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Abstract.  10 

Organic aerosols (OA) are key components of wintertime urban haze, but the relationship between their oxidation 11 

state and volatility—critical for understanding aerosol evolution and improving model predictions—remains poorly 12 

constrained. While oxidation–volatility decoupling has been observed in laboratory studies, field-based evidence 13 

under real-world conditions is scarce, particularly during severe haze episodes. This study presents a field-based 14 

investigation of OA sources and their volatility characteristics in Seoul during a winter haze period, using a 15 

thermodenuder coupled with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). 16 

Positive matrix factorization resolved six OA factors: hydrocarbon-like OA, cooking, biomass burning, nitrogen-17 

containing OA (NOA), less-oxidized oxygenated OA (LO-OOA), and more-oxidized OOA (MO-OOA). Despite 18 

having the highest oxygen-to-carbon ratio (~1.15), MO-OOA exhibited unexpectedly high volatility, indicating a 19 

decoupling between oxidation state and volatility. We attribute this to fragmentation-driven aging and autoxidation 20 

under stagnant conditions with limited OH exposure. In contrast, LO-OOA showed lower volatility and more 21 

typical oxidative behavior. 22 

Additionally, NOA—a rarely resolved factor in wintertime field studies—was prominent during cold, humid, and 23 

stagnant conditions and exhibited chemical and volatility features similar to biomass burning OA, suggesting a 24 

shared combustion origin and meteorological sensitivity. 25 

These findings provide one of the few field-based demonstrations of oxidation–volatility decoupling in ambient 26 

OA and highlight how source-specific properties and meteorology influence OA evolution. The results underscore 27 

the need to refine OA representation in chemical transport models, especially under haze conditions. 28 

 29 
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1 Introduction 31 

Atmospheric aerosols affect both human health and the environment by reducing visibility (Ghim et al., 2005; Zhao 32 

et al., 2013) and contributing to cardiovascular and respiratory diseases (Hamanaka et al., 2018; Manisalidis et al., 33 

2020). In addition, aerosols play a significant role in climate change by scattering or absorbing solar radiation and 34 

modifying cloud properties (IPCC AR6). Among the various aerosol components—including sulfate, nitrate, 35 

ammonium, chloride, crustal materials, and water—organic aerosols (OA) are particularly important to characterize, 36 

as they account for 20–90% of submicron particulate matter (Zhang et al., 2007). Identifying OA sources and 37 

understanding their behavior are critical for effective air quality management; however, this is particularly 38 

challenging due to the vast diversity and dynamic nature of OA compounds, which originate from both natural and 39 

anthropogenic sources. Unlike inorganic aerosols, organic aerosols (OAs) evolve continuously through complex 40 

atmospheric reactions, influenced by emission sources, meteorological conditions, and aerosol properties (Jimenez 41 

et al., 2009; Hallquist et al., 2009; Robinson et al., 2007; Donahue et al., 2006; Ng et al., 2010; Cappa and Jimenez, 42 

2010). 43 

Volatility is a key parameter for characterizing organic aerosol (OA) properties, as it governs gas-to-particle 44 

partitioning behavior and directly influences particle formation yields (Sinha et al., 2023). The classification of OA 45 

species based on their volatility—from extremely low-volatility (ELVOC) to semi-volatile (SVOC) and intermediate-volatility 46 

(IVOC) compounds—is central to the conceptual framework of secondary OA (SOA) formation and growth (Donahue et al., 47 

2006). It also affects atmospheric lifetimes and human exposure by determining how long aerosols remain 48 

suspended in the atmosphere (Glasius and Goldstein, 2016). Therefore, accurately capturing OA volatility is 49 

essential for improving predictions of OA concentrations and their environmental and health impacts. However, 50 

chemical transport models often significantly underestimate OA mass compared to observations (Matsui et al., 51 

2009; Jiang et al., 2012; Li et al., 2017), largely due to incomplete precursor inventories and simplified treatment 52 

of processes affecting OA volatility. For instance, aging—through oxidation reactions such as functionalization 53 

and fragmentation—can significantly alter volatility by changing OA chemical structure (Robinson et al., 2007; 54 

Zhao et al., 2016). Early volatility studies primarily utilized thermal denuders (TD) coupled with various detection 55 

instruments to investigate the thermal properties of bulk OA (Huffman et al., 2008). The subsequent coupling of TD with the 56 

Aerosol Mass Spectrometer allowed for component-resolved volatility measurements, providing critical, quantitative insight 57 

into the properties of OA factors (e.g., SV-OOA vs. LV-OOA) across different regions (Paciga et al., 2016; Cappa and Jimenez, 58 

2010). These component-resolved volatility data are often used to constrain the Volatility Basis Set (VBS)—the current state-59 

of-the-art framework for modeling OA partitioning and evolution (Donahue et al., 2006). However, a limitation in many field 60 

studies is that the TD-AMS thermogram data are rarely translated into quantitative VBS distributions for individual OA factors, 61 
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which limits their direct use in chemical transport models. Furthermore, the volatility of OOA during extreme haze conditions, 62 

where the expected inverse correlation between oxidation (O:C) and volatility can break down (Jimenez et al., 2009), remains 63 

poorly characterized, particularly in East Asia's highly polluted winter environments. A recent study in Korea further 64 

highlighted the importance of accounting for such processes when interpreting OA volatility under ambient 65 

conditions (Kang et al., 2023). Given its central role in OA formation, reaction, and atmospheric persistence, 66 

volatility analysis is critical for bridging the gap between measurements and model performance. 67 

Traditionally, due to the complexity and variability of OA, the oxygen-to-carbon (O:C) ratio has been used as a 68 

proxy for estimating volatility. In general, higher O:C values indicate greater oxidation and lower volatility 69 

(Jimenez et al., 2009). Accordingly, many field studies classify oxygenated OA (OOA) into semi-volatile OOA 70 

(SV-OOA) and low-volatility OOA (LV-OOA) based on their O:C ratios (Ng et al., 2010; Huang et al., 2010; Mohr 71 

et al., 2012). However, this relationship is not always straightforward. Fragmentation during oxidation can increase 72 

both O:C and volatility simultaneously, disrupting the expected inverse correlation (Jimenez et al., 2009).  In 73 

laboratory experiments, yields of highly oxidized SOA have been observed to decrease due to fragmentation (Xu 74 

et al., 2014; Grieshop et al., 2009). These findings suggest that while O:C can offer useful insights, it is insufficient 75 

alone to represent OA volatility. Direct volatility measurements, especially when paired with chemical composition 76 

data, are necessary to improve our understanding of OA sources and aging processes. 77 

