
1 

 

Remaining aerosol forcing uncertainty after observational 

constraint and the processes that cause it 

 

Leighton A. Regayre1,2,3, Léa M. C. Prévost3
, Kunal Ghosh3, Jill S. 

Johnson4, Jeremy E. Oakley4, Jonathan Owen3,4, Iain Webb4 and Ken 5 

S. Carslaw3 
1Met Office Hadley Centre, Exeter, Fitzroy Road, Exeter, Devon, EX1 3PB, UK 
2Centre for Environmental Modelling and Computation, University of Leeds, Leeds, LS2 9JT, UK 
3School of Earth and Environment, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 
4School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, S3 7RH, UK 10 

Correspondence to: Leighton A. Regayre (Leighton.Regayre@metoffice.gov.uk) 

Abstract. Aerosol radiative forcing remains a major source of climate model uncertainty, limiting 

climate model projection skill and slowing global action on addressing climate risks. Observations only 

modestly constrain the magnitude of aerosol radiative forcing despite advances in model fidelity, 

resolution and availability of observations. Our goals are to understand where aerosol-cloud forcing 15 

uncertainty resists efforts to reduce (or constrain) it and to identify the processes that cause the 

remaining uncertainty, to guide future observation campaigns and model constraint efforts. We map the 

aerosol forcing uncertainty in a global climate model perturbed parameter ensemble before and after 

constraint to satellite observations of several cloud, aerosol and radiative properties. Original 

uncertainty falls by more than 80 % in Northern Hemisphere marine regions and by 70 % for globally 20 

averaged aerosol forcing. However, the uncertainty remains large (more than 70 % of the original 

uncertainty) in Southern Hemisphere marine environments where stratocumulus clouds transition to 

cumulus, as well as in some highly populated industrialized areas. Regional clusters of shared causes of 

model uncertainty highlight common processes as targets for future observational constraint. Our 

findings highlight the value in re-evaluating the remaining causes of ΔFaci uncertainty during the 25 

constraint process and provide actionable information for prioritizing existing observations that should 

be included as constraints. Additionally, our results highlight targeted observations in persistent 

uncertainty hotspots where novel and process-specific data could further constrain aerosol forcing. This 

work provides a framework for model evaluation and development that prioritises aerosol forcing 

constraint to improve model skill at making climate projections. 30 
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1 Introduction 

Aerosol effective radiative forcing (ΔFaer) is one of the largest causes of uncertainty in anthropogenic 

climate change over the past century (Forster et al., 2021). Whilst the cooling effect of anthropogenic 

aerosol substantially offsets the warming effect of greenhouse gases, the magnitude of ΔFaer over 35 

historical periods is uncertain. Despite decades of improvements to model fidelity, increasing model 

resolution, and a huge increase in observational data availability, large ΔFaer uncertainty persists 

(Forster et al., 2021). Model processes that cause uncertainty in historical ΔFaer also cause uncertainty in 

future climate change (Gettelman et al., 2024), suggesting that narrowing the model process uncertainty 

in ΔFaer over the historical period could significantly improve confidence in climate projections. 40 

Uncertainty in model processes accounts for more than 50 % of the uncertainty caused by highly 

uncertain future shared socioeconomic pathways (Peace et al., 2020), which translates to around 0.5o C 

additional uncertainty in long-term warming projections from anthropogenic CO2 emissions (Watson-

Parris and Smith, 2022). Reduction in ΔFaer uncertainty would also help to understand aerosol influence 

on clouds and atmospheric circulation patterns (Mülmenstädt and Wilcox, 2021; Peace et al., 2022), and 45 

to reduce some of the risks associated with mitigating the impacts of future climate change. 

Climate models are imperfect partly because they represent physical processes using 

parametrizations – mathematical approximations to real-world processes that are designed to balance 

fidelity with computational efficiency. Differences in the magnitude of ΔFaer across climate models 

stem from choices about how to parameterize physical processes (Bellouin et al., 2020). The 50 

approximate nature of these parametrizations introduces inherent discrepancies between models and 

observations that cannot be overcome through parameter retuning (Sexton et al., 2012). For aerosol-

cloud interactions, governing processes are microphysical, so the fundamental mismatch in scale with 

global climate simulations ensures model-observation discrepancies will likely persist even in 

simulations where resolution is increased to feasible computational limits (e.g. Hoffmann et al., 2023). 55 

As a result, no climate model can be fully constrained by observations and will always be partly limited 
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by observational error, spatial and temporal representation errors (Schutgens et al., 2017), and inherent 

model biases (e.g. Liu et al., 2024; Price et al., 2025).  

Closer collaboration between climate modelers, lab-based experimentalists, in-situ observation 

teams, and satellite instrument scientists has been viewed as essential for improving our ability to 60 

constrain ΔFaer (Kahn et al., 2023). However, despite observational programs sharing common goals 

with modelers to either reduce ΔFaer uncertainty or improve process understanding, modeling centres 

have yet to provide clear guidance on how new observations can be effectively integrated to reduce 

model uncertainty, or how priorities for future observational campaigns might evolve in response to 

better use of existing data.  65 

Meaningful progress with understanding the causes of model uncertainty can be achieved by 

evaluating (against observations) a wide range of model “variants” that comprehensively sample 

important causes of uncertainty in ΔFaer (Johnson et al., 2020; Mikkelsen et al., 2024; Regayre et al., 

2020, 2023; Rostron et al., 2020; Zhong et al., 2023). These variants can be generated from perturbed 

parameter ensembles (PPEs) that systematically vary multiple uncertain model parameters to explore 70 

the breadth of model behaviour (e.g., Carslaw et al., 2013; Eidhammer et al., 2024; Elsaesser et al., 

2025; Qian et al., 2018; Yoshioka et al., 2019). PPE studies, coupled with statistical analyses, have 

identified key causes of climate model ΔFaer uncertainty. For instance, natural aerosols contribute more 

to ΔFaer uncertainty over the industrial period than other aerosol sources because of their 

disproportionate influence on baseline aerosol concentrations (Carslaw et al., 2013), while atmospheric 75 

process parameters account for nearly half of the ΔFaer uncertainty through their effect on cloud 

properties (Regayre et al., 2018).  

Narrowing of the uncertainty in ΔFaer (or “constraint”) remains a challenge, in part because the 

causes of ΔFaer uncertainty vary spatially and temporally due to differences in atmospheric conditions 

and variations in aerosol emissions, dominant processes and evolving climate impacts of aerosol as they 80 

age (Regayre et al., 2014). For example, Regayre et al., (2018) showed uncertainty in the radiative 

properties of black carbon aerosol cause less than 5 % of the global mean ΔFaer uncertainty in most 
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months but accounts for around 50 % of the annual mean ΔFaer uncertainty near high-emission sources, 

where black carbon influences boundary layer stability, cloudiness and the susceptibility of clouds to 

aerosol changes (Bond et al., 2013). Parameters may be overlooked not only when their effects are 85 

regionally isolated but also when causes of regional ΔFaer uncertainty cancel out in global mean 

calculations due to opposing forcing sensitivities across different regions (Regayre et al., 2015). For 

example, an increase in uncertain natural aerosol emissions can suppress ΔFaer (make it less negative) in 

relatively clean regions (Carslaw et al., 2013) whilst enhancing ΔFaer (more negative) in polluted 

regions, where natural and anthropogenic sources combine to increase cloud lifetime (Albrecht, 1989; 90 

Regayre et al., 2015). Overcoming these challenges requires leveraging combinations of observations 

that target specific processes (e.g. Sprintall et al., 2020), or collectively account for uncertainties in 

aerosol emissions, deposition, size, and composition, as well as microphysical interactions between 

aerosol and clouds.  

Observational constraints on ΔFaer uncertainty are limited by three interlinked issues. First, only 95 

observations that share causes of uncertainty with ΔFaer can provide meaningful constraint. Second, 

compensating model errors allow multiple equally-plausible model variants (or equifinal variants; 

Beven and Freer, 2001) to agree with observations without any narrowing of the credible ΔFaer range. 

Third, structurally imperfect models are susceptible to contrasting constraints, where two or more 

observations constrain a model towards non-overlapping sets of parameter combinations. When 100 

combined, these contrasting constraints force a compromise in model skill at simulating associated 

variables, leaving us with models that on average only perform tolerably (Regayre et al., 2023). 

