
Response to Reviewer comments, Forman and Baldini, 
submitted to Climate of the Past 
We thank the reviewers for their helpful suggestions and appreciate the time and effort 
that went into reviewing the previous version of the manuscript. In this response letter 
we address all the comments. All replies are in blue and relevant passages from the 
revised manuscript are in red.  

Reviewer #1 comments: 
Comment #1: In this paper the authors present a code, which is able to automatically 
count isotope-geochemical growth bands. The aim is to provide a fast method to 
perform the annual layer counting task to establish a precise chronology. While there 
have been some approaches of automated layer counted algorithms available in the 
field, the new aspect of their approach is to allow the user a refinement after the 
automated counting procedure. However, even the counting algorithm alone seems to 
perform quite well, when judging the results of the three provided examples, each of 
different complexity. With the authors approach, the user can perform the counting-
task much faster than when counting all cycles alone. 

The manuscript is well written and structured. Especially, the introduction appears to 
be very nice to me. I also liked the section with the examples and the short discussion. 
What could be somewhat improved is the methods part, which is the most important 
section in the manuscript. I miss a bit more details on the model parameters and their 
influence on the layer counting. Please find more details on my – what I would call – 
moderate suggestions listed below. Pending on improvements with respect to the 
suggestions, I suggest to consider this manuscript for publication in CP. To my opinion 
the manuscript deserves to be published as I can imagine, that many researchers can 
and will make use of this approach. 

Response: We thank the reviewer for their positive assessment of the paper and for 
highlighting the lack of transparency with the methods, which we address in the 
comments below. 

 

Comment #2: L14 and L311-312: The term ‘14.1 times faster’ is very specific. And 
unfortunately, it is not explained in the text, how this number is calculated. At the 
moment, I doubt this number. Especially, that this number is always – for all records no 
matter how difficult or long they are – 14.1. I suggest to change this, to something 
broader, something like: ‘one order of magnitude faster’. 

Response: The 14.1 statistic came the user only having to count/correct 7.1% cycles 
(3.3% false positive and 3.8% false negative). However, because it does not take into 



account the actual timings, we have changed the sentence in line with the reviewer’s 
suggestion to make this more accurate.  

 

Comment #3: L75-78: This part is about the parameters. Unfortunately, this part is 
relatively poor, to my opinion. It is not described at all, how the parameters are derived 
by the code. There is also no real description about what the parameters are and what 
they are steering or how they influence the result. In the results section, where the 
approach is tested against already published data, there is some text, which helps to at 
least adumbrate how some of the parameters are derived. I suggest to at least add a 
table where the necessary parameters are listed, where it is shortly explained how they 
are determined or what are typical values. Maybe it is also helpful to leave some 
sentences in the text or table, which describe them in more detail. 

Interesting for the reader may also an answer to the question, what the choice of the 
mean cycle length has an influence on the result – at least for the automated part. –  I 
guess the total influence on the result is minor, as the manual part can change the 
result in an arbitrary way. 

Response: We have made the hyperparameter methods clearer, stating what they are, 
their purpose and the output’s sensitivity to their value. The changes include additional 
text and a table (Table 1).  

Assuming the average cycle length is reasonably constrained, the sensitivity to its value 
is relatively minor. As shown in the Warken et al. 2018 example and Fig. 10a, the 
algorithm still returns accurate cycle boundaries even if the estimate is slightly off the 
“true” mean. However, if the record resolution less than ~8 points per cycle, changing 
the estimate could lead to dramatic changes in template size. The strength of the signal-
to-noise ratio also determines the sensitivity of the output to a change in template size.  

The following text was added: (Lines 137-145) 

The detection methodology thus uses four hyperparameters: (1) the average cycle 
length; (2) the template width; (3) the minimum prominence; and (4) the tuning window 
(Table 1). In custom mode, the user must specify values for all of the hyperparameters, 
whereas in default mode, only an estimate for the average cycle length is required. 
However, because this estimate is used to determine the value of the other 
hyperparameters it needs to be a fair approximation. Provided the estimate is robust, 
the sensitivity of the output to its exact value depends on the record’s resolution and 
noise level. The sensitivity of the output to the choice of template width and minimum 
prominence is computed within the algorithm. The GUI then plots the similarity of the 
detected cycle boundaries relative to the current configuration as the template width 
and minimum prominence are varied. The template width is modified by ±30% and the 



minimum prominence value is converted to a percentage to the range in y and adjusted 
by ±5%. 

and Table 1, which reads: (Lines 151-152) 

