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Abstract. Advancements in remote sensing of snow (e.g., lidar) have allowed for the characterization of 

mountain snowpacks at higher spatial resolutions (< 10 m) and higher vertical accuracy (< 20 cm) than 

previously available, which can cover entire catchments repeatedly throughout the snow season. Here, we use 10 

distributed snow water equivalent (SWE) over the Tuolumne River Basin in California, USA, from lidar snow 

depths combined with energy/mass balance modeling of the Airborne Snow Observatory (ASO) program for the 

period 2013-2017 (48 flight-dates, 50-m resolution) to characterize the spatial and temporal variations in SWE 

distribution in this headwater catchment. Peak basin snow volume storage ranged from 142 M m3 (i.e., 106 m3) 

in 2015 to 1467 M m3 in 2017, covering one of the widest ranges in recorded history. Basin SWE empirical 15 

distributions vary between unimodal and bimodal distributions earlier in the season to decaying distributions 

later in the ablation season. Snow storage peaks at mid-elevations between 2750-3250 m, which is a 

consequence of increases in SWE with elevation and basin hypsometry. The date of peak SWE varies by several 

weeks across the watershed and between years, according to the combination of accumulation and melt patterns 

partially explained by elevation and aspect. This variation in peak SWE timing leads to underestimations if a 20 

single date is used to uniformly characterize the basin's peak SWE. These results illustrate how understanding 

SWE spatiotemporal dynamics can improve the understanding of where the snow is and when it melts, support 

satellite mission planning, and enhance ground survey design and planning. 
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1 Introduction 

Snowpack storage in headwater catchments is a critical water resource across the globe (Viviroli et al., 2007). In 

the high elevation regions of the western United States (US), precipitation in the form of snow can account for 

as much as 50% - 70% of the annual precipitation, with the highest percentages in the Sierra Nevada (67%), 30 

northwestern Wyoming (64%), Colorado (63%), and Idaho/western Montana (62%) (Serreze et al., 1999). This 

snow is then stored in the mountains throughout the winter and is later released during the spring and summer 

melt. Because of this, the symbolic term “water towers” has been coined to refer to mountain snowpacks in 

these snow dominated regions (Liniger et al., 1998; Bandyopadhyay et al., 1997; Viviroli et al., 2007). 

Understanding snowpack dynamics across headwater catchments is of particular importance for understanding 35 

how inter- and intra-annual variations in snowpack accumulation and melt affect ecological function (Knowles 

et al., 2018; Trujillo et al., 2012), water supply (Mankin et al., 2015; Barnett et al., 2005; Viviroli et al., 2007), 

and recreation (Burakowski and Magnusson, 2012; Sturm et al., 2017). Knowledge of where the snow is, when 

it melts, and snowpack storage allows water managers to make decisions on reservoir water storage and water 

releases, allocations for hydroelectric energy generation and ecological flow requirements. Similarly, the 40 

optimal design of measurement campaigns largely depends on the snow distribution at a given time, particularly 

when water forecasting agencies depend on this information to forecast available snow water storage (Fleming 

and Goodbody, 2019; Garen, 1992). 

Maximum annual snow accumulation, or peak snow water equivalent (SWE), is useful for determining the 

amount of snowmelt water that will be available during the spring and summer. However, the stochastic nature 45 

of the date of peak SWE across landscapes and snow regimes (Trujillo and Molotch, 2014) make the 

determination of peak SWE challenging across large headwater basins. Manual SWE measurements on nominal 

survey dates (e.g., bi-weekly or monthly) near or around the date of peak SWE have often been used instead. 

Following these practical considerations, April 1 SWE has often been used as an approximate peak SWE metric 

useful when estimating seasonal flows, providing better empirical estimates when compared to earlier or later 50 

monthly or biweekly SWE measurements  (Bohr and Aguado, 2001). Bohr and Aguado (2001) found that April 

1 SWE underestimated peak SWE by between 9-19 % at 92 snow pillow stations between 1981 and 1996 in the 

Wasatch and Uinta Mountains, the Rocky Mountains and the Idaho Batholith. Trujillo and Molotch (2014) 

analyzed daily SWE from over 700 snow pillow stations across the western US between 1980 and 2009, 

showing that peak SWE can occur over a wide period, with the majority of observations between early February 55 

and late May for snowpacks with peak SWE greater than 250 mm. In the same study, Trujillo and Molotch 

(2014) demonstrated complex relationships between peak SWE, the date of peak SWE and other snowpack 

metrics such as the ablation rates and the date of snow disappearance, illustrating dynamics in the snow 

accumulation and melt cycles across the western US that are consistent with the climatology of the regions. 