These three issues must be considered collectively to identify useful ΔFaer constraints. For 

example, concentrations of cloud condensation nuclei directly affect the magnitude of ΔFaer and so 

share causes of uncertainty, but associated observations only weakly constrain ΔFaer because of 105 

compensating errors in model microphysics (Lee et al., 2016). Similarly, top-of-the-atmosphere 

radiative flux measurements suffer from equifinality related to aerosol emission, processing and 

deposition process uncertainties, so only weakly constrain ΔFaer despite being a key quantity used to 

calculate ΔFaer (Regayre et al., 2018). Multi-season, multi-location observational data constraints may 
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partially overcome the equifinality issue by introducing some orthogonality into the overall constraint. 110 

However, large observational datasets typically contain a high degree of complementary information, as 

many observable variables share causes of uncertainty and are therefore somewhat redundant (Regayre 

et al., 2023). A broad set of observations can actually limit the constraint effectiveness (e.g. Johnson et 

al., 2020) because using large data sets increases the likelihood of exposing structural model 

deficiencies (Regayre et al., 2023). 115 

Observations specifically designed (or collated) to isolate differences between present-day and 

early-industrial environments - such as hemispheric difference in cloud droplet concentrations - more 

directly map onto ΔFaer (share causes of uncertainty). These observations can bypass much of the error 

compensation issue by leveraging the large, well-characterized contrast between polluted and pristine 

environments, so do partially constrain ΔFaer (McCoy et al., 2020). Similarly, aerosol observations from 120 

targeted campaigns in pristine environments (e.g. the Antarctic Circumnavigation Expedition – Study of 

Preindustrial-like Aerosol Climate Effects; ACE-SPACE; Schmale et al., 2019) largely avoid the effects 

of compensating errors and can uniquely constrain natural aerosol concentrations and their precursors 

(Regayre et al., 2020), which are critical for reducing ΔFaer uncertainty (Carslaw et al., 2013). However, 

constraining a model to match a single observation type or environment risks overfitting – yielding a 125 

good match for one variable or set of conditions, but with no guarantee of increasing climate projection 

skill. 

To overcome all three limitations, models need to be constrained against a suite of observations 

that 1) share ΔFaer’s causes of uncertainty, 2) collectively minimize the effect of compensating errors, 

and 3) expose and avoid the effects of structural model errors. Crucially, the dominant sources of ΔFaer 130 

uncertainty will likely shift once any observational constraint is applied. This means the criteria for a 

“good” constraint may evolve as observational constraints are applied, to better align with changing 

causes of uncertainty and to address any newly revealed compensating errors or model structural 

deficiencies. 
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This paper builds on the work of Regayre et al., (2023; hereafter referred to as "R23") to address 135 

the challenges outlined above. R23 constrained global, annual mean aerosol-cloud interaction forcing 

(ΔFaci; the larger component of ΔFaer) in version 1 of the UK Earth System Model (UKESM1;  Sellar et 

al., 2019) by nearly 70 % (reduction in 90 % credible interval width). This “optimal” constraint reduced 

ΔFaci uncertainty to the maximum limit with their chosen observations and structurally imperfect model. 

Yet over 30 % of the ΔFaci uncertainty remains, with observationally plausible ΔFaci values ranging 140 

from -0.9 to -0.1 W m-2 (90 % credible interval) and regional uncertainties up to around 20 W m-2. 

To further constrain ΔFaci towards the limits imposed by observational uncertainties, several key 

challenges must be addressed. First, we must distinguish between regions where ΔFaci uncertainty has 

been constrained and regions where the chosen observations had a weaker effect. Second, we need to 

identify the model parameters that cause remaining ΔFaci uncertainty and how their contributions vary 145 

regionally. Third, we must determine which existing or future observations would best constrain these 

remaining causes of ΔFaci uncertainty. Tackling these challenges would optimize the use of available 

observations and guide future campaigns, creating a feedback cycle between model evaluation and 

refinement, and observational design, as exemplified by Carslaw et al., (2013), Hamilton et al., (2014), 

Schmale et al., (2019) and Regayre et al., (2020). 150 

Section 3.1 examines how each observation added to the R23 optimal constraint reduces ΔFaci 

uncertainty by eliminating specific parameter combinations. Section 3.2 maps the remaining 

uncertainty, revealing significant heterogeneity in constraint efficacy. Section 3.3 identifies the causes 

of remaining regional and global mean ΔFaci uncertainty, and Section 3.4 clusters regions according to 

shared causes of uncertainty and identifies priorities for model development and future observation 155 

campaigns. Finally, Section 4 discusses the potential for further ΔFaer constraint across the current 

generation of climate models, and ways the scientific community might collaborate to achieve this 

elusive goal.  
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2 Methods 

Regayre et al., (2023) used version 1 of the UK Earth System Model (UKESM1; Sellar et al., 2019) to 160 

create a 221-member PPE that spans model responses to changes in 37 uncertain aerosol, cloud, and 

physical atmosphere model parameters (Appendix A Table A1). Statistical emulators of multiple 

variables were used to scale up from 221 ensemble members to 1 million model variants (parameter 

combinations) which is sufficiently large to allow for robust observational constraint using more than 450 

observations (Section 2.3), to identify localized model behaviour linked to specific parameters (Section 165 

2.4) and variance-based sensitivity analyses (Section 2.5).  

 

Regayre et al., (2023) identified the observation type that provided the strongest ΔFaci constraint, 

then progressively added the next strongest observation, eventually reducing ΔFaci uncertainty by nearly 

70 % using a combination of just 13 observation values.  In this study, we build on the R23 foundation 170 

by analyzing the causes of the remaining 30 % of ΔFaci uncertainty after optimal constraint. We quantify 

parameter contributions to remaining ΔFaci uncertainty at the model grid box level and within clusters of 

shared causes of uncertainty (Section 2.5). 

 

2.1 Experimental design 175 

Regayre et al. (2023) used the atmosphere-only configuration of UKESM1 to create their PPE. 

UKESM1 is based on the HADGEM3-GC3.1 physical climate model (Williams et al., 2018) with 

additional coupling to key Earth system processes, including the United Kingdom Chemistry and 

Aerosol (UKCA) model (Archibald et al., 2020). The atmosphere-only configuration (UKESM1-A) 

consists of the GA7.1 atmosphere (Walters et al., 2019), with additional aerosol, cloud, and physical 180 

atmosphere structural updates as implemented in Mulcahy et al., (2020). R23 used UKESM1-A at N96 

horizontal resolution, which is 1.875◦ ×1.25◦ (208 km×139 km at the Equator), with 85 vertical levels 

unevenly distributed between the surface and 85 km in altitude, matching the model version submitted 

to the 6th Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). They nudged 

horizontal wind fields above around 2 km (model vertical level 17) towards ERA-Interim values for the 185 
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period December 2016 to November 2017 and prescribed sea ice and sea surface temperatures for the 

same period. 

 

The model PPE members were forced using anthropogenic SO2 emissions for the years 2014 

and 1850, as prescribed in CMIP6 simulations. Differences in top-of-the-atmosphere radiative fluxes 190 

between the two anthropogenic emission periods were used to calculate ΔFaer values. The components 

of ΔFaer from aerosol-cloud interactions, ΔFaci, and aerosol-radiation interactions (ΔFari) account for 

above-cloud aerosol radiative effects (Ghan et al., 2016) and multiple cloud adjustments (Forster et al., 

2021; Grosvenor and Carslaw, 2020). Carbonaceous aerosol emissions were prescribed using CMIP6 

(1850) and Copernicus Atmospheric Monitoring Service (CAMS; 2016-17) data, whilst ocean surface 195 

concentrations of dimethylsulfide (DMS) and chlorophyll, as well as atmospheric concentrations of gas 

species (including oxidants OH and O3) were prescribed using monthly mean output from a fully 

coupled version of the UKESM model averaged over the 1979 to 2014 period. Additionally, R23 

prescribed volcanic SO2 emissions for continuously emitting and sporadically erupting volcanoes 

(Andres and Kasgnoc, 1998) and for explosive volcanic eruptions (Halmer et al., 2002). 200 

 

Regayre et al. (2023) made structural changes to UKESM1-A to better sample the breadth of 

ΔFaci uncertainty. Following Yoshioka et al., (2019), an ice mass fraction threshold was defined, above 

which no nucleation scavenging occurs, to allow sufficient aerosol to be transported to the Arctic 

(Browse et al., 2012). They also included an organically mediated aerosol nucleation parameterisation 205 

(Metzger et al., 2010) to represent remote marine and early industrial aerosol concentrations more 

accurately in the model. Additionally, R23 used high-resolution lookup tables for aerosol optical 

properties (Bellouin et al., 2013) that include properties for mineral dust (Balkanski et al., 2007) and 

better resolve aerosol absorption.  

2.2 Perturbed parameter ensembles and emulation 210 

The Regayre et al. (2023) PPE was created in two stages using a history-matching style approach (Craig 

et al., 1997; Williamson et al., 2013) to ensure that the 221 ensemble members (parameter 
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combinations) spanned the 37-dimensional parameter space whilst achieving acceptable agreement with 

large-scale climate metrics. Following Lee et al., (2012), Regayre et al., (2014), Sexton et al., (2021) 

and Yoshioka et al., (2019), ranges for the 37 uncertain parameters were determined by formal expert 215 

elicitation using the Sheffield Elicitation Framework (SHELF) approach described in Gosling (2018).  

 

Statistical Gaussian Process emulators (O’Hagan, 2006) were used to extend the 221 climate 

model simulations to 1 million model variants. Emulators can very efficiently predict output for new 

model variants (parameter combinations) compared to the time and computational resource required to 220 

create climate model ensemble members. Furthermore, as opposed to other machine-learning 

approaches, emulator uncertainty can be quantified for any parameter combination, to validate emulator 

skill and avoid over-constraint when comparing model variant output to observations (e.g. Johnson et 

al., 2020). 