Hyperparameter Description Default Value Purpose 
Effect on 

Output 

Average Cycle 

Length 

Estimated 

length (in 

depth units) of 

the typical 

cycle in the 

proxy signal 

User-defined 

Serves as a 

basis for 

deriving the 

template 

width and 

tuning 

window. It is 

also used to 

divide up 

sections 

during gap 

treatment 

Directly 

influences default 

values of the 

other 

hyperparameters 

and the length of 

gap-filled cycles 

Template Width 

Width of the 

Gaussian 

template used 

for matched 

filtering 

Half the 

number of 

datapoints 

corresponding 

to an average 

cycle length  

Determines 

how much of 

the signal is 

used in each 

convolution 

window 

The wider the 

template the 

smoother the 

output will be 

Minimum 

Prominence  

Minimum 

prominence 

required to 

accept a 

detected cycle 

2.5% of the 

proxy signal’s 

central 95% 

range 

Filters out 

false 

detections 

caused noise 

The greater the 

value the higher 

the peak must be  

Tuning Window 

Local window 

to refine 

detected cycle 

positions 

One-quarter of 

the datapoints 

in an average 

cycle length  

Tunes the 

detections by 

aligning them 

to match a 

local minimum 

in the original 

proxy signal 

The higher the 

value the wider 

the scope for 

searching 

 

Comment #4: L78-79: What happens with gaps due to cuts of the samples as they 
might occur during sample preparation? Are they also covered by this? 

Response: Gap treatment would divide gaps incurred during sample preparation by the 
average cycle length. This can be used to keep the age model in line with what is 
expected by the archive’s growth rate. Alternatively, the user could manually insert a 
given number of cycle boundaries in this gap or upload the record in two sections 
running the algorithm on each, provided there is an anchor point available in both. This 
is now mentioned in text: (Lines 132-133) 

To maintain accuracy and avoid undercounting, the algorithm includes an additional 
step to treat missing sections of the record and/or intervals where cyclicity is 
indistinguishable from background noise. 

 



Comment #5: L80-83: This is a very helpful tracking procedure. Very nice idea. 

Response: We thank the reviewer for their assessment. 

 

Comment #6: L84-85: You are counting possible types of anchor-points here – i.e. only 
one of each type. However, I can imagine, that especially for U-Th ages, there could exist 
more than one dated depth over the counted interval. Is CYCLIM able to cope with that 
as well? Including all (possible) U-Th dated depths (if available) in placing the counted 
interval could really help to pinpoint the chronology. 

Response: We thank the reviewer for this suggestion and have included this as a feature 
within CYCLIM. Alongside an anchor point (no uncertainties) the user can now upload a 
list of tie points with errors. These are displayed within the GUI so the output can be 
verified. Additionally, there is an option to reject Monte Carlo realisations during 
uncertainty quantification that plot outside the tie point errors. While the examples do 
not have a full usable radiometric age models to showcase this feature, it is applied on 
stalagmite C09-2 with the inclusion of one U-Th date alongside the anchor. This added 
feature is discussed in text: (Lines 86-87)  

There is also the option to upload a full list of chronological tie points for comparison 
and specify the sub-annual timing of the minima. 

and (Lines 189-190) 

Also, if additional chronological tie points are uploaded there is the option to use them 
to constrain the realisations by skipping age models that plot outside of their 
uncertainties. 

and (Lines 308-309) 

Simulations were constrained by the U-Th date uncertainties and led to the rejection of 
232 realisations. 

 

Comment #7: L85-86: “The algorithm derives a median age model from 2,000 Monte 
Carlo realisations using piecewise cubic Hermite interpolating polynomial (PCHIP) 
interpolation, which …” Can you please elaborate a bit more on this? I don’t understand 
why you are needing interpolation here. And what kind of Monte Carlo realisations? 
What is varying? 

Response: We thank the reviewer for finding this error. Interpolation is performed so 
that ages can be approximated between cycle boundaries, but the reference to Monte 
Carlo realisations pertains to the uncertainty analysis and so should not be mentioned 
here. The text has been updated to read: (Lines 87-89) 



CYCLIM then uses piecewise cubic Hermite interpolating polynomial (PCHIP) 
interpolation to assign an age value to every datapoint in the depth-proxy dataset by 
estimating ages between the detected cycle boundaries. 

 

Comment #8: L 86: “uses” à “used”. 

Response: Corrected.  

 

Comment #9: L88-L89: “Furthermore, CYCLIM can translate the proxy values onto a 
time-certain axis to convert age uncertainty into proxy uncertainty.”  This is not a 
specific comment to this paper, and you are free to ignore, if you like, but maybe you can 
help me out here. 

I know this concept has already been proposed in earlier studies (e.g., Breitenbach et 
al., 2012). However, I, personally, do not really understand this concept. It appears not 
to be meaningful to me. I always think about this the following way: Only as a signal 
cannot be put perfectly in time, the magnitude of an event is not smaller than 
measured. Or more extreme, only as a clearly pronounced event in the measured proxy 
cannot be dated at all, it does not mean it is not there at all, as this approach would 
tend to suggest. At least this is my argument for not agreeing with this approach. But 
this is only my opinion about this issue. Maybe there are arguments in favour of this 
procedure, I am not aware of. 

So, my question to this sentence would be, if this feature can be deselected by the 
user? 

