide are used to calibrate the model. We evaluate the predictive power of this model on an ungauged glacier

using a leave-one-out analysis, and also assess its performance as a function of the number of stations used for calibration. We

discuss the limits of applicability of the model and its potential utility for ungauged glaciers.70

2 Data

2.1 Automatic weather stations

The hourly time series of wind speed and wind direction observed at 28 weather stations (Fig. 1a) were used in this study. The

data were primarily sourced from open-access online databases Zenodo and Pangaea, along with a few other publicly available

datasets from the literature (Supplementary Table S1). Since we were interested in on- or near-glacier winds, a spatial filter was75

applied to select the stations within a 1 km buffer around any glacier (Fig. 1b). Only stations with more than 8 weeks of data

during the summer months were used. For glaciers located in the northern (southern) hemisphere, the summer was assumed to

be 1st June to 30th September (1st December to 31st March).

This procedure yielded 28 weather stations located on or near 18 glaciers with an approximately global coverage (Fig. 1a),

though the southern hemisphere was under-represented. There were 14 stations from the Himalaya, 6 from the Canadian80

Rockies, 5 from the European Alps, and one each from Alaska, the Caucasus, and the Southern Andes. Out of the 28 stations,

27 were within latitudes of 28◦–80◦N, and only one station was in the southern hemisphere. The elevation of the stations

ranged from 196 m to 8323 m above sea level. The available stations sampled a wide variety of mountain glaciers, with their

lengths being in the range 2–45 km and the widths in the range 0.3–14.2 km. Six of the glaciers were debris-covered ones,

and the remaining 12 were clean glaciers (Supplementary Table S1). The number of days for which data were available ranged85

between 56–586, with a median of 198. For the 28 weather stations, the hourly time-series of 2-m wind speed for the summer

months were selected for all the available years (see Fig. 2a for an example). The mean summertime diurnal wind speed at a

station was calculated by averaging wind speeds for each hour of the day for the entire duration of the dataset (Fig. 2b).
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Figure 1. (a) Locations of 28 on- or near-glacier weather stations (red solid circles) used in this study. The circles have been artificially

spread out up to about 2◦ to avoid overlap. The number of stations in different regions are shown within light blue circles. (b) The relative,

scaled locations of the weather stations used in this study (red circles) with respect to an idealised glacier (light blue rectangle) having a unit

length and width. Here X and Y denotes the longitudinal and transverse distance, respectively.

2.2 Climate and topography

We used ∼9-km resolution ERA5-Land (ERA5L) hourly reanalysis data from European Centre for Medium-Range Weather90

Forecasts (Hersbach et al., 2020) to obtain the 2-m air temperature, matching the period and location of each of the 28 weather

stations. The temperature data were corrected for the station elevation using an hourly lapse rate derived by regressing the

temperature and elevation for all the pixels within a 100×100 km2 buffer centered around the station. The 10-m wind speed

from ERA5L was used for comparison with the 2-m windspeed predicted using the model developed here. We did not attempt

to correct the ERA5L wind speed to bring it to 2-m level, which was not straightforward as the vertical structure of the95

boundary layer above glaciers are complex (e.g., Draeger et al., 2024). Glacier geometry data from Randolf Glacier Inventory

7 (RGI7.0-Consortium, 2023) and topographic static variables derived from the 30-m resolution digital elevation model (DEM)

from ALOS World 3D (Tadono et al., 2014) was used for predicting the three model parameters (see Sect. 3.1.2).

3 Methods

3.1 Model100

3.1.1 Model for wind speed

Empirically, glacier wind is known to have a characteristic diurnal variation, with the maximum wind speed occurring in

afternoon (e.g., Obleitner, 1994; Oerlemans et al., 1999; Björnsson et al., 2005). It has also been noted that the timing of the
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Figure 2. a) Time-series of hourly wind speed (purple line) observed on Drang Drung Glacier in the western Himalaya, along with corre-

sponding ERA5-Land temperature (red line) and wind speed (light blue line) estimates during the summer season of 2023. b) The corre-

sponding mean diurnal cycles, with the standard error of mean shown as shaded bands.

wind speed maxima lags behind that of the temperature by a few hours (Oerlemans and Grisogono, 2002). The time series of the

observed wind speed and ERA5-derived temperature for Drang Drung Glacier, the western Himalaya illustrate this behaviour105

(Fig. 2). It may be seen that the hourly wind-speed signal is noisy (Fig. 2a). However, the mean diurnal wind speed has a

smooth variation, which appears to be a delayed response to the mean diurnal 2-m air temperature on this glacier (Fig. 2b).