In this study, we investigate the sources and volatility characteristics of OA in Seoul during winter. Wintertime OA 78 

presents additional challenges due to its high complexity. During winter, emissions from combustion sources such 79 

as biomass burning and residential heating significantly increase, contributing large amounts of primary OA (Kim 80 

et al., 2017). Meanwhile, low ambient temperatures and reduced photochemical activity affect the formation and 81 

evolution of secondary OA (SOA). Frequent haze events further complicate the aerosol properties by extending 82 

aging times and increasing particle loadings. These overlapping sources and atmospheric conditions make winter 83 

OA particularly difficult to characterize and predict. Despite Seoul's significance for air quality management, 84 

comprehensive studies on OA volatility during winter remain limited. To address these goals, we conducted real-time, 85 

high-resolution measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) 86 

coupled with a thermodenuder (TD). The objectives of this study are to: (1) improve the understanding of 87 
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wintertime OA in Seoul, (2) characterize the volatility of OA associated with different sources, and (3) explore the 88 

relationship between OA volatility and chemical composition. 89 

2 Experimental methods 90 

2.1 Sampling Site and Measurement Period 91 

We conducted continuous real-time measurements in Seoul, South Korea, from 28 November to 28 December 92 

2019. The sampling site was located in the northeastern part of the city (37.60° N, 127.05° E), approximately 7 km 93 

from the city center, surrounded by major roadways and mixed commercial–residential land use. Air samples were 94 

collected at an elevation of approximately 60 meters above sea level, on the fifth floor of a building. A detailed site 95 

description has been reported previously for winter Seoul (Kim et al., 2017). During this period, the average 96 

ambient temperature was 1.76 ± 4.3 °C, and the average relative humidity (RH) was 56.9 ± 17.5%, based on data 97 

from the Korea Meteorological Administration (http://www.kma.go.kr). 98 

2.2 Instrumentation and Measurements 99 

The physico-chemical properties of non-refractory PM₁ (NR-PM₁) species—including sulfate, nitrate, ammonium, 100 

chloride, and organics—were measured using an Aerodyne high-resolution time-of-flight aerosol mass 101 

spectrometer (HR-ToF-AMS) (DeCarlo et al., 2006). PM₁ mass in this study is taken as NR-PM₁ (from AMS) + 102 

black carbon (BC; measured by MAAP), which is appropriate for winter Seoul where refractory PM₁ (metal/sea-103 

salt/crustal) is minor and dust events were excluded (e.g., Kim et al., 2017; Nault et al., 2018; Kang et al., 2022; 104 

Jeon et al., 2023).Data were acquired at 2.5-minute intervals, alternating between V and W modes. The V mode 105 

provides higher sensitivity but lower resolution, suitable for mass quantification, whereas the W mode offers higher 106 

mass resolution but lower sensitivity, used here for OA source apportionment. Simultaneously, black carbon (BC) 107 

concentrations were measured at 1-minute intervals using a multi-angle absorption photometer (MAAP; Thermo 108 

Fisher Scientific, Waltham, MA, USA). Total PM₁ mass was calculated as the sum of NR-PM₁ and BC. 109 

Hourly trace gas concentrations (CO, O₃, NO₂, SO₂) were obtained from the Gireum air quality monitoring station 110 

(37.61° N, 127.03° E), managed by the Seoul Research Institute of Public Health and Environment. Meteorological 111 

http://www.kma.go.kr/
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data (temperature, RH, wind speed/direction) were collected from the nearby Jungreung site (37.61° N, 127.00° 112 

E). All data are reported in Korea Standard Time (UTC+9). 113 

To examine aerosol volatility, a thermodenuder (TD; Envalytix LLC) was installed upstream of the HR-ToF-AMS. 114 

Details are provided in Supplementary Section S1 Kang et al. (2022). Briefly, ambient flow alternated every 5 115 

minutes between a TD line and a bypass line at 1.1 L min⁻¹. Residence time in the TD line was ~6.3 s. The TD 116 

setup included a 50 cm heating section followed by an adsorption unit. Heated particles were stripped of volatile 117 

species, while the downstream carbon-packed section prevented recondensation. TD temperature cycled through 118 

12 steps (30 to 200 °C), with each step lasting 10 min (total cycle = 120 min). AMS V and W modes were alternated 119 

during the same cycle. The heater was pre-adjusted to the next temperature while the bypass was active. 120 

 121 

2.3 Data Analysis 122 

 123 

2.3.1 Data analysis and OA Source Apportionment  124 

HR-AMS data were processed using SQUIRREL v1.65B and PIKA v1.25B. Mass concentrations of non-refractory 125 

PM₁ (NR-PM₁) species were derived from V-mode data, while high-resolution mass spectra (HRMS) and the 126 

elemental composition of organic aerosols (OA) were obtained from W-mode data. NR-PM₁ quantification 127 

followed established AMS protocols (Ulbrich et al., 2009; Zhang et al., 2011). Both the bypass and TD streams 128 

were processed using a time-resolved, composition-dependent collection efficiency CE(t) following Middlebrook 129 

et al. (2012). TD heating can modify particle water and phase state/mixing and thereby influence CE beyond 130 

composition (Huffman et al., 2009), but prior TD–AMS studies indicate that such effects are modest and largely 131 

multiplicative, which do not distort thermogram shapes or T₅₀ ordering (Faulhaber et al., 2009; Cappa & Jimenez, 132 

2010). In our data, the CE(t) statistics for the two lines were similar (campaign-average CE: TD = 0.55 ± 0.08; 133 

bypass = 0.53 ± 0.04; Δ = 0.02 ≈ 3.7%, below the combined uncertainty ≈ 0.09). We therefore report volatility 134 

metrics with these line-specific CE(t) corrections applied and interpret potential residual CE effects as minor. For 135 

organics,elemental ratios (O:C, H:C, and OM/OC) were calculated using the Improved-Ambient (IA) method 136 