Response: We appreciate the concern with this feature and agree that the approach has 
limitations. While some of the resolution of the record is lost, it enables the direct 
comparison of multiple records and/or statistical analysis without needing to consider 
age uncertainty which could be useful for some users. This feature is optional and, in 
line with this comment, we have adapted the following sentences to read: (Lines 90-91) 

Furthermore, users can choose to enable the translation of the proxy values onto a 
time-certain axis, thereby converting age uncertainty into proxy uncertainty. 

and (Lines 196-197) 

Finally, the age model uncertainties can optionally be translated into time-certain proxy 
uncertainties via ensemble-based mapping of proxy values onto the time domain. 

 

Comment #10: L103-106: Could you elaborate a bit more on the choice of the width, w? 
I think this would help the reader, to set their own w if they prefer to do so. What is the 



impact of a change in w? Can you perform a short sensitivity analysis? Maybe with one 
of your example data sets (or all). 

Per default CYCLIM is using the half average annual cycle length. However, growth 
layers can change quite strongly throughout the record. What would happen to phases, 
where the cycles are much shorter than the average. And what would happen to phases, 
where there is very rapid growth? Does such a behavior result in an under- or over-
counting. I think, this would be very interesting to the reader. At least to me, it is.   

Related to this, it might be worth in another, future version of CYCLIM to make the 
template width, w, depth adaptive by using a wavelet. In case the over- and 
undercounting in periods with low and high growth rates is an issue, this method could 
improve the counting performance, when changes from fast to slow growth occur. Just 
an idea. 

Response: By using a half cycle length, the template becomes more robust and flexible 
to the changes of a proxy signal. If the template was a full wave cycle, then asymmetric 
cycles with would be more difficult to identify. Additionally, with this method the 
matched filter output still identifies the annual signal even when the growth rate 
changes slightly. The text has been adapted to better explain the hyperparameter 
(please see extract below and Comment #3): (Lines 105-112) 

A Gaussian-shaped template is constructed to approximate the expected waveform of 
the cycles. The user can manually specify the template width (w) or the CYCLIM 
algorithm will automatically set the template width to correspond to half the number of 
datapoints that comprise the average cycle length, which is specified by the user. The 
method uses a half-cycle length because matched filtering with a Gaussian template 
produces strong responses for segments that resemble either the template’s standard 
orientation (peaks) or its inverse (troughs). This approach allows the filter to detect 
cycles without requiring knowledge of the full waveform shape, emphasising general 
pattern similarity and thereby making it robust to asymmetry or obscuration due to 
noise. Because the template centres around a single point, the window must be odd. If 
the calculation yields an even number, the algorithm expands the window by one. 

Regarding the template width’s sensitivity to changes in growth rate, it is primarily 
dependent on the signal-to-noise ratio as the template is only used to smooth the 
record. Therefore, varying growth rate can be accommodated by the template width 
provided the signal is clear and the hyperparameter is set to the half the average cycle 
length. This is now visualised in Figures 8a, 10a, and 12a (example below), which show 
the extracted cycle lengths of the automatic vs published age models. All three example 
show the algorithm can still accurately detect cycles when there is significant variance 
in length.  Also, as long as its near constant any growth rate changes can be accounted 
for in the manual tuning stage. 



 

Figure 12: The CYCLIM age models and manually tuned output for the stalagmite BER-
SWI-13 record. (a) Distribution of annual cycle lengths for the automatic (pink) and 
published (grey) chronologies. The vertical dashed line shows the average cycle length 
hyperparameter estimate. (b) The CYCLIM age models (automatic – pink; manual – red), 
shown with the published age model (black) and the radiocarbon carbon chronology 
with 2σ uncertainties presented in Forman et al. (2025). (c) The manual CYCLIM output 
record (red) and chronological mismatch with the published record (purple). 
Mismatches are averaged by decade. 

To help users better understand the output’s sensitivity to the chosen hyperparameter 
configuration, we have added a visualisation to the GUI showing how well moderately 
different hyperparameter choices return the current list of detected minima. This plot 
(example shown below) plots the similarity of outputs with moderately different 
template width and minimum prominence values to the current output using a heatmap 
of F1 scores. The template width is varied by ±30% and the minimum prominence is 
converted to a percentage of the range in the proxy signal and adjusted by ±5%, allowing 
for a large coverage of possible combinations. However, in some cases these values 
may become inaccurate, or the current combination could be very robust but sensitive 
to change. Thus, the sensitivity should be assessed with caution. A copy of these plots 
for each of the three example is now available in the manuscript in Figures 7, 9, and 11.  



 

The reviewer suggests a good idea to use a wavelet to track the cyclicity signal, and thus 
the template would be adaptive to changes in growth rate.  However, because the 
template width is inherently flexible (as shown in the sensitivity analysis) this approach 
may introduce too much complexity. It would require the code being able to find the 
correct wavelength amongst potentially many others and would assume that there is a 
cyclicity to find. Thus, it would need to be constrained and risks a more black-box 
methodology. For this reason, we have kept the fixed template width method to make 
the output easier to understand.  

