Response to Reviewer comments, Forman and Baldini,
submitted to Climate of the Past

We thank the reviewers for their helpful suggestions and appreciate the time and effort
that went into reviewing the previous version of the manuscript. In this response letter
we address all the comments. All replies are in blue and relevant passages from the
revised manuscript are in red.

Reviewer #1 comments:

Comment #1: In this paper the authors present a code, which is able to automatically
count isotope-geochemical growth bands. The aim is to provide a fast method to
perform the annual layer counting task to establish a precise chronology. While there
have been some approaches of automated layer counted algorithms available in the
field, the new aspect of their approach is to allow the user a refinement after the
automated counting procedure. However, even the counting algorithm alone seems to
perform quite well, when judging the results of the three provided examples, each of
different complexity. With the authors approach, the user can perform the counting-
task much faster than when counting all cycles alone.

The manuscript is well written and structured. Especially, the introduction appears to
be very nice to me. | also liked the section with the examples and the short discussion.
What could be somewhat improved is the methods part, which is the most important
section in the manuscript. | miss a bit more details on the model parameters and their
influence on the layer counting. Please find more details on my —what | would call -
moderate suggestions listed below. Pending on improvements with respect to the
suggestions, | suggest to consider this manuscript for publication in CP. To my opinion
the manuscript deserves to be published as | can imagine, that many researchers can
and will make use of this approach.

Response: We thank the reviewer for their positive assessment of the paper and for
highlighting the lack of transparency with the methods, which we address in the
comments below.

Comment #2: L14 and L311-312: The term ‘14.1 times faster’ is very specific. And
unfortunately, it is not explained in the text, how this number is calculated. At the
moment, | doubt this number. Especially, that this number is always - for all records no
matter how difficult or long they are — 14.1. | suggest to change this, to something
broader, something like: ‘one order of magnitude faster’.

Response: The 14.1 statistic came the user only having to count/correct 7.1% cycles
(3.3% false positive and 3.8% false negative). However, because it does not take into



account the actual timings, we have changed the sentence in line with the reviewer’s
suggestion to make this more accurate.

Comment #3: L75-78: This part is about the parameters. Unfortunately, this partis
relatively poor, to my opinion. Itis not described at all, how the parameters are derived
by the code. There is also no real description about what the parameters are and what
they are steering or how they influence the result. In the results section, where the
approach is tested against already published data, there is some text, which helps to at
least adumbrate how some of the parameters are derived. | suggest to atleast add a
table where the necessary parameters are listed, where it is shortly explained how they
are determined or what are typical values. Maybe it is also helpful to leave some
sentences in the text or table, which describe them in more detail.

Interesting for the reader may also an answer to the question, what the choice of the
mean cycle length has an influence on the result — at least for the automated part. — |
guess the total influence on the result is minor, as the manual part can change the
result in an arbitrary way.

Response: We have made the hyperparameter methods clearer, stating what they are,
their purpose and the output’s sensitivity to their value. The changes include additional
text and a table (Table 1).

Assuming the average cycle length is reasonably constrained, the sensitivity to its value
is relatively minor. As shown in the Warken et al. 2018 example and Fig. 10a, the
algorithm still returns accurate cycle boundaries even if the estimate is slightly off the
“true” mean. However, if the record resolution less than ~8 points per cycle, changing
the estimate could lead to dramatic changes in template size. The strength of the signal-
to-noise ratio also determines the sensitivity of the output to a change in template size.

The following text was added: (Lines 137-145)

The detection methodology thus uses four hyperparameters: (1) the average cycle
length; (2) the template width; (3) the minimum prominence; and (4) the tuning window
(Table 1). In custom mode, the user must specify values for all of the hyperparameters,
whereas in default mode, only an estimate for the average cycle length is required.
However, because this estimate is used to determine the value of the other
hyperparameters it needs to be a fair approximation. Provided the estimate is robust,
the sensitivity of the output to its exact value depends on the record’s resolution and
noise level. The sensitivity of the output to the choice of template width and minimum
prominence is computed within the algorithm. The GUI then plots the similarity of the
detected cycle boundaries relative to the current configuration as the template width
and minimum prominence are varied. The template width is modified by +30% and the



minimum prominence value is converted to a percentage to the range iny and adjusted
by +5%.

and Table 1, which reads: (Lines 151-152)
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Comment #4: L78-79: What happens with gaps due to cuts of the samples as they
might occur during sample preparation? Are they also covered by this?