A similar behaviour is known to be present in land-sea breeze and valley-wind systems, and consequently, both of the system

could be described well using simple linear-response models (e.g., Nickus and Vergeiner, 1984; Bjerknes, 1898).

Motivated by this, here we attempted to predict the mean diurnal wind speed on or near a glacier, using the corresponding110

mean diurnal temperature. We restricted our analysis to the summer season as most of the melt happens during this time. Let u

denote the mean summertime diurnal wind speed, which was decomposed into its mean value ū and the diurnal anomaly ud,

i.e., u
.= ū + ud. Similarly, the mean summertime diurnal temperature was decomposed into T̄ and Td. Then, we modelled ud

as a linear combination Td and its time derivative d
dtTd to obtain the following equation:

u = ū + sTd− sτ
d

dt
Td, (1)115

where s is the sensitivity of the mean diurnal wind-speed anomaly to that of temperature, and τ is the corresponding response

time. Note that this is not a traditional linear response model (e.g., Boyce et al., 2017; Oerlemans, 2005), where the forcing

Td is taken to be a linear combination of the response ud and its time derivative d
dtud. We chose the present version over a

traditional linear-response model because the derivative of wind speed was found to be relatively more noisy as compared to

5
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that of temperature (Fig. 2b), which resulted in poor fits. In our problem, the dominant frequency ω was diurnal (∼ 0.26 hr−1)120

and the typical response time τ was a few hours , so that ω2τ2 → 0. In this limit, both models were in fact equivalent to each

other (Supplementary Text S1).

3.1.2 Model parameters

To apply the above model to an ungauged glacier, one requires the knowledge of Td and three model parameters ū, s, and τ for

that location. It is possible to obtain Td from reanalysis datasets. However, the model parameters are not known a priori. Wind125

speeds on complex terrain have been linked to topography before (Helbig et al., 2017; Burlando et al., 2007). Motivated by

this, we test if the model parameters ū, s, and τ can be estimated for any given glacier as simple linear combinations of static

variables associated with glacier geometry and local topography etc., i.e.,

ū = βu
0 + βu

1 πu
1 + βu

2 πu
2 + · · · , (2)

s = βs
0 + βs

1π
s
1 + βs

2π
s
2 + · · · , (3)130

τ = βτ
0 + βτ

1 πτ
1 + βτ

2 πτ
2 + · · · , (4)

where πx
i denotes the ith static variable, and βx

i denotes the corresponding regression coefficient for the model parameter x.

We searched through a list of 37 static variables (Supplementary Table S2) to come up with the best set of predictors πx
i .

The static variables included 22 valley/glacier-geometry variables (like width and length of the glacier/valley), 12 topographic

variables (like relief and mean elevation), and three climatic variables (e.g., continentality). For deriving the topographic135

variables for a station location from the DEM, a combination of QGIS (QGIS Development Team, 2024) and Google Earth

Engine (GEE) (Gorelick et al., 2017) was used (Supplementary Table S2).

3.2 Calibrating model

3.2.1 Fitting Eq. 1 to observations

The model parameter ū for each of the 28 stations was obtained by averaging the observed mean summertime diurnal wind140

speed uobs. The remaining two model parameters s and τ were obtained for each station by performing a bilinear least-square

regression of Td and its derivative d
dtTd, against uobs

d (Eq. 1). This obtained 28 triplets of best-fit parameters {ū, s, τ} – one each

for each station. Here, the diurnal variation Td was obtained by decomposing the ERA5L-derived mean diurnal summertime

temperature T era, into its mean and the anomalies. The time derivative of Td was obtained by calculating the first differences.