 

Comment #11: L119-221: “minimum prominence criterion” Please elaborate more on 
this. What is this? How did you (or CYCLIM) is defining this? Have you tested the impact 
of this criterion? Is this the same as what you are later, in sections 3.2.1 to 3.2.3, are 
setting to 0.04 permil (Houtman Abrolhos Coral), 2.5% (C09-2), 503 ppm (BER-SWI-13). 
You may be able to test the impact of this value with these or at least with one of these 
data set. Just to give the reader an idea on the sensibility of the parameter choice. Thus, 
I suggest to elaborate a bit more on this value. Just to find the impact with respect to the 
identified cycles. Just use the same time series, with a value equivalent to 1, 2.5, 5 and 
10 % of the range in y (or other values) and look for changes in the result. Maybe the 
results will be different with a change in the growth rate, proxy amplitude or signal to 
noise ratio of the smoothed record. 

But then again, as the approach is semi-automatic, the user can correct anything the 
program found too much or too less. This should be also mentioned, when doing the 
sensitivity analysis. 

Response: The updated manuscript provides a clearer explanation of what this 
hyperparameter is and how it is derived (please see extract below and Comment #3). 
Depending on the signal, the automatic value (2.5% of the proxy’s central 95% range) 
can be too low or high, which was the case in sections 3.2.1 and 3.2.2, respectively. The 
sensitivity to this criterion depends on the signal’s noise level compared to peak height. 
The sensitivity of a given output to this hyperparameter is now more clearly visualised in 
the GUI and is shown for each of the three examples (see Comment #10).  

Lines (122-125) 



Peaks in the inverted signal correspond to points that exceed their immediate 
neighbours and surpass a minimum prominence criterion. This threshold suppresses 
false detections caused by remaining signal noise and allows the user to manually set 
the value or automatically assigns it a value equivalent to 2.5% of the range in 𝑦 
between the 2.5th and 97.5th percentiles.  

 

Comment #12: Fig. 2: I suggest to put the red line on its own y-axis (right hand side?). 
Otherwise it is confusing with respect to equation 1. 

Response: We have changed Fig. 2 to have the template on a separate y axis.  

 

Figure 2: A schematic overview of the matched filtering technique. (a) The Gaussian 
template used for matched filtering, which is set to the number of datapoints 
corresponding to half the estimated average cycle length of the hypothetical dataset. (b) 
The hypothetical dataset (grey) and the convolved matched filtering output (blue). (c) 
The record in (b) with the detected cycle boundaries (vertical black dashed lines) and 
the inserted boundaries during gap treatment (vertical green dashed lines). 

 

Comment #13: Section 2.3: I agree, that this is an option to try to estimate the 
uncertainty. But to me it reads rather as an unusual one, as it is not the time 
series/signal, which is uncertain. It is the counting through the choice of the parameter 
set. 



Therefore, I would have tried to randomly change the configuration of parameter set, the 
user is free to choose (or the default values). At least within a certain environment. 

In this way, the signal remains as measured, as it is most likely not the signal, which is 
loaded with uncertainty, but rather the choice of parameter values. 

I know, I would ask much, if I would request to chance the uncertainty algorithm. 
Probably, this would require some (heavy?) recoding. Therefore please, decide for 
yourself, how you like to proceed. In any way, I also provide a few thoughts on the 
present algorithm. 

Response: We thank the reviewer for this suggestion. Our approach to estimating 
uncertainty is unusual and varying the hyperparameter choices is another viable option. 
This alternative method would only need to vary template width and minimum 
prominence, because average cycle length and tuning window are only used to derive 
the default values and adjust boundaries, respectively. Additionally, because the 
template width is inherently flexible (please see detected boundaries shown in Fig 8a, 
10a, 12a and Comment #10) and should be based on an accurate estimate of the 
average cycle length, the minimum prominence is the primary source of uncertainty. 
Tuning this parameter by inspecting the output reduces the uncertainty and constrains 
the value but there is still a range of plausible values. However, this approach would 
need to define the environment in which to vary this parameter and that would require 
user-input given the wide range in signals CYCLIM could be used on. This could risk 
users defining their own levels of uncertainty, forgoing its objectivity. Because the 
current method works without specified values, we have chosen to keep the current 
method. However, this method has been refined (please see Section 2.3 and Comment 
#21) and the influence of the hyperparameters on uncertainty is now discussed in text: 
(Lines 177-185) 

The noise level is determined using a piecewise linear fit with three breakpoints (Fig. 
3b). Signal degradation with respect to noise follows an S-curve, thus having two 
breakpoints, but using the first would overestimate signal stability, especially in records 
with higher internal noise. Under these conditions the reproducibility of the reference 
boundaries deteriorates more linearly, suppressing and/or delaying the first S-curve 
breakpoint. Thus, the F1 score curve is padded, introducing a third breakpoint which 
finds where reconstruction fidelity first falls beyond that tolerated by the padding. This 
new first breakpoint derives the noise level for Monte Carlo simulation. However, 
because template width tends to be flexible given its use for smoothing, the threshold 
noise level depends on the sensitivity of the minimum prominence criterion. Therefore, 
if the algorithm is too sensitive to this hyperparameter choice the first breakpoint will be 
detected at noise levels of < 2%. In such cases this method cannot determine the right 
noise level to use, and uncertainty is not quantifiable. 