Response: Gap treatment would divide gaps incurred during sample preparation by the
average cycle length. This can be used to keep the age model in line with what is
expected by the archive’s growth rate. Alternatively, the user could manually insert a
given number of cycle boundaries in this gap or upload the record in two sections
running the algorithm on each, provided there is an anchor point available in both. This
is now mentioned in text: (Lines 132-133)

To maintain accuracy and avoid undercounting, the algorithm includes an additional
step to treat missing sections of the record and/or intervals where cyclicity is
indistinguishable from background noise.



Comment #5: L80-83: This is a very helpful tracking procedure. Very nice idea.

Response: We thank the reviewer for their assessment.

Comment #6: L84-85: You are counting possible types of anchor-points here —i.e. only
one of each type. However, | can imagine, that especially for U-Th ages, there could exist
more than one dated depth over the counted interval. Is CYCLIM able to cope with that
as well? Including all (possible) U-Th dated depths (if available) in placing the counted
interval could really help to pinpoint the chronology.

Response: We thank the reviewer for this suggestion and have included this as a feature
within CYCLIM. Alongside an anchor point (no uncertainties) the user can now upload a
list of tie points with errors. These are displayed within the GUI so the output can be
verified. Additionally, there is an option to reject Monte Carlo realisations during
uncertainty quantification that plot outside the tie point errors. While the examples do
not have a full usable radiometric age models to showcase this feature, it is applied on
stalagmite C09-2 with the inclusion of one U-Th date alongside the anchor. This added
feature is discussed in text: (Lines 86-87)

There is also the option to upload a full list of chronological tie points for comparison
and specify the sub-annual timing of the minima.

and (Lines 189-190)

Also, if additional chronological tie points are uploaded there is the option to use them
to constrain the realisations by skipping age models that plot outside of their
uncertainties.

and (Lines 308-309)

Simulations were constrained by the U-Th date uncertainties and led to the rejection of
232 realisations.

Comment #7: L85-86: “The algorithm derives a median age model from 2,000 Monte
Carlo realisations using piecewise cubic Hermite interpolating polynomial (PCHIP)
interpolation, which ...” Can you please elaborate a bit more on this? | don’t understand
why you are needing interpolation here. And what kind of Monte Carlo realisations?
What is varying?

Response: We thank the reviewer for finding this error. Interpolation is performed so
that ages can be approximated between cycle boundaries, but the reference to Monte
Carlo realisations pertains to the uncertainty analysis and so should not be mentioned
here. The text has been updated to read: (Lines 87-89)



CYCLIM then uses piecewise cubic Hermite interpolating polynomial (PCHIP)
interpolation to assign an age value to every datapoint in the depth-proxy dataset by
estimating ages between the detected cycle boundaries.

Comment #8: L 86: “uses” a “used”.

Response: Corrected.

Comment #9: L88-L89: “Furthermore, CYCLIM can translate the proxy values onto a
time-certain axis to convert age uncertainty into proxy uncertainty.” Thisis nota
specific comment to this paper, and you are free to ignore, if you like, but maybe you can
help me out here.

I know this concept has already been proposed in earlier studies (e.g., Breitenbach et
al., 2012). However, |, personally, do not really understand this concept. It appears not
to be meaningful to me. | always think about this the following way: Only as a signal
cannot be put perfectly in time, the magnitude of an event is not smaller than
measured. Or more extreme, only as a clearly pronounced event in the measured proxy
cannot be dated at all, it does not mean it is not there at all, as this approach would
tend to suggest. At least this is my argument for not agreeing with this approach. But
this is only my opinion about this issue. Maybe there are arguments in favour of this
procedure, | am not aware of.

So, my question to this sentence would be, if this feature can be deselected by the
user?

Response: We appreciate the concern with this feature and agree that the approach has
limitations. While some of the resolution of the record is lost, it enables the direct
comparison of multiple records and/or statistical analysis without needing to consider
age uncertainty which could be useful for some users. This feature is optional and, in
line with this comment, we have adapted the following sentences to read: (Lines 90-91)

Furthermore, users can choose to enable the translation of the proxy values onto a
time-certain axis, thereby converting age uncertainty into proxy uncertainty.

and (Lines 196-197)

Finally, the age model uncertainties can optionally be translated into time-certain proxy
uncertainties via ensemble-based mapping of proxy values onto the time domain.

Comment #10: L103-106: Could you elaborate a bit more on the choice of the width, w?
I think this would help the reader, to set their own w if they prefer to do so. What is the



impact of a change in w? Can you perform a short sensitivity analysis? Maybe with one
of your example data sets (or all).