The root-mean-squared errors (RMSE) of the fits were used to assess the model performance.145

3.2.2 Fitting Eqs. 2–4 to model parameters

The best-fit regression coefficients in Eq. 2 were obtained by regressing the 28 values of ū against the static variables. While the

RMSE of a multilinear regression generally decreases with the increasing number of static variables, we limited the number

of static variables used in Eq. 2 by the following method, to avoid over-fitting. For an n-variable regression model, there
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Figure 3. The three-step workflow for modelling the mean summertime diurnal wind on an ungauged glacier. (Step 1) Wind speed and ERA5

temperature in each station were fitted to Eq 1 separately, obtaining 28 triplets of best-fit ū,s, and τ . (Step 2) This set of 28 triplets—excluding

s and τ from Langenferner Glacier, as discussed in section 4.1.2—were used to obtain the best-fit multi-linear regression coefficients defined

in Eqs. 2–4. (Step 3) For any ungauged glacier location, the best-fit Eqs. 2–4 were used to predict the three model parameters, which along

with the ERA5L temperature, were fed to Eq. 1 to obtain the wind speed predictions.

were
(
37
n

)
possible choices for the static variables. For the given n, starting from n = 1, all such possible combinations were150

systematically tested to find the set of static variables having the lowest RMSE between the predicted and observed ū for the

28 stations. This procedure was repeated for n varying from 1, 2, 3, ... . The iteration was stopped when the reduction in RMSE

upon adding a new variable (n→ n+1) was smaller than the reduction achieved in the previous step (Supplementary Fig. S2).

The same procedure was then repeated to find the best-fit regression coefficients for Eqs. 3, 4, which were used to predict s and

τ , respectively, for any glacier.155
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3.3 Model performance

3.3.1 Performance of the calibrated model

The performance of the model (Eqs. 1–4), which was calibrated using the procedure described above, was tested on each of

the 28 weather stations. For each station, the mean summertime diurnal wind speed predicted by the calibrated model at hourly

time steps were compared with the corresponding observed values. Note that these predicted values were obtained from the160

calibrated equations, only using the corresponding ERA5L temperature and the static variables as inputs. The mean, median,

and interquartile range of the set of 28 RMSEs between the model predictions and observations were compared with the set of

RMSEs between the ERA5L products and observations.

3.3.2 Leave-One-Out-Cross-Validation

To evaluate the performance of the model for an ungauged location, we performed a Leave-One-Out-Cross-Validation (LOOCV)165

(Hastie et al., 2009). For this, we calibrated the model following the procedure described in Sect. 3.2 with 27 out of 28 weather

stations. The calibrated model was then used to predict the wind speed at the 28th weather station, using only the corresponding

ERA5L temperature and the static variables, and without using any in-situ data from the 28th station. We repeated this process

28 times, leaving out a different station each time, and computing the RMSE between the predicted and observed wind speeds

for the left-out station.170

3.3.3 Minimum number of stations required

We tested how sensitive the predictions from the calibrated model were to the number of stations available for calibration.

To do this, the model was calibrated only using a randomly selected subset of N stations. The step was repeated for N =

13,14, ...,28. For each subset, the model was calibrated exactly as discussed in Sect. 3.2, and then evaluated across all 28

stations by computing the RMSEs between the observed and predicted mean summertime diurnal wind speed. The mean175

RMSE was recorded. The exercise was repeated 100 times to obtain a set of 100 mean RMSEs for each N . The resulting

distributions of RMSEs were plotted as a function of N , to see if the RMSEs converge to a fixed value with increasing N . Note

that this exercise was also helpful in ascertaining the model performance on ungauged glaciers, as only a subset of glaciers

were used here to calibrate the model, which was then used to predict the wind speed on all 28 stations.

3.3.4 Time scale dependence of prediction180

We tested if the calibrated model, which was derived for mean summertime diurnal winds, could be used to predict wind speeds

across different time scales. We first filtered the ERA5L hourly temperature data over different time scales by taking 1-hr to

10-days moving average. For each station and each averaging window, the filtered temperature data were fed into the calibrated

model (Sect. 3.2) to obtain wind-speed predictions for that station and that time scale. The RMSE between the predicted and
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observed wind speeds was computed for each station, yielding a set of 28 RMSEs. For this RMSE calculation, the observed185

hourly wind speed data were also filtered using the same moving-average window.

