Response to Reviewer # 2

- 2 We appreciate the anonymous reviewer for the thoughtful reviews and comments. We have carefully
- 3 considered the suggestions and revised the manuscript accordingly. The reviewer comments are in blue,
- 4 our comments are in black, and modifications to the manuscript are in red.
- 5 Kim et al. present a study of aerosol chemistry during wintertime in Seoul in 2019. Building upon their
- 6 earlier publication in 2017, the authors conducted a dedicated field campaign focusing on aerosol volatility
- 7 and obtained several intriguing results that are highly relevant to understanding and modeling aerosol
- 8 processes in this megacity. One particularly interesting finding is that highly oxidized organic aerosols were
- 9 shown to be highly volatile, providing observational evidence for autoxidation and fragmentation processes
- occurring in the particle phase. The dataset is well analyzed, and the manuscript is clearly written. The
- study fits well within the scope of ACP, and I consider it suitable for publication as a research article, rather
- than a measurement.
- We appreciate the thoughtful reviews and comments. We appreciate the recognition that our findings,
- particularly the observational evidence for autoxidation and fragmentation leading to highly oxidized but
- volatile organic aerosols, are highly relevant to understanding and modeling aerosol processes in the region.
- We have carefully considered the suggestions and revised the manuscript accordingly. The reviewer
- 17 comments are in blue, our comments are in black, and modifications to the manuscript are in red.
- 18 Section Introduction: The Introduction could be further strengthened by expanding the background on
- 19 aerosol volatility. Including more context on previous volatility-related studies would help frame the
- 20 contribution of this work.
- 21 Thank you for this helpful suggestion. To clarify the aims and frame our contribution, we expanded the
- 22 Introduction to explain why OA volatility is central to gas-particle partitioning and model performance,
- and summarize frameworks that couple volatility and oxidation. These changes/additions help motivate our
- 24 TD-AMS approach and the winter focus of this study. Now the relevant section reads:
- 25 "Volatility is a key parameter for characterizing organic aerosol (OA) properties, as it governs gas-to-
- 26 particle partitioning behavior and directly influences particle formation yields (Sinha et al., 2023). The
- 27 classification of OA species based on their volatility—from extremely low-volatility (ELVOC) to semi-
- volatile (SVOC) and intermediate-volatility (IVOC) compounds—is central to the conceptual framework
- 29 of secondary OA (SOA) formation and growth (Donahue et al., 2006). It also affects atmospheric lifetimes
- and human exposure by determining how long aerosols remain suspended in the atmosphere (Glasius and
- 31 Goldstein, 2016). Therefore, accurately capturing OA volatility is essential for improving predictions of
- 32 OA concentrations and their environmental and health impacts. However, chemical transport models often
- significantly underestimate OA mass compared to observations (Matsui et al., 2009; Jiang et al., 2012; Li
- 34 et al., 2017), largely due to incomplete precursor inventories and simplified treatment of processes affecting
- 35 OA volatility. For instance, aging—through oxidation reactions such as functionalization and
- fragmentation—can significantly alter volatility by changing OA chemical structure (Robinson et al., 2007;
- 37 Zhao et al., 2016). Early volatility studies primarily utilized thermal denuders (TD) coupled with various
- detection instruments to investigate the thermal properties of bulk OA (Huffman et al., 2008). The
- 39 subsequent coupling of TD with the Aerosol Mass Spectrometer allowed for component-resolved volatility

40 measurements, providing critical, quantitative insight into the properties of OA factors (e.g., SV-OOA vs.

41 LV-OOA) across different regions (Paciga et al., 2016; Cappa and Jimenez, 2010). These component-

resolved volatility data are often used to constrain the Volatility Basis Set (VBS)—the current state-of-the-

art framework for modeling OA partitioning and evolution (Donahue et al., 2006). However, a limitation

in many field studies is that the TD-AMS thermogram data are rarely translated into quantitative VBS

distributions for individual OA factors, which limits their direct use in chemical transport models.

46 Furthermore, the volatility of OOA during extreme haze conditions, where the expected inverse correlation

between oxidation (O:C) and volatility can break down (Jimenez et al., 2009), remains poorly characterized,

particularly in East Asia's highly polluted winter environments. A recent study in Korea further highlighted

the importance of accounting for such processes when interpreting OA volatility under ambient conditions

(Kang et al., 2023). Given its central role in OA formation, reaction, and atmospheric persistence, volatility

analysis is critical for bridging the gap between measurements and model performance."