 225 

Regayre et al. (2023) created statistical emulators of a) global mean ΔFaer and its components 

ΔFaci and ΔFari, b) regional mean cloud and radiative properties, and c) values from transects spanning 

stratocumulus- to cumulus-dominated regions (Section 2.3). In total, they created and evaluated around 

450 statistical emulators. Here, we create emulators of annual mean ΔFaci at the model grid box level. 

Thus, we densely sample model ΔFaci uncertainty, at more than 27 000 geographical locations, using the 230 

same set of 1 million model variants (parameter combinations). 

 

2.3 Observational constraint 

Regayre et al. (2023) constrained ΔFaci using multiple satellite-derived cloud and radiation properties. 

Observations used for constraint included liquid water path (LWP), liquid cloud fraction (fc), cloud optical 235 

depth (τc), and cloud droplet effective radius (re) from the MODIS instruments (King et al., 2003). τc and 

re values were used to calculate cloud droplet number concentration (Nd) values. Observational constraints 

also included outgoing top-of-the-atmosphere shortwave radiative flux (FSW) measurements from the 

Clouds and the Earth's Radiant Energy System experiment (CERES; Loeb et al., 2018). Regional mean 
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observations were derived for regions of persistent stratocumulus cloud in the North and South Atlantic, 240 

North, and South Pacific and Southern Ocean.  R23 also used hemispheric differences in marine Nd for 

constraint (Hd), as well as multiple relationships between aerosol, cloud, and radiation properties along 

transects from stratocumulus- to cumulus-dominated regions. 

 

In total, R23 evaluated the ΔFaci constraint potential of more than 450 observations (more than 66 245 

variables in 5 regions at multiple times). Nearly half of these observations were removed from the R23 

constraint method because they were identified as being associated with model structural deficiencies, 

revealed through pair-wise analysis of constraints using the original 1 million model variants. Structural 

model deficiencies lead to inconsistencies in pairs of model variables, where they constrain the model 

towards non-overlapping sets of parameter combinations (referred to as the history-matching “terminal 250 

case”; Salter et al., 2019). Thus, constraint to one observable variable greatly decreases model skill at 

simulating the other, and constraint using both variables forces a compromise towards a set of model 

variants with low skill at simulating either. R23 removed variables associated with structural deficiencies 

and used the remaining around 250 observations they considered pairwise consistent with Nd, to search 

of an optimal constraint on ΔFaci.  255 

 

The optimal constraint on ΔFaci achieved in R23 made use of just 13 observable variables. The 

R23 approach started with the observation that most strongly constrained ΔFaci. They then identified the 

most compatible observation that, in combination with the first, provided the strongest constraint on ΔFaci. 

This process continued by progressively adding the observation that most tightly constrained ΔFaci 260 

uncertainty in combination with the existing set of observations. At each stage of the constraint process, 

R23 compared emulator mean and observed values, whilst accounting for statistical emulator uncertainty 

to retain a minimum of 5000 model variants and avoid over-constraint. Including additional observable 

variables beyond the optimal set weakened the constraint. Hence, R23 described the optimal constraint 

as the tightest constraint achievable with the chosen set of observations and structurally imperfect model. 265 
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2.4 Filtering implausible parameter values 

In this article we explore how progressively adding observational constraints in the R23 optimal 

set affect the plausible ranges of uncertain parameters and the credible range of ΔFaci. We evaluate ΔFaci 

uncertainty in the “original” set of 1 million model variants and in the “unconstrained” set which excludes 270 

implausible parameter values that would otherwise dominate analysis of the effects of observational 

constraints on other parameters. 

 For most parameters, the R23 ΔFaci constraint affects the likelihood of some parameter values, as 

seen in the marginal distributions which are no longer uniform (Fig. S12 and S13 of Regayre et al., 2023). 

That is, in the set of model variants that agree with observations, a given parameter value is more likely 275 

to have a higher or lower value (as per the marginal distribution) than in the release version of the model. 

However, for the parameters related to cloud droplet activation (cloud updraft speed; sig_w) and the 

diameter of primary sulfate particles (prim_so4_diam), the constraint is stronger and ruled out part of the 

parameter range as observationally implausible - i.e., there is no way of combining these ruled out 

parameter values with the other 36 model parameters to bring them into agreement with observations (See 280 

R23 Figs S12 and S13).  

 

In the original set of 1 million model variants, ΔFaci is only sensitive to prim_so4_diam parameter 

values in a very narrow part of the parameter range (Appendix A Fig. A1). For prim_so4_diam values 

lower than 10 nm, number concentrations are so high that they implausibly suppress cloud formation in 285 

the simulated present-day atmosphere, hence these values were ruled out by the R23 constraint. The 

dominance of implausibly low primary sulfate diameter effects inflated the relative importance of this 

parameter in the original sensitivity analysis - a known issue with high-dimensional sensitivity analyses 

(Saltelli et al., 2019). Thus, our analysis of the remaining ΔFaci uncertainty and the path to achieving the 

optimal constraint, evaluates ΔFaci uncertainty in the original set of 1 million model variants and in the 290 

unconstrained set of around 900 000 model variants associated with primary sulfate diameters larger than 

10 nm.  
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2.5 Causes of remaining variance 

To quantify the sensitivity of ΔFaci to each of the 37 uncertain model parameters (and more generally, the 295 

dependence of ΔFaci on parameters), we fit non-linear Generalized Additive Models (GAMs) to the 

emulated climate model output, implemented using the “pygam” python package (Servén et al., 2018). 

GAMs are particularly well-suited for analyzing high-dimensional parameter spaces with 

heterogeneously distributed data, which suits our needs since observational constraints can remove parts 

of parameter space and even reduce the range of some parameter values (R23; Section 2.4). We quantify 300 

the relative importance of parameters as causes of ΔFaci variance (referred to throughout as “causes of 

uncertainty”), using variance-based sensitivity analyses (Strong et al., 2014). Following R23, we quantify 

the sum of parameter effects on ΔFaci variance then calculate the proportion of this total that is caused by 

each parameter. However, the relative importance values here differ from R23 because the GAM method 

accounts for non-linearities in ΔFaci dependence on changing parameter values, whereas R23 used partial 305 

correlations which primarily capture the strength of linear relationships.  

 

Here, marginal variances are calculated by setting all other parameters to the median of the 

original or constrained sample, then evaluating output from the GAM function. Although the GAM fit is 

multi-dimensional, this approach allows us to derive ΔFaci variances that are only affected by changes in 310 

the target parameter. Using the GAM approach, we can robustly quantify causes of remaining uncertainty 

after each observational constraint, or combination of constraints, is applied, by calculating marginal 

sensitivities over the partially reduced parameter space. Thus, this approach can provide insight into how 

the relative importance of model parameters as causes of ΔFaci uncertainty evolve as observational 

constraints are progressively added to achieve the R23 optimal set. 315 

2.6 Regional clusters of model behaviour  

We use K-means clustering (Pedregosa et al., 2011) to identify distinct sets of model behaviour. K-

means clustering is an unsupervised machine-learning technique, that partitions data into clusters of 

similar behaviour, based on similarity to cluster means. In our case, K-means clusters are defined using 

proportional contributions to ΔFaci uncertainty from 37 model parameters, across more than 27,000 320 
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geographical locations. Using this approach, we identify regions of shared causes of ΔFaci uncertainty in 

model variants from a) the original set of 1 million, b) the unconstrained set of around 900,000, and c) 

in the optimally constrained set of 5,000. 

3 Results 

We frame our evaluation of the processes that cause remaining ΔFaci uncertainty in three stages:  325 

1. Evaluate how causes of global mean ΔFaci uncertainty change as each observational constraint was 

added in R23 (Section 3.1). This approach will be used to isolate the effect of each observation on 

processes-level uncertainties and to highlight how observational constraints combine to form an 

overall optimal constraint.  

2. Quantify causes of remaining ΔFaci uncertainty at the model grid box level (Section 3.2). By doing 330 

so, we aim to identify any parameters with spatially coherent influence on remaining ΔFaci 

uncertainty (Section 3.3).   

3. Group the causes of model ΔFaci uncertainty at the grid box level into clusters with similar causes 

of parametric uncertainty (Section 3.4). We evaluate these spatial patterns to understand where 

the R23 constraint was strong and where it was weak, and to identify existing and novel 335 

observations that could further constrain ΔFaci. 

 

3.1 The effect on the causes of ΔFaci uncertainty of progressively adding observations  

Regayre et al. (2023) analyzed one-at-a-time perturbation experiments and evaluated shared causes of 

uncertainty (between ΔFaci and observable variables) to provide hypotheses about which of the 13 340 

observations in the optimal set most likely contributed to constraining model parameters. Here, we use 

GAM analyses (Section 2.5) to examine the changes in parametric causes of ΔFaci uncertainty more 

closely as each constraint is applied.  

