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Abstract. Counting annual-scale fluctuations, such as geochemical cyclicity or visible growth bands, within a climate archive 

can yield extremely high-precision chronological models. However, this process is often time-consuming and subjective, and 

although various software packages can automate this process, many researchers still prefer to count manually given its 

technical simplicity and transparency. Here we present a new tool that combines the time saved by automation with the 10 

flexibility afforded by expert judgement. CYCLIM uses a matched filtering approach to detect cyclicity and then allows the 

user to inspect and refine the automated output whilst also quantifying age uncertainty. The presented framework speeds up 

cycle counting by automating the first-pass of the count while also retaining the benefits of a manual count by allowing for 

post-analysis tuning. Across three examples using published palaeoclimate reconstructions, the automatic output found 

96.0.2% of the cycles, with a false positive and false negative rate of 3.43% and 4.03.8%, respectively. This means that only 15 

~7 cycles per 100 need to be corrected manually, making cycle counting with CYCLIM ~14.1 timesan order of magnitude 

faster than by visual inspection.  

1 Introduction 

Palaeoclimate reconstructions are the principal method to put modern climate trends within a longer-term variability. These 

techniques use proxies recorded in natural archives to track past changes in the climate system, and so one of the key steps in 20 

developing palaeoclimate reconstructions is translating depth (or growth) to the time domain. Chronologies are derived using 

a variety of techniques such as radiocarbon or uranium-series dating, but usually they can only supply a limited number of 

points because of sample material, analytical costs, and time constraints (Breitenbach et al., 2012). Cycle or layer counting, 

although relative, offers a powerful alternative, often reaching sub-annual precision (Comboul et al., 2014; Forman et al., 2025; 

Ridley et al., 2015).  25 

Rhythmic layering and/or cyclicity in palaeoclimate archives can reflect seasonal to annual environmental variability, which 

can serve as the basis for a chronology. Cycle counting involves identifying and quantifying these repeating visual (e.g., colour 

or texture) or geochemical (e.g., stable isotopes or trace elements) parameters. However, prior to performing a count, the 

annual-scale fluctuations need confirmation as truly annual both with independent chronological validation and a theoretical 
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basis for the processes involved in generating the periodicity. Many natural archives are amenable to cycle counting methods, 30 

including: (1) tree rings by preserving annual growth rings (e.g., Anchukaitis and Evans, 2010); (2) corals through density 

bands and geochemical signatures (e.g., Goodkin et al., 2005); (3) ice cores via multiple records such as dust, conductivity, 

and stable isotopes (e.g., Winstrup et al., 2019); (4) lake/marine sediment through visible varves (e.g., Wick et al., 2003); and 

(5) speleothems via physical laminae and geochemical cyclicity (e.g., Tan et al., 2006). Whereas cycle counting is prone to 

error via missing/ambiguous cycles in addition to lacking the absolute dating precision afforded by some radiometric methods, 35 

it offers unparalleled temporal resolution in many contexts and can augment existing chronologies, particularly when anchored 

to a known age. 

The process of cycle counting is often time consuming and subjective, so many studies have presented analytical tools to 

automate the process. Some archives have purpose-built chronological packages due to the nuances of the systems. Tree ring 

chronologies typically combine records from multiple trees using techniques such as cross-dating to overcome inaccuracies 40 

arising from rings in one record that are missing or false (St. George, 2014). Similarly, ice core chronologies may require 

correcting for thinning and compaction using techniques such as thinning functions and ice flow models (Kahle et al., 2021). 

For this reason, archive-specific tools such as dplR (Bunn, 2008) and the hidden Markov models (HMMs) algorithm presented 

by Winstrup et al. (2012) exist for dating tree rings and ice cores respectively, although, if the dataset permits, general tools 

could still yield accurate age models for these records. These general tools are either applied to images/scans of the archive to 45 

count visible layer boundaries or to depth profiles extracted from the archive to count detectable cyclicity. A degree of overlap 

exists between these two methods because images/scans can convert into intensity profiles such as greyscale or fluorescence 

to then undergo cycle detection using similar signal processing techniques to those of non-image-based tools. Visual packages 

exist for counting both varved sediments (e.g., Weber et al., 2010) and speleothems (e.g., Sliwinski et al., 2023) using 

techniques like machine learning. Signal processing algorithms simply use a depth-proxy record and identify cycles via 50 

statistical techniques like peak detection, making them very versatile. Smith et al. (2009) developed a trace element cycle 

counting algorithm that uses an estimate of mean cycle width obtained by spectral and wavelet analysis. The algorithm also 

uses two threshold criteria: (1) a minimum cycle amplitude, fixed to a local standard deviation of signal variance; and (2) a 

minimum inter-cycle separation, calculated relative to the preceding detections. Nagra et al. (2017) devised a multi-proxy 

approach for counting annual trace element cycles in speleothems. Each trace element transect is normalised and concatenated 55 

before undergoing a principal component analysis (PCA), after which principal component 1 (PC1) is passed to a peak counting 

algorithm. This algorithm uses a prior estimate of annual growth rate as a sampling window and sets thresholds relative to the 

mean cycle for determining whether a detection is false or missing. However, many researchers still opt to count by inspection, 

partly because it offers greater flexibility and because the variability among proxy records can impede the effectiveness of 

automated techniques.  60 

Combining the advantages of both automation and expert judgement, here we present a Python-based application (CYCLIM) 

that automatically detects cyclicity before allowing user-guided refinement of the results. Cycles are detected using matched 

filtering with a Gaussian kernel and sections of ambiguous cyclicity are identified. Within the interface the user can then 
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review the output and adjust boundaries by removing spurious detections and/or adding in new cycles. Additionally, the user 

can quantify algorithmic uncertainty using a noise perturbation-based Monte Carlo approach. This methodology provides a 65 

flexible and reproducible framework that streamlines the process by automating the initial detection phase while preserving 

the control necessary for dealing with the heterogeneity and noise of proxy records. By facilitating both efficiency and 

supervision, CYCLIM enhances the speed, accuracy, and transparency of cycle counting. 