52 Section 2.1: This section currently begins with a citation to the authors' earlier study, which may lead

readers to assume that the dataset is the same. However, the actual description of the 2019 field study only

appears several sentences later. To improve clarity and logical flow, I suggest first presenting the details of

55 the current field campaign and then referring back to the earlier study for context.

We appreciate the suggestion. We rewrote the opening of section 2.1 to first describe the 2019 field

campaign and site, followed by a brief pointer to our earlier winter study for background on the same

58 location. We believe this improves the logical flow and avoids confusion with the 2017 dataset. Now the

59 relevant section reads;

60 "We conducted continuous real-time measurements in Seoul, South Korea, from 28 November to 28

61 December 2019. The sampling site was located in the northeastern part of the city (37.60° N, 127.05° E),

approximately 7 km from the city center, surrounded by major roadways and mixed commercial-residential

land use. Air samples were collected at an elevation of approximately 60 meters above sea level, on the

fifth floor of a building. A detailed site description has been reported previously for winter Seoul (Kim et

al., 2017). During this period, the average ambient temperature was 1.76 ± 4.3 °C, and the average relative

humidity (RH) was 56.9 ± 17.5%, based on data from the Korea Meteorological Administration

(http://www.kma.go.kr)."

68

69

75

42

44

45

48

49 50

54

57

62 63

64

66

67

Line 146-150: This paragraph relies on information from the Supplementary Material, which makes it

awkward as an entry point into the main results. I suggest either removing it or integrating the content later

71 in the manuscript, once the main results are introduced.

72 Thank you for the helpful suggestion. We agree that starting a section by referencing time series data in the

73 Supplementary Material (Fig. S6) made the initial description awkward. We have reorganized the opening

74 of the Results section (section 3.1). The revised introductory paragraph now immediately establishes the

campaign's characteristics, providing the necessary meteorological and concentration context before

detailing the composition in Fig. 1. The revised section now reads:

- "We conducted continuous measurements from 28 November to 28 December 2019, characterizing a winter 77 period with a mean PM₁ concentration of 27.8±15.3µgm⁻³. This concentration is characterized as moderate; 78
- 79 it closely matches historical winter PM₁ means in Seoul (Kim et al., 2017) and implies an equivalent PM_{2.5}
- concentration is about 34.8µgm⁻³ (using a Korea-specific PM₁/PM_{2.5}≈0.8 (Kwon et al., 2023)), which is 80
- near the national 24-h PM_{2.5} standard (35µgm⁻³) (AirKorea). The full co-evolution of PM₁, gaseous 81
- 82 pollutants, and meteorological conditions is provided in Fig. S6, showing an average ambient temperature
- of 1.76±4.3°C and average relative humidity (RH) of 56.9±17.5% during the study. 83
- Figure 1 summarizes the overall non-refractory submicron aerosol (NR-PM1) composition and the 84
- identified OA factors.~" 85
- 86 Section 3.1.1: The identification of nitrogen-containing organic aerosols (NOA) could be better supported.
- 87 I encourage the authors to provide additional evidence, for instance through mass spectral comparison with
- previous studies, or by applying the NO/NO₂ ratio approach to assess NOA, and then comparing the results 88
- 89 with PMF-based identification.
- 90 Thank you for the helpful suggestions. We agree that the identification of NOA must be clearly supported.
- Regarding the NO⁺/NO₂⁺ ratio: This metric is a well-established diagnostic for assessing the thermal 91
- 92 decomposition (and thus functionality) of inorganic or organic nitrate (NO₃⁻) in the AMS nitrate channel.
- 93 It is not applicable to reduced-nitrogen amines (R-NH₂) that define NOA, which are detected in the organic
- spectrum as reduced C_xH_yN⁺ fragments (e.g., m/z30,44,58,86). Accordingly, we did not apply the 94
- 95 NO⁺/NO₂⁺ method to the NOA factor. In order to strengthen the mass spectral evidence as requested, we
- have enhanced the discussion in 3.1.1 to clearly emphasize the spectral matching of our NOA factor against 96
- established literature reference spectra of amines (Fig. 3). Now the relevant section reads; 97
- 98 "The NOA factor exhibited the highest nitrogen-to-carbon (N:C) ratio (0.22) and the lowest oxygen-to-
- 99 carbon (O:C) ratio (0.19) among all POA factors (Fig. S2), indicating a chemically reduced, nitrogen-rich
- 100 composition. The factor represents semi-volatile, reduced nitrogen species that originate from primary
- urban combustion sources but whose observed mass in the particle phase is enhanced by rapid secondary 101
- 102 partitioning and salt formation (Ge et al., 2011; You et al., 2014). The NOA mass spectrum was dominated
- by amine-related fragments including m/z 30 (CH₄N⁺), 44 (C₂H₆N⁺), 58 (C₃H₈N⁺), and 86 (C₅H₁₂N⁺) 103
- (Fig. 3a). The spectral signature of the factor is defined by the characteristic dominance of the m/z 44 104
- fragment, which typically serves as the primary marker for dimethylamine (DMA)-related species, closely 105
- 106 followed by m/z 58 (trimethylamine, TMA) and m/z 30 (methylamine, MA). This profile is in strong
- 107 agreement with NOA factors resolved via PMF in other polluted environments. For instance, the dominance
- of m/z 44 and m/z 30 aligns with amine factors reported in New York City (Sun et al., 2011) and Pasadena, 108
- California (Hayes et al., 2013). This DMA-dominated signature is also consistent with seasonal 109
- 110 characterization of organic nitrogen in Beijing (Xu et al., 2017) and Po Valley, Italy (Saarikoski et al.,
- 2012), reinforcing the common chemical signature of reduced organic nitrogen across diverse urban and 111
- 112 regional environments. Furthermore, the presence of non-negligible signals at m/z 86 supports
- the contribution of slightly larger alkylamines, a pattern that aligns well with established AMS laboratory 113
- 114 reference spectra for these reduced nitrogen compounds (Ge et al., 2011; Silva et al., 2008)"