 

Figure 3: A schematic overview of algorithmic uncertainty calculation using a dataset of 
1000 noisy sine waves. (a) The algorithm’s ability to reproduce the same list of minima 
under increasing noise levels. (b) The breakpoint locations determined from a piecewise 
linear fit of four segments on the F1 score curve shown in (a). (c) The variance in number 
of minima detected with depth under the breakpoint level of noise. The 95% confidence 
interval for 100 random seeds is shown relative to the automatic age model. Note that 
the asymmetry is the product of signal noise and highlights the direction of uncertainty. 

 

Comment #14: L142: “For multiple random seeds … in 1% increments (from 1% to 
100%).” For how many multiple random seeds? Does this mean you tried e.g. 1000 
random seeds and increased the white noise from 1 to 100% for each random seeds in 
a way that you get some statistics for your F1 approach? Please also elaborate on, what 
the '%' unit means in this relation. I have no idea. 

Response: The number of random seeds is user-specified and tells CYCLIM how many 
random arrays to generate. These arrays are generated to be of equal length and 
standard deviation to the proxy signal to ensure noise is realistic. They are then linearly 
mixed into the proxy signal in increasing amounts (i.e., as a ratio from 1% to 100% noise) 
and the algorithm is run on each array at each increment. The new detections are 
compared with the clean signal to derive an F1 score. We have made this clearer in text: 
(Lines 158-160) 



Then, for a user-defined number of random seeds, arrays of Gaussian white noise are 
generated of equal length and standard deviation to the proxy signal. These random 
signals are then progressively linearly mixed into the proxy signal from 1% to 100% (in 
1% increments) to simulate random error. 

 

Comment #15: L145: “that are true”. What is meant by this? 'True' as in 'with respect to 
what was found in the undisturbed signal' (which does not mean that it is really true)? 

Response: We have changed this to read: (Lines 162-163) 

here the fraction of output detections that are found in the unperturbed signal  

 

Comment #16: Fig. 3d and Line 175-176:  I understand your argument for the stepped 
nature of the error estimation. I also understand, that the way the age uncertainty is 
calculated, floating values are produced. But to my understanding the 'deviation from 
mean model years' can only be integer values. Either one identified minimum counts or 
does not count. Is it an option to at least round the values? 

Response: The floating values are the product of averaging over realisations. Once the 
breakpoint level of noise is determined, the proxy signal is mixed at this level with a 
user-specified number of random seeds. The algorithm is then run on each of these 
mixed signals and lists of detections are extracted. Uncertainties are then derived by 
percentiles of the resultant ensemble of age models, which produces floating values. 
We have clarified the uncertainty methodology in Section 2.3. 

 

Comment #17: Fig. 7c (same in Figs 9c and 11c).: about the “temporal offset”. How can 
the offset be floating values? I don't understand this. Please explain. To me, showing the 
floating values suggest that it is possible to differentiate seasons! Is that intended?  

Response: The temporal mismatch/offset is here defined as the difference in age values 
for a given point between the published age model and the CYCLIM output. Floating 
values are therefore induced by slight misalignments of cycle boundaries and the age 
model interpolation. We have changed the figure captions of Fig. 7c, 9c, and 11c to 
include the following:  

The temporal mismatch: the difference between the published age and either the 
automatic or manual model outputs at a given point. Positive (negative) values denote 
older (younger) ages in the published model. 

 



Comment #18: Fig. 8 (same in 10 and 12): At least for a) the quality of the figure must be 
improved to see the differences, when someone is zooming in to see the differences in 
the ages. In the present manuscript version the resolution is too poor. Maybe use vector 
graphics? 

Response: We thank the reviewer for bringing our attention to this and attach high 
resolution vector graphic copies of the figures to the resubmission. 

 

Comment #19: Line 313: “other method” Please name this other method. Is this 
method mentioned in the methods-section? I can't find it. 

Response: We have clarified this point, changing the text to read: (Lines 391-393) 

Because the average cycle length estimate is derived from other methods (e.g., 
approximated from a U-Th age model or by spectral analysis), this is a fixed value 
leaving only the minimum prominence at the discretion of the user to change. 

 

Reviewer #2 comments: 
Comment #20: Forman and Baldini present a new algorithm/software for automated 
cycle counting. The intended application is to climate archives, such as sediments, ice 
cores or speleothems, but it seems that it could also be used in other research fields. 
The software allows the user to manually optimise the counting once the automated 
output is available, which is an advantage to previous algorithms, which – as far as I 
know – didn’t offer such a feature directly in the software. I also really like that the 
software tries to automatically assess the uncertainty of the counting using a Monte 
Carlo approach. 