3.4 Estimation of uncertainty

Assuming the uncertainties in the model parameters and the input temperature T era to be uncorrelated with each other, the

standard error of the predicted wind speed upred (Eq. 1), was estimated as follows (e.g., BIPM et al.):

σu =

√
σ2

ū + s2σ2
T +

(
T era

d − τ
dT era

d

dt

)2

σ2
s + s2τ2σ2

dT/dt +
(

s
dT era

d

dt

)2

σ2
τ . (5)190

Here σT and σdT/dt denote the standard errors of mean of T era and d
dtTd, respectively. These were estimated directly from

the hourly ERA5L temperature time-series and its first difference. For estimating the errors in the model parameters ū, s, and

τ , which were computed using Eq. 2–4, we used the following from (BIPM et al.):

σ2
x =

n∑

i=0

n∑

j=0

βx
i βx

j Cx
ij , (6)

where, x denotes the specific model parameter, n is the number of static variables used in the multilinear regression (Eqs. 2–4),195

and Cx
ij denotes the covariance of static predictor variables πx

i and πx
j .

4 Results

4.1 Model calibration

4.1.1 Fitting Eq. 1 to observations

Equation 1 accurately captured the mean summertime diurnal wind speed across all the weather stations. The results of fitting200

Eq. 1 to the observed wind speed on a selected weather station shown in Fig. 4a, b. Across the 28 weather stations, the quality

of fits varied (Fig. 4c), and the mean (median) RMSE was 0.24 (0.17) ms−1 with an interquartile range of 0.12–0.36 ms−1.

In contrast, a direct comparison between the ERA5L wind-speed product with the observed mean summertime diurnal wind

yielded a mean (median) RMSE of 1.98 (2.09) ms−1, with an interquartile range of 1.29–2.57 ms−1.

The distribution of best-fit model parameters ū,s, and τ obtained for the 28 stations varied significantly (Supplementary205

Fig. S2). The best-fit mean wind speed ū ranged from 0.96–5.12 ms−1 with a mean (median) value of 2.71 (2.96) ms−1.

The best-fit sensitivity s ranged from 0.0–1.04 ms−1◦C−1 with a mean (median) value of 0.26 (0.18) ms−1◦C−1. The best-fit

response time τ ranged between 0–6.3 hr, with a mean (median) value of 1.23 (0.68) hr.
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Figure 4. (a) Predicted mean summertime diurnal wind speed (red solid triangle) obtained by fitting Eq. 1 to observations (purple solid circle)

for a selected weather station (Place Glacier in British Columbia, see Supplementary table S1). (b) Comparison of the predicted and observed

mean wind speeds for this station. (c) Comparison of the predicted and observed mean wind speed for all 28 station, with different symbol

colours denoting different stations. The inset shows the distribution of RMSEs obtained in the fits.

4.1.2 Fitting Eqs 2–4 to best-fit model parameters

Following the procedure described in Sect. 3.2.2, the three model parameters ū,s, and τ yielded the following best-fit multi-210

linear relationships:

ū = (2.5± 0.5) + (0.12± 0.02)AR + (4.5± 0.8)× 10−3R1− (1.5± 0.2)× 10−3R5, (7)

s = (0.13± 0.09) + (2.2± 0.6)× 10−4Z̄10− (1.7± 0.5)× 10−3Zs, (8)

τ = (0.73± 0.50) + (1.9± 1.4)S0.1. (9)

In the above equations, AR is the ratio of the characteristic transverse and vertical scales of the valley, Rx denotes the x-km215

relief, Z̄x denotes the mean elevation within an x-km buffer around the station, Zs is the elevation of the weather station, and

S0.1 represents the topographic slope within a 0.1-km buffer around the station (Supplementary Table S2). In calculating the

local aspect ratio AR, the vertical scale was defined as the standard deviation of elevation within a 1-km buffer around the

station, and the horizontal scale was the width of the valley measured at the station location (see Supplementary Table S2).