(Canagaratna et al., 2015). Positive Matrix Factorization (PMF) was applied to the HRMS of organics using the 137 

PMF2 algorithm (v4.2, robust mode) (Paatero and Tapper, 1994). The HRMS and corresponding error matrices 138 

from PIKA were analyzed using the PMF Evaluation Tool v2.05 (Ulbrich et al., 2009). Data pretreatment followed 139 

established protocols (Ulbrich et al., 2009; Zhang et al., 2011).  140 
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A six-factor solution (fPeak = 0; Q/Q_expected = 3.56) was selected as optimal (Fig. S1). The resolved OA sources 141 

included hydrocarbon-like OA (HOA; 14%; O:C = 0.13), cooking-related OA (COA; 21%; O:C = 0.18), nitrogen-142 

enriched OA (NOA; 2%; O:C = 0.22), biomass-burning OA (BBOA; 13%; O:C = 0.25), less-oxidized oxygenated 143 

OA (LO-OOA; 30%; O:C = 0.68), and more-oxidized oxygenated OA (MO-OOA; 20%; O:C = 1.15) (Figs. S2 and 144 

S3). Alternative five- and seven-factor solutions were also evaluated. In the five-factor solution, the biomass 145 

burning source was not clearly resolved and appeared to be distributed across multiple factors. In the seven-factor 146 

solution, BBOA was further split into two separate factors without clear distinction or added interpretive value, 147 

making the six-factor solution the most physically meaningful and interpretable (Figs. S4 and S5). 148 

 149 

2.3.2 Thermogram and Volatility Estimation 150 

The chemical composition dependent mass fraction remaining (MFR) was derived at each TD temperature by 151 

dividing the corrected mass concentration of the TD line [p] by the average of the adjacent bypass lines [p-1] and 152 

[p+1]. Thermograms were corrected for particle loss, estimated using reference substances like NaCl, which exhibit 153 

minimal evaporation (Huffman et al., 2009; Saha et al., 2014; Kang et al., 2023). OA factor concentrations at each 154 

TD temperature were derived via multivariate linear regression between post-TD HRMS and ambient OA factor 155 

HRMS profiles as described in Zhou et al., 2016. 156 

Volatility distributions were modeled using the thermodenuder mass transfer model from Riipinen et al. (2010) and 157 

Karnezi et al. (2014), implemented in Igor Pro 9 (Kang et al., 2022). OA mass was distributed into eight logarithmic 158 

saturation concentration bins (C*: 1000 to 0.0001 μg m⁻³). Modeled MFRs were fit to observations using Igor’s 159 

“FuncFit” function, repeated 1,000 times per OA factor to determine best-fit results. The model assumes no thermal 160 

decomposition and includes adjustable parameters: mass accommodation coefficient (αₘ) and enthalpy of 161 

vaporization (ΔHexp), randomly sampled within literature-based ranges (Table S1). 162 

 163 

3 Results and discussion 164 

3.1 Overview of PM₁ Composition and OA Sources 165 

We conducted continuous measurements from 28 November to 28 December 2019, characterizing a winter period 166 

with a mean PM1 concentration of 27.8±15.3μgm−3. This concentration is characterized as moderate; it closely 167 

matches historical winter PM1 means in Seoul (Kim et al., 2017) and implies an equivalent PM2.5 concentration is 168 

about 34.8μgm−3 (using a Korea-specific PM1/PM2.5≈0.8 (Kwon et al., 2023), which is near the national 24-h PM2.5 169 
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standard (35μgm−3) (AirKorea). The full co-evolution of PM1, gaseous pollutants, and meteorological conditions 170 

is provided in Fig. S6, showing an average ambient temperature of 1.76±4.3∘C and average relative humidity (RH) 171 

of 56.9±17.5% during the study. 172 

Figure 1 summarizes the overall non-refractory submicron aerosol (NR-PM1) composition and the identified OA 173 

factors. Organics (41%) and nitrate (30%) were the most abundant chemical components of PM₁, followed by 174 

ammonium (12%), sulfate (10%), BC (5%), and chloride (3%) (Fig. 1a). Among the organic aerosols, six OA 175 

factors were identified during the winter of 2019: hydrocarbon-like OA (HOA; 14%; O:C = 0.13), cooking-related 176 

OA (COA; 21%; O:C = 0.18), nitrogen-enriched OA (NOA; 2%; O:C = 0.22), biomass burning OA (BBOA; 13%; 177 

O:C = 0.25), and two types of secondary organic aerosols—less-oxidized oxygenated OA (LO-OOA; 30%; O:C = 178 

0.68) and more-oxidized oxygenated OA (MO-OOA; 20%; O:C = 1.15) (Fig. 1e and Fig. S2). These compositions 179 

are consistent with previous wintertime observations in Kim et al. (2017), with the exception of NOA, which will 180 

be discussed in detail in Section 3.1.1. 181 

PM₁ mass concentrations varied widely, ranging from 4.61 to 91.4 μg m⁻³, largely due to two severe haze episodes 182 

that occurred between December 7–12 and December 22–26 (Fig. 1). During these episodes, average 183 

concentrations increased significantly, driven primarily by elevated levels of nitrate, MO-OOA, and NOA (Fig. 184 

1f,g). Back-trajectory clustering shows frequent short-range recirculation over the Seoul Metropolitan Area during 185 

haze (Cluster 1; Fig. S8), and the time series indicates persistently low surface wind speeds during these periods 186 

(1.73 ± 0.89 vs. 2.34 ± 1.18 (clean)) (Fig. S6), together pointing to stagnation-driven accumulation of local emissions; 187 

the concurrent increases in MO-OOA and NOA are therefore consistent with enhanced in-city formation under 188 

stagnant conditions. Such haze episodes, characterized by local emission buildup and secondary aerosol production, 189 

are a typical wintertime feature, as also reported in Kim et al. (2017). 190 

3.1.1 Nitrogen-containing organic aerosol (NOA) 191 

Unlike previous wintertime aerosol studies in Seoul, this study successfully resolved a nitrogen-containing organic 192 

aerosol (NOA) factor by applying positive matrix factorization (PMF) to high-resolution AMS data. NOA 193 

contributed approximately 2% of the total organic aerosol (OA) mass—comparable to urban observations in 194 