Per default CYCLIM is using the half average annual cycle length. However, growth
layers can change quite strongly throughout the record. What would happen to phases,
where the cycles are much shorter than the average. And what would happen to phases,
where there is very rapid growth? Does such a behavior result in an under- or over-
counting. | think, this would be very interesting to the reader. At least to me, it is.

Related to this, it might be worth in another, future version of CYCLIM to make the
template width, w, depth adaptive by using a wavelet. In case the over- and
undercounting in periods with low and high growth rates is an issue, this method could
improve the counting performance, when changes from fast to slow growth occur. Just
anidea.

Response: By using a half cycle length, the template becomes more robust and flexible
to the changes of a proxy signal. If the template was a full wave cycle, then asymmetric
cycles with would be more difficult to identify. Additionally, with this method the
matched filter output still identifies the annual signal even when the growth rate
changes slightly. The text has been adapted to better explain the hyperparameter
(please see extract below and Comment #3): (Lines 105-112)

A Gaussian-shaped template is constructed to approximate the expected waveform of
the cycles. The user can manually specify the template width (w) or the CYCLIM
algorithm will automatically set the template width to correspond to half the number of
datapoints that comprise the average cycle length, which is specified by the user. The
method uses a half-cycle length because matched filtering with a Gaussian template
produces strong responses for segments that resemble either the template’s standard
orientation (peaks) or its inverse (troughs). This approach allows the filter to detect
cycles without requiring knowledge of the full waveform shape, emphasising general
pattern similarity and thereby making it robust to asymmetry or obscuration due to
noise. Because the template centres around a single point, the window must be odd. If
the calculation yields an even number, the algorithm expands the window by one.

Regarding the template width’s sensitivity to changes in growth rate, it is primarily
dependent on the signal-to-noise ratio as the template is only used to smooth the
record. Therefore, varying growth rate can be accommodated by the template width
provided the signalis clear and the hyperparameter is set to the half the average cycle
length. This is now visualised in Figures 8a, 10a, and 12a (example below), which show
the extracted cycle lengths of the automatic vs published age models. All three example
show the algorithm can still accurately detect cycles when there is significant variance
in length. Also, as long as its near constant any growth rate changes can be accounted
for in the manual tuning stage.
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Figure 12: The CYCLIM age models and manually tuned output for the stalagmite BER-
SWI-13 record. (a) Distribution of annual cycle lengths for the automatic (pink) and
published (grey) chronologies. The vertical dashed line shows the average cycle length
hyperparameter estimate. (b) The CYCLIM age models (automatic — pink; manual —red),
shown with the published age model (black) and the radiocarbon carbon chronology
with 20 uncertainties presented in Forman et al. (2025). (c) The manual CYCLIM output
record (red) and chronological mismatch with the published record (purple).
Mismatches are averaged by decade.

To help users better understand the output’s sensitivity to the chosen hyperparameter
configuration, we have added a visualisation to the GUI showing how well moderately
different hyperparameter choices return the current list of detected minima. This plot
(example shown below) plots the similarity of outputs with moderately different
template width and minimum prominence values to the current output using a heatmap
of F1 scores. The template width is varied by +30% and the minimum prominence is
converted to a percentage of the range in the proxy signal and adjusted by +5%, allowing
for a large coverage of possible combinations. However, in some cases these values
may become inaccurate, or the current combination could be very robust but sensitive
to change. Thus, the sensitivity should be assessed with caution. A copy of these plots
for each of the three example is now available in the manuscript in Figures 7, 9, and 11.
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The reviewer suggests a good idea to use a wavelet to track the cyclicity signal, and thus
the template would be adaptive to changes in growth rate. However, because the
template width is inherently flexible (as shown in the sensitivity analysis) this approach
may introduce too much complexity. It would require the code being able to find the
correct wavelength amongst potentially many others and would assume that there is a
cyclicity to find. Thus, it would need to be constrained and risks a more black-box
methodology. For this reason, we have kept the fixed template width method to make
the output easier to understand.

Comment #11: L119-221: “minimum prominence criterion” Please elaborate more on
this. What is this? How did you (or CYCLIM) is defining this? Have you tested the impact
of this criterion? Is this the same as what you are later, in sections 3.2.1 to0 3.2.3, are
setting to 0.04 permil (Houtman Abrolhos Coral), 2.5% (C09-2), 503 ppm (BER-SWI-13).
You may be able to test the impact of this value with these or at least with one of these
data set. Just to give the reader an idea on the sensibility of the parameter choice. Thus,
| suggest to elaborate a bit more on this value. Just to find the impact with respect to the
identified cycles. Just use the same time series, with a value equivalentto 1, 2.5, 5 and
10 % of the range in y (or other values) and look for changes in the result. Maybe the
results will be different with a change in the growth rate, proxy amplitude or signal to
noise ratio of the smoothed record.