The mean wind speed ūpred predicted using Eq. 7 compared favourably with the corresponding observed values, with a mean220

RMSE of 0.44 ms−1 (Fig. 5b). In comparison, the corresponding mean RMSE for the ERA5L product was 1.88 ms−1, which

was 4.2 times higher. In fact, ERA5L products showed a relatively large negative bias, with a mean bias of −1.7 ms−1. Note

that while for 27 out of the 28 stations AR <40, Kennikot Glacier is an outlier with AR of 210. This led to an unphysically

large mean wind speed (> 24 ms−1) on this glacier while using Eq. 7. This suggests that the linear relationship between AR

and ū breaks down at such large AR. To avoid this issue, we apply an ad-hoc cut-off on the contribution of the second term225

of Eq. 7 for Kennikot Glacier, corresponding to a value AR = 40. Furthermore, winds at Langenferner Glacier was found to
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Figure 5. (a) Prediction of mean wind speed using static variables. The model prediction is given as red triangles, and ERA5 wind speed is

shown as blue circles. (b) Mean wind speed plotted against most important predictor, 5-km relief. The RMSEs shown are mean values for

the 28 stations.

be almost out of phase with temperature (Supplementary Fig. S1), gives rise to unrealistic response times. Therefore, s and τ

from this station was left out when fitting Eqs. 3–4 to the 28 triplets of {ū, s, τ} in section 3.2.

The hourly anomaly of the mean summertime diurnal wind speed predicted using Eqs. 1, 8–9, matched the observations

reasonably well with an average RMSE of 0.45 ms−1, although there was some scatter (Fig. 6c). In comparison, ERA5L230

predicted the diurnal anomaly with an average RMSE of 0.47 ms−1. While these average RMSEs were comparable, the

present model prediction captured the diurnal range of wind speed better, which were systematically underestimated by ERA5L

(Fig. 6c).

4.2 Model performance

4.2.1 Performance of calibrated model235

The calibrated model (Eqs. 1, 7–9) was able to capture the mean summertime diurnal wind speed better than the corresponding

ERA5L product for all the weather stations (Fig. 7). For example, the RMSE of the predicted wind speed had a mean (median)

value of 0.69 (0.6) ms−1, and an interquartile range of 0.47–0.87 ms−1 (Fig. 7). In comparison, the ERA5L wind speed product

had about three times higher mean (median) of 1.99 (2.09) ms−1, and a larger interquartile range of 1.29–2.57 ms−1.

4.2.2 Leave-One-Out-Cross-Validation240

In general, the result of the LOOCV was satisfactory, and the model fitted to data from 27 stations was able to predict the

mean diurnal wind speed at the left-out station reasonably well (Supplementary Fig. S3). In comparison to ERA5L, the set of
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Figure 6. (a-b)The best-fit parameters sensitivity s and response time τ are plotted against their most important static predictors, namely,

mean elevation within a 10-km buffer (Z̄10), and surface slope within a 0.1-km buffer (S0.1). (c) A comparison of the hourly diurnal wind

speed anomaly ud predicted using the model (red solid triangles) and that from the observations. The corresponding comparison for the

ERA5L products are also shown (blue solid circles).

28 RMSEs of the wind-speed predicted for the left-out station by the corresponding calibrated model had about 3 times lower

mean (0.76 ms−1), median (0.65 ms−1), and interquartile range (0.52–1.01 ms−1).

4.2.3 Minimum number of stations245

As long as the number of weather stations available for calibration N was 20 or more, the predictions of the calibrated model

remained relatively unaffected (Fig. 8). For example, the mean RMSE for the predictions over all the 28 stations was 0.77 ms−1

for N = 20, which was within 13% of the mean RMSE value of 0.69 ms−1 obtained when all N = 28 stations were used for

calibration.