Guangzhou (3%; Chen et al., 2021), Pasadena (5%; Hayes et al., 2013), and New York (5.8%; Sun et al., 2011). 195 

Detection of particulate NOA using real time measurement has been challenging due to its low concentration and 196 

high volatility. Although Baek et al. (2022) identified nitrogen-containing species in Seoul via year-round filter-197 
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based molecular analysis, PMF-based resolution of NOA in real time has not been previously reported. The 198 

successful identification in this study is likely attributable to favorable winter meteorological conditions—199 

specifically low temperatures (–0.24 °C) and persistently high relative humidity (~57%) compared to the 2017 200 

winter season (Kim et al., 2017)—that enhanced gas-to-particle partitioning of semi-volatile amines, thereby 201 

enabling their detection (Fig. S2). NOA concentrations frequently exceeded 1 μg m⁻³ when RH surpassed 60% (Fig. 202 

2), supporting the importance of RH-driven partitioning and the subsequent formation of low-volatility aminium 203 

salts (Rovelli et al., 2017). Although extremely low temperatures may inhibit NOA formation due to the transition 204 

of aerosol particles into solid phase (Ge et al., 2011; Srivastava et al., 2022), the combination of consistently cold 205 

and humid conditions during the measurement period likely promoted the partitioning of semi-volatile amines into 206 

the particle phase.  207 

In addition, episodic haze events further elevated NOA levels, increasing its contribution to OA from 1% during 208 

clean periods to as much as 3% (Fig. 1f–h). These high-concentration events likely improved the signal-to-noise 209 

ratio, facilitating PMF resolution. Back-trajectory analysis linked these events to regional recirculation patterns 210 

(Cluster 1, Fig. S7), suggesting a predominantly local origin—consistent with the short atmospheric lifetimes and 211 

high reactivity of most amines (Ge et al., 2011; Nielsen et al., 2012; Hanson et al., 2014).   212 

The NOA factor exhibited the highest nitrogen-to-carbon (N:C) ratio (0.22) and the lowest oxygen-to-carbon (O:C) 213 

ratio (0.19) among all POA factors (Fig. S2), indicating a chemically reduced, nitrogen-rich composition. The 214 

factor represents semi-volatile, reduced nitrogen species that originate from primary urban combustion sources but 215 

whose observed mass in the particle phase is enhanced by rapid secondary partitioning and salt formation (Ge et 216 

al., 2011; You et al., 2014). The NOA mass spectrum was dominated by amine-related fragments including m/z 30 217 

(CH4N+), 44 (C2H6N+), 58 (C3H8N+), and 86 (C5H12N+) (Fig. 3a). The spectral signature of the factor is defined by 218 

the characteristic dominance of the m/z 44 fragment, which typically serves as the primary marker for 219 

dimethylamine (DMA)-related species, closely followed by m/z 58 (trimethylamine, TMA) and m/z 30 220 

(methylamine, MA). This profile is in strong agreement with NOA factors resolved via PMF in other polluted 221 

environments. For instance, the dominance of m/z 44 and m/z 30 aligns with amine factors reported in New York 222 

City (Sun et al., 2011) and Pasadena, California (Hayes et al., 2013). This DMA-dominated signature is also 223 

consistent with seasonal characterization of organic nitrogen in Beijing (Xu et al., 2017) and Po Valley, Italy 224 

(Saarikoski et al., 2012), reinforcing the common chemical signature of reduced organic nitrogen across diverse 225 

urban and regional environments. Furthermore, the presence of non-negligible signals at m/z58 and m/z 86 supports 226 
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the contribution of slightly larger alkylamines, a pattern that aligns well with established AMS laboratory reference 227 

spectra for these reduced nitrogen compounds (Ge et al., 2011; Silva et al., 2008). 228 

These amines are commonly emitted during the combustion of nitrogen-rich biomass and proteinaceous materials 229 

and are frequently associated with biomass-burning emissions (Ge et al., 2011). Previous molecular analyses in 230 

Seoul also indicate DMA, MA, and TMA as the dominant amine species in December (Baek et al., 2022). While 231 

other amines such as triethylamine (TEA), diethylamine (DEA), and ethylamine (EA) may contribute via 232 

industrial/solvent pathways (e.g., chemical manufacturing, petrochemical corridors, wastewater treatment), our 233 

HR-AMS spectra are dominated by small alkylamine fragments (m/z 30, 44, 58, 86) and the diurnal behavior co-234 

varies with combustion markers (below), indicating a primarily combustion-linked influence. Nevertheless, recent 235 

urban measurements and sector-based analyses show that industrial activities can contribute measurable amines in 236 

cities (Tiszenkel et al., 2024; Zheng et al., 2015; Mao et al., 2018; Shen et al., 2017; Yao et al., 2016). Accordingly, 237 

a minor NOA contribution from solvent/industrial amines cannot be excluded.Supporting this, NOA exhibited a 238 

diurnal pattern similar to that of BBOA, with both peaking at night and in the early morning (Fig. 2a), suggesting 239 

shared sources or formation mechanisms. Biomass burning under cold, oxygen-limited conditions is known to emit 240 

various amines and amides (You et al., 2014; Yao et al., 2016), which may contribute directly to NOA or serve as 241 

precursors for its secondary formation. Strong correlations with CH₄N⁺ (r = 0.95) and C₂H₆N⁺ (r = 0.91) (Fig. 2) 242 

further support the presence of reduced nitrogen compounds, typically associated with residential fuel combustion 243 

and wintertime heating. However, the time series of NOA and BBOA were not well correlated (Fig. 2 and S7), 244 

likely because NOA episodes preferentially occurred during haze periods under stagnant conditions (Fig. 1), 245 

whereas BBOA emissions tend to follow a more regular, daily emission pattern. Under cold, humid, and stagnant 246 

conditions, these semi-volatile amines can readily partition into the particle phase and form low-volatility aminium 247 

salts, enhancing the observed NOA signal. Taken together, these results suggest that NOA during wintertime in 248 

Seoul is strongly influenced by a combination of combustion-related primary emissions and subsequent 249 

atmospheric processing of amine-containing species, facilitated by seasonally favorable conditions. 250 