- Line 187-188: Please clarify whether the identified NOA is of primary or secondary origin.
- 116 Thank you for requesting this clarification. The NOA factor exhibits characteristics of both primary
- emissions and rapid secondary processing, which is typical for reduced nitrogen species. We have clarified
- in the manuscript that the factor is best characterized as a semi-volatile component derived primarily from
- combustion emissions whose particle-phase concentration is enhanced by atmospheric processing.
- We base this conclusion on the following evidence.

121

122

123

124125

126

127128

129

130

131

- 1. Primary Origin (Precursors): The mass spectrum (Fig. 3) and elemental ratios (O:C=0.19, low oxidation) closely match low-molecular-weight alkylamines (e.g., DMA, TMA), which are primarily emitted during high-temperature combustion of nitrogen-rich fuels (Ge et al., 2011). The night-early morning peaks (Fig. 2) further link it to near-source urban combustion/heating activities.
- 2. Secondary Enhancement (Observed Mass): The observed high particle-phase concentration is strongly influenced by secondary processes:
 - o Partitioning: Amines are semi-volatile and highly basic. Their particle-phase retention (NOA mass) relies on partitioning facilitated by low temperature and reaction with acidic species to form low-volatility aminium salts (a secondary process).
 - o Meteorological Dependence: We observed a strong increase in NOA when relative humidity (RH) surpassed 60% (Fig. 2), suggesting that RH-driven partitioning and enhanced formation of aminium salts are critical for its detection (Milic et al., 2016).
- We have revised the text to clearly articulate this dual nature, emphasizing that while the precursor is primary, the particle mass is semi-secondary (governed by partitioning).
- 135 "The NOA factor exhibited the highest nitrogen-to-carbon (N:C) ratio (0.22) and the lowest oxygen-to-
- carbon (O:C) ratio (0.19) among all POA factors (Fig. S2), indicating a chemically reduced, nitrogen-rich
- 137 composition. The factor represents semi-volatile, reduced nitrogen species that originate from
- primary urban combustion sources but whose observed mass in the particle phase is enhanced by
- rapid secondary partitioning and salt formation (Ge et al., 2011; You et al., 2014).
- Line 212-213: The abbreviations for OOAs have already been introduced earlier.
- We removed repeated definitions of OOA and OA.
- Line 267: The abbreviation "OA" has also been defined earlier.
- We removed repeated definitions of OOA and OA.
- Line 268: ... observations at where?
- Thank you for pointing this out. We had not explicitly stated the location. The observations were made in
- **Seoul, Korea**. We have clarified the sentence accordingly.
- "This trend aligns with previously reported spring and fall observations in Seoul, Korea (Kang et al., 2022;
- 148 Jeon et al., 2023)."
- 149 Line 292: Section 3.3?