4.2.4 Time scales of prediction250

While the calibrated model performed better than ERA5L wind speed product across all time-scales, its performance reduced at

finer time-resolutions. For moving-average windows of length greater than 96 hr (3 days), the distribution of RMSEs between

observed and predicted winds across the 28 stations had a mean value below 1 ms−1. For shorter time-averaging lengths, the
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Figure 7. (a) The mean summertime diurnal wind speed predicted using Eqs. 1, 7–9 (red solid triangle) were compared with corresponding

observation. The corresponding comparison for ERA5L wind speed are also shown (blue solid circles). The inset shows the distribution of

RMSEs for 28 stations for both our model (shown as light pink histogram) and ERA5 (shown as light blue histogram).

mean RMSE increased systemically, with RMSE of∼ 1.7 ms−1 for hourly predictions. In comparison, the ERA5L wind speed

product had a mean RMSE of more than 2 ms−1 across all the time-averaging lengths.255

5 Discussion

5.1 Predicting wind speed on ungauged glacier

The proposed model for the mean summertime diurnal wind speed (Eq. 1), which computed the local wind speed on/around

glaciers with ERA5L temperature, worked reasonably well for all the 28 weather stations. This may not be unexpected given

the existing studies, where thermally driven wind systems such as land-sea breezes and valley-wind circulation have been260

successfully described as a linear response to diurnal pressure-gradient forcing (e.g., Nickus and Vergeiner, 1984; Vergeiner

and Dreiseitl, 1987; Bjerknes, 1898).

The novel result in this study is that the three associated model parameters ū,s, and τ could be predicted for any given

glacier using the calibrated multilinear Eqs. 7–9, without the need for any in-situ data. Compared to the wind-speed predicted
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directly from the best-fit Eq 1 (Sect. 4.1.1), the wind-speed predicted using the model parameters obtained from the static265

variable (Eqs. 7–9) were found to be reasonably accurate (Sect. 4.2.1). It is apparent from the LOOCV analysis (Sect. 4.2.2)

and the performance of the models calibrated with a smaller subset of stations (Sect. 4.2.3), that the improved performance the

present model on ungauged glaciers, as compared to the corresponding ERA5L reanalysis wind-speed products is quite robust.

The present model, thus, appears to be a reliable and numerically-efficient alternative to the presently available methods and

products, which can be used for estimating local wind speed on ungauged glaciers.270

Interestingly, the model appears to perform quite well for the 13 stations that are located near a glacier, and not on it. In

addition, it works well for 11 stations located on/near debris-covered glaciers (Supplementary Fig. S1). In all these 16 cases, the

station locations are likely to be dominated by valley winds, and not by glacier winds (Supplementary Fig. S1). This suggests

that both valley and glacier winds are captured by the same model to a good approximation. Also, it appears that model, which

is calibrated for the mean diurnal wind speed over the entire summer season, is still useful at other times scales as well (Sect.275

4.2.4). This is because the variability of the mean diurnal wind speed averaged over several days is less than that of the mean

wind speed between glaciers (Fig. 5b).
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5.2 Predictability of model parameters

As discussed above that the strength of the present model, which predicts the mean summertime diurnal wind speed on any

glacier with only ERA5L temperature as input, is that the model parameters are known function (Eqs. 7–9) of a set of easy-280

to-access static topographic variables. For example, the mean wind speed could be predicted entirely based on the local relief

and the aspect ratio of the valley cross-section. This may imply that in general, the local wind speed on glacierised valleys is

strongly controlled by the local topography. In particular, the mean wind speed ū had strong correlation with local relief (Fig.

5a). In comparison, the predictability of the other two model parameters s and τ was relatively low (Fig. 6a, b). In fact, most

of the improvements in wind-speed predicted by the present model, over that obtained from ERA5L, was due to the ability of285

the present model to capture the variability of the mean wind speed ū between stations (Sect 4.1.2).

While the best multi-linear regressions to obtain the model parameters were found to be Eqs. 7–9 following the methods

discussed in Sect 3.2, there were other multilinear regressions that showed similar performance. See Supplementary Sect. S2

for the two next-best models, which had RMSE values within 1% of that obtained in Eqs 5–7. Although these two multilinear

regressions involved different static variables, they were similar in nature in that they were alternative definitions of various290

aspect ratios, relief metrics, and slope.