3.1.2 Secondary organic aerosols (SOA) 251 

In this study, two OOA factors—more-oxidized OOA (MO-OOA) and less-oxidized OOA (LO-OOA)—were 252 

identified, together accounting for approximately half of the total organic aerosol (OA) mass. This fraction is 253 

notably higher than that reported in previous wintertime urban studies (Kim et al., 2017; Zhang et al., 2007). Both 254 

OOAs exhibited characteristic mass spectral features, including prominent peaks at m/z 44 (CO₂⁺) and m/z 43 255 



10 

 

(C₂H₃O⁺), which are widely recognized as markers of oxygenated organics (Fig. S2e, S3f). The oxygen-to-carbon 256 

(O:C) ratios for MO-OOA and LO-OOA were 1.15 and 0.68, respectively, indicating highly oxidized chemical 257 

compositions. The O:C ratio of MO-OOA was especially elevated, exceeding those reported in previous Seoul 258 

campaigns—0.68 in winter 2015 (Kim et al., 2017), 0.99 in spring 2019 (Kim et al., 2020), and 0.78 in fall 2019 259 

(Jeon et al., 2023)—while the LO-OOA ratio was within a similar range. 260 

MO-OOA showed strong correlations with secondary inorganic species such as nitrate (r = 0.90), ammonium (r = 261 

0.92), and sulfate (r = 0.81), consistent with its formation through regional and local photochemical aging processes 262 

(Fig. S3). In contrast, LO-OOA exhibited only modest correlations with sulfate, nitrate, and ammonium (r = 0.50, 263 

0.51, and 0.42, respectively, suggesting additional contributions from semi-primary sources not closely linked to 264 

inorganic secondary formation (e.g., cooking, traffic, biomass burning). LO-OOA does not exhibit a pronounced 265 

m/z 60 (levoglucosan) signal (Fig. S2); however, the levoglucosan marker (f₆₀) is known to diminish with 266 

atmospheric aging and can become weak or undetectable downwind (Hennigan et al., 2010; Cubison et al., 2011). 267 

Taken together, the weaker coupling with secondary inorganics and the absence of a strong m/z 60 peak indicate 268 

that LO-OOA is a mixture of aged secondary organics and semi-primary urban emissions, while a contribution 269 

from aged biomass-burning influence cannot be ruled out.. 270 

3.1.3 Primary organic aerosols (POA)  271 

Three primary organic aerosol (POA) factors were identified in this study: hydrocarbon-like OA (HOA), cooking-272 

related OA (COA), and biomass burning OA (BBOA). These three components exhibited mass spectral and 273 

temporal characteristics consistent with previous observations in Seoul and other urban environments. HOA was 274 

characterized by dominant alkyl fragment ions (CₙH₂ₙ₊₁⁺ and CₙH₂ₙ₋₁⁺; Fig. S2a) and a low O:C ratio (0.13), 275 

consistent with traffic-related emissions (0.05–0.25) (Canagaratna et al., 2015). It showed strong correlations with 276 

vehicle-related ions C₃H₇⁺ (r = 0.79) and C₄H₉⁺ (r = 0.86) (Kim et al., 2017; Canagaratna et al., 2004; Zhang et al., 277 

2005), and exhibited a distinct morning rush hour peak (06:00–08:00), followed by a decrease likely driven by 278 

boundary layer expansion (Fig. S3a). 279 

COA, accounting for 21% of OA, showed higher contributions from oxygenated ions than HOA, with tracer peaks 280 

at m/z 55,84 and 98 (Fig. S2b) consistent with cooking emissions (Sun et al., 2011). It correlated strongly with 281 
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cooking-related ions such as C₃H₃O⁺ (r = 0.94), C₅H₈O⁺ (r = 0.96), and C₆H₁₀O⁺ (r = 0.98) (Fig. S3h), and displayed 282 

prominent peaks during lunch and dinner hours, reflecting typical cooking activity patterns. 283 

BBOA was identified based on characteristic ions at m/z 60 (C₂H₄O₂⁺) and 73 (C₃H₅O⁺), both of which are 284 

associated with levoglucosan—a well-established tracer for biomass burning (Simoneit et al., 2002). Its relatively 285 

high f₆₀ and low f₄₄ values (Fig. S8a) indicate that the BBOA observed in this study was relatively fresh and had 286 

not undergone extensive atmospheric aging (Cubison et al., 2011). Furthermore, BBOA exhibited moderate 287 

correlations with NOA in both diurnal profiles and time series (Fig. 2), particularly with nitrogen-containing ions 288 

such as C₂H₄N⁺ (r = 0.67) and C₂H₆N⁺ (r = 0.56) (Fig. 2 and S3), which are also dominant peaks in the NOA mass 289 

spectrum. This overlap suggests a potential shared emission source or co-emission scenario, , consistent with the 290 

co-emission of both organic aerosols and reduced nitrogen-containing compounds. Regarding source location, 291 

several pathways can influence Seoul’s biomass burning signature. First, urban/peri-urban small-scale burning 292 

(e.g., solid-fuel use in select households, restaurant charcoal use, and intermittent waste burning) has been reported 293 

and can enhance BBOA locally (Kim et al., 2017). Second, nearby agricultural-residue burning in surrounding 294 

provinces occurs seasonally and can episodically impact the metropolitan area (Han et al., 2022). Third, regional 295 

transport from upwind regions (e.g., northeastern China/North Korea) can bring biomass burning influenced air 296 

masses under northerly/northwesterly flow (Lamb et al., 2018; Nault et al., 2018). In this dataset, the nighttime and 297 

early-morning enhancements, the BBOA–NOA co-variation, and trajectory clusters showing regional recirculation 298 

indicate a predominantly local/near-source contribution during the study period (Yoo et al., 2024), with episodic 299 

non-local influences remaining possible. 300 

3.2 Volatility of Non-Refractory Species 301 

Figure 4 presents thermograms of non-refractory (NR) species measured by HR-ToF-AMS. The mass fraction 302 

remaining (MFR) after thermodenuder (TD) treatment follows the typical volatility trend reported in previous 303 

studies (Xu et al., 2016; Kang et al., 2022; Jeon et al., 2023; Huffman et al., 2009): nitrate was the most volatile, 304 

followed by chloride, ammonium, organics, and sulfate. Nitrate showed the steepest decline with temperature, with 305 

a T₅₀ of ~67 °C—higher than pure ammonium nitrate (~37 °C; Huffman et al., 2009), suggesting contributions from 306 

less volatile species like organonitrates or metal nitrates (Feng et al., 2023). Nearly complete evaporation occurred 307 

by 200 °C (~2% remaining). Compared to previously reported fall conditions (T₅₀ ~73 °C, incomplete evaporation), 308 

winter nitrate appeared more volatile, indicating relatively fewer non-volatile nitrate forms (e.g., Kang et al., 2022; 309 