2 Interface and Methods 

2.1 Graphical User Interface (GUI) Overview  70 

The CYCLIM algorithm (Fig. 1) uses a semi-automated approach whereby the user can optimise the algorithm by tuning its 

hyperparameters and enabling additional features, before allowing inspection and refinement of its output. First, the interface 

prompts the user to import the depth-proxy dataset for counting. The depth-proxy dataset should: (1) have sufficient signal-to-

noise to distinguish annual cyclicity from background noise; (2) exhibit no substantial or consistent change in cycle length; (3) 

have approximately equally spaced datapoints; and (4) ideally contain no missing values. The algorithm can tolerate a few 75 

missing values provided they are removed prior to counting and maintain a near-perfect consistency in sampling rate. CYCLIM 

uses matched filtering to extract the annual signal, which can either be done automatically, or the user can manually refine the 

algorithm (see Section 2.2). Minima are then identified in the matched filter output and are used as cycle boundaries. The user 

specifies an estimate of the average cycle length and then can choose to use the automatic hyperparameter values or set them 

manually. Because the algorithm uses the average cycle length to calculate the template width, which has built-in flexibility, 80 

this only needs to be an estimate. Additionally, there is the option to apply gap treatment, which addresses intervals with no 

detection by inserting estimated cycles, and cycle tuning, which refines the boundary positions to local minima in the original 

record (see Section 2.2).the algorithm can tune detected cycles to local minima and divide gaps using the expected cycle length. 

Post-detection the user can inspect the cycles boundaries that the algorithm detects to remove erroneous detections and add in 

any missed by the algorithm. The system tracks the origin of each minimum (i.e., whether it was added at the matched filtering 85 

stage, gap adjustment or manually by the user) and shown in the GUI. This ensures that artificial cycles resulting from the gap 

adjustment stage are distinguishable from filter- or user-defined minima, allowing for different assessment.  

After confirming the count, the user specifies an anchor point to temporally constrain the annual boundaries, which could be 

the collection year, the radiocarbon bomb spike depth, or a U-Th point.  There is also the option to upload a full list of 

chronological tie points for comparison and specify the sub-annual timing of the minima. CYCLIM then usesThe algorithm 90 

derives a median age model from 2,000 Monte Carlo realisations using piecewise cubic Hermite interpolating polynomial 

(PCHIP) interpolation, which it then uses to assign an age value to every datapoint in the depth-proxy dataset an age valueby 

estimating ages between the detected cycle boundaries. At this point there is the option to quantify algorithmic uncertainty and 

devise a confidence interval for the age model (see Section 2.3). Furthermore, users can choose to enable CYCLIM can the 

translatione of the proxy values onto a time-certain axis, thereby to converting age uncertainty into proxy uncertainty. Post-95 
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analysis, the user can export the minima locations with their origin (supporting further age modelling incorporating other 

chronological methods) and the age-converted dataset. Finally, the system facilitates the import and depth-age conversion of 

any additional proxies from the archive using the age model derived prior, provided it is within the same depth range. Once 

converted, the user can extract the age-converted data for further analysis. 
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Figure 1: A schematic overview of the CYCLIM workflow. Colours denote the step of the GUI in which each element occurs. Step 1 

(grey): upload and confirm the depth-proxy data. Step 2 (red): hyperparameter set-up and minima detection. Step 3 (green): manual 

inspection of the output minima with the ability to add or remove entries. Step 4 (purpleorange): specify chronological constraints 

and run age model. Step 5 (purple): quantify algorithmic  and compute uncertainties. Step 65 (blue): choose manual/automatic age 105 
model, convert uncertainties and view final output. Step 76 (yellow): import and model additional depth-proxy datasets using the 

age model derived chosen in Step 64.  

2.2 Cycle Detection 

Cycles are extracted using a matched filtering approach designed to enhance the defined annual-scale cyclicity within the 

depth-proxy dataset (Fig. 2). A Gaussian-shaped template is constructed to approximate the expected waveform of the cycles. 110 

The user can manually specify the template width (𝑤) or the CYCLIM algorithm will automatically set the template width to 

correspond to half the number of datapoints that comprise the average cycle length, which is specified by the user. The method 

uses a half-cycle length because matched filtering with a Gaussian template produces strong responses for segments that 

resemble either the template’s standard orientation (peaks) or its inverse (troughs). This approach allows the filter to detect 

cycles without requiring knowledge of the full waveform shape, emphasising general pattern similarity and thereby making it 115 

robust to asymmetry or obscuration due to noise. Because the template centres around a single point, the window must be odd. 
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If the calculation yields an even number, the algorithm expands the window by one. The Gaussian template is defined as a 

normalised function:  

𝐺(𝑡) =
1

𝑍
∙ exp (−

𝑡2

2𝜎2
) ,           (1) 

where 𝑡 is an index vector centred on zero, 𝜎 =
𝑤

6
, and 𝑍 is a normalisation constant, computed as the sum of the unnormalised 120 

Gaussian values, that ensures the template has unit area. The choice of 𝜎 ensures that > 99% of the Gaussian’s area falls within 

the selected window.  

The proxy signal data is then convolved with 𝐺(𝑡) to yield a matched filter output: 

𝑌(𝑡) = (𝑦 ∗ 𝐺)(𝑡) ,           (2) 

where ∗ signifies convolution. The resulting signal 𝑌 emphasises the regions of the original 𝑦 signal that resemble the template 125 

shape, thereby enhancing the cyclic component while reducing high-frequency noise.  

Because the algorithm counts cycles using minima, it inverts the filtered signal before performing peak detection. Peaks in the 

inverted signal correspond to points that exceed their immediate neighbours and surpass a minimum prominence criterion. 

This threshold suppresses false detections caused by remaining signal noise and allows the user to manually set the value or 

automatically assigns it a value equivalent to 2.5% of the range in 𝑦 between the 2.5th and 97.5th percentiles.  130 

 

Following the initial detection stage, the algorithm can tune the found minima to a local minimum in the original dataset. If 

enabled, this feature uses the tuning window to search the nearby points in the raw signal of each minimum detected by the 

matched filter for a true minimum. In manual custom mode the user specifies the width of this tuning window, but in automatic 

default mode the algorithm sets the window to a quarter of the full cycle length, approximating a three-month period, whilst 135 

ensuring the window is odd by expansion where necessary. This ensures that final positions remain within the same season 

and correspond to inflection points in the original data. 