5.3 Implication for melt calculations

For a rough estimate of the effects of improved estimates of surface wind speed on ice melt calculations, we used a simple

bulk-aerodynamic formulation (e.g., Cuffey and Paterson, 2010) to compute the sensible (Qshf ) and latent (Qlhf ) heat fluxes

at all the 28 stations as follows:295

Qshf = 0.0129C∗P ū T, (10)

Qlhf = 22.2C∗ ū (e− es). (11)

Here, C∗ = 0.002 is a transfer coefficient (Cuffey and Paterson, 2010), P is the air pressure (in Pa), T is the air temperature (in
◦C), e is the vapour pressure (in Pa) above the melting surface, and es is the vapour pressure (in Pa) at the melting ice surface.

The variables P and T were obtained from ERA5. The saturation vapour pressure es and actual vapour pressure e were derived300

from the dew-point temperature obtained from ERA5L (Bolton, 1980; Buck, 1981). The sum of Qshf and Qlhf gave the total

turbulent heat flux Qthf . At each station, the turbulent heat flux calculations were repeated thrice for the different estimates

of the mean wind speed ū, namely, a) the observed ones, b) those predicted using Eq. 7, and c) those obtained directly from

ERA5L.

The mean RMSE between the heat fluxes calculated using the observed wind speed (ūobs) and that predicted using Eq. 7305

(ūpred) was 2.2 Wm−2 (Fig. 9), which was about 4 times smaller than the mean RMSE of 9.8 Wm−2 obtained for the ERA5L

derived mean wind speed (ūera). For 17 out of the total 28 stations, where the net Qthf was positive, the heat fluxes increased

by a factor of 3.4 on average. For the remaining 11 stations with net negative turbulent heat fluxes, the magnitude of the fluxes

increased by a factor of 3.2. This suggested that the turbulent heat fluxes on glaciers might be systematically underestimated
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Figure 9. Total turbulent heat flux Qpred
thf derived using the mean wind speed predicted in this study (red triangles), and those from ERA5L

(blue circles) are compared with the turbulent heat flux Qobs
thf computed using observed wind speed. Inset shows the corresponding distribu-

tions of RMSEs for the 28 stations.

when ERA5L wind-speed products are used. This is due to a general underestimation of surface-wind speed by ERA5L at310

the stations (Fig. 5b). While Eq. 7 captures the variability of wind speed between stations, that does not necessarily ensure the

corresponding estimates Qpred
thf reproduce well the variability of the total turbulent heat fluxes between the stations at a global

scale. This is because the temperature and humidity dependent factors in Eq. 10,11 can potentially vary strongly between

regions. However, for a given region, the spatial variability of turbulent heat flux is likely to be controlled mainly by that of the

wind speed. Therefore, the present model can help in improving the turbulent heat flux calculations for a region significantly,315

compared to that done using ERA5L-derived wind speed. This is also evident from the 4 times lower mean RMSE between

heat fluxes calculated using the model and that using ERA5L-derived winds. It should also be noted that the values of turbulent

heat fluxes estimated using the bulk aerodynamic method are meant to be illustrative in nature. Although such methods have

been used widely and shown to outperform profile-based methods when a wind speed maximum is present (Denby and Greuell,

2000), recent reports suggest they may perform poorly on glaciers where their underlying assumptions may be unrealistic (Litt320

et al., 2015; Radić et al., 2017; Steiner et al., 2018).

5.4 Limitations

We acknowledge that the present model provides only a first-order solution to the problem of estimating the surface winds on

or near a glacier. First of all, the present results pertain to the mean summertime diurnal wind, while the wind speed is expected

to vary over different timescales – hourly, daily,and weekly, (e.g., Fig. 2a) to seasonal and annual. However, our analysis over325
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different time windows (Sect. 4.2.4) suggests that the magnitude of such temporal variability over time scales of weeks or

longer is often not very large compared to the variability of the mean winds between stations.