Jeon et al., 2023). Sulfate was the least volatile (T₅₀ ≈ 170 °C), consistent with ammonium sulfate (Scott and Cattell, 310 
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1979). A subtle slope change near 140 °C likely reflects ammonium-sulfate morphology/phase-state changes and/or 311 

organosulfate–inorganic mixing, rather than contributions from metallic (refractory) sulfates, which are not 312 

efficiently detected by AMS About 25% remained at 200 °C, indicating possible contributions from metallic or 313 

organic sulfates. Ammonium showed intermediate volatility, with T₅₀ between nitrate and sulfate. Its slightly lower 314 

winter T₅₀ suggests stronger nitrate association. Residual ammonium at 200 °C was consistent (~4%) in previously 315 

reported spring/fall measurements (Kang et al., 2022; Jeon et al., 2023).. Chloride volatility was also comparable 316 

across seasons in prior studies in terms of T₅₀, but exhibited more complete evaporation in winter (~4% residual 317 

vs. ~10% in fall), possibly reflecting a shift in source to more volatile forms like road salt during wintertime.. 318 

OA exhibited moderate volatility (T₅₀ ~120 °C), consistent with the presence of a wide variety of compounds with 319 

differing volatilities. This trend aligns with previously reported spring and fall observations in Seoul, Korea (Kang et al., 320 

2022; Jeon et al., 2023). 321 

3.2.1 Volatility Profiles of Organic sources 322 

Figure 5 presents the volatility distributions of six OA sources within the volatility basis set (VBS) framework. 323 

Volatility is expressed as the effective saturation concentration (C*, µg m⁻³), where higher C* values correspond 324 

to higher volatility. Following Donahue et al. (2009), C* values are categorized into four bins: extremely low-325 

volatility organic compounds (ELVOCs, log C* < –4.5), low-volatility organic compounds (LVOCs, –4.5 < log 326 

C* < –0.5), semi-volatile organic compounds (SVOCs, –0.5 < log C* < 2.5), and intermediate-volatility organic 327 

compounds (IVOCs, 2.5 < log C* < 6.5). 328 

Among the primary OA (POA) sources, hydrocarbon-like OA (HOA) exhibited the highest volatility, with mass 329 

predominantly distributed in the SVOC and IVOC ranges. This is consistent with its low oxidation state (O:C = 330 

0.35) and primary emission characteristics. Mass fraction remaining (MFR) results (Fig. S9) further support this, 331 

showing rapid mass loss at lower temperatures. Biomass burning OA (BBOA) and nitrogen-containing OA (NOA) 332 

also showed high volatility, peaking in the SVOC–IVOC range (log C* = 1–3), and had lower O:C ratios of 0.25 333 

and 0.19, respectively. Their slightly more oxidized nature relative to HOA, despite a similar volatility range, may 334 

reflect emissions occurring under nighttime or cooler conditions, which promote condensation of otherwise volatile 335 

species. The similar volatility distributions and MFR profiles of BBOA and NOA (Fig. S9) further support the 336 

possibility of a shared emission source or formation pathway (Section 3.1.1). Cooking-related OA (COA) showed 337 

a more moderate volatility profile, with mass more evenly distributed across the LVOC and SVOC bins. This 338 
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pattern reflects its diverse cooking sources and variable emission profiles as previously reported (Kang et al., 339 

2022).. 340 

For secondary OA (SOA), less-oxidized oxygenated OA (LO-OOA) exhibited the lowest volatility, with substantial 341 

mass in the LVOC and ELVOC bins (C* ≈ 10⁻³–10⁻⁴). This is in agreement with previous findings in Seoul during 342 

spring (Kang et al., 2022). In contrast, more-oxidized OOA (MO-OOA), despite its higher oxidation state (O:C = 343 

1.15), displayed greater volatility, with a peak at C* ≈ 10¹. This discrepancy likely reflects differences in formation 344 

and aging processes, as discussed further in Section 3.3. 345 

Overall, the volatility characteristics across OA factors suggest that oxidation state alone does not fully explain 346 

volatility. Rather, volatility is shaped by a combination of emission source, emission timing, temperature, and 347 

atmospheric processing. These findings highlight the importance of integrating both chemical and physical 348 

characterization to better understand OA formation and aging across seasons. 349 

3.3 Aging effect on volatility from 2D VBS 350 

Generally, the oxygen-to-carbon (O:C) ratio of organic aerosols (OA) is inversely related to their volatility. As O:C 351 

increases through aging, the effective saturation concentration (C*) typically decreases, resulting in lower volatility 352 

(Donahue et al., 2006; Jimenez et al., 2009). This common relationship arises because the addition of oxygen-353 

containing functional groups (e.g., hydroxyl, carboxyl, carbonyl),which increases molecular weight and enhances 354 

intermolecular interactions such as hydrogen bonding, thereby reducing vapor pressure (Jimenez et al., 2009; Kroll 355 

and Seinfeld, 2008). Moreover, oxidative aging often leads to oligomerization or functionalization, promoting 356 

particle-phase retention and reducing the effective saturation concentration (C∗) (Donahue et al., 2011; Robinson 357 

et al., 2007). However, in this study, the most oxidized OA factor—MO-OOA, with a high O:C ratio of 1.15—358 

exhibited unexpectedly high volatility. Its volatility distribution was skewed toward SVOCs and IVOCs (Fig. 5), 359 

and its rapid mass loss in MFR thermograms (Fig. S9) further indicated low thermal stability. This observation 360 

appears to contradict the usual inverse O:C–volatility relationship; however, under winter haze conditions—with 361 

suppressed O₃/low OH, particle-phase autoxidation and fragmentation can yield higher-O:C yet more volatile 362 

products, with enhanced condensation on abundant particle surface area (details below).  363 