To maintain accuracy and avoid undercounting, the algorithm includes an additional step to treat missing sections of the record 

and/or intervals where cyclicity is indistinguishable from background noise. If enabled, and no minimum appears within an 

interval exceeding the gap threshold set by the user, the algorithm subdivides the section at regular intervals equal to the 140 

average cycle length and tunes each to localised minima. Although this step introduces artificial cycles, it ensures that the 

overall count does not deviate from the underlying age model due to missed cyclicity. 

The detection methodology thus uses four hyperparameters: (1) the average cycle length; (2) the template width; (3) the 

minimum prominence; and (4) the tuning window (Table 1). In custom mode, the user must specify values for all of the 

hyperparameters, whereas in default mode, only an estimate for the average cycle length is required. However, because this 145 

estimate is used to determine the value of the other hyperparameters it needs to be a fair approximation. Provided the estimate 

is robust, the sensitivity of the output to its exact value depends on the record’s resolution and noise level. The sensitivity of 

the output to the choice of template width and minimum prominence is computed within the algorithm. The GUI then plots 
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the similarity of the detected cycle boundaries relative to the current configuration as the template width and minimum 

prominence are varied. The template width is modified by ±30% and the minimum prominence value is converted to a 150 

percentage to the range in 𝑦 and adjusted by ±5%. 
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Figure 2: A schematic overview of the matched filtering technique. (a) The Gaussian template used for matched filtering, which is 

set to the number of datapoints corresponding to half the estimated average cycle length of the hypothetical dataset. (b) A The 155 
hypothetical dataset (grey) and the convolvedin the process of convolution (blue) via the matched filtering output (blue) of a Gaussian 

template set to half a cycle width (red; vertically expanded for clarity). (c) The record in (b) with the detected cycle boundaries 

(vertical black dashed lines) and the inserted boundaries during gap treatment (vertical green dashed lines)Peak finding is then 

performed on the matched filter output (blue).  

Table 1: The hyperparameters used in the CYCLIM algorithm and their role. 160 

Hyperparameter Description Default Value Purpose Effect on Output 

Average Cycle Length 

Estimated length (in 

depth units) of the 

typical cycle in the 

proxy signal 

User-defined 

Serves as a basis for 

deriving the template 

width and tuning 

window. It is also used 

to divide up sections 

during gap treatment 

Directly influences 

default values of the 

other hyperparameters 

and the length of gap-

filled cycles 

Template Width 

Width of the Gaussian 

template used for 

matched filtering 

Half the number of 

datapoints 

corresponding to an 

average cycle length  

Determines how much 

of the signal is used in 

each convolution 

window 

The wider the template 

the smoother the output 

will be 

Minimum Prominence  

Minimum prominence 

required to accept a 

detected cycle 

2.5% of the proxy 

signal’s central 95% 

range 

Filters out false 

detections caused noise 

The greater the value 

the higher the peak 

must be  

Tuning Window 

Local window to refine 

detected cycle 

positions 

One-quarter of the 

datapoints in an 

average cycle length  

Tunes the detections by 

aligning them to match 

a local minimum in the 

original proxy signal 

The higher the value 

the wider the scope for 

searching 

 

2.3 Quantifying Algorithmic Uncertainty Quantification 

To quantify algorithmic uncertainty as an approximation of cycle counting age uncertainty, CYCLIM adopts a noise-based 

Monte Carlo approach. By perturbing the signal in a similar way to natural processes, we can model the algorithm’s sensitivity 

and yield estimates of variance between counts that reflect that arising from counting error.  165 

First, CYCLIM stores the minima positions from the cycle detection stage, including those added by gap treatment, as a 

reference set. Then, for a user-defined number of random seeds, arrays of Gaussian white noise are generated of equal length 

and standard deviation to the proxy signal. These random signals are then progressively linearly mixed into the proxy signal 

from 1% to 100% (in 1% increments) to simulate random error. The same algorithm used to derive the reference set is then 

applied to each noise level and random seed combination, and the resulting lists of detected minima are stored. Each run’s 170 
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performance is evaluated against the reference set using the F1 score, a harmonic mean of precision (here the fraction of output 

detections that are found in the unperturbed signal) and recall (the fraction of reference minima detected) based on a detection 

tolerance of a quarter cycle length. The analysis employs the F1 because it includes both over- and undercounting as systematic 

error, making it a robust metric of signal recovery fidelity under increasing noise. The mean 95% confidence interval for the 

F1 scores across all seeds at each noise level is computed, producing a performance curve (Fig. 3a). 175 

A noise level that approximates counting errors is then identified. To ensure method robustness across a wide range of input 

signals, this threshold is set dynamically to when algorithmic performance first begins to degrade disproportionately to the 

increase in noise. This noise level marks the boundary between algorithm robustness and failure, where detection accuracy 

becomes increasingly sensitive to small changes in noise level showing the algorithm’s operational limit. Modelling the 

algorithmic response to lower (higher) levels of noise could underestimate (overestimate) uncertainty and so simulating at the 180 

tipping noise level avoids misrepresenting uncertainty. By using this level, the internal biases of the matched filter arising from 

hyperparameter choice become the salient driver of variability across random seeds. It thus exposes how stable the algorithm’s 

output is to noise, replicating signal ambiguity due to discrete sampling. Therefore, it mimics the plausible levels of epistemic 

uncertainty of manual counting by perturbing the signal enough to induce detection error but without causing irreparable signal 

damage.  185 

The noise level is determined using a piecewise linear fit with three breakpoints (Fig. 3b). Signal degradation with respect to 

noise follows an S-curve, thus having two breakpoints, but using the first would overestimate signal stability, especially in 

records with higher internal noise. Under these conditions the reproducibility of the reference boundaries deteriorates more 

linearly, suppressing and/or delaying the first S-curve breakpoint. Thus, the F1 score curve is padded, introducing a third 

breakpoint which finds where reconstruction fidelity first falls beyond that tolerated by the padding. This new first breakpoint 190 

derives the noise level for Monte Carlo simulation. However, because template width tends to be flexible given its use for 

smoothing, the threshold noise level depends on the sensitivity of the minimum prominence criterion. Therefore, if the 

algorithm is too sensitive to this hyperparameter choice the first breakpoint will be detected at noise levels of < 2%. In such 

cases this method cannot determine the right noise level to use, and uncertainty is not quantifiable.  