But then again, as the approach is semi-automatic, the user can correct anything the
program found too much or too less. This should be also mentioned, when doing the
sensitivity analysis.

Response: The updated manuscript provides a clearer explanation of what this
hyperparameter is and how it is derived (please see extract below and Comment #3).
Depending on the signal, the automatic value (2.5% of the proxy’s central 95% range)
can be too low or high, which was the case in sections 3.2.1 and 3.2.2, respectively. The
sensitivity to this criterion depends on the signal’s noise level compared to peak height.
The sensitivity of a given output to this hyperparameter is now more clearly visualised in
the GUI and is shown for each of the three examples (see Comment #10).

Lines (122-125)



Peaks in the inverted signal correspond to points that exceed theirimmediate
neighbours and surpass a minimum prominence criterion. This threshold suppresses
false detections caused by remaining signal noise and allows the user to manually set
the value or automatically assigns it a value equivalent to 2.5% of the range in y
between the 2.5" and 97.5" percentiles.

Comment #12: Fig. 2: | suggest to put the red line on its own y-axis (right hand side?).
Otherwise it is confusing with respect to equation 1.

Response: We have changed Fig. 2 to have the template on a separate y axis.
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Figure 2: A schematic overview of the matched filtering technique. (a) The Gaussian
template used for matched filtering, which is set to the number of datapoints
corresponding to half the estimated average cycle length of the hypothetical dataset. (b)
The hypothetical dataset (grey) and the convolved matched filtering output (blue). (c)
The record in (b) with the detected cycle boundaries (vertical black dashed lines) and
the inserted boundaries during gap treatment (vertical green dashed lines).

Comment #13: Section 2.3: | agree, that this is an option to try to estimate the
uncertainty. But to me it reads rather as an unusual one, as it is not the time
series/signal, which is uncertain. It is the counting through the choice of the parameter
set.



Therefore, | would have tried to randomly change the configuration of parameter set, the
user is free to choose (or the default values). At least within a certain environment.

In this way, the signal remains as measured, as it is most likely not the signal, which is
loaded with uncertainty, but rather the choice of parameter values.

I know, | would ask much, if | would request to chance the uncertainty algorithm.
Probably, this would require some (heavy?) recoding. Therefore please, decide for
yourself, how you like to proceed. In any way, | also provide a few thoughts on the
present algorithm.

Response: We thank the reviewer for this suggestion. Our approach to estimating
uncertainty is unusual and varying the hyperparameter choices is another viable option.
This alternative method would only need to vary template width and minimum
prominence, because average cycle length and tuning window are only used to derive
the default values and adjust boundaries, respectively. Additionally, because the
template width is inherently flexible (please see detected boundaries shown in Fig 8a,
10a, 12a and Comment #10) and should be based on an accurate estimate of the
average cycle length, the minimum prominence is the primary source of uncertainty.
Tuning this parameter by inspecting the output reduces the uncertainty and constrains
the value but there is still a range of plausible values. However, this approach would
need to define the environment in which to vary this parameter and that would require
user-input given the wide range in signhals CYCLIM could be used on. This could risk
users defining their own levels of uncertainty, forgoing its objectivity. Because the
current method works without specified values, we have chosen to keep the current
method. However, this method has been refined (please see Section 2.3 and Comment
#21) and the influence of the hyperparameters on uncertainty is now discussed in text:
(Lines 177-185)

The noise level is determined using a piecewise linear fit with three breakpoints (Fig.
3b). Signal degradation with respect to noise follows an S-curve, thus having two
breakpoints, but using the first would overestimate signal stability, especially in records
with higher internal noise. Under these conditions the reproducibility of the reference
boundaries deteriorates more linearly, suppressing and/or delaying the first S-curve
breakpoint. Thus, the F1 score curve is padded, introducing a third breakpoint which
finds where reconstruction fidelity first falls beyond that tolerated by the padding. This
new first breakpoint derives the noise level for Monte Carlo simulation. However,
because template width tends to be flexible given its use for smoothing, the threshold
noise level depends on the sensitivity of the minimum prominence criterion. Therefore,
if the algorithm is too sensitive to this hyperparameter choice the first breakpoint will be
detected at noise levels of < 2%. In such cases this method cannot determine the right
noise level to use, and uncertainty is not quantifiable.
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Figure 3: A schematic overview of algorithmic uncertainty calculation using a dataset of
1000 noisy sine waves. (a) The algorithm’s ability to reproduce the same list of minima
under increasing noise levels. (b) The breakpoint locations determined from a piecewise
linear fit of four segments on the F1 score curve shown in (a). (c) The variance in number
of minima detected with depth under the breakpoint level of noise. The 95% confidence
interval for 100 random seeds is shown relative to the automatic age model. Note that
the asymmetry is the product of signal noise and highlights the direction of uncertainty.