- 150 Corrected. Thanks.
- Line 302-303: Please add a few references to situate your results in the context of previous literature.
- We added references demonstrating that functionalization typically lowers volatility, while fragmentation
- increases it and can reduce SOA yields despite higher O:C; this supports our emphasis on pairing
- composition with direct volatility constraints. Now the section reads:
- "Generally, the oxygen-to-carbon (O:C) ratio of organic aerosols (OA) is inversely related to their volatility.
- As O:C increases through aging, the effective saturation concentration (C*) typically decreases, resulting
- in lower volatility (Donahue et al., 2006; Jimenez et al., 2009). This common relationship arises because
- the addition of oxygen-containing functional groups (e.g., hydroxyl, carboxyl, carbonyl), which increases
- molecular weight and enhances intermolecular interactions such as hydrogen bonding, thereby reducing
- vapor pressure (Jimenez et al., 2009; Kroll and Seinfeld, 2008). Moreover, oxidative aging often leads to
- oligomerization or functionalization, promoting particle-phase retention and reducing the effective
- saturation concentration (C*) (Donahue et al., 2011; Robinson et al., 2007). However, in this study, the
- most oxidized OA factor—MO-OOA, with a high O:C ratio of 1.15—exhibited unexpectedly high
- volatility. Its volatility distribution was skewed toward SVOCs and IVOCs (Fig. 5), and its rapid mass loss
- in MFR thermograms (Fig. S9) further indicated low thermal stability. This observation appears to
- 166 contradict the usual inverse O:C-volatility relationship; however, under winter haze conditions—with
- suppressed O₃/low OH, particle-phase autoxidation and fragmentation can yield higher-O:C yet more
- volatile products, with enhanced condensation on abundant particle surface area (details below)."

170 References

169

171172

173

174175

176

177

178179

180

181

182

183

184

- Sinha, A., George, I., Holder, A., Preston, W., Hays, M., Grieshop, A. P., 2023. Development of volatility distributions for organic matter in biomass burning emissions. Environ. Sci. Adv. 3, 11–23. https://doi.org/10.1039/D2EA00080F
- Donahue, N. M., Robinson, A. L., Stanier, C. O., Pandis, S. N., 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40, 2635–2643. https://doi.org/10.1021/es052297c
 - Glasius, M., Goldstein, A. H., 2016. Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol. 50, 2754–2764. https://doi.org/10.1021/acs.est.5b05105
- Matsui, H., Koike, M., Takegawa, N., Kondo, Y., Griffin, R. J., Miyazaki, Y., Yokouchi, Y., Ohara, T., 2009. Secondary organic aerosol formation in urban air: Temporal variations and possible contributions from unidentified hydrocarbons. J. Geophys. Res. Atmos. 114, D02209. https://doi.org/10.1029/2008JD010164
- Jiang, F., Liu, Q., Huang, X., Wang, T., Zhuang, B., Xie, M., 2012. Regional modelling of secondary organic aerosol over China using WRF/Chem. J. Aerosol Sci. 53, 50–61. https://doi.org/10.1016/j.jaerosci.2011.09.003

- Li, J., Zhang, M., Wu, F., Sun, Y., Tang, G., 2017. Assessment of the impacts of aromatic VOC emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ. Atmos. Environ. 158, 105–115. https://doi.org/10.1016/j.atmosenv.2017.03.035
- Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., Pandis, S. N., 2007. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259–1262. https://doi.org/10.1126/science.1133061