 

Fig. 1 shows the most important parametric causes of global mean ΔFaci uncertainty for the 345 

original set of 1 million model variants and for the uncertainty that remains after progressively applying 

constraints until the R23 optimal constraint is reached. The parameter controlling the emission diameter 
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of primary sulfate aerosol (prim_so4_diam) is the dominant cause of ΔFaci uncertainty (around 55 % of 

uncertainty) in the original set of model variants (See section 2.4; Appendix A Table A2). The cloud 

updraft velocity parameter (sig_w), which affects droplet activation, causes around 14 % of the ΔFaci 350 

uncertainty and several other parameters related to natural aerosol emission fluxes and removal processes 

each cause around 5 to 10 % of the ΔFaci uncertainty (Appendix A Table A2). The small number of model 

parameters affecting the original ΔFaci uncertainty suggests that an informed choice of observations could 

achieve strong constraint. However, we find that the relative importance of uncertainty sources changes 

as constraints are progressively applied. Parameters that initially seem unimportant contribute more than 355 

a few percent to the remaining uncertainty after constraint, which suggests in-depth analysis may reveal 

observations with potential to further constrain ΔFaci.  

 

 

Fig. 1. Causes of uncertainty in ΔFaci for the original set of 1 million model variants, and after observational constraint to 360 

August Hd (Aug. Hd), then progressively adding North Pacific Nd in September (Sept. Nd N. Pacific), March Hd (Mar. Hd), 

North Pacific fc in August (Aug. fc N. Pacific) and finally, for the R23 optimal constraint. Only parameters that cause at least 

2 % of the uncertainty are shown. See Appendix A Table A2 for contributions from all parameters. Parameter contributions to 

uncertainty are multiplied by the sign of linear ΔFaci sensitivity to increasing parameter values, thus for parameters below the 

zero line, increasing the parameter value reduces ΔFaci, making it more negative.  365 
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The first of the 13 observational constraints used to achieve the R23 optimal constraint is Hd in 

August. Observed Hd provides a contrast between marine Nd in the polluted Northern Hemisphere (NH) 

and the relatively pristine Southern Hemisphere (SH), which can act as a proxy for the difference in Nd 

between the present-day and early-industrial atmospheres (McCoy et al., 2020). Constraint to match 370 

observed Hd in August reduces the proportion of uncertainty caused by primary sulfate (prim_so4_diam) 

from around 55 % to only around 25 % and the proportion caused by cloud droplet activation (sig_w) 

from around 14 % to around 11 % (Fig. 1 and Appendix A Table A2). The sig_w parameter is constrained 

towards lower values (R23 SI Fig. S12), consistent with lower Nd concentrations in updraft-limited 

(mostly polluted NH) regions (Reutter et al., 2009), lower Hd (see R23 SI Fig. S16) and thus weaker (less 375 

negative) ΔFaci (Fig. 1; below the zero line indicates increasing the sig_w parameter value strengthens 

ΔFaci). The prim_so4_diam parameter is constrained towards higher values which is also consistent with 

lower NH Nd and lower Hd values (R23 SI Fig., S16; Cao et al., 2023). However, increasing primary 

sulfate diameters is associated with stronger (more negative) ΔFaci (Fig. 1) due to the dominant influence 

of the smallest particle diameter values on the ΔFaci dependence on this parameter (Section 2.4 and SI 380 

Fig. 1). Thus, the August Hd observation rules out the strongest and weakest ΔFaci values (tails of the ΔFaci 

distribution) reducing the 90 % credible range from (-1.6 to 1.0 W m-2) to (-1.2 to 0.2 W m-2). This 

significant reduction in importance of model parameters that dominate the original uncertainty, using just 

one observational constraint, highlights the importance of re-evaluating the remaining causes of ΔFaci 

uncertainty during the constraint process. 385 

 

Other parameters cause a larger proportion of the remaining ΔFaci uncertainty after August Hd 

constraint (Fig. 1; Appendix A Table A2). The most prominent increases in importance are in the turbulent 

cloud top entrainment parameter (a_ent_1_rp, a physical atmosphere parameter), natural aerosol emission 

parameters (dms and sea_salt) and the aerosol accumulation mode dry deposition velocity (dry_dep_acc), 390 

for which the contributions to uncertainty approximately double to between 5 % and around 14 %. Several 

physical atmosphere parameters (bparam, two_d_fsd_factor, autoconv_exp_nd and ai), which caused less 

than a few percent of the original ΔFaci uncertainty, emerge as important causes of remaining uncertainty 
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after the Hd constraint. These results suggest over-reliance on selecting observational constraints based 

on original causes of ΔFaci uncertainty can be misleading, as these causes of uncertainty are likely to be 395 

amongst the easiest to constrain. In our case, implausibly low primary sulfate emission diameters and too-

high droplet activation mask the influence of other causes of uncertainty, such as a) those that affect the 

early-industrial background aerosol concentration (Carslaw et al., 2013) and b) physical atmosphere 

parameters that affect ΔFaci by altering the atmospheric state (Regayre et al., 2018). 

 400 

The relative importance of model parameters as causes of remaining ΔFaci uncertainty continues to 

evolve as additional observational constraints are applied, although the first few constraints cause the 

largest changes (Fig. 1 and Appendix A Table A2). The prim_so4_diam and sig_w parameters contribute 

less to the remaining ΔFaci uncertainty with each additional constraint, to the point where after optimal 

constraint, these parameters together contribute only 8 % of the remaining ΔFaci uncertainty compared 405 

with nearly 70 % in the original set of model variants.  

 

A different set of parameters cause the remaining global mean ΔFaci uncertainty, after optimal 

constraint, than those causing ΔFaci uncertainty in the original set of model variants (Fig. 1 and Appendix 

A Table A2). Several parameters, mostly natural emission flux and physical atmosphere parameters, are 410 

effectively unconstrained by the optimal set of observations, so their contributions to remaining ΔFaci 

uncertainty increase with each new observational constraint. Parameters that affect background aerosol 

concentrations together cause nearly half of the remaining ΔFaci uncertainty after optimal constraint 

(sea_salt 17 %, dry_dep_acc 14 % and dms 12 %). This suggests there is potential for additional 

observational constraint of ΔFaci beyond the R23 optimal constraint using, for example, observations in 415 

remote marine regions (Regayre et al., 2020; Schmale et al., 2019). Additionally, several physical 

atmosphere parameters together cause around 32% of the remaining ΔFaci uncertainty (a_ent_1_rp: 9 %, 

two_d_fsd_factor: 6 %, autoconv_exp_nd: 4 %, bparam and ai: 3 % each, and 1 to 2 % from other 

parameters), which highlights the need to identify and use observations that will constrain physical 

atmosphere processes that cause ΔFaci uncertainty by altering the cloud properties and thus sensitivity to 420 

aerosol (Mülmenstädt et al., 2024).  
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3.2 Regional constraint and remaining ΔFaci uncertainty 

In this section we explore where the R23 optimal constraint has the strongest and weakest effect on ΔFaci 

uncertainty. Fig. 2a shows that in the original set of 1 million model variants, ΔFaci uncertainty (90 % 425 

credible interval) is concentrated in regions of persistent stratocumulus cloud as expected, since the 

radiative properties of clouds in these regions are highly susceptible to aerosol. However, ΔFaci is also 

highly uncertain (90 % credible interval range greater than 5 W m-2) over continental regions near to 

anthropogenic emission sources, particularly over central China, and South American coastal regions. 

Over most ocean regions, even those regions far from persistent stratocumulus cloud, the unconstrained 430 

ΔFaci uncertainty exceeds 2 W m-2.  

 

 

Fig. 2. Annual mean ΔFaci uncertainty (90 % credible interval ranges) in model grid boxes from a) the original set of 1 

million model variants, b) the unconstrained subset with the lowest prim_so4_diam values filtered out and c) the R23 435 

optimally constrained set of model variants, as well as d) the proportion of original uncertainty remaining after optimal 

constraint, in locations where original forcing was greater than 3 W m-2. 
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Figure 2b shows the effect of removing the 10 % of model variants associated with implausibly low 

primary sulfate diameters (Section 2.4 and Appendix A Fig. A1). Uncertainty in ΔFaci is reduced to less 440 

than 10 W m-2 in most regions where it was originally between 10 to 20 W m-2 (Fig. 2a). This suggests a 

significant proportion of ΔFaci uncertainty near anthropogenic emission sources in the original set of 

model variants was caused by the over-wide perturbed range of the prim_so4_diam parameter in R23.  

 

After the optimal constraint, uncertainty in ΔFaci is reduced by between 60 % to 80 % across NH 445 

marine regions, most continental regions, in the tropical Atlantic and very prominently along the South-

East Atlantic shipping corridor to the west of Africa (Fig. 2 c, d) – note the clear shipping lane in Fig 2d 

where primary sulfate will have dominated the uncertainty in the original set of model variants. However, 

there are some regions where ΔFaci uncertainty is largely unaffected by the R23 optimal constraint. For 

example, over parts of the South Pacific, North-East Pacific and outside the South Atlantic shipping 450 

corridor, ΔFaci uncertainty is reduced by less than 30 %, so remains between 4 to 10 W m-2. Additionally, 

over much of inland China the constraint is less than around 10 % and the remaining uncertainty is more 

than 10 W m-2. These results suggest there is potential to further constrain ΔFaci using observations that 

target whichever processes cause remaining uncertainty in these regions. 