Response: We thank the reviewer for the positive comments and their support of the 
methods.  

 

Comment #21: The paper is interesting and well written, and I recommend publication 
in CP after minor to moderate revision. I have two general comments that should be 
addressed in a revised version. (i) It is not entirely clear to me how the uncertainty of the 
combined output (i.e., the automated and manually corrected counting) is calculated. 
Is the uncertainty of the automated output just ignored after ‘tuning’ because the 
manually obtained result is assumed to be both more precise and accurate than the 
automated output? Is the uncertainty of the automated output propagated to the 
uncertainty of the combined output? Does the algorithm inform the user if the manual 
tuning would require adjusting the automated counting far more than suggested by the 



uncertainty (i.e., the automated counting has an uncertainty of 10 years, but the used 
wants to add 50 ‘missing’ years)? This should be clarified and included in more detail in 
the discussion.  

Response: Algorithmic uncertainty is approximated using a noise-based Monte Carlo 
approach. First, for a user-set number of random seeds, the proxy signal is combined 
with white noise using linear mixing from 1 to 100% in 1% increments. The algorithm is 
re-run at each noise level for each seed, and the new lists of minima are compared to 
the original using the F1 score. The first signs of disproportionate algorithmic accuracy 
degradation in response to increasing noise level is then used to approximate the 
epistemic uncertainty of manual counting. This threshold was originally determined by 
smoothed 2nd order derivatives to find a tipping point but has been updated to a 
breakpoint approach (using a piecewise linear fit; please see Comment #13 for an 
example). We changed this part of the methods because the first minimum often 
depended on the degree of smoothing and for signals with high noise levels there is not 
always a clear tipping point. The new method pads the F1 score curve and finds the 
statistically significant breakpoint. Monte Carlo simulations are then run at this noise 
level and the distribution in derived age models yields the uncertainties.  

Previously the uncertainty was kept as the deviations from the mean and then simply 
transferred to the automatic and manual models. However, the updated approach 
shows uncertainties relative to the automatic model. This change highlights areas of the 
automatic model that are less certain and enables asymmetric uncertainties helping 
users to understand the source of the uncertainty. Additionally, because the automatic 
output is not always accurate (for example when the signal-to-noise ratio is low), 
manual tuning is not limited to be inside the uncertainties of the algorithm output. Thus, 
the algorithmic uncertainties are no longer mapped onto the manual chronology.  

We have changed Section 2.3 to be clearer and follow the updated approach outlined 
above. 

 

Comment #22: (ii) I would also like to see a more detailed discussion of the uncertainty 
of automated vs. manual layer/cycle counting chronologies in general. I know that this is 
also kind of a philosophical question, but the authors mention by themselves that their 
algorithm provides an ‘objective’ way to determine counting chronologies and the 
corresponding uncertainty. Even if I agree that expert knowledge of the corresponding 
climate archive will help to improve the automated counting chronologies, these are at 
the same time always affected by some degree of subjectivity. In the worst case, the 
user already ‘knows’ where a specific peak in their proxy time series should occur (e.g., 
at the 8.2 ka event, at the YD, etc.) and may get the impression during counting that they 
count too many/not enough cycles. Thus, I would really like to see an extended 



discussion of the pros and cons of automated vs. manual counting, the potential 
effects of subjectivity and how to deal with the corresponding uncertainty. In other 
words, what is better? An automated counting chronology with an uncertainty of 10 
years, or a manually refined chronology with a lower uncertainty (however this was 
determined, see my first comment) that is potentially affected by the subjectivity of the 
person doing the counting/tuning. 

Response: We thank the reviewer for this suggestion and have included a section (4.1) 
in the discussion that compares manual and automated counting and under what 
conditions should each be chosen. The added text reads: (Lines 366-386) 

The automatic output has three main advantages over counting by inspection: (1) it 
returns results much faster; (2) the results are reproducible with the same inputs; and 
(3) it reduces subjectivity. Although manual counting is more flexible and able to adapt 
to changes in growth rate or noise levels, it risks false positives given the position of 
boundaries under these conditions often becomes subjective. Similarly, if the depth-
proxy signal has been compared to previous records prior to age-model development, 
then the inspector risks incorporating confirmation bias into the cycle count. One of the 
underlying assumptions of the results is that the published age models are correct; 
however, there is inherent uncertainty with these chronologies too. Thus, the 
comparison statistics gauge the accuracy of the output, but once discrepancies fall 
within the original age model’s uncertainty, further alignment may become erroneous. 

Whether to tune to automatic output thus depends on the record’s structure. If the 
proxy shows clear, consistent cyclicity then it could be argued that the automated 
output is accurate, and tuning may introduce false precision. Conversely, if the 
waveform changes shape substantially throughout the record (e.g., due to fluctuating 
growth rates or noise levels), the Gaussian template may not reliably amplify annual 
scale cyclicity, risking systematic bias. In this case, the automated output and its 
accompanying uncertainties may be inaccurate and thus require manual tuning.  