Comment #14: L142: “For multiple random seeds ... in 1% increments (from 1% to
100%).” For how many multiple random seeds? Does this mean you tried e.g. 1000
random seeds and increased the white noise from 1 to 100% for each random seeds in
a way that you get some statistics for your F1 approach? Please also elaborate on, what
the '%' unit means in this relation. | have no idea.

Response: The number of random seeds is user-specified and tells CYCLIM how many
random arrays to generate. These arrays are generated to be of equal length and
standard deviation to the proxy sighal to ensure noise is realistic. They are then linearly
mixed into the proxy signalin increasing amounts (i.e., as a ratio from 1% to 100% noise)
and the algorithm is run on each array at each increment. The new detections are
compared with the clean signal to derive an F1 score. We have made this clearer in text:
(Lines 158-160)



Then, for a user-defined number of random seeds, arrays of Gaussian white noise are
generated of equal length and standard deviation to the proxy signal. These random
signals are then progressively linearly mixed into the proxy signal from 1% to 100% (in
1% increments) to simulate random error.

Comment #15: L145: “that are true”. What is meant by this? 'True' as in 'with respect to
what was found in the undisturbed signal' (which does not mean that itis really true)?

Response: We have changed this to read: (Lines 162-163)

here the fraction of output detections that are found in the unperturbed signal

Comment #16: Fig. 3d and Line 175-176: | understand your argument for the stepped
nature of the error estimation. | also understand, that the way the age uncertainty is
calculated, floating values are produced. But to my understanding the 'deviation from
mean model years' can only be integer values. Either one identified minimum counts or
does not count. Is it an option to at least round the values?

Response: The floating values are the product of averaging over realisations. Once the
breakpoint level of noise is determined, the proxy signalis mixed at this level with a
user-specified number of random seeds. The algorithm is then run on each of these
mixed signals and lists of detections are extracted. Uncertainties are then derived by
percentiles of the resultant ensemble of age models, which produces floating values.
We have clarified the uncertainty methodology in Section 2.3.

Comment #17: Fig. 7c (same in Figs 9c and 11c).: about the “temporal offset”. How can
the offset be floating values? | don't understand this. Please explain. To me, showing the
floating values suggest that it is possible to differentiate seasons! Is that intended?

Response: The temporal mismatch/offset is here defined as the difference in age values
for a given point between the published age model and the CYCLIM output. Floating
values are therefore induced by slight misalignments of cycle boundaries and the age
model interpolation. We have changed the figure captions of Fig. 7c, 9c, and 11c to
include the following:

The temporal mismatch: the difference between the published age and either the
automatic or manual model outputs at a given point. Positive (negative) values denote
older (younger) ages in the published model.



Comment #18: Fig. 8 (same in 10 and 12): At least for a) the quality of the figure must be
improved to see the differences, when someone is zooming in to see the differences in
the ages. In the present manuscript version the resolution is too poor. Maybe use vector
graphics?

Response: We thank the reviewer for bringing our attention to this and attach high
resolution vector graphic copies of the figures to the resubmission.

Comment #19: Line 313: “other method” Please name this other method. Is this
method mentioned in the methods-section? | can't find it.

Response: We have clarified this point, changing the text to read: (Lines 391-393)

Because the average cycle length estimate is derived from other methods (e.g.,
approximated from a U-Th age model or by spectral analysis), this is a fixed value
leaving only the minimum prominence at the discretion of the user to change.

Reviewer #2 comments:

Comment #20: Forman and Baldini present a new algorithm/software for automated
cycle counting. The intended application is to climate archives, such as sediments, ice
cores or speleothems, but it seems that it could also be used in other research fields.
The software allows the user to manually optimise the counting once the automated
output is available, which is an advantage to previous algorithms, which —as far as |
know - didn’t offer such a feature directly in the software. | also really like that the
software tries to automatically assess the uncertainty of the counting using a Monte
Carlo approach.

Response: We thank the reviewer for the positive comments and their support of the
methods.