Despite this, April 1 SWE continues to be used as a useful metric to characterize snow storage trends (e.g., 60 

Musselman et al., 2021) and “snow drought” (e.g., Pederson et al., 2011; Harpold et al., 2017), a concept that is 

gaining traction to characterize water stress in years with reduced snowpack storage. Hatchett and McEnvoy 

(2018) further highlighted possible issues of using April 1 SWE when defining snow drought, as the large 

variability of the date of peak SWE across landscapes and regions could lead to mischaracterizations of peak 
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snow storage. Similar watershed scale analyses of these complex dynamics in the snow accumulation and melt 65 

cycles and the timing of peak snow storage have been limited by the small number of snow pillow stations 

and/or snow courses within watersheds and the limited spatially distributed SWE datasets throughout the snow 

season. 

The study of the spatial and temporal dynamics of snow distribution is often approached through the analysis of 

snow depth (Trujillo et al., 2009, 2007; e.g., Deems et al., 2006; Grünewald et al., 2010, 2014; Schirmer et al., 70 

2011; Schirmer and Lehning, 2011; Schirmer and Pomeroy, 2020) and SWE (Elder et al., 1998, 1991; Trujillo 

and Molotch, 2014; Garen, 1992; e.g., Anderton et al., 2004; Rice et al., 2011; McCartney et al., 2006). Snow 

depth has often been favored because of the ease of obtaining direct measurements through snow probing or 

directly inferred from snow-on and snow-off topographic surveys (e.g., lidar, terrestrial laser scanning (TLS), 

and Structure from Motion (SfM)). These latter remote sensing techniques also offer unrivaled horizontal spatial 75 

resolutions (centimeter to meters) and vertical accuracy (centimeters), and can provide spatial coverage from 

slope to watershed scales in mountainous terrain (Prokop et al., 2008; Buhler et al., 2016; Deems et al., 2013; 

Harder et al., 2016; Walker et al., 2020; Pelto et al., 2019). Analyzing SWE offers the benefit of providing 

information about the water mass in the snowpack, which is particularly useful for the study of the water cycle 

and hydrological modeling applications. However, direct SWE measurements are more resource-intensive and 80 

therefore are more scarce (e.g., snow pillows, snow cores and snow pits), and satellite remotely-sensed 

distributed datasets lack the spatial resolution (e.g., 8-70 km from the Scanning Multichannel Microwave 

Radiometer (SMMR), the Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave Scanning 

Radiometer for the NASA Earth Observing System (AMSR-E) (Foster et al., 2005)), and accuracy required in 

complex, mountainous, and forested terrain (Chang et al., 1996; Dong et al., 2005; Foster et al., 2005). 85 

Furthermore, point datasets of either snow depth or SWE provide limited spatial information due to the spatial 

discontinuity and small support (i.e., spatial representativeness) of the measurements, while interpolation 

techniques fail to capture the true spatial variability of snow distribution (Trujillo and Lehning, 2015; Erxleben 

et al., 2002; Dickinson and Whiteley, 1972). Despite this, many of the studies mentioned above have relied on 

interpolated datasets or the combination of interpolated snow depth and snow density, partly because such 90 

methods provided the “best case scenario” for the available resources and information at hand. 

A more recent approach to obtaining distributed SWE information throughout the snow season consists of 

combining lidar snow depths and modeled snow densities, as proposed and implemented by the NASA JPL 

Airborne Snow Observatory (ASO) and the USDA Agricultural Research Service (ARS) (Painter et al., 2016). 