It is important to note that only the automatic output yields quantified algorithmic 
uncertainty. Manual tuning forfeits this benefit, and introduces its own uncertainty tied 
to the inspector’s judgements. Thus, when the algorithm can only provide a basis to 
count from due to systematic error, the user must manually tune the output. However, 
when the cyclicity is sufficiently predictable to yield an accurate chronology, whether to 
tune the output becomes a choice. A user may decide to report both an accurate 
automated chronology with uncertainty and show the precise, manually tuned age 
model for comparison. This way small potential errors made by the algorithm can be 
corrected whilst also retaining the benefits of quantified uncertainty and transparency 
of an automated count. Regardless of the signal’s clarity, any automated output should 
always be quality-checked to ensure cyclicity is being correctly tracked. 



 

Comment #23: Title: As mentioned in my general comment, the algorithm could in 
principle not only be used for climate reconstruction. Thus, I would delete ‘for 
palaeoclimate reconstruction’ from the title. If the authors prefer to keep the reference 
to palaeoclimate, I would use ‘climate archives’ instead.. 

Response: We thank the reviewer for the suggestion. CYCLIM could certainly be used on 
a wide range of signals, but given the GUI and features are designed to construct age 
models for palaeoclimate reconstruction we have changed the title to: 

CYCLIM: a semi-automated cycle counting tool for generating age models and 
palaeoclimate reconstructions 

 

Comment #24: Line 66: ‘By facilitating both efficiency and supervision, CYCLIM 
enhances the speed, accuracy, and transparency of cycle counting.’ Even if I generally 
agree, I really would like to see a more detailed discussion of the potential uncertainties 
of automated vs. manual counting (in particular in terms of subjectivity) and how to 
combine them (see my general comment). 

Response: Please see our response to Comments #21 and #22.  

 

Comment #25: Section 2.1: This section gives a useful overview of the software, but 
when I read it, I immediately had many questions (e.g., about the calculation of the 
uncertainty). Thus, I would suggest removing all references to the technical aspects 
(e.g., that ‘the algorithm derives a median age model from 2,000 Monte Carlo 
realisations using piecewise cubic Hermite interpolating polynomial (PCHIP) 
interpolation …’) and just describe the structure of the algorithm here. 

Response: We have revised Section 2.1 in line with the reviewer’s comment. Technical 
details have been reduced to present a clearer summary of CYCLIM’s functionality. 
Where methods related to detection and uncertainty are mentioned, the relevant 
sections (2.2 and 2.3) are referenced to guide the reader to more detailed explanations.  

 

Comment #26: Line 128: ‘To maintain accuracy and avoid undercounting, …’ I guess this 
paragraph describes the ‘gap treatment’ referred to elsewhere in the manuscript. Even if 
I think that I understand what the algorithm does here, it may be good to demonstrate 
this showing an (maybe artificial) example. This would be very helpful for the reader to 
understand the functionality of the algorithm. 



Response: We have made the gap treatment methodology clearer using the reviewer’s 
suggestion to include an artificial example (see Figure 2c or Comment #12).  

 

Comment #27: Line 188: ‘… and low noise level (Fig. 3).’ Here and elsewhere in the 
paper, please check the numbering of the figures. It seems that this should be Fig. 4. 

Response: Corrected.  

 

Comment #28: Fig. 5: I didn’t find a reference to Fig. 5 in the text. 

Response: Corrected. 

 

Comment #29: Line 232: ‘The automatic age model achieves a good match with that 
published by Kuhnert et al. (1999), albeit with clear signs of overcounting (Fig. 7a and c).’ 
In the light of my general comment regarding the pros and cons of automated and 
manual counting, why should the published chronology be better than the automated 
counting? I am sure there are very good reasons for this assumption, but they should be 
mentioned and discussed in the manuscript. 

Response: This study assumes the published chronologies are correct to enable 
statistical comparisons between the generated and original chronologies. However, 
these statistics should be viewed as comparison metrics to quantify general accuracy 
and not errors, and the text has been adapted accordingly. This assumption is now 
discussed in text: (Lines 370-373) 

One of the underlying assumptions of the results is that the published age models are 
correct; however, there is inherent uncertainty with these chronologies too. Thus, the 
comparison statistics gauge the accuracy of the output, but once discrepancies fall 
within the original age model’s uncertainty, further alignment may become erroneous. 

 

Comment #30: Line 233: ‘The overcount increases with depth to a maximum of 8.05 
years (mean absolute error = 4.56 years, 2.3% of the target’s temporal range), …’ I am 
not sure that I completely understand the meaning of the ‘mean absolute error’. Is this 
the mean deviation from the mean model at the bottom of the chronology shown in Fig. 
3? What would be the corresponding 95%-confidence interval at the bottom of the 
chronology? Are these limits always symmetric (i.e., is the probability for over and 
undercounting always comparable)? This information is essential to assess the 
performance of the algorithm. If the maximum uncertainty (at the 95%-level) is 4.5 
years, then an overcount of 8 years would be inaccurate. 