Comment #21: The paper is interesting and well written, and | recommend publication
in CP after minor to moderate revision. | have two general comments that should be
addressed in a revised version. (i) It is not entirely clear to me how the uncertainty of the
combined output (i.e., the automated and manually corrected counting) is calculated.
Is the uncertainty of the automated output justignored after ‘tuning’ because the
manually obtained result is assumed to be both more precise and accurate than the
automated output? Is the uncertainty of the automated output propagated to the
uncertainty of the combined output? Does the algorithm inform the user if the manual
tuning would require adjusting the automated counting far more than suggested by the



uncertainty (i.e., the automated counting has an uncertainty of 10 years, but the used
wants to add 50 ‘missing’ years)? This should be clarified and included in more detailin
the discussion.

Response: Algorithmic uncertainty is approximated using a noise-based Monte Carlo
approach. First, for a user-set number of random seeds, the proxy signalis combined
with white noise using linear mixing from 1 to 100% in 1% increments. The algorithm is
re-run at each noise level for each seed, and the new lists of minima are compared to
the original using the F1 score. The first signs of disproportionate algorithmic accuracy
degradation in response to increasing noise level is then used to approximate the
epistemic uncertainty of manual counting. This threshold was originally determined by
smoothed 2" order derivatives to find a tipping point but has been updated to a
breakpoint approach (using a piecewise linear fit; please see Comment #13 for an
example). We changed this part of the methods because the first minimum often
depended on the degree of smoothing and for signals with high noise levels there is not
always a clear tipping point. The new method pads the F1 score curve and finds the
statistically significant breakpoint. Monte Carlo simulations are then run at this noise
level and the distribution in derived age models yields the uncertainties.

Previously the uncertainty was kept as the deviations from the mean and then simply
transferred to the automatic and manual models. However, the updated approach
shows uncertainties relative to the automatic model. This change highlights areas of the
automatic model that are less certain and enables asymmetric uncertainties helping
users to understand the source of the uncertainty. Additionally, because the automatic
output is not always accurate (for example when the signal-to-noise ratio is low),
manual tuning is not limited to be inside the uncertainties of the algorithm output. Thus,
the algorithmic uncertainties are no longer mapped onto the manual chronology.

We have changed Section 2.3 to be clearer and follow the updated approach outlined
above.

Comment #22: (ii) | would also like to see a more detailed discussion of the uncertainty
of automated vs. manual layer/cycle counting chronologies in general. | know that this is
also kind of a philosophical question, but the authors mention by themselves that their
algorithm provides an ‘objective’ way to determine counting chronologies and the
corresponding uncertainty. Even if | agree that expert knowledge of the corresponding
climate archive will help to improve the automated counting chronologies, these are at
the same time always affected by some degree of subjectivity. In the worst case, the
user already ‘knows’ where a specific peak in their proxy time series should occur (e.g.,
atthe 8.2 ka event, at the YD, etc.) and may get the impression during counting that they
count too many/not enough cycles. Thus, | would really like to see an extended



discussion of the pros and cons of automated vs. manual counting, the potential
effects of subjectivity and how to deal with the corresponding uncertainty. In other
words, what is better? An automated counting chronology with an uncertainty of 10
years, or a manually refined chronology with a lower uncertainty (however this was
determined, see my first comment) that is potentially affected by the subjectivity of the
person doing the counting/tuning.

Response: We thank the reviewer for this suggestion and have included a section (4.1)
in the discussion that compares manual and automated counting and under what
conditions should each be chosen. The added text reads: (Lines 366-386)

The automatic output has three main advantages over counting by inspection: (1) it
returns results much faster; (2) the results are reproducible with the same inputs; and
(3) it reduces subjectivity. Although manual counting is more flexible and able to adapt
to changes in growth rate or noise levels, it risks false positives given the position of
boundaries under these conditions often becomes subjective. Similarly, if the depth-
proxy signhal has been compared to previous records prior to age-model development,
then the inspector risks incorporating confirmation bias into the cycle count. One of the
underlying assumptions of the results is that the published age models are correct;
however, there is inherent uncertainty with these chronologies too. Thus, the
comparison statistics gauge the accuracy of the output, but once discrepancies fall
within the original age model’s uncertainty, further alignment may become erroneous.

Whether to tune to automatic output thus depends on the record’s structure. If the
proxy shows clear, consistent cyclicity then it could be argued that the automated
output is accurate, and tuning may introduce false precision. Conversely, if the
waveform changes shape substantially throughout the record (e.g., due to fluctuating
growth rates or noise levels), the Gaussian template may not reliably amplify annual
scale cyclicity, risking systematic bias. In this case, the automated output and its
accompanying uncertainties may be inaccurate and thus require manual tuning.