Viewed against prior TD-AMS results, the volatility of Seoul’s winter MO-OOA presents a unique case, 364 

particularly in the nature of its O:C-volatility relationship. Prior urban studies have commonly reported substantial 365 

SVOC-OA, consistent with high photochemical activity or elevated loadings; for example, Mexico City/Los 366 
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Angeles showed pronounced SVOC–IVOC contributions during warm seasons (Cappa and Jimenez, 2010), and 367 

summertime Beijing and wintertime Shenzhen likewise exhibited strong overall OA volatility (Xu et al., 2019; Cao 368 

et al., 2018). While these comparisons establish that volatile OA is common, they generally did not report the 369 

factor-level inversion observed here, where the highly-oxidized OOA component (MO-OOA) was more volatile 370 

than a less-oxidized OOA (LO-OOA). This behavior is distinct from findings in colder, lower-loading regimes; 371 

wintertime Paris, for instance, maintained the conventional hierarchy where the more-oxidized OOA was 372 

comparatively less volatile (Paciga et al., 2016). Furthermore, seasonal context within Seoul showed springtime 373 

OA with lower oxidation levels than our winter MO-OOA despite similar SVOC contributions (Kang et al., 2022). 374 

This comprehensive comparison underscores the unusual nature of the O:C-volatility relationship observed under 375 

the specific winter haze conditions in Seoul. 376 

 377 

3.3.1 Proposed Mechanism: Fragmentation and Condensation under Low-OH Haze 378 

MO-OOA concentrations increased  during haze episodes—characterized by reduced ozone levels, low solar 379 

radiation and elevated aerosol mass concentrations (Fig. 6 and Fig. S6, yellow shading). The suppressed ozone 380 

likely indicates lower OH radical production via O₃ photolysis, leading to a low-OH oxidation regime. We note 381 

that haze also suppresses HONO photolysis; however, HONO concentrations can be elevated at night and early 382 

morning via heterogeneous NO₂ conversion and surface emissions, so net OH from HONO may remain non-383 

negligible even as photolysis rates are depressed (e.g., Gil et al., 2021; Kim et al., 2024; Slater et al., 2020).Under 384 

such conditions, particle-phase autoxidation involving RO₂ radicals can become the dominant oxidation pathway. 385 

Even under low-OH conditions, NO₃ formed via NO₂ + O₃ can initiate RO₂ production through addition to alkenes, 386 

while reduced photolysis at night/low light extends NO₃ lifetimes; these RO₂ then participate in particle-phase 387 

autoxidation, yielding highly oxygenated yet relatively volatile products. These processes tend to produce highly 388 

oxidized but relatively low–molecular-weight products (Ehn et al., 2014; Zhao et al., 2023). Unlike classical OH-389 

initiated, multi-generational aging—which increases molecular mass and reduces volatility—fragmentation-390 

dominated oxidation can cleave larger precursors into smaller oxygenated compounds, resulting in higher volatility 391 

despite elevated O:C. Consistent with this interpretation, online AMS/FIGAERO-CIMS and EESI-TOF, as well as 392 

offline HRMS/GC-MS, have reported high-O:C yet more-volatile product distributions accompanied by elevated f₄₄ 393 

with comparatively stable f₄₃ under fragmentation-dominated aging (Kroll et al., 2009; Ng et al., 2010; Chhabra et 394 

al., 2011; Lambe et al., 2012; Lopez-Hilfiker et al., 2016; D’Ambro et al., 2017). Furthermore, high aerosol mass 395 

loadings during haze events provide abundant surface area for the uptake of semi-volatile/intermediate-volatility 396 
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organics via absorptive partitioning, so that higher COA enhances condensation (Pankow, 1994; Donahue et al., 397 

2006; Hallquist et al., 2009; Robinson et al., 2007). We also note that functionalized, low–molecular-weight 398 

compounds can reside in the SVOC–IVOC range and thus contribute to the high apparent volatility of MO-OOA 399 

(Ng et al., 2010; Chhabra et al., 2011; Lopez-Hilfiker et al., 2016; D’Ambro et al., 2017). . This facilitates the 400 

condensation of even relatively volatile, oxidized compounds onto particles (Fig. 6). The net result is an apparent 401 

increase in both oxidation state and volatility of OA, as reported in aging studies under stagnant and polluted 402 

conditions (Jimenez et al., 2009; Ng et al., 2016). 403 

In line with these reports, our results also revealed a decoupling between O:C and volatility, with MO-OOA 404 

showing high volatility despite its elevated O:C ratio (~1.15). While this behavior has been observed in other urban 405 

environments, this study provides one of the first detailed thermodynamic assessments of this decoupling under 406 

winter haze conditions in Seoul using real-time TD-AMS measurements. Supporting this interpretation, MO-OOA 407 

in this study was characterized by a consistently high f₄₄ (CO₂⁺) signal and a relatively stable f₄₃ (C₂H₃O⁺) signal 408 

compared to LO-OOA (Fig. S8b). During specific periods when MO-OOA concentrations increased, only f₄₄ was 409 

noticeably enhanced, while f₄₃ remained flat (Fig. 6). This temporal pattern—elevated f₄₄ without corresponding 410 

changes in f₄₃—is a typical signature of highly oxidized and fragmented organic aerosol and suggests advanced 411 

aging dominated by fragmentation rather than functionalization (Kroll et al., 2009). Consistent with this, the haze–412 

non-haze comparison, including the high-MO-OOA interval (Fig. S12), shows larger oxygenated fragments (m/z 28, 29, 44) 413 

and higher f₄₄ and O:C during haze, whereas non-haze periods exhibit relatively larger fractional hydrocarbon fragments (m/z 414 

41, 43, 55, 57). These spectral contrasts indicate that the elevated volatility of MO-OOA reflects advanced oxidation—via 415 

autoxidation and the condensation of small oxygenated fragments—rather than enrichment of high-molecular-weight ions, 416 

particularly under conditions of limited OH and high particulate surface area. 417 

This unexpected volatility behavior of highly oxidized MO-OOA highlights the need for secondary organic aerosol 418 

(SOA) models to incorporate fragmentation-dominated oxidation pathways—especially under haze conditions 419 

where conventional assumptions linking O:C to volatility may break down. Including such mechanisms could 420 

improve model accuracy in representing OA aging and volatility in urban air quality simulations. 421 