Each of the random seeds from before are then combined with the proxy signal at the determined threshold noise level and run 195 

through the cycle detection algorithm from before. The location of each run’s boundaries is stored and are converted to age 

models using the chronological constraints applied to the reference age model, providing a record of internal model variance. 

Also, if additional chronological tie points are uploaded there is the option to use them to constrain the realisations by skipping 

age models that plot outside of their uncertainties. The ensemble of age models is then interpolated onto the proxy’s depth axis 

and percentile-based confidence intervals are calculated and compared to the reference age model (Fig. 3c). These uncertainties 200 

are thus not always symmetrical and can highlight whether it is more likely that cyclicity is being missed or wrongly detected 

by its directionality. Additionally, because this is a method to quantify algorithmic uncertainty, it is shown in relation to the 

automatic age model and does not apply to the manually tuned chronology. These uncertainties can be used to guide manual 

tuning; adding or removing boundaries beyond algorithmic uncertainties should be performed with caution, and likely only 
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when correcting systematic bias in the detection algorithm.For multiple random seeds, we then simulate random error by 205 

progressively overlaying the signal with Gaussian white noise in 1% increments (from 1% to 100%). At each noise level, the 

same matched filter and gap treatment applied to the reference set are re-run on each replicate. Each run’s performance is then 

evaluated against the reference set using the F1 score, a harmonic mean of precision (here the fraction of output detections that 

are true) and recall (the fraction of reference minima detected) based on a detection tolerance of a quarter cycle length. The 

analysis employs the F1 because it includes both over- and undercounting as systematic error, making it a robust metric of 210 

signal recovery fidelity under increasing noise. The mean 95% confidence interval for the F1 scores across all seeds at each 

noise level is computed, producing a performance curve (Fig. 3a).  

To identify the critical noise threshold whereby algorithm performance begins to degrade disproportionately to the increase in 

noise, the first and second derivatives of the F1 score curve with respect to noise level are calculated (Fig. 3b and c). The first 

minimum in the smoothed second derivative provides an estimate of this noise level, marking the lowest level of noise capable 215 

of inducing a meaningful loss in detection robustness.  

The tipping level represents the boundary between algorithm robustness and failure, where detection accuracy becomes 

increasingly sensitive to small changes in noise level showing the algorithm’s operational limit. Modelling the algorithmic 

response to lower (higher) levels of noise could underestimate (overestimate) uncertainty and so simulating at the tipping noise 

level avoids misrepresenting uncertainty. By using this level, the internal biases of the matched filter arising from 220 

hyperparameter choice become the salient driver of variability across random seeds. It thus exposes how stable the algorithm’s 

output is to noise, replicating signal ambiguity due to discrete sampling. Therefore, it mimics the plausible levels of epistemic 

uncertainty of manual counting by perturbing the signal enough to induce detection error but without causing irreparable signal 

damage. Additionally, because the threshold is dynamic it is less sensitive and can produce accurate estimates for a wider 

range of input signals.  225 

Replicates of distorted signals are constructed by combining the signal with the random seeds at this threshold noise level. The 

resulting ensemble is passed through the cycle detection algorithm using the same inputs, and the locations of each run’s 

detections are stored, providing a record of internal model variance. The ensemble of age models is then linearly interpolated 

onto a common depth axis provided by the reference set and percentile-based confidence intervals for the variance in number 

of detections per reference set entry is calculated (Fig. 3d). These detection uncertainties are then mapped onto the final age 230 

model (i.e., that post-adjustment), giving a realistic estimate of counting error. Additiona Finally, the age model uncertainties 

can optionally be translated into time-certain proxy uncertainties via ensemble-based mapping of proxy values onto the time 

domain.  
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 235 

Figure 3: A schematic overview of algorithmic uncertainty calculation using a dataset of 1000 noisy sine waves. (a) The algorithm’s 

ability to reproduce the same list of minima under increasing noise levels. (b)  The breakpoint locations determined from a piecewise 

linear fit of four segments on the F1 score curve shown in (a)and (c) the first and second derivatives respectively of the output shown 

in (a). (cd) Tthe variance in number of minima detected with depth under the tipping breakpoint level of noise. The 95% confidence 

interval for 100 random seeds is shown relative to the mean automatic age modelvalue. Note that the because the synthetic data is a 240 
perfect sine wave, noise is more likely to lead to more detections rather than obscure existing cycles hence the imbalance, and that 

the stepped nature is the product of discrete random samplingasymmetry is the product of signal noise and highlights the direction 

of uncertainty. 

3 Example Use of CYCLIM 

To test CYCLIM’s performance, we show its application to three previously published palaeoclimate records. All three show 245 

annual scale cyclicity but with varying degrees of clarity and consistency. For each example the automatically generated 

template size hyperparameters were used, but the minimum prominence criterion was sometimes changed due to record 

extrema effecting the automatic estimate. Additionally, these tests were run without knowledge of the published cycle count. 

The mean cycle length was extracted from the depth-proxy information and the manually tuning was performed independently, 

without comparison to the original paper’s age model. 250 
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3.1 Records  

3.1.1 Houtman Abrolhos Coral 

As a first-pass test of CYCLIM’s ability to detect cycles we use the coral δ18O record from the Houtman Abrolhos Islands off 

west Australia presented in Kuhnert et al. (1999), which exhibits very prominent annual cyclicity with a very consistent annual 

growth rate and low noise level (Fig. 43). The core was sampled from a living colony of Porites lutea in May 1994 and is 300 255 

cm in length. The δ18O record likely captures past temperatures, with high-frequency fluctuations reflecting annual cyclicity. 

Ages were thus determined by counting this cyclicity relative to the date of collection and maxima assigned to mid-September, 

aligning with the coolest month. The original chronology spans 200 years (1794-1994 CE). Whereas the annual variability is 

clear throughout almost all the record, the authors note that the clarity of the δ18O cycles weakens near 1853 and 1869. 