Itis important to note that only the automatic output yields quantified algorithmic
uncertainty. Manual tuning forfeits this benefit, and introduces its own uncertainty tied
to the inspector’s judgements. Thus, when the algorithm can only provide a basis to
count from due to systematic error, the user must manually tune the output. However,
when the cyclicity is sufficiently predictable to yield an accurate chronology, whether to
tune the output becomes a choice. A user may decide to report both an accurate
automated chronology with uncertainty and show the precise, manually tuned age
model for comparison. This way small potential errors made by the algorithm can be
corrected whilst also retaining the benefits of quantified uncertainty and transparency
of an automated count. Regardless of the signal’s clarity, any automated output should
always be quality-checked to ensure cyclicity is being correctly tracked.



Comment #23: Title: As mentioned in my general comment, the algorithm could in
principle not only be used for climate reconstruction. Thus, | would delete ‘for
palaeoclimate reconstruction’ from the title. If the authors prefer to keep the reference
to palaeoclimate, | would use ‘climate archives’ instead..

Response: We thank the reviewer for the suggestion. CYCLIM could certainly be used on
a wide range of signals, but given the GUI and features are designed to construct age
models for palaeoclimate reconstruction we have changed the title to:

CYCLIM: a semi-automated cycle counting tool for generating age models and
palaeoclimate reconstructions

Comment #24: Line 66: ‘By facilitating both efficiency and supervision, CYCLIM
enhances the speed, accuracy, and transparency of cycle counting.” Even if | generally
agree, | really would like to see a more detailed discussion of the potential uncertainties
of automated vs. manual counting (in particular in terms of subjectivity) and how to
combine them (see my general comment).

Response: Please see our response to Comments #21 and #22.

Comment #25: Section 2.1: This section gives a useful overview of the software, but
when | read it, | immediately had many questions (e.g., about the calculation of the
uncertainty). Thus, | would suggest removing all references to the technical aspects
(e.g., that ‘the algorithm derives a median age model from 2,000 Monte Carlo
realisations using piecewise cubic Hermite interpolating polynomial (PCHIP)
interpolation ..’) and just describe the structure of the algorithm here.

Response: We have revised Section 2.1 in line with the reviewer’s comment. Technical
details have been reduced to present a clearer summary of CYCLIM’s functionality.
Where methods related to detection and uncertainty are mentioned, the relevant
sections (2.2 and 2.3) are referenced to guide the reader to more detailed explanations.

Comment #26: Line 128: ‘To maintain accuracy and avoid undercounting, ...’ | guess this
paragraph describes the ‘gap treatment’ referred to elsewhere in the manuscript. Even if
I think that | understand what the algorithm does here, it may be good to demonstrate
this showing an (maybe artificial) example. This would be very helpful for the reader to
understand the functionality of the algorithm.



Response: We have made the gap treatment methodology clearer using the reviewer’s
suggestion to include an artificial example (see Figure 2c or Comment #12).

Comment #27: Line 188: ... and low noise level (Fig. 3).” Here and elsewhere in the
paper, please check the numbering of the figures. It seems that this should be Fig. 4.

Response: Corrected.

Comment #28: Fig. 5: | didn’t find a reference to Fig. 5 in the text.

Response: Corrected.

Comment #29: Line 232: ‘The automatic age model achieves a good match with that
published by Kuhnert et al. (1999), albeit with clear signs of overcounting (Fig. 7a and c).
In the light of my general comment regarding the pros and cons of automated and
manual counting, why should the published chronology be better than the automated
counting? | am sure there are very good reasons for this assumption, but they should be

)

mentioned and discussed in the manuscript.

Response: This study assumes the published chronologies are correct to enable
statistical comparisons between the generated and original chronologies. However,
these statistics should be viewed as comparison metrics to quantify general accuracy
and not errors, and the text has been adapted accordingly. This assumption is now
discussed in text: (Lines 370-373)

One of the underlying assumptions of the results is that the published age models are
correct; however, there is inherent uncertainty with these chronologies too. Thus, the
comparison statistics gauge the accuracy of the output, but once discrepancies fall
within the original age model’s uncertainty, further alignment may become erroneous.

Comment #30: Line 233: ‘The overcount increases with depth to a maximum of 8.05
years (mean absolute error = 4.56 years, 2.3% of the target’s temporal range), ... | am
not sure that | completely understand the meaning of the ‘mean absolute error’. Is this
the mean deviation from the mean model at the bottom of the chronology shown in Fig.
3? What would be the corresponding 95%-confidence interval at the bottom of the
chronology? Are these limits always symmetric (i.e., is the probability for over and
undercounting always comparable)? This information is essential to assess the
performance of the algorithm. If the maximum uncertainty (at the 95%-level) is 4.5
years, then an overcount of 8 years would be inaccurate.