 455 

3.3 Causes of remaining ΔFaci uncertainty at the regional level 

In this section we quantify parametric contributions to remaining ΔFaci uncertainty after optimal constraint 

at the model grid box level. It is essential to constrain sub-global ΔFaci because anthropogenic aerosol can 

produce regional climate responses that contribute to projection uncertainty (e.g. Chemke and Dagan, 

2018; Peace et al., 2022; Shindell, 2014; Williams et al., 2022). Regional variations in the relative 460 

importance of parameters as causes of ΔFaci uncertainty can be overlooked by global mean analyses 

(Regayre et al., 2015). Evaluating uncertainty at the model grid box level can reveal a) cancellation of 

regional effects in the global mean, where the ΔFaci dependence on model parameters has opposing signs 

in different regions, b) large but geographically isolated causes of ΔFaci uncertainty that do not stand out 

in global mean analyses, and c) widespread small contributions to uncertainty that compound to elevate 465 
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parameter importance in the global mean analysis. Each of these cases demands a different strategy for 

further constraint of ΔFaci uncertainty.  

 

Regional patterns of parameter influences on remaining ΔFaci uncertainty reveal a more complex 

picture than is apparent from an analysis of the global mean (Section 3.1). Figure 3 shows maps of 470 

parametric contributions to ΔFaci uncertainty after optimal constraint, weighted by the remaining 

uncertainty (Fig. 2c) and the sign of ΔFaci dependence on each parameter (as with Fig. 1). These composite 

maps highlight the parameters that cause remaining uncertainty and the regions where contributions are 

most pronounced. Although calculations were performed at the model grid box level, Fig. 3 reveals 

spatially coherent patterns of parameter influences on ΔFaci uncertainty. At the global mean scale, only 6 475 

of the 37 parameters cause 5 % or more of the remaining ΔFaci uncertainty (Fig.1 and Appendix A Table 

A2) but at the regional scale at least 15 parameters significantly affect ΔFaci uncertainty in multiple regions 

(Fig. 3) and almost all parameters contribute to remaining ΔFaci uncertainty in at least one region 

(Appendix A Fig. A2, A3).  

  480 
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Fig. 3. Maps of key parametric causes of remaining ΔFaci uncertainty after R23 optimal constraint. Shading indicates the 485 

proportion of ΔFaci uncertainty caused by individual parameters, multiplied by the 90 % credible interval range in that grid box 

and by the sign of the ΔFaci sensitivity to increasing the parameter value. Negative values indicate increasing the parameter 

value is associated with stronger (more negative) ΔFaci values. Regions where the ΔFaci 90 % CI is less than 3 W m-2 are 

masked. 
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 490 

 

The parameters controlling primary sulfate emission diameter (prim_so4_diam) and cloud droplet 

activation (sig_w) were tightly constrained by R23 (Fig. 1), but together they still contribute more than 

50 % of the remaining ΔFaci uncertainty in some regions, notably over China and the South American 

coast where more than 50 % of the original uncertainty remains (Fig. 2d). If ΔFaci dependence on these 495 

parameters were similar across all regions, the ΔFaci uncertainty would be constrained everywhere. 

However, the uncertainty caused by these parameters is reduced in some regions but not others, which 

suggests ΔFaci dependence on prim_so4_diam and sig_w (in conjunction with other parameter effects) 

over China and the South Pacific is not the same as the ΔFaci dependence in regions where ΔFaci was more 

strongly constrained (Fig. 2d). 500 

 

Several parameters make large-scale, spatially coherent contributions to remaining ΔFaci uncertainty. 

For example, the sea_salt and dms parameters are important over most marine environments, contributing 

17 % and around 12 % of the remaining global mean ΔFaci uncertainty respectively (Fig. 1). An increase 

in the magnitude of these natural aerosol emission parameters weakens ΔFaci (less negative) everywhere. 505 

However, sea_salt has a strong influence on global mean ΔFaci uncertainty due to its influence in the NH, 

whilst dms is most important in the south-eastern Pacific coastal region. The dms parameter affects 

secondary aerosol formation and particle growth, so causes more remaining ΔFaci uncertainty in this 

relatively polluted region with high present-day aerosol concentrations. The aerosol removal parameter 

dry_dep_acc also causes around 14 % of the remaining ΔFaci uncertainty. This parameter is most 510 

important in regions of outflow from anthropogenic pollution sources. Increasing aerosol removal rates 

in these regions strengthens annual mean ΔFaci (more negative) by reducing baseline aerosol 

concentrations which makes clouds more susceptible to aerosol changes (Carslaw et al., 2013), though 

the sign of this effect varies across seasons (Regayre et al., 2015). Additionally, the parameter controlling 

turbulent entrainment, a_ent_1_rp, causes around 9 % of the remaining ΔFaci uncertainty, with the largest 515 

contributions in marine regions associated with stratocumulus to cumulus transition. Increasing the 
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entrainment rate weakens ΔFaci (less negative) in these regions by reducing cloud amount and thus 

susceptibility to aerosol changes.  

 

The sign of ΔFaci dependence on parameter perturbations can vary between regions. This indicates 520 

that changing a parameter value strengthens ΔFaci in some regions but weakens it in others. For example, 

there is a clear boundary between Eastern and Western China, where the dependence of ΔFaci on several 

physical atmosphere parameters changes sign (bparam, two_d_fsd_factor, c_r_correl, 

autoconv_exp_lwp, dbsdtbs_turb_0, a_ent_1_rp).  These sign changes are also evident within some ocean 

basins (e.g. dbsdtbd_turb_0 and m_ci in the South Pacific; two_d_fsd_factor in the North Atlantic). 525 

Furthermore, the change in sign of ΔFaci dependence on physical atmosphere parameters aligns spatially 

with the influence of the parameter controlling black carbon radiative properties (bc_ri). For example, 

this parameter is the dominant cause of ΔFaci uncertainty in central China (more than 30 %) yet contributes 

relatively little to ΔFaci uncertainty in neighbouring Chinese regions (around 10 %). We hypothesise the 

sign of ΔFaci dependence on physical atmosphere parameters is determined by the effect of the bc_ri 530 

parameter, which determines the importance of physical atmosphere parameters by affecting boundary 

layer stability and cloud properties including cloud depth (Bond et al., 2013; Zhuang et al., 2010).  

 

Non-uniform regional variation in the parameters causing ΔFaci uncertainty means that global mean 

ΔFaci is resistant to the type of broad regional mean observational constraints applied by R23. That is, 535 

comparing regional mean model output to observations sub-optimally combines smaller-scale variations 

in ΔFaci dependence on uncertain model parameters. Thus, this analysis of remaining ΔFaci uncertainty at 

the model grid box scale provides new insight into how observational constraints can be calculated and 

applied. In the following section, we take this analysis further by clustering the data according to shared 

causes of remaining ΔFaci uncertainty rather than by geographical region. Theoretically, further ΔFaci 540 

constraint could be achieved using targeted observations within these clusters of shared causes of 

uncertainty (Lee et al., 2016). 
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3.4 Regional clusters of remaining ΔFaci uncertainty and observations to constrain them 545 

In this section, we explore how clustering regions according to their shared causes of remaining ΔFaci 

uncertainty can inform future strategies for further observational constraint. 

 

In Fig. 4 we cluster the combinations of parameters that cause unconstrained and remaining ΔFaci 

uncertainty (see also Appendix A Fig. A4 - a similar map for the original ΔFaci uncertainty). Each cluster 550 

is concentrated in regions determined by the importance of locally dominant processes. Neighbouring 

clusters typically share one or more important parameters, which suggest causes of ΔFaci uncertainty vary 

systematically across regions defined by these clusters. Spatial coverage of some clusters is reduced by 

the optimal constraint. Coverage is reduced by at least 75 % for the 2nd (orange) and 8th (grey) clusters 

and by around 50 % for the 3rd (green) cluster after optimal constraint. Reduced spatial coverage of these 555 

clusters (across continental Europe and North America, and high latitude marine regions) suggests 

combinations of parameters associated with them are constrained by R23 in certain areas. However, the 

persistence of these clusters in other regions suggests ΔFaci dependence on model parameters is not 

uniform within clusters. This may be due to interactions with other uncertain parameters or regional 

differences in how parameters affect ΔFaci.  560 
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Fig. 4. Maps of shared causes of remaining ΔFaci uncertainty, a) in the unconstrained set of model variants (the 90 % of the 

original 1 million with prim_so4_diam parameter values larger than 10 nm; Section 2.4), and b) after R23 optimal constraint. 