In this approach, repeated lidar snow depth surveys covering entire basin domains are combined with spatially 95 

distributed bulk snow density estimates from the physically based snow model iSnobal (Marks et al., 1999) to 

provide SWE estimates at 50-m resolutions for headwater catchments larger than 1000 km2. The iSnobal 

modeled snow depths are also updated with the lidar snow depths from each ASO survey following the direct 

insertion approach described in Hedrick et al. (2018b). Since 2013, the approach has been successfully 

implemented in the headwaters of the upper Tuolumne River Basin in the California Sierra Nevada (Painter et 100 

al., 2016), and since 2019 has been expanded to dozens of headwater catchments across the western US through 

the efforts of the public benefit corporation ASO, Inc. These ASO datasets offer the advantage of accurate high 

resolution snow depth data (e.g., 3 m resampled to match 50-m model resolutions) and model results 
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constrained by the lidar surveys (Hedrick et al., 2018b), offering full spatial coverage at multiple dates each 

season (weekly-monthly). 105 

Here, we take advantage of the NASA-JPL ASO dataset for the upper Tuolumne River Basin for water years 

(WYs, WY for a singular year hereinafter) 2013-2017 to analyze the spatial and temporal dynamics of snow 

accumulation and melt in a headwater catchment at combined scales, resolutions, and temporal coverage 

unavailable prior to the development of this integrated dataset. The analyses in this study provide a 

comprehensive look across both space and time at snowpack storage around the dates of peak accumulation and 110 

the subsequent snowmelt season across the watershed domain, with emphasis on the transitional characteristics 

of snowpack storage and the implications of these results for both research and practical applications. We 

perform a series of analyses to address the following research questions: 

(a) What is the range of variability in basin snowpack storage for years with very different snow seasons 

across a large headwater catchment? And how do statistical properties (i.e., empirical probability 115 

distributions) of SWE across a headwater catchment vary around the dates of peak SWE and the 

subsequent snowmelt season, and between very different snow seasons? 

(b) How does snowpack storage vary across elevations from peak conditions onwards, and what are the 

differences in snowmelt dynamics across elevations? 

(c) What is the range of variability in the date of peak SWE across a large headwater catchment and how 120 

does this variability relate to topographic characteristics (i.e., elevation and aspect)? Then, how does 

peak SWE variability relate to topographic characteristics (i.e., elevation and aspect), and what are the 

implications of only obtaining a single lidar survey around the date of basin peak snowpack storage? 

Results are discussed in the context of previous research, with an emphasis on the relationships between spatial 

and temporal snowpack dynamics, and basin characteristics across years with very different snow seasons. The 125 

extreme conditions observed during the study period provide relevant insight on the effects of the natural 

variability in the weather patterns of the Sierra Nevada region on water resources from snowpack storage. 

Although previous studies have provided relevant insights regarding some of these questions, that understanding 

is still relatively vague, in great part because of the limitations in data availability to perform more 

comprehensive analyses and over larger spatial scales. These analyses offer a first look at the types of analyses 130 

possible as similar datasets become available for many regions across the globe, and as new remote sensing 

technologies, either from airborne or satellite platforms, extend the existing available technologies for 

measuring snow depth and SWE. 
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 135 

2 Data and Methods 

The Tuolumne River Basin is a headwater catchment in the California Sierra Nevada (Figure 1) with elevations 

ranging between 1150 m and 3999 m, and with a contributing area of 1180 km2 to the Hetch Hetchy Reservoir 

(Hedrick et al., 2018b). Treeline in the watershed is located at around 2900 m, with land cover dominated by 

conifer forest below this elevation, and shrubs and exposed granite bedrock above. The watershed is dominated 140 

by north-west and south-east aspects (Figure 2a and b) consistent with the predominant orientation of the river 

network (generated using TauDEM from a 10-m digital elevation model (DEM); 

http://hydrology.usu.edu/taudem/taudem5/index.html,). Elevations above 2000 m (90% of the area, Figure 2c 

and d) are snow-dominated (>~70 % of annual precipitation falling as snow (Hedrick et al., 2018b)), while the 

lower elevations are rain dominated and/or in the rain/snow transition zone, although such elevations are 145 

variable between storms (Lundquist et al., 2016). The contributing area is dominated by mid-elevations between 

2500 m and 3250 m (64 % of the basin) (Figure 2c and d), with 26 % below 2500 m and 10 % above 3250 m. 

 

 
Figure 1. Location of the Tuolumne River Basin in the state of California, and contributing area to the 150 

Hetch Hetchy Reservoir with elevations, river network, and snow pillow stations from the California 

Department of Water Resources (CDWR) and the Natural Resources Conservation Service (NRCS) 

SNOTEL network. 

 

The dataset used here is the product of ASO lidar snow depths (3-m resolution snow depths resampled to 50-m) 155 

and iSnobal modeled snow densities at matching 50-m resolution for WYs 2013-2017 (Trujillo et al., 2025). 

The methodology to produce the 50-m SWE dataset is fully described in Hedrick et al. (2018b, 2020) and were 
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generated through a reproducible framework (Hedrick et al., 2018a). The process of deriving hourly 50-m 

forcing grids from station measurements of air temperature, relative humidity, wind speed, precipitation, and 

incoming solar irradiance is described in full by Havens et al. (2017). For the extreme snow year 2017 during 160 

which some weather stations were buried, the model was forced using weather and precipitation data from the 

High Resolution Rapid Refresh atmospheric model (HRRR, Benjamin et al., 2016) following the methodologies 

laid out by Havens et al. (2019) and Meyer et al. (2023). Vegetation data from the National Land Cover 

Database (https://www.usgs.gov/centers/eros/science/national-land-cover-database) was used to estimate canopy 

effects on net radiation and turbulent fluxes following the methodologies described in Link and Marks (1999b, 165 

a) and Marks et al. (2008) implemented in iSnobal. 

 

 
Figure 2. (a) Aspect, (b) Aspect distribution as a percentage of the basin area (45º bins), (c) basin area 

distribution across elevation (250-m bins) for the Tuolumne River Basin, and (d) hypsometric curve with 170 

elevation of snow pillow stations, and with stations within the watershed boundaries highlighted in red. 

Aspect coloring scheme following Brewer & Marlow (1993). 

 

Lidar snow depths from ASO (Painter et al., 2016) were used to periodically update the model snow depth state 

variable using the direct insertion approach (Hedrick et al., 2018b), which leaves the remaining model state 175 

variables of density, snow temperature, and liquid water content unchanged. This approach allows for the 
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correction of the snow distribution by adding spatial variability to the snow fields in the model. Furthermore, 

although the effects of mass transport due to avalanche or wind redistribution are not explicitly addressed in the 

model, the direct insertion of the lidar snow depths allows for the correction of where these deposits are located 

with each update. The uncertainty associated with the 50-m lidar snow depth ASO product has been estimated to 180 

be on the order of 0.08 m (Painter et al., 2016). 

In iSnobal, the density of newly fallen snow was estimated using storm dew point temperatures, after which 

bulk snowpack density was tracked using snowpack temperature gradients, overburden pressure, and the 

presence of liquid water within the ice matrix. The snow density model implemented in iSnobal follows the 

approach by Anderson (1968, 1976), which was based on the field and cold room measurements by Yosida 185 

(1963, 1958), Mellor (1964) and Kojima (1967). These same equations from Anderson (1976, 1968) were later 

updated by Oleson et al. (2013) within the Community Land Model (CLM), and were further adjusted to 

estimate bulk snow density before being incorporated into iSnobal. Comparisons at the point scale of simulated 

to in-situ bulk density at 11 validation sites in Idaho and California during the density model development and 

implementation showed Nash-Sutcliffe coefficients of 0.83 +/- 0.08, mean bias error of +13 +/- 14 kg m-3 and 190 

root-mean square difference of 40 +/- 13 kg m-3. Evaluations of model densities at the gridded spatial scales 

(e.g., 50 m) are more challenging and have unquantifiable added uncertainties due to the discrepancy of scales 

between available measurements (e.g., snow courses, snow pillows and snow pits) and the spatial grid cell 

footprint and thus have not been performed. Note here that measurements from snow courses are often reported 

as the average of several snow core measurements along transects that can be more than a kilometer long (e.g., 195 

from the California Department of Water Resources (CDWR) through https://cdec.water.ca.gov/). Snow 

densities are often derived from these reported mean SWE and mean snow depth values for these 

transect/courses, resulting in uncertainties that cannot be directly quantified. Additionally, uncertainties are also 

associated with direct local measurements of snow density. For example, bulk densities from snow pit profiles 

can carry 10+% uncertainties and are seldom available in practical settings (Proksch et al., 2016). Similarly, 200 

snow depth sensors at snow pillow stations are not always located directly over the snow pillow, leading to 

uncertainties that are difficult to address, with errors in derived snow densities that become more pronounced 

when the snowpack is shallower (e.g., early or late snow season). During the study period of 2013 – 2017, this 

location offset between sensors was confirmed at several snow pillow stations within the rectangular Tuolumne 

modeling domain, including a station within the Tuolumne Basin (i.e., Dana Meadows – DAN, Figure 1). 205 

The resulting dataset used in this study consists of distributed SWE covering the entire watershed at 50-m 

resolutions. Here we use a total of 48 lidar survey dates during the period WYs 2013-2017, with flight intervals 

(days between flights) ranging from 4 to 35 days, and with 6 to 13 flights per year (Table 1). The survey dates 

generally capture snow conditions around or just prior to peak snowpack storage and throughout the subsequent 

snowmelt seasons. In WY 2017, flights commenced in January and continued well into the accumulation season 210 

(Figure 3 and Table 1). The study period provides the unique opportunity to analyze some of the most extreme 

water years on record, with the extreme drought of WY 2015, followed by the near average WY 2016, and 

culminating with WY 2017, one of the snowiest water years on record (Ullrich et al., 2018; Wang et al., 2017). 

Daily SWE from snow pillow stations from the California Department of Water Resources (CDWR) and the 

Natural Resources Conservation Service (NRCS) SNOTEL network (Figure 1) are also used to illustrate the 215 

daily progression of the snow seasons during the study period. The snow pillow stations are located between 
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2000 m and 3300 m, although only four are located within the watershed boundaries and cover a narrower 

elevation range between 2350 m and 3000 m (Figure 2d). 

 

Table 1. ASO Survey dataset information. 220 

Water Year No. of flights Interval Period (month/day) 

2013 6 4 - 26 days 04/03 – 06/08 

2014 11 4 - 15 days 03/23 – 06/05 

2015 10 4 - 27 days 02/18 – 06/08 

2016 13 5 - 18 days 03/26 – 07/08 

2017 8 8 - 35 days 01/29 – 08/16 

 

In order to address the research questions presented in the Introduction, the following analyses are performed: 

i. Basin SWE storage: The total volume of water stored in the form of snow within the basin 

boundaries was estimated as: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉. = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1    225 

Equation 1 

where i is the grid-cell number, N is the total number of grid-cells within the basin boundaries, 

and 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖  and 𝐴𝐴𝑖𝑖 are the corresponding grid-cell SWE and area (50 m by 50 m), respectively. 

ii. SWE empirical probability distributions: Empirical probability distribution functions of SWE 

were derived for each of the 48 flight dates, and a representative selection of six per year are used 230 

in the analyses below. 

iii. Elevational variations in snow accumulation: Two different variables are analyzed here: (a) the 

volume of SWE stored in 250-m elevation bands within the basin boundaries, and (b) mean SWE 

within corresponding 250-m elevation bands. The former is a combination of SWE and area 

within each band following the same formulation as in Equation 1, with an intrinsic influence of 235 

the hypsometry of the watershed (Figure 2), while the latter represents the average snow 

accumulation across elevation as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑁𝑁
�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

  

Equation 2 

where i is the grid-cell number, N is the total number of grid-cells within each elevation band and 240 

the basin boundaries, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖  is the corresponding grid-cell SWE. 
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iv. Spatially resolved date of peak SWE across the basin: In these analyses, each grid-cell was treated 

individually such that a peak date was determined for each grid-cell, providing a spatially resolved 

image of peak SWE date for each WY. The resulting spatial characterization of the timing of peak 

SWE extends previous point/in-situ characterizations (e.g., Trujillo and Molotch, 2014) to a large 245 

headwater catchment spatial domain. 

v. Spatially resolved peak SWE: A consequence of the spatial variability in the timing of peak is that 

local peak SWE (e.g., at a point in the basin) can be larger than SWE at the timing of basin peak 

SWE storage. Therefore, spatially resolved peak SWE maps were estimated for each year 

considering each grid-cell in the watershed individually to determine peak SWE. The difference 250 

between these spatially distributed peak SWE maps and SWE at the timing of basin peak SWE 

storage can be used to quantify the spatial underestimation of peak SWE over a headwater 

catchment when the standard concept of assuming a uniform single peak SWE date (e.g., April 1) 

over a spatial domain is applied. 

Throughout this article, the term “snow accumulations” is used to refer to the amount of SWE accumulated on 255 

the landscape. The terms “peak snow accumulations” and “peak SWE” are used interchangeably to refer to the 

maximum amount of snowpack SWE in snow season. Peak snow conditions at both basin and local scales (i.e., 

basin peak SWE and spatially resolved peak SWE) are determined from the 48 survey dates, with 6-13 survey 

dates per year (Table 1). Lastly, ablation and redistribution processes, such as snow sublimation and wind 

redistribution, are ubiquitous throughout the snow season, and are not restricted to the spring and summer 260 

snowmelt season. Similarly, the processes through which SWE is added to the snowpack from snow 

precipitation can also be present throughout the snow season. 

3 Results 

3.1 Basin SWE storage 

The period of WYs 2013-2017 provided a wide range of snow conditions (Figure 3), with the lowest snow 265 

accumulations in WY 2015, and the largest snow accumulations in WY 2017, a year that delivered record 

snowfall across the western US. Peak basin SWE storage (i.e., total volume of water stored as snowpack within 

the basin boundaries, and calculated following Equation 1) in the Tuolumne River basin ranged between 142 M 

m3 on March 3, 2015, and 1467 M m3 on April 1, 2017 (Figure 3a). SWE measurements from snow pillow 

stations in and around the basin (Figure 3b) confirm that peak snow accumulations occurred near or after the 270 

time of the first ASO flight in most years. Peak basin SWE storage was likely reached just prior to the first ASO 

flight during WY 2013, and between the two ASO flights of April 1 and May 2 in WY 2017, following 

precipitation events that occurred after the April 1 flight. 
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 275 
Figure 3. (a) Basin SWE storage calculated following Equation 1 and dates of peak storage for the study 

period WYs 2013-2017. Dates of lidar flights are denoted by the red circle markers. Straight lines are 

used to connect results between each survey date. (b) Daily SWE from the CDWR and SNOTEL snow 

pillow stations (red lines, each red line corresponding to an individual snow pillow station), with the dates 

of basin peak SWE (from (a)) highlighted by the vertical blue lines, and snow pillow peak SWE 280 

highlighted by the blue circle markers (markers for stations within the basin boundaries are filled in with 

solid red). 

 

3.2 SWE Empirical Distributions 

Owing to the range of variability in annual SWE totals, basin SWE empirical probability distribution functions 285 

can be analyzed in a way that was not possible prior to the NASA-JPL ASO measurement and USDA-ARS 

iSnobal modeling program (Figure 4-Figure 6). SWE empirical distributions throughout dry (Figure 4) and 

average water years (Figure 5) are unimodal and truncated at zero SWE around peak accumulation. In the case 

of SWE (and snow depth), values have a zero lower bound limiting the distributions to the positive range [0, ∞) 

(i.e., truncated). Once the melting season is established, the distributions follow a decaying function that can be 290 

conceptualized as if the distribution moved left as the seasons progressed and both SWE storage and snow-
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covered area (SCA) decrease because of melt. On the other hand, during the extreme snow conditions in WY 

2017, storm events in March and April transformed the empirical distribution from a unimodal to a bimodal 

distribution with a second distinct peak for SWE accumulations larger than 2000 mm (Figure 6). This bimodal 

distribution pattern is explained by the distribution of snowfall during the snow storms of March and April, 295 

which delivered large amounts of snow at higher elevations. These deposition patterns are evidenced in SWE 

difference maps between the March 3, April 1, and May 2 flights in 2017 (not shown). Despite this bimodal 

pattern, the distribution returns to the decaying function observed during drier years in the melting season once 

SWE storage and SCA decrease (Figure 6). 

 300 

 
Figure 4. Histograms of SWE, basin SWE storage and basin percent of snow-covered area (SCA) for six 

flight dates in the drought WY 2015. 
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 305 
Figure 5. Same as Figure 4 but for the near-average WY 2016. 

 

 
Figure 6. Same as Figure 4 but for the record high WY 2017. 

 310 
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3.3 Elevational Variations in Snow Accumulation 

The first approach to characterizing the distribution of SWE across the basin consists of analyzing the 

elevational variations in snowpack storage and mean SWE. Albeit a simplistic approach, water managers and 

researchers use similar elevational information to understand where the snow is and when it will melt because 

precipitation generally increases with elevation and snow at higher elevations generally melts later in the season. 315 

Also, other processes such as avalanching can cause snow redistribution from higher to lower elevations, 

producing large snow deposits that can last late into the snowmelt season. 