4 Conclusions 422 

This study offers a detailed characterization of wintertime submicron aerosols (PM₁) in Seoul by integrating 423 

chemical composition, volatility behavior, and source apportionment to better understand their formation and 424 
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atmospheric evolution. Organic aerosols (OA), particularly secondary organic aerosols (SOA), were the dominant 425 

PM₁ component, highlighting the significance of oxidative processes even during cold seasons. A notable result is 426 

the successful real-time resolution of a nitrogen-containing organic aerosol (NOA) factor, enabled by cold, humid 427 

meteorological conditions that enhanced the partitioning and stabilization of amine-derived compounds. The NOA 428 

factor was characterized by tracer ions associated with low-molecular-weight alkylamines such as TMA, DMA, 429 

and MA, which likely originated from biomass combustion. 430 

 431 

Volatility analysis revealed distinct thermodynamic behavior across OA sources. Primary OA factors such as HOA, 432 

BBOA, and COA exhibited relatively high volatility, while LO-OOA showed low volatility and a higher oxidation 433 

state, consistent with aged, low-volatility material. The similarity in volatility distributions and diurnal patterns 434 

between BBOA and NOA suggests that biomass combustion under wintertime conditions is a likely contributor to 435 

both primary organic and nitrogenous aerosol formation. 436 

 437 

Interestingly, MO-OOA—despite its high oxygen-to-carbon (O:C) ratio—exhibited elevated volatility, diverging 438 

from the expected inverse relationship between oxidation state and volatility. This suggests that under stagnant, 439 

polluted conditions with suppressed ozone and OH radical levels, particle-phase autoxidation and fragmentation 440 

pathways may dominate over traditional OH-initiated aging, yielding highly oxidized yet semi-volatile products. 441 

These findings highlight the importance of coupling high-resolution chemical and physical aerosol measurements 442 

to better understand OA formation processes and properties within urban air quality frameworks. Consequently, 443 

air quality models should incorporate diverse oxidation mechanisms and avoid assuming a direct link between 444 

oxidation state and volatility.   445 
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Tables and Figures 478 

 479 

 480 
 481 

 482 

 Period Standard Avg. Mass conc.( µg m-3) 

Total 2019.11.28 ~ 2019.12.28  Avg PM1 = 26.37 

Clean 2019.12.04 ~ 2019.12.06 Daily PM1 < 10.00 µg m-3 Avg PM1 = 9.98 

Haze 1 2019.12.07 ~ 2019.12.11 Daily PM1 > 30.00 µg m-3 Avg PM1 = 51.88 

Haze 2 2019.12.21 ~ 2019.12.25 Daily PM1 > 30.00 µg m-3 Avg PM1 = 37.71 

 483 
Figure 1. Compositional pie charts of PM₁ species for (a) the entire study period, (b) haze period 1, (c) haze period 2, and 484 

(d) a clean period; and of each OA source for (e) the entire study period, (f) haze period 1, (g) haze period 2, and (h) the 485 

clean period.Table. Standard and average PM₁ mass concentrations during the entire study period, haze period 1, haze period 486 

2, and the clean period. 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 
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 495 

 496 

 497 
 498 

499 

 500 
Figure 2. (a) Diurnal mean profiles of NOA and BBOA. Whiskers denote the 90th and 10th percentiles; box 501 

edges represent the 75th and 25th percentiles; the horizontal line indicates the median, and the colored marker 502 

shows the mean. The diurnal correlation between NOA and BBOA mean values is 0.63. 503 

(b) Relative humidity (RH)-binned nighttime (19:00–05:00) profile of NOA. Box and whisker definitions are the 504 

same as in panel (a). (c) Time series of NOA, BBOA, and amine-related ions (CH₄N⁺, C₂H₆N⁺, C₃H₈N⁺, 505 

C₅H₁₂N⁺), along with their correlations with NOA and BBOA. 506 

 507 
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 508 
Figure 3. Mass spectra of (a) the NOA factor resolved by PMF analysis in this study, and reference spectra of amines from 509 

the NIST library: (b) dibutylamine (DBA), (c) dimethylamine (DMA), (d) methylamine (MA), and (e) trimethylamine 510 

(TMA). In panels (b)–(e), the left y-axis indicates the contribution of CHN-containing ions in the NOA factor (% of total), 511 

while the right y-axis shows the relative intensity of each compound’s mass spectrum from the NIST library. 512 

 513 
 514 
  515 
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Figure 4. Mass fraction remaining (MFR) of non-refractory (NR) aerosol species measured in Seoul using a thermodenuder 516 

coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS).  Winter 2019 (this study; dashed) is 517 

compared with fall 2019 (previously reported; solid) (Jeon et al., 2023).Species include organics (magenta), nitrate (blue), 518 

sulfate (orange), ammonium (green), and chloride (red).   519 
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 520 
 521 
Figure 5. Two-dimensional volatility basis set (2D-VBS) representation of organic aerosol (OA) sources identified in winter 522 

2019 in Seoul. The plot illustrates the relationship between the oxygen-to-carbon (O:C) ratio and the effective saturation 523 

concentration (C*) for each OA source resolved via positive matrix factorization (PMF). Solid circles represent the volatility 524 

distribution across C* bins, with marker size proportional to the mass fraction within each bin for the given source. Shaded 525 

regions correspond to different volatility classes: extremely low-volatility organic compounds (ELVOCs), low-volatility 526 

organic compounds (LVOCs), semi-volatile organic compounds (SVOCs), and intermediate-volatility organic compounds 527 

(IVOCs), delineated by their C* values. 528 

 529 

 530 

 531 
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 543 

 544 

 545 

 546 

 547 

 548 

 549 
Figure 6. Time series plots of (a) MO-OOA concentration, (b) ozone (O₃) and solar radiation, (c) f₄₄ and f₄₃ (indicative of 550 

oxidation state), and (d) total PM₁ concentration. The period characterized by elevated MO-OOA levels is highlighted in bright 551 

yellow. Panels (e)–(f) present comparative distributions of these variables—MO-OOA, O₃ and solar radiation, f₄₄ and f₄₃, and 552 

PM₁—between the high MO-OOA period (shaded in blue) and the entire measurement period (indicated by gray hatching). 553 

 554 
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