Model grid boxes where remaining ΔFaci uncertainty is less than 0.5 W m-2 are masked. The legend shows the 4 most important 565 

causes of uncertainty in each cluster and counter-clockwise shading in the pie charts shows the corresponding proportions of 

uncertainty caused by these parameters, out of 100 % total, with the white region representing contributions from the other 33 

parameters. 
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Fig. 5 shows how progressively adding observations to the optimal constraint affects causes of ΔFaci 570 

uncertainty in each cluster (Fig. 4). The cloud droplet activation parameter (sig_w) and primary sulfate 

parameter (prim_so4_diam) are constrained by more than 50 % in most clusters. However, other 

parameters are not strongly constrained and therefore cause a similar or higher proportion of remaining 

ΔFaci uncertainty after constraint. The persistence of key causes of ΔFaci uncertainty in each region, even 

as the overall uncertainty is reduced, suggests that the R23 constraint only partially constrains the 575 

governing processes. A deeper understanding of how these parameters interact with other causes of ΔFaci 

uncertainty at the regional level is needed to inform further constraint efforts. 

 

 

 580 

Fig. 5. Proportion of ΔFaci variance caused by the 37 parameters in the first 10 unconstrained (left) and all 10 optimally 

constrained (right) clusters (indexed in Fig. 4). Cluster indices and colors on the x-axis match Fig. 4. Parameter contributions 

to ΔFaci variance are shown in consistent order for each bar, though near-zero contributions are not always visible. 

 

Our analysis of remaining ΔFaci uncertainty focusses on clusters where ΔFaci is resistant to the R23 585 

constraint (Fig. 2), beginning with Asia, where ΔFaci uncertainty is weakly constrained (less than 30 %) 

so remains greater than 10 W m-2. Asia is partitioned into three clusters of remaining uncertainty (2: 

orange, 6: brown and 8: grey). In section 3.3, we described how the parameter controlling the refractive 

index of carbonaceous aerosol (bc_ri) can affect the atmospheric state and thus the sign of ΔFaci 
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dependence on some physical atmosphere parameters (Fig. 3). The bc_ri parameter is particularly 590 

important in Cluster 6 (brown) where in combination with the dry deposition parameter (dry_dep_acc) it 

causes nearly 50 % of the remaining ΔFaci uncertainty. This cluster extends into the Indian Ocean, East 

China Sea and western Pacific. The two main causes of remaining ΔFaci uncertainty in this cluster 

(deposition processes and aerosol optical properties) also represent major sources of multi-model 

diversity in aerosol optical depth over biomass burning regions (Petrenko et al., 2025). In theory, available 595 

measurements of carbonaceous aerosol optical properties within this cluster over Asia (e.g. Budhavant et 

al., 2024; Sun et al., 2024) should further reduce regional ΔFaci uncertainty by up to 35 %. However, 

observed variability in optical properties, driven by differences in aerosol mixing state (Bond et al., 2013; 

Fierce et al., 2016; Lack and Cappa, 2010), is not well represented in climate models. It is difficult to 

attribute radiative effects to individual species using climate models because aerosol species are typically 600 

treated as internally mixed (mixing state assumptions; e.g. Sand et al., 2021). As a result, observational 

constraints based on in-situ data may not be representative of the entire cluster, particularly across 

multiple regions. In such cases, region-specific observational constraints may be needed to constrain the 

cluster contribution to global mean ΔFaci uncertainty. 

Over densely populated and industrialized regions of Asia (Cluster 2, orange; spanning India, 605 

China’s coast, Indonesia, Japan and Korea) the remaining uncertainty in ΔFaci is dominated by dry 

deposition (dry_dep_acc), cloud droplet activation (sig_w) and primary sulfate emission properties 

(prim_so4_diam). The importance of updraft velocity in these regions is consistent with an updraft-

limited regime of cloud droplet activation when aerosol concentrations are high (Reutter et al., 2009). It 

is essential to constrain ΔFaci uncertainty in updraft-limited regimes because the sensitivity of cloud 610 

properties to aerosol under these conditions shapes our understanding of future climate responses 

(Andersen et al., 2023; Jia and Quaas, 2023).  

Cluster 2 (orange), most dominant over Asia, spans several other industrial zones, including the 

coasts of North and South America, Africa, and the Mediterranean, so constraint of the combined 

parameter effects on ΔFaci in any of these regions could reduce uncertainty more widely unless these 615 

three parameters have regionally specific values (currently not assumed in the model). Opportunities for 
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widespread constraint of uncertainty in Cluster 2 may be found through existing observations. For 

example, additional ΔFaci constraint beyond R23 might be achieved using in-situ sulfate concentration 

and aerosol deposition measurements from Japanese EANET (Acid Deposition Monitoring Network in 

East Asia) stations (Endo et al., 2011) in combination with extensive in-situ concentration and size 620 

distribution observations collected as part of the Aerosol Characterization Experiments (ACE) Asia 

(Huebert et al., 2003). Over Peru and Ecuador, where remaining uncertainty exceeds 5 W m-2 (Fig. 2c), 

the relevant observations are currently lacking so far as we are aware. While the VOCALS campaign 

(Wood et al., 2011) measured atmospheric properties within our Cluster 2, aerosol data were only 

collected further south. Other campaigns in our target region measure deposition fluxes (e.g. Baker et 625 

al., 2016) but focus on metal deposition as a source of marine biogenic activity, so are not suitable for 

broader climate model constraint. The lack of suitable observations in this region highlights a specific 

opportunity: novel measurements using, for example, condensation particle counters (for aerosol 

concentration data), mobility particle size spectrometers (for aerosol size distributions) and deposition 

collectors (removal rates) at specific coastal sites aligned to prevailing wind direction could play a 630 

critical role in reducing ΔFaci uncertainty. 

Remaining uncertainty over the North Pacific and North Atlantic Oceans share four main clusters: 

in the west nearest to outflowing anthropogenic pollution it is Cluster 2 (orange), immediately 

downwind it is Cluster 10 (cyan), which transitions into Cluster 3 (green) and ultimately Cluster 4 (red) 

on the eastern side of each NH ocean basin. Although R23 constrained ΔFaci uncertainty by more than 635 

70 % in NH marine regions (Fig. 2d), the uncertainty remains greater than 3 W m-2 (Fig. 2c). The 

aerosol deposition parameter (dry_dep_acc) causes nearly 25 % of the remaining ΔFaci uncertainty in 

Cluster 10 (cyan), with more than 10% each from natural aerosol emission parameters (dms and 

sea_salt) and around 10 % from the parameter controlling turbulent cloud top entrainment 

(a_ent_1_rp). The importance of aerosol removal (dry_dep_acc) decreases to less than 10 % in Cluster 640 

3 (green) and less than 5 % in Cluster 4 (red). In contrast, the cloud top entrainment parameter 

(a_ent_1_rp) increases in importance further from anthropogenic emission sources, causing around 10 

% of the remaining ΔFaci uncertainty in Cluster 3 (green) and around 35 % in Cluster 4 (red) where 
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remaining uncertainty is greatest (larger than 5 W m-2). In the central Cluster 3 (green) which covers 

most of the NH mid-Atlantic and mid-Pacific regions, sea salt emissions (sea_salt) and dimethylsulfide 645 

emissions (dms) combine to cause more than 25 % of the remaining uncertainty.  

These results suggest ΔFaci could be further constrained over NH ocean regions using existing 

observations that target each cluster. For example, extensive aerosol, cloud and radiation measurements 

from the Department of Energy Atmospheric Radiation Measurement (ARM) site on Graciosa Island 

(Mather and Voyles, 2013; Zheng et al., 2018) and associated Eastern North Atlantic flight campaign  650 

(ACE-ENA; Wang et al., 2022; Yeom et al., 2021) may help reduce ΔFaci uncertainty associated with 

cloud top entrainment (parameter a_ent_1_rp) and natural aerosol emissions (dms and sea_salt) in 

Cluster 4 (red). These measurements could be complemented by sea salt mass concentration 

measurements from Atmospheric Tomography (ATom) missions (Brock et al., 2022), which span 

Clusters 3 (green) and 4 (red) across both the North Pacific and North Atlantic (e.g. Murphy et al., 655 

2019), and aerosol concentration and size distribution measurements from the North Atlantic Aerosols 

and Marine Ecosystems Study (NAAMES) in Cluster 10 (cyan) within the western North Atlantic 

(Gallo et al., 2023). 