Estimated age errors are 1 year per century (Kuhnert et al., 1999). 260 
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Figure 4: The depth-proxy Houtman Abrolhos Coral δ18O record (blue; Kuhnert et al. (1999)). The inset shows an example interval 

of annual scale cyclicity. 
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3.1.2 Stalagmite C09-2 265 

Next, we use the stalagmite record presented in Warken et al. (2018) which exhibits a variable growth rate and more 

pronounced noise, to test the algorithm’s ability to cope with inconsistent waveform characteristics (Fig. 5). The stalagmite 

was collected from a cave in southwest Romania in 2009 and is 70 cm tall. Trace element variability exhibits pronounced 

cyclicity, likely driven by strong seasonal differences in calcite precipitation rates (Warken et al., 2018). Mg/Ca, Ba/Ca, and 

Sr/Ca all show annual cyclicity, but only Sr/Ca is used here for cycle counting. Because of their relation to rainfall, minima 270 

were allocated to mid-summer.  The uppermost 1 mm was lost during sample preparation and the cyclicity is lost after 47 mm 

due to an abrupt decrease in growth rate. The original cycle count found cycle of lengths 0.05 to 0.6 mm with a mean length 

of 0.21 mm (Warken et al., 2018). This means that cycle lengths can vary between 4 and 48.5 datapoints presenting a challenge 

for the algorithm’s set template width. The 1955 CE bomb spike onset depth anchors the chronology and was found to be at 

3.2 mm depth. The original layer counted chronology spans 214 years (1759-1973 CE). Suggested cycle counting errors are 275 

±3 years (Warken et al., 2018). There is also one U-Th date from the top 47 mm, taken at 35 mm, and yields an age of 1832 ± 

29 CE. 
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Figure 5: The depth-proxy C09-2 stalagmite Sr/Ca record (green; Warken et al. (2018)). The inset shows an example interval of 280 
annual scale cyclicity. 
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3.1.3 Stalagmite BER-SWI-13 

As a final example, we use a speleothem-derived record spanning 564 years (1449-2013 CE) with overall well-developed 

geochemical cyclicity but with intervals of more ambiguous cyclicity presented in Forman et al. (2025) to test CYCLIM’s 

ability to respond to record gaps (Fig. 64). This stalagmite was collected in 2013 from Leamington Cave in Bermuda and is 285 

19.2 cm tall. The chronology uses radiocarbon dates modelled using the technique presented in Lechleitner et al. (2016) and 

developed further in Fohlmeister and Lechleitner (2019) to obtain an ‘average’ chronology, which suggests an overall average 

growth rate of ~0.345 mm yr-1. The 1955 CE bomb spike onset was determined to be found at a depth of ~8 mm. A Mg dataset 

with annual cycles was then used to refine the radiocarbon-based model.  

The stalagmite’s fast response to rainfall and Mg recordsite’s clear dependency onseasonal temperature and local wind speed 290 

variability (ultimately correlated strongly with local temperature) means that the proxy exhibits annual scale cyclicity but with 

a low signal-to-noise ratio. Magnesium cycle counts were performed by inspection and minima assigned to mid-August, the 

month of slowest average wind speed. The top ~5.4 mm exhibits pronounced cyclicity loss possibly arising from anthropogenic 

hydrological changes. Short intervals throughout the record similarly see the cyclicity break down. The original chronology 

thus models these sections to the radiocarbon average cycle length to maintain chronological accuracy.  295 
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Figure 6: The depth-proxy BER-SWI-13 stalagmite Mg record (red; Forman et al. (2025)). The left inset shows an example interval 

of annual scale cyclicity and the right shows an example of less obvious/absent cyclicity mid-record. Note that the y axis extent is 

adjusted so that extrema do not reduce figure legibility. 300 

3.2 Results 

3.2.1 Houtman Abrolhos Coral 

The coral record exhibits very clear cyclicity with an average distance of ~1.58 cmm, as approximated by spectral analysis. 

The average distance is approximately 8.11 datapoints and so the algorithm prompts the use of template and tuning windows 

of 5 and 3 datapoints, respectively. Using the range in y values the starting minimum prominence value is 0.02564‰. Visual 305 

inspection of the output showed that the minimum prominence criterion was too low, leading to boundary detections due to 

noise, and so was raised to 0.08‰. 

 Sensitivity analysis shows robustness to the choice of minimum prominence (Fig. 7a). The output is sensitive to choice of 

template width due to the limited number of datapoints per cycle, but the estimate of 5 is likely to be very accurate for the 

same reason.T 310 

The automatic age model achieves a very good match with that published by Kuhnert et al. (1999) with a mean absolute 

deviation of 0.54 years, 0.3% of the target’s temporal range , albeit with clear signs of overcounting (Fig. 7ba and c). Manual 

tuning was therefore not required in this case as the algorithm accurately tracked the signal’s cyclicity. This is corroborated by 

the temporal mismatch between the automatic and published age models (Fig. 7c), which jumps between 0 and -1 (minimum 

= -1.26 years; maximum = 0.41 years) due to the placement of a few cycle boundaries. The sub-annual disparities are the 315 

product of differing interpolation methods.  

Uncertainty estimation using 1,000 random seeds identified the first breakpoint at 13% noise, prompting 10,000 simulations 

at this ratio to estimate age errors. The overcount increases with depth to a maximum of 8.05 years (mean absolute error = 4.56 

years, 2.3% of the target’s temporal range), suggesting that the minimum prominence value is too low. Raising it to 0.08‰ 

confirms this, after which the temporal mismatch throughout the record becomes negligible (mean absolute error = 0.51). 320 