Response: The mean absolute error was the mean absolute discrepancy between the
CYCLIM age model and the published one. This has now been renamed to be ‘mean
absolute deviation’ as the reviewer rightly mentions that the published age model
should not be considered true and so itis not an error. This has been changed across
the whole manuscript.

Regarding the uncertainty and tuning please see our response to Comment #21.

Comment #31: Line 258: ‘This leads the record to have an accumulating mismatch
which rises to a maximum of 8.23 years by the end of the record at 207 years counted
(mean absolute error = 6.08 years, 2.8% of the targets temporal range).” Same question
here. What does the error mean? Later, it is said that 12 cycles were added in the tuning
stage. This is more than the uncertainty of 6 years. Does this mean that the initial
automated counting was inaccurate?

Response: Please see our responses to Comments #21 and #30.

Comment #32: Line 266: ‘At maximum depth, the 95% algorithmic uncertainty is
approximately £2 years compared to the published £3 years.” How can the uncertainty
of the tuned output be so much smaller than that of the initial automated output if 12
years were added. Are these assumed to absolutely certain even if the algorithm did not
identify them? This also refers to my first general question regarding the treatment of the
combined errors after tuning.

Response: Please see our response to Comments #21.

Comment #33: Section 3.2.3: Again, please provide a more detailed description of the
different uncertainties mentioned in the text and how they were determined (in
particular after tuning).

Response: Please see our response to Comments #21.

Comment #34: Line 308: ‘The CYCLIM algorithm extracts cyclicity information from
three examples both accurately and quickly via an automated matched filtering
technique, ..’ Does this mean that the automated chronologies were accurate within
their uncertainties? This did not seem to be the case to me, but maybe | misunderstood
the quoted uncertainties (see my comments above).



Response: Please see our response to Comments #21. The accuracy mentioned here
was supposed to correspond to CYCLIM’s ability to find most cycle boundaries
automatically, but the reviewer is correct that the automatic outputs of the previous
version required tuning beyond their uncertainties and so this statement is ambiguous.
We have amended this sentence to read: (Lines 388-389)

The CYCLIM algorithm extracts the positions of cycle boundaries from the three
examples both accurately and quickly via an automated matched filtering technique,
achieving close approximations of the original chronologies.

Comment #35: Line 320: ‘The results from this stage follow the original chronologies
very closely and further running could yield a perfect match.’ This again somehow
suggests that the published chronologies were somehow perfect. Why should this be
the case? Couldn’tit be that the chronologies determined here with the (less subjective)
semi-automated method are more accurate?

Response: Please see out response to Comment #29.

Comment #36: Line 327: ‘(1) reporting an objective cycle count (i.e., the algorithm
output) before correction; ...’ This is exactly what | consider as one of the greatest
advantages of the algorithm. Thus, itis very important to better describe how the
uncertainty of these ‘objective’ cycle counts are afterwards propagated to the final
‘tuned’ result. Who can guarantee that the user does not add ‘false’ cycles or delete
‘true’ cycles?

Response: We appreciate the concern regarding the manual tuning stage and have
adjusted the uncertainty methodology to remove mapping onto the manual output (see
Comment #21). While we cannot guarantee a user is correctly tuning the result, the
tracking system allows them to transparently report the number of cycles
added/removed and even show their locations for validation. We have also provided
discussion of manual vs automated cycle counting (see Comment #22).

Comment #37: Section 5 (conclusions): This section rather reads like an abstract than
conclusions. | would completely delete the 1st paragraph and focus on the results here.

Response: We have changed Section 5 in line with this comment, which now reads:
(Lines 411-421)

Here we present a new semi-automated Python-based application (CYCLIM) for deriving
chronologies from annual-scale cycle counting. The algorithm performs an initial cycle
count using matched filtering, after which the user may inspect and refine the output by



removing false detections and/or adding in missed cycles. The method accommodates
multiple forms of chronological constrains, such as an anchor point and other tie
points. Based on the testing presented here, CYCLIM generates quick and accurate
automatic counts, often within counting errors and an order of magnitude faster than by
inspection. It provides a reliable first-pass model while also allowing users to correct
the output where needed within a user-friendly GUI. When the signal is sufficiently
robust to the noise-based perturbation approach, CYCLIM successfully quantifies
algorithmic uncertainty, yielding confidence intervals consistent with published age
errors and highlighting where cyclicity becomes more subjective. This framework thus
promotes rapid, reproducible, and transparent cycle counting and can serve as a basis
for reporting objective and subjective cycle boundaries, as well as developing average
manual age models.