There is a contrast between clusters of ΔFaci uncertainty in NH and SH marine regions. Cluster 3 

(green) is less prominent in the SH, where Cluster 5 (purple) features in each ocean basin, accompanied 660 

by Cluster 9 (yellow) and, except in the South Pacific, Cluster 4 (red). ΔFaci uncertainty is only weakly 

constrained (by 40 % or less) in these regions (Fig. 2d). In each of these clusters, the dominant 

parameter is the one controlling how the spatial distribution of clouds affects radiation within model 

grid boxes (two_d_fsd_factor), causing around 20 % of the remaining ΔFaci uncertainty in Cluster 5 and 

around 10 % in other clusters. Additional contributors to remaining uncertainty include the cloud-665 

precipitation overlap parameter (c_r_correl; around 15 % in Cluster 5) and an autoconversion 

sensitivity parameter (autoconv_exp_lwp; more than 5 % in Cluster 9). The importance of these 

physical atmosphere model parameters suggests a need to constrain the transition from stratocumulus to 

cumulus clouds, which might be achieved using process-based observations, such as co-varying aerosol 

and cloud properties (e.g. Gryspeerdt et al., 2016), subject to addressing discrepancies between models 670 
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and satellite data (Kokkola et al., 2025; Quaas et al., 2020). However, model structural deficiencies 

have thus far prevented observed cloud properties associated with these physical atmosphere parameters 

being used as constraints (Regayre et al., 2023). In practice, model developments informed by large 

eddy simulation analyses (e.g. Sansom et al., 2024) may be needed to improve cloud transitions in 

global climate models and further constrain ΔFaci uncertainty in SH marine regions. 675 

4 Conclusions 

The Regayre et al. (2023) optimal constraint reduced global annual mean ΔFaci uncertainty by nearly       

70 % (90 % credible interval spanning -0.9 to -0.1 W m-2). However, our results here show that the 

observational constraint did not affect all regions (Fig. 2d) or causes of uncertainty (Fig. 5) equally. 

Although the uncertainty caused by the two main drivers of original ΔFaci uncertainty, parameters 680 

controlling the diameter of primary sulfate particles (prim_so4_diam) and cloud droplet activation (cloud 

updraft speed; sig_w), is greatly reduced, all other parameters cause a similar or greater proportion of 

remaining uncertainty (Fig. 5 and Appendix A Table A2). Remaining ΔFaci uncertainty is greatest in 

continental Asia (90 % credible interval greater than 10 W m-2) and SH regions of persistent stratocumulus 

cloud (5 to 10 W m-2; Fig. 2c). 685 

   

By analyzing clusters of shared causes of remaining ΔFaci uncertainty (Fig. 4), we identify specific 

existing observational data likely to further constrain ΔFaci in our model (Table 1). However, observations 

related to key causes of uncertainty are not available across all regions and clusters. For example, novel 

observations of aerosol species concentrations, size distributions and deposition fluxes at multiple sites 690 

along the coasts of Peru and Ecuador would be highly valued for their potential to further constrain ΔFaci 

in Cluster 2 (orange) which would have a broad impact on remaining uncertainty in other regions of 

persistent uncertainty. These results show how evaluating models within an uncertainty framework can 

identify novel observations which, if made, would likely provide far-reaching additional constraint of 

ΔFaci.  695 
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Table 1: Summary of existing observations with high potential to further constrain ΔFaci, and the processes they would target 700 

Cluster(s) Key observation data Source(s) Spatial extent of 

cluster(s) 

Target causes of 

remaining ΔFaci, 

uncertainty 

Brown: 6 Carbonaceous aerosol 

optical properties 

Budhavant et al., (2024); Sun et 

al., (2024) 

Central China, SE 

Asia, Indian Ocean, 

NW Pacific 

 

bc_ri; 

dry_dep_acc 

 

Orange: 2 Species concentrations; 

Aerosol deposition; 

Aerosol size distribution 

EANET - Endo et al., (2011); 

ACE-Asia - Huebert et al., 

(2003) 

Eastern China, 

India, Industrialized 

coastal regions 

dry_dep_acc; 

sig_w; 

prim_so4_diam 

 

Cyan: 10 Species concentrations, 

Aerosol size distribution 

NAAMES - Gallo et al., (2023) 

 

NW Pacific, NW 

Atlantic, SE 

Pacific, Arctic 

dry_dep_acc; 

sea_salt; 

dms 

Green: 3 Sea salt concentrations ATom - Brock et al., (2022); 

Murphy et al., (2019) 

 

North Pacific, 

North Atlantic 

sea_salt; 

dms; 

dry_dep_acc 

 

Red: 4 Aerosol number 

concentration, Aerosol size 

distribution, Cloud and 

aerosol vertical and 

radiative properties 

ARM (Graciosa Island) - 

Mather and Voyles (2013); 

Zheng et al. (2018);  

ARM-ENA - Wang et al. 

(2022); Yeom et al. (2021) 

NE Atlantic, NE 

Pacific, SE 

Atlantic; SE Indian 

 

a_ent_1_rp 

 

Purple: 5 

and 

Yellow: 9 

Co-varying aerosol and 

cloud properties 

Gryspeerdt et al. (2016) 

 

Southern 

Hemisphere marine 

regions 

two_d_fsd_factor; 

c_r_correl; 

autoconv_exp; 

sea_salt 

 

 

The conventional approach to model development typically focusses on increasing model fidelity, 

often inspired by the detection of biases or insights from multi-model intercomparisons (Chen et al., 

2021). However, apparent improvements in model skill can largely be attributed to parameter retuning 705 

rather than genuine structural advances (Rostron et al., 2025). Increasing model fidelity carries a 

computational burden which is not always beneficial (Proske et al., 2022). Operationalizing a more 
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targeted model development cycle requires structural modifications, evaluation within an uncertainty 

framework (Lee et al., 2012; Sexton et al., 2021), and successive waves of observational constraint to 

reduce model uncertainty and reveal structural deficiencies (Elsaesser et al., 2025; Fierce et al., 2024; 710 

Johnson et al., 2020; McNeall et al., 2016; Regayre et al., 2023). Diagnosing the causes of remaining 

uncertainty, as demonstrated here, is a key step in this cycle.  

 

Here we have described a workflow for constraining (narrowing uncertainty in) aerosol radiative 

forcing that combines perturbed parameter ensembles (PPEs), extensive observational constraints and 715 

statistical analyses to track changes in the causes of uncertainty as observational constraints are 

progressively applied. Systematically analyzing the causes of remaining ΔFaci uncertainty after 

observational constraint enables us to: a) identify regions where model uncertainty resists observational 

constraint (highlighting where additional observational data are most needed) and b) partition regions into 

clusters of shared uncertainty sources (pointing to existing and novel observation types that could further 720 

reduce ΔFaci uncertainty). Our analysis also suggests model uncertainty may be more effectively 

constrained if observational constraints were applied within clusters of common causes of model 

uncertainty, rather than across geographic regions that are likely to span multiple clusters. This approach 

to model evaluation and constraint provides actionable information to guide both further observational 

constraint and efforts to increase model fidelity that directly target ΔFaci uncertainty. 725 

 

The workflow of progressive observational constraint and clustering of the common causes of 

uncertainty demonstrated here tackles only part of the overall uncertainty in aerosol radiative forcing – 

parametric uncertainty. The other part, highlighted by R23, is structural uncertainty caused by structural 

deficiencies in models. Progressive observational constraint, reclustering, identification of new target 730 

observations and further constraint only works if the multiple observations provide consistent constraints 

on the uncertain parameters, but R23 showed that inconsistency is likely to become a problem even after 

very few constraints have been applied – that is, different observations constrain the model to different 

(inconsistent or non-overlapping) parts of parameter space. As we outlined in R23, the approach we have 

shown here would therefore need to be combined with efforts to address these inconsistencies by making 735 
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model structural improvements. We suggest that targeting model development at the processes causing 

such multi-variable inconsistency will be more efficient than addressing causes of bias in single variables.     

 

A key question is how transferable ΔFaci constraint derived from a single model is to other models. 

While climate models share multiple parameterisations and fundamental assumptions, and are evaluated 740 

against similar observational datasets (Knutti et al., 2013; Kuma et al., 2023; Sanderson et al., 2015), 

differences in tuning strategies (Hourdin et al., 2017) and configurations result in diverse responses to 

anthropogenic aerosol changes (Bellouin et al., 2020; Intergovernmental Panel On Climate Change, 

2023). To ensure our approach supports improvements across a range of climate models, it is essential to 

extend this development and evaluation cycle across multiple models. Multi-model PPEs (MM-PPEs), 745 

which simultaneously sample both structural and parametric uncertainties, offer a more robust basis for 

identifying structural deficiencies, targeting model development priorities, and guiding future observation 

strategies. Applying our approach systematically across different models and model versions would build 

a foundation for strategic, evidence-based climate model development.  

Appendix A 750 

Additional figures A1 to A4 and Tables A1, A2. 