Correcting the overcount within the cycle tuning stage is equally powerful to changing the minimum prominence but also does 

not rely on backcalculating hyperparameters (Fig 7b and c). Sensitivity analysis finds the output is robust to the choice 

minimum prominence and a larger template size (Figure 7?). A smaller template would introduce hinder the convolution’s 

effectiveness as the template would only be 3 datapoints wide and so is not advisable. Visual inspection found 7 false cycles 

and no missing cycle, meaning that the automatic output found all the cycle boundaries and achieved an F1 score of 0.98. Post-325 

correction the output’s discrepancies (maximum of 1.55 years, mean absolute error = 0.54 years) simply reflect the 

reproducibility uncertainty of cycle counting by inspection. Uncertainty modelling using 1,000 random seeds identified a 5% 

noise tipping level, prompting 10,000 simulations at this ratio to estimate age errors. The algorithm’s 95% confidence interval 

agrees with the published uncertainty of ±1 year per century with an uncertainty of ±2-3 years at maximum depth (Fig. 8).  
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Figure 7: The automatic CYCLIM output for the Houtman Abrolhos Coral record. (a) The sensitivity of the chosen 

hyperparameters.  The black hashed area shows the chosen values of minimum prominence and template width, which are varied 

by approximately 5% and 30%, respectively. Colours correspond to the F1 score between the detected boundaries at a given 

combination of hyperparameters and that at the black hashed area. F1 score contours of 0.95 and 0.90 are shown. (b) The automatic 335 
age-converted output (light blue) shown with the original record (black) presented in Kuhnert et al. (1999). (b) The output (dark 

blue) after manual cycle tuning inspection. (c) The temporal offset mismatch: the difference between the published age and the 

automatic model output at a given point. Positive (negative) values denote older (younger) ages in the published model.needed to 

restore the original record at a given point in the automatic (light blue) and manual (dark blue) model output. 



24 

 

 340 

 

Figure 8: The CYCLIM age model and age-certainfinal output for the Houtman Abrolhos Coral record. (a) Distribution of annual 

cycle lengths for the automatic (light blue) and published (grey) chronologies. The vertical dashed line shows the average cycle length 

hyperparameter estimate. (ab) The automatic The manual CYCLIM age model (bluelight blue) shown with the published age model 

(black) presented in Kuhnert et al. (1999), both both with their respective uncertainties. (bc) The manual automatic CYCLIM output 345 
record (blue) and chronological mismatch with the published record (purple) with age-proxy uncertainty translation on a time-

certain axis. Mismatches are averaged by decade. 
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3.2.2 Stalagmite C09-2 

The C09-2 stalagmite record has a more variable cycle length and contains more noise, presenting a test of the algorithm’s 

versatility (Warken et al., 2018), providing an opportunity to test the algorithm’s versatility. Spectral analysis suggests the 350 

average annual cycle length is approximately 0.292 mm, which translates equates to 23.6 datapoints. The automatic default 

hyperparameter choices thus become 11 and 5 points for the template width and tuning window, respectively. Additionally, 

the default2.5% minimum prominence corresponds to 0.00071 mmol/mol. Visual inspection suggests this default setting was 

too high as some cycle boundaries are being missed and so was lowered to 0.0004 mmol/mol. Sensitivity analysis shows both 

the chose of template width and minimum prominence are robust but is approaching the lower end of the stable region (Fig. 355 

9a). This is primarily due to the minimum prominence approaching 0 mmol/mol.  

 

The automatic output exhibits some excellent agreement with the record published in Warken et al. (2018) with a mean absolute 

deviation of 2.91 years, 1.35% of the target’s temporal range (Fig. 9b and d). However, the algorithm still misses some cycle 

boundaries due to their comparatively low amplitude and so the output required tuning. This systematic error is shown by the 360 

temporal mismatch (Fig. 9d), which shows a steady rise to a maximum of 5.42 years in the middle of the record which is then 

compensated by an overcount in the oldest part of the record. Manual inspection found 7 erroneous cycles and resulted in the 

addition of 12 cycles, meaning the automatic output found 94.4% of the cycles and achieved an F1 score of 0.96. The tuned 

record has a maximum absolute mismatch of 2.31 years (mean absolute deviation = 0.79 years) showing strong agreement 

with the published record (Fig. 9c and d).,  365 

Uncertainty quantification used 1,000 random seeds and 10,000 simulations at a noise level of 7%. Simulations were 

constrained by the U-Th date uncertainties and led to the rejection of 232 realisations. Algorithmic however clear undercount 

exists in both directions of the chronological anchor point (Fig. 9a and c). This leads the record to have an accumulating 

mismatch which rises to a maximum of 8.23 years by the end of the record at 207 years counted (mean absolute error = 6.08 

years, 2.8% of the targets temporal range). To correct the undercount, a minimum prominence a third of the automatic value 370 

(i.e., 0.0003 mmol/mol) was tried, yielding a stronger agreement (mean absolute error = 1.57 years). However, instead we use 

the initial values and correct the output in the tuning stage (Fig 9b and c). Manual inspection found no erroneous cycles and 

resulted in the addition of 12 cycles, meaning the automatic output found 94.4% of the cycles and achieved an F1 score of 

0.97. The tuned record has a maximum absolute mismatch of 1.77 years (mean absolute error = 0.41 years) showing a strong 

agreement with the published record. Uncertainty quantification used 1,000 random seeds and 10,000 simulations at the 375 

determined 5% noise tipping level. Uuncertainties broadly follow those presented in the Warken et al. (2018) with a, albeit 

slightly lower (Fig. 10). At maximum depth, the 95% algorithmic uncertainty of is approximately ±2 years compared to the 

published ±3 years at maximum depth in both age models. Though, due to the systematic nature of the tuning, the manual and 

published age models plot outside of the algorithmic uncertainty, but the uncertainties do overlap (Fig. 10b).  