Response: The mean absolute error was the mean absolute discrepancy between the 
CYCLIM age model and the published one. This has now been renamed to be ‘mean 
absolute deviation’ as the reviewer rightly mentions that the published age model 
should not be considered true and so it is not an error. This has been changed across 
the whole manuscript.  

Regarding the uncertainty and tuning please see our response to Comment #21. 

 

 

Comment #31: Line 258: ‘This leads the record to have an accumulating mismatch 
which rises to a maximum of 8.23 years by the end of the record at 207 years counted 
(mean absolute error = 6.08 years, 2.8% of the targets temporal range).’ Same question 
here. What does the error mean? Later, it is said that 12 cycles were added in the tuning 
stage. This is more than the uncertainty of 6 years. Does this mean that the initial 
automated counting was inaccurate? 

Response: Please see our responses to Comments #21 and #30.  

 

Comment #32: Line 266: ‘At maximum depth, the 95% algorithmic uncertainty is 
approximately ±2 years compared to the published ±3 years.’ How can the uncertainty 
of the tuned output be so much smaller than that of the initial automated output if 12 
years were added. Are these assumed to absolutely certain even if the algorithm did not 
identify them? This also refers to my first general question regarding the treatment of the 
combined errors after tuning. 

Response: Please see our response to Comments #21. 

 

Comment #33: Section 3.2.3: Again, please provide a more detailed description of the 
different uncertainties mentioned in the text and how they were determined (in 
particular after tuning). 

Response: Please see our response to Comments #21. 

 

Comment #34: Line 308: ‘The CYCLIM algorithm extracts cyclicity information from 
three examples both accurately and quickly via an automated matched filtering 
technique, …’ Does this mean that the automated chronologies were accurate within 
their uncertainties? This did not seem to be the case to me, but maybe I misunderstood 
the quoted uncertainties (see my comments above). 



Response: Please see our response to Comments #21. The accuracy mentioned here 
was supposed to correspond to CYCLIM’s ability to find most cycle boundaries 
automatically, but the reviewer is correct that the automatic outputs of the previous 
version required tuning beyond their uncertainties and so this statement is ambiguous. 
We have amended this sentence to read: (Lines 388-389) 

The CYCLIM algorithm extracts the positions of cycle boundaries from the three 
examples both accurately and quickly via an automated matched filtering technique, 
achieving close approximations of the original chronologies.  

 

Comment #35: Line 320: ‘The results from this stage follow the original chronologies 
very closely and further running could yield a perfect match.’ This again somehow 
suggests that the published chronologies were somehow perfect. Why should this be 
the case? Couldn’t it be that the chronologies determined here with the (less subjective) 
semi-automated method are more accurate? 

Response: Please see out response to Comment #29. 

 

Comment #36: Line 327: ‘(1) reporting an objective cycle count (i.e., the algorithm 
output) before correction; …’ This is exactly what I consider as one of the greatest 
advantages of the algorithm. Thus, it is very important to better describe how the 
uncertainty of these ‘objective’ cycle counts are afterwards propagated to the final 
‘tuned’ result. Who can guarantee that the user does not add ‘false’ cycles or delete 
‘true’ cycles? 

Response: We appreciate the concern regarding the manual tuning stage and have 
adjusted the uncertainty methodology to remove mapping onto the manual output (see 
Comment #21). While we cannot guarantee a user is correctly tuning the result, the 
tracking system allows them to transparently report the number of cycles 
added/removed and even show their locations for validation. We have also provided 
discussion of manual vs automated cycle counting (see Comment #22). 

 

Comment #37: Section 5 (conclusions): This section rather reads like an abstract than 
conclusions. I would completely delete the 1st paragraph and focus on the results here. 

Response: We have changed Section 5 in line with this comment, which now reads: 
(Lines 411-421)  

Here we present a new semi-automated Python-based application (CYCLIM) for deriving 
chronologies from annual-scale cycle counting. The algorithm performs an initial cycle 
count using matched filtering, after which the user may inspect and refine the output by 



removing false detections and/or adding in missed cycles. The method accommodates 
multiple forms of chronological constrains, such as an anchor point and other tie 
points. Based on the testing presented here, CYCLIM generates quick and accurate 
automatic counts, often within counting errors and an order of magnitude faster than by 
inspection. It provides a reliable first-pass model while also allowing users to correct 
the output where needed within a user-friendly GUI. When the signal is sufficiently 
robust to the noise-based perturbation approach, CYCLIM successfully quantifies 
algorithmic uncertainty, yielding confidence intervals consistent with published age 
errors and highlighting where cyclicity becomes more subjective. This framework thus 
promotes rapid, reproducible, and transparent cycle counting and can serve as a basis 
for reporting objective and subjective cycle boundaries, as well as developing average 
manual age models. 