 

https://doi.org/10.5194/egusphere-2025-3755
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



33 

 

 

Fig. A1. The marginal dependence of ΔFaci on normalized prim_so4_diam parameter values. Values for the first 1 000 of the 

original 1 million model variants are shown. Parameter values are normalized to be on the 0-1 scale. The dashed line separates 755 

values below around 10 nm, which were removed to create Fig. 2b) and the set of model variants referred to as unconstrained.  
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 760 

Fig. A2. Maps of parametric causes of remaining ΔFaci uncertainty after optimal constraint for 15 of the 22 parameters not 

shown in Fig. 3. Shading indicates the proportion of variance caused by individual parameters, multiplied by the variance in 

that grid box and by the sign of the ΔFaci dependence on the parameter value. Negative values indicate increasing the parameter 

value is associated with stronger (more negative) ΔFaci values. Regions where the ΔFaci 90 % CI is less than 3 W m-2 are 

masked.   765 
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Fig. A3. Maps of parametric causes of remaining ΔFaci uncertainty after optimal constraint for the 7 parameters not shown in 

Fig. 3 nor Fig. A2. Shading indicates the proportion of variance caused by individual parameters, multiplied by the variance 

in that grid box and by the sign of the ΔFaci dependence on the parameter value. Negative values indicate increasing the 

parameter value is associated with stronger (more negative) ΔFaci values. Regions where the ΔFaci 90 % CI is less than 3 W m-770 
2 are masked. 
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 775 

Fig. A4. Shared causes of ΔFaci uncertainty in the original set of 1 million model variants. As with Fig. 4 in the main article, 

the legend shows the 4 most important causes of uncertainty in each cluster and clockwise shading in the pie charts shows the 

corresponding proportions of uncertainty caused by these parameters, out of 100% total, with the white region representing 

contributions from the other 33 parameters. 

Table A1. Parameter names, perturbation type and description, following Regayre et al., (2023).  780 

Parameter name 

 

Perturbation type Description 

bl_nuc Aerosol process Boundary layer nucleation rate scale factor 

ait_width  Aerosol process Modal width of Aitken modes 

cloud_drop_acidity  Aerosol process Cloud droplet acidity 

carb_ff_diam Aerosol process Emission diameter of carbonaceous aerosol from fossil fuel sources 

carb_bb_diam Natural aerosol emission Emission diameter of carbonaceous aerosol from biomass burning 

sources 

carb_res_diam Anthropogenic aerosol 

emission 

Emission diameter of carbonaceous aerosol from residential sources 

https://doi.org/10.5194/egusphere-2025-3755
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



37 

 

prim_so4_diam  Anthropogenic aerosol 

emission 

Emission diameter of 50% of new sub-grid sulfate particles. Remaining 

50% emitted into the larger coarse mode 

sea_salt Natural aerosol emission Sea salt emission flux scale factor 

anth_so2_chi Anthropogenic aerosol 

emission 

Anthropogenic SO2 emission flux scale factor – China 

anth_so2_asi Anthropogenic aerosol 

emission 

Anthropogenic SO2 emission flux scale factor – Asia 

anth_so2_eur  Anthropogenic aerosol 

emission 

Anthropogenic SO2 emission flux scale factor – Europe 

anth_so2_nam  Anthropogenic aerosol 

emission 

Anthropogenic SO2 emission flux scale factor - North America 

anth_so2_r Anthropogenic aerosol 

emission 

Anthropogenic SO2 emission flux scale factor - Rest of the world 

volc_so2 Natural aerosol emission Volcanic SO2 emission flux scale factor 

bvoc_soa 

 

Natural aerosol emission Biogenic monoterpene production rate of secondary organic aerosol 

scale factor 

dms Natural aerosol emission Dimethyl-sulfide emission flux scale factor 

prim_moc Natural aerosol emission Primary marine organic carbon emission flux scale factor 

dry_dep_ait Aerosol process Dry deposition velocity of Aitken mode aerosol 

dry_dep_acc Aerosol process Dry deposition velocity of accumulation mode aerosol 

dry_dep_so2 Aerosol process Dry deposition velocity of SO2 

kappa_oc Aerosol process Hygroscopicity parameter (κ) for organic aerosol – affects wet 

diameter and clear-sky radiative flux 

sig_w Aerosol process Standard deviation of shallow-cloud updraft velocity scale factor 

rain_frac Aerosol process Fraction of cloud covered area where rain removes aerosol 

cloud_ice_thresh  Aerosol process Threshold of cloud ice water fraction for scavenging 

conv_plume_scav  Aerosol process Scavenging efficiency (as a fraction of total aerosol removed) of 

Aitken mode aerosol in convective clouds 

bc_ri Aerosol process Imaginary part of the black carbon refractive index 

oxidants_oh Aerosol process Offline oxidant OH concentration scale factor 

oxidants_o3 Aerosol process Offline oxidant O3 concentration scale factor 

bparam Physical atmosphere Coefficient of the spectral shape parameter (β) for effective radius 
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two_d_fsd_factor  Physical atmosphere Scale factor for the 2D relationship between cloud condensate 

variance, cloud cover and convection - Controls sub-grid cloud 

heterogeneity 

c_r_correl  Physical atmosphere Cloud and rain sub-grid horizontal spatial colocation 

autoconv_exp_lwp  Physical atmosphere Exponent of liquid water path in the power law for initiating 

autoconversion 

autoconv_exp_nd  Physical atmosphere Exponent of cloud droplet concentration (Nd) in the power law for 

initiating autoconversion 

dbsdtbs_turb_0  Physical atmosphere Cloud erosion rate 

ai Physical atmosphere Scaling coefficient for the dependence of ice mass on diameter 

m_ci Physical atmosphere Ice fall speed scale factor 

a_ent_1_rp Physical atmosphere Cloud top entrainment rate scale factor 

 

Table A2. Percentage of ΔFaci uncertainty (90 % credible interval) caused by each of the 37 perturbed parameters before, 

during and after optimal constraint. In the original set, causes of variance greater than 2 % of the total are in bold font, indicating 

these parameters are in the first ΔFaci bar in Fig. 1. Causes of remaining variance after the 13th
 (optimal) constraint are also 

bold where they differ from the original causes by more than 1 % 785 

Parameter 

 

Original 

(1 million) 

Un-

constrained 

(900 000) 

After 1st 

constraint 

(431 143) 

After 2nd 

constraint 

(75 936) 

After 4th 

constraint 

(5 000) 

After 13th 

(optimal) 

constraint 

(5 000) 

bl_nuc  0.0 0.0 0.0 0.0 0.0 0.0 

ait_width 0.6 1.4 1.5 2.3 2.9 2.8 

cloud_drop_acidity 0.4 0.9 1.0 1.4 1.6 1.5 

carb_ff_diam 0.5 1.0 0.9 1.3 1.1 1.4 

carb_bb_diam 0.1 0.2 0.3 0.4 0.5 0.5 

carb_res_diam 0.1 0.1 0.2 0.2 0.3 0.2 

prim_so4_diam 54.9 3.5 26.0 10.4 5.0 2.8 

sea_salt 7.4 17.0 12.4 14.4 16.3 17.0 

anth_so2_chi 0.1 0.2 0.2 0.3 0.3 0.3 

anth_so2_asi 0.0 0.1 0.1 0.2 0.3 0.3 

anth_so2_eur 0.0 0.0 0.0 0.0 0.0 0.0 
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anth_so2_nam 0.0 0.0 0.0 0.1 0.2 0.2 

anth_so2_r 0.8 1.9 1.8 2.7 3.2 3.0 

volc_so2 0.2 0.5 0.7 0.9 1.2 1.1 

bvoc_soa 0.0 0.0 0.0 0.0 0.0 0.0 

dms 3.5 8.1 7.8 8.9 12.5 12.3 

prim_moc 0.1 0.4 0.3 0.5 0.5 0.6 

dry_dep_ait 0.0 0.0 0.0 0.0 0.0 0.0 

dry_dep_acc 6.0 13.6 13.6 13.1 10.8 14.4 

dry_dep_so2 0.1 0.4 0.3 0.6 0.7 0.7 

kappa_oc 0.1 0.2 0.1 0.2 0.2 0.2 

sig_w 13.9 25.6 10.8 7.9 5.3 5.1 

rain_frac 0.0 0.0 0.0 0.0 0.0 0.0 

cloud_ice_thresh 0.1 0.3 0.2 0.4 0.5 0.4 

conv_plume_scav 0.2 0.2 0.2 0.3 0.3 0.3 

bc_ri 0.8 1.6 1.5 2.4 2.7 2.7 

oxidants_oh 0.1 0.1 0.1 0.2 0.2 0.2 

oxidants_o3 0.0 0.0 0.0 0.1 0.1 0.1 

Bparam 1.0 2.2 2.1 3.1 3.5 3.3 

two_d_fsd_factor 1.6 3.7 3.4 5.3 5.5 5.6 

c_r_correl 0.6 1.5 1.3 2.1 2.5 2.5 

autoconv_exp_lwp 0.3 0.7 0.8 1.1 1.3 1.1 

autoconv_exp_nd 1.2 2.4 2.4 3.4 3.9 3.8 

dbsdtbs_turb_0 0.5 1.2 1.2 1.8 2.1 2.1 

ai 1.7 3.6 3.4 4.8 4.1 3.2 

m_ci 0.3 0.8 0.7 1.1 1.3 1.2 

a_ent_1_rp 2.8 6.2 4.9 8.2 8.9 9.0 
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Code availability 

Code used to create figures in this article are available here: https://doi.org/10.5281/zenodo.16686812 

(Regayre, 2025) 790 

Data availability 

Output from the A-CURE PPE is available on the CEDA archive (Regayre et al., 2022).  
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