 380 
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Figure 9: The CYCLIM output for the stalagmite C09-2 record. (a) The sensitivity of the chosen hyperparameters.  The black hashed 

area shows the chosen values of minimum prominence and template width, which are varied by approximately 5% and 30%, 

respectively. Colours correspond to the F1 score between the detected boundaries at a given combination of hyperparameters and 385 
that at the black hashed area. F1 score contours of 0.95 and 0.90 are shown. (b) The automatic age-converted output (light green) 

shown with the original record (black) presented in Warken et al. (2018). (b) The output (dark green) after manual cycle tuning 

inspection. (c) The output (dark green) after manual cycle tuning inspection. (dc) The temporal mismatch: the difference between 

the published age and either the automatic (light green) or manual (dark green) model outputs at a given point. Positive (negative) 

values denote older (younger) ages in the published model.The temporal offset needed to restore the original record at a given point 390 
in the automatic (light green) and manual (dark green) model output. 
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Figure 10: The CYCLIM age models and age-certain manually tuned output for the stalagmite C09-2 record. (a) Distribution of 

annual cycle lengths for the automatic (light green) and published (grey) chronologies. The vertical dashed line shows the average 395 
cycle length hyperparameter estimate.  (ba) The manual CYCLIM age models (automatic – light green; manual – dark green) shown 

with the published age model (black) presented in Warken et al. (2018), both with their respective uncertainties. (bc) The manual 

CYCLIM output record  (green) and chronological mismatch with the published record (purple)with age-proxy uncertainty 

translation on a time-certain axis. Mismatches are averaged by decade.  
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3.2.3 Stalagmite BER-SWI-13 400 

This final dataset assesses the algorithm’s ability to respond  to sections with very weak and ambiguous cyclicityto gaps in the 

record. Radiocarbon modelling of stalagmite BER-SWI-13’s growth suggests a mean cycle length of approximately 0.345 mm 

which corresponds to ~33.6 datapoints. The template width and tuning window therefore become 17 and 9 points, respectively. 

The tool prompts the use of 71.8 ppm for the minimum prominence criterion. Sensitivity analysis shows that the output is 

sensitive to both the choice of template width and minimum prominence (Fig. 11a), highlighting the output will need probably 405 

require manual tuning. Additionally, Tthe top ~5.4 mm is subjected to complete cyclicity loss and so the original paper models 

this section so that the top matches the collection year, but due to the substantial chronological uncertainty over this interval, 

this section is left out of the input.  

The tool prompts the use of 503 ppm for a minimum prominence, but this is heavily skewed due to extreme outliers in the data 

and so it is manually adjusted to 80 ppm. Additionally, gap treatment was applied when no cycles were found within 1.035 410 

mm (i.e., three average cycle lengths). The top ~5.4 mm is subjected to complete cyclicity loss and so the original paper models 

this section so that the top matches the collection year, but due to the substantial chronological uncertainty over this interval, 

this section is left out of the input.  

The generated automatic age model shows broad agreement with the original record achieving an overall mean absolute 

deviation error of 3.2488 years (0.638% of the target’s temporal range) (Fig. 11ba and dc). There are small over/under-counts 415 

at ages younger than 1800 CE, but a serial undercount emerges thereafter reaching a maximum offset of 8.35 years, before 

being counteracted by a subsequent overcount. The trend suggests that in areas of ambiguous cyclicity, the detection criteria 

of the algorithm is not aligning well with that of manual inspection. Given the noise level of this record, this degree of 

misalignment is within expected uncertainties and so the automatic output could be used without tuning. However, because of 

the complexity of the proxy signal, cycle boundaries were inspected and adjusted following inspection. Manual tuning removed 420 

35 and added 33 cycles, meaning the automatic output found 93.6% of the cycles and achieved an F1 score of 0.93. The tuned 

record has a maximum absolute mismatch of 4.18 years (mean absolute deviation = 1.10 years) showing strong agreement 

with the published record.  

Uncertainty modelling with 1,000 random seeds and 10,000 simulations was attempted, but the breakpoint could not be 

determined, and so estimates were not obtained. Because of the record’s signal quality and hyperparameter sensitivity, 425 

algorithm accuracy degraded too fast and linearly to increasing noise for the first breakpoint to occur at a noise level > 2%. 

However, both the automatic and manual age models plot within the published radiocarbon chronology confidence interval 

(Fig. 12b).At ages younger than 1800 CE there is strong agreement between the two age models, but a serial undercount 

emerges thereafter reaching a maximum offset of 12.56 years, before being counteracted by a subsequent overcount. The trend 

in mismatches suggests the algorithm is subdividing cyclicity gaps that are different to those in the original, because the original 430 

ambiguous sections were determined by inspection and not by a threshold. Tuning found 33 false and 30 missing cycle 

boundaries, meaning that the automatic output found 94.1% of the cycles in the final output and an F1 score of 0.94. After 
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manual correction of the output (Fig. 11b and c), the age model follows the original more closely with a maximum absolute 

deviation of 3.63 years (mean absolute error = 1.18 years). Given the record extends over five centuries and contains gaps, this 

remaining degree of mismatch is within reproducibility error. Uncertainty modelling with 1,000 random seeds and 10,000 435 

simulations found a 13% tipping noise threshold, which led to an uncertainty of ±13.5 years at maximum depth (Fig. 12). 
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Figure 11: The CYCLIM output for the stalagmite BER-SWI-13 record. (a) The sensitivity of the chosen hyperparameters.  The 440 
black hashed area shows the chosen values of minimum prominence and template width, which are varied by approximately 5% 

and 30%, respectively. Colours correspond to the F1 score between the detected boundaries at a given combination of 

hyperparameters and that at the black hashed area. F1 score contours of 0.95 and 0.90 are shown. (b) The automatic age-converted 

output (pink) shown with the original record (black) presented in Forman et al. (2025). (b) The output (red) after manual cycle 

tuning inspection. (dc) The temporal mismatch: the difference between the published age and either the automatic (pink) or manual 445 
(red) model outputs at a given point. Positive (negative) values denote older (younger) ages in the published model.The temporal 

offset needed to restore the original record at a given point in the automatic (pink) and manual (red) model output. 
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Figure 12: The CYCLIM age models and age-certainmanually tuned output for the stalagmite BER-SWI-13 record. (a) Distribution 450 
of annual cycle lengths for the automatic (pink) and published (grey) chronologies. The vertical dashed line shows the average cycle 

length hyperparameter estimate. (ba) The manual CYCLIM age models (automatic – pink; manual – red) with 95% confidence 

interval, shown with the published age model (black) and the radiocarbon carbon chronology with 2σ uncertainties presented in 

Forman et al. (2025). (cb) The manual CYCLIM output record (red) and chronological mismatch with the published record (purple). 