- Zhao, B., Wang, S., Donahue, N. M., Jathar, S. H., Huang, X., Wu, W., ... & Hao, J. (2016). Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Scientific Reports, 6, 28815. https://doi.org/10.1038/srep28815
- Huffman, J. A., Ziemann, P. J., Jayne, J. T., and Worsnop, D. R.: Development and characterization of a fast-stepping thermodenuder for chemically resolved aerosol volatility measurements, Aerosol Sci. Technol., 43, 1–15, https://doi.org/10.1080/02786820802104981, 2008.
- Huffman, J. A., Ziemann, P. J., Jayne, J. T., and Worsnop, D. R.: Development and characterization of a fast-stepping thermodenuder for chemically resolved aerosol volatility measurements, Aerosol Sci. Technol., 43, 1–15, https://doi.org/10.1080/02786820802104981, 2008.
- Paciga, A., Karnezi, E., Kostenidou, E., et al.: Volatility of organic aerosol and its components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013–2031, https://doi.org/10.5194/acp-16-2013-2016, 2016.
- Donahue, N. M., Robinson, A. L., Stanier, C. O., Pandis, S. N., 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40, 2635–2643. https://doi.org/10.1021/es052297c
- Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., ... Worsnop, D. R., 2009. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529. https://doi.org/10.1126/science.1180353
- Kang, H. G., Kim, Y., Collier, S., Zhang, Q., Kim, H., 2022. Volatility of springtime ambient organic aerosol derived with thermodenuder aerosol mass spectrometry in Seoul, Korea. Environ. Pollut. 310, 119203. https://doi.org/10.1016/j.envpol.2022.119203
- Kwon, S., Won, S. R., Lim, H. B., et al.: Relationship between PM1.0 and PM2.5 in urban and background areas of the Republic of Korea, Atmos. Pollut. Res., 14, 101858, https://doi.org/10.1016/j.apr.2023.101858, 2023.
- Kim, H., Zhang, Q., Bae, G.-N., et al.: Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 17, 2009–2033, https://doi.org/10.5194/acp-17-2009-2017, 2017.
- Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines Part II. Thermodynamic properties and gas-particle partitioning, Atmos. Chem. Phys., 11, 55–69, https://doi.org/10.5194/acp-11-55-2011, 2011.
- P.L. Hayes, A.M. Ortega, M.J. Cubison, W.W. Hu, D.W. Toohey, J.H. Flynn, B.L. Lefer, N. Grossberg, S. Alvarez, B. Rappengl&ück, J.W. Taylor, J.D. Allan, J.S. Holloway, J.B. Gilman, W.C. Kuster, J.A. de Gouw, P. Massoli, X. Zhang, J. Liu, R.J. Weber, A.L. Corrigan, L.M. Russell, Y. Zhao, S.S. Cliff, G. Isaacman, D.R. Worton, N.M. Kreisberg, S.V. Hering, A.H. Goldstein, R. Thalman, E.M. Waxman, R. Volkamer, Y.H. Lin, J.D. Surratt, T.E. Kleindienst, J.H. Offenberg, K.D. Froyd, S. Dusanter, S. Griffith, P.S. Stevens, J. Brioude, W.M. Angevine, and J. L. Jimenez. Aerosol Composition and Sources in Los Angeles During the 2010 CalNex Campaign. *Journal of*

Geophysical Research-Atmospheres, 118, 9233-9257, May 2013. doi: 10.1002/jgrd.50530 Paper, 2013 and PDF. Figures (.zip) (August 27, 2013)

- Xu, W., Sun, Y., Wang, Q., et al.: Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China, ACS Earth Space Chem., 1, 649–658, https://doi.org/10.1021/acsearthspacechem.7b00106, 2017.
 - Sun, Y. L., Zhang, Q., Schwab, J. J., et al.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581–1602, https://doi.org/10.5194/acp-11-1581-2011, 2011.
 - Xu, W., Sun, Y., Wang, Q., et al.: Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China, ACS Earth Space Chem., 1, 649–658, https://doi.org/10.1021/acsearthspacechem.7b00106, 2017.
 - Saarikoski, S., Carbone, S., Decesari, S., et al.: Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy, Atmos. Chem. Phys., 12, 8401–8421, https://doi.org/10.5194/acp-12-8401-2012, 2012.
 - Silva, P. J., Erupe, M. E., Price, D., et al.: Trimethylamine as Precursor to Secondary Organic Aerosol Formation via Nitrate Radical Reaction in the Atmosphere, Environ. Sci. Technol., 42, 4689–4696, https://doi.org/10.1021/es703016v, 2008.