An interannual variation of the mean summertime wind speed was apparent at the stations with more than one year of

data (Supplementary Fig. S5). Such a temporal variability is, of course, not captured by the present model, which produces

a time-independent prediction for mean winds at each station based on Eq. 6. For example, the mean value of the fractional330

absolute interannual deviation was less than 10% in all but two of the studied locations (Supplementary Fig. S5), suggesting

that the mean wind speed predicted using Eq. 7 are still useful. More work is needed, possibly utilising a larger set of stations

with longer records, to see if the observed temporal variability could be incorporated into the present model with the help of

additional time-dependent meteorological variables.

Another related issue with the present model is that the improved predictions of the mean wind speed are entirely based on335

a few static topographic variables. This implies that it does not capture the climate response of the wind speed. Given that the

glacier wind speed is expected to have some temperature response at different time scales (Thangprasert and Suwanarat, 2017,

; also see Fig. 1a), more work is needed to incorporate the effects of climate change in Eq. 7.

A significant spatial variability of the surface wind within any given glacierised valley is expected (e.g., Cai et al., 2007),

which may not be captured fully by the present model. Also, in glacierised valleys, there is a competition between the valley340

and the glacier winds at the surface level, which flow in opposite directions during the daytime. The present formulation is

likely to fail over the region near the glacier terminus where these two winds collide. In fact, the present model gives only wind

speed and not the wind direction.

There were some peculiarities in the mean summertime diurnal wind speed at a few stations, which could not be captured

by the present model. For example, some stations there were additional early-morning maxima of wind speed (Supplementary345

Fig. S1), apart from the prominent late-afternoon one. This behaviour could not be reproduced with the present temperature-

based linear response model, as the mean diurnal temperature decreased monotonically between sunset and sunrise. At Langen-

ferner Glacier, the temperature and wind speed was out of phase (Supplementary Fig. S1), which was unusual. Here Eq. 1 could

not be fitted to the data for a finite τ , and the wind-speed predictions using Eqs. 1, 7–9 produced a large RMSE (Supplementary

Table S4).350

Most of the improvement in mean summertime diurnal wind speed predicted using the present model, vis-a-vis the estimates

obtained directly from ERA5L, was due to a better estimation of the mean wind speed ūpred by the former. As discussed

above, the mean RMSEs for ūpred was 4.2 times smaller in the present model, compared to that of the corresponding ERA5L

product. In addition, the ERA5L had a significant negative bias, which was 1.9 ms−1 on average, for ū. In contrast, both the

present model and ERA5L had similar mean RMSEs for the diurnal anomaly ud, indicating that there is scope for improving355

the estimates of the model parameters s and τ .
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6 Conclusion

In this study, we propose a model to estimate the mean summertime diurnal wind speed on any ungauged glacier. Given the

values of three model parameters, the model obtains the wind speed as a linear combination of the mean summertime diurnal

temperature and its time derivative. The required input temperature data are derived from a reanalysis product (ERA5-Land).360

We show that this model captures well the observed mean summer diurnal wind speed on 28 on- or near-glacier weather stations

across the globe. Interestingly, an analysis of the 28 triplets of best-fit model parameters—excluding s and τ from Langenferner

Glacier, as discussed in section 4.1.2—established that the parameters can be approximated as multilinear functions of a few

static topographic variables. This implies that the present model can be applied to ungauged glaciers, which is encouraging. A

leave-one-out-cross-validation indicated that the method indeed works reasonably on ungauged glaciers, and may improve the365

RMSE between the observed and estimated mean summertime diurnal wind speeds by about 300% on average, compared to

the corresponding reanalysis estimates. Most of this improvement is, in fact, due to the ability of the present model to capture

the variability of the mean summertime wind between glaciers better than the reanalysis product. The number of stations used

for calibrating the model is shown to be adequate for robust predictions. We discuss the limitations of the model in capturing

the temporal variability of wind speed over different time scales. Using this model to parameterise the mean summertime370

diurnal wind speed may improve the turbulent heat flux estimates on glacierised valleys, which tend to be underestimated with

reanalysis wind speed products. Understanding the physical basis of the predictability of the mean summertime wind speed

on valley glaciers based on a set of topographic parameters, and improving the estimates of the other two model parameters

emerge as two of the most interesting open problems.
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