Mismatches are averaged by decadewith age-proxy uncertainty translation on a time-certain axis. 455 
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4 Discussion 

4.1 Manual vs. Automated Cycle Counting 

The automatic output has three main advantages over counting by inspection: (1) it returns results much faster; (2) the results 

are reproducible with the same inputs; and (3) it reduces subjectivity. Although manual counting is more flexible and able to 

adapt to changes in growth rate or noise levels, it risks false positives given the position of boundaries under these conditions 460 

often becomes subjective. Similarly, if the depth-proxy signal has been compared to previous records prior to age-model 

development, then the inspector risks incorporating confirmation bias into the cycle count. One of the underlying assumptions 

of the results is that the published age models are correct; however, there is inherent uncertainty with these chronologies too. 

Thus, the comparison statistics gauge the accuracy of the output, but once discrepancies fall within the original age model’s 

uncertainty, further alignment may become erroneous. 465 

Whether to tune to automatic output thus depends on the record’s structure. If the proxy shows clear, consistent cyclicity then 

it could be argued that the automated output is accurate, and tuning may introduce false precision. Conversely, if the waveform 

changes shape substantially throughout the record (e.g., due to fluctuating growth rates or noise levels), the Gaussian template 

may not reliably amplify annual scale cyclicity, risking systematic bias. In this case, the automated output and its accompanying 

uncertainties may be inaccurate and thus require manual tuning.  470 

It is important to note that only the automatic output yields quantified algorithmic uncertainty. Manual tuning forfeits this 

benefit, and introduces its own uncertainty tied to the inspector’s judgements. Thus, when the algorithm can only provide a 

basis to count from due to systematic error, the user must manually tune the output. However, when the cyclicity is sufficiently 

predictable to yield an accurate chronology, whether to tune the output becomes a choice. A user may decide to report both an 

accurate automated chronology with uncertainty and show the precise, manually tuned age model for comparison. This way 475 

small potential errors made by the algorithm can be corrected whilst also retaining the benefits of quantified uncertainty and 

transparency of an automated count. Regardless of the signal’s clarity, any automated output should always be quality-checked 

to ensure cyclicity is being correctly tracked.  

4.2 CYCLIM Performance 

The CYCLIM algorithm extracts the positions of cycle boundariciies ty information from the three examples both accurately 480 

and quickly via an automated matched filtering technique, achieving close approximations of the original chronologies. Across 

the three examples the temporal offsets ranged from -4.228.05 to 812.3556 years with an average mean absolute deviation 

error of 2.234.84 years before correction. Additionally, there was an average 3.26% erroneous detection error and 3.81% 

missed detection error, meaning that cycle counting within CYCLIM was ~14.1 times faster across the three examples. 

WhereasWhile theits accuracy does depend on the choice of hyperparameters, only two require estimation. Because the average 485 

cycle length estimate is other methods derived from other methods (e.g., approximated from a U-Th age model or by spectral 

analysis) the average cycle length estimate, this is a fixed value leaving only the minimum prominence at the discretion of the 
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user to change. The automatic minimum prominence value provides a viable starting place but due to the range in proxy signals 

it will likely need to modification. Users is sensitive to outliers in the data, but users can easily override this with a better 

estimateion obtained from inspection of the algorithm’s output. Thus, the matched filtering approach is robust and can greatly 490 

speed up the cycle counting process by providing a first-pass count for the user to refine.  

Post-analysis users should check and refine the automatic output in the cycle tuning stage to mitigate issues such as: (1) 

overcounting resulting from gap treatment; (2) undercounting due to low signal-to-noise; (3) a change in average cycle width 

hindering hyperparameter effectiveness; and (4) erroneous hyperparameter choices. Tuning found an average 5.07% erroneous 

detection error and 6.01% missed detection error, meaning that cycle counting within CYCLIM was an order of magnitude 495 

faster for the two examples that required this step. The tuned results from this stage follow the original chronologies very 

closely and further running could yield a perfect match. However, to ensure a fair test, tuning was conducted independently 

and without back-calculation of cycle boundaries using the published chronology. Thus, whereas the outputs are not perfect 

reflections of the originals, they are within the expected counting errors, hence demonstrating the efficacy of the CYCLIM 

tool.  500 

The two-stage semi-automated approach generates high-precision cycle counts within the errors expected of count 

reproducibility and could be applied to a wide variety of archives, provided the assumptions hold. CYCLIM could have several 

potential uses besides simply generating a chronology, for example: (1) reporting an objective cycle count with uncertainties 

(i.e., the algorithm output) before correction; (2) easily running multiple counts to test reproducibility; and (3) reporting an 

objective count before then running multiple corrections to develop an average age model. 505 

5 Conclusions 

Cycle counting is a powerful tool capable of deriving chronologies of sub-annual resolution. However, the process is often 

time consuming, and the output can vary between counts. Speeding up this process would therefore allow researchers to 

perform more counts, which could lead to a better understanding of a record’s counting error. Various automated methods 

exist but many users prefer manual counting for its the simplicity, versatility, and transparency. 510 

Here we present a new semi-automated Ppython-based application (CYCLIM) for deriving chronologies from annual-scale 

cycle counting. The algorithm performs an initial cycle count using matched filtering, after which the user may inspect and 

refine the output at their discretion by removing false detections and/or adding in missed cycles. The method accommodates 

multiple forms of chronological constrains, such as an anchor point and other tie points. Based on the testing presented here, 

CYCLIM generates quick and accurate automatic counts, often within counting errors and an order of magnitude faster than 515 

by inspection.. It provides a reliable first-pass model while also allowingThe tuning stage provides the users the space to 

correct the output where needed within a user-friendly GUI. When the signal is sufficiently robust to the noise-based 

perturbation approach, CYCLIM successfully quantifies algorithmic uncertainty, yielding confidence intervals consistent with 

published age errors and highlighting where cyclicity becomes more subjective. This framework thus promotes rapid, 



36 

 

reproducible, and transparent cycle counting and can serve as a basis for reporting objective and subjective cycle boundaries, 520 

as well as developing average manual age models. 

 and export the results for further analysis. One application of CYCLIM is to produce an automated count and run multiple 

user corrections to assess the counting errors associated with reproducibility. 

CYCLIM is freely available via the Zenodo repository (https://doi.org/10.5281/zenodo.1747906910.5281/zenodo.16651941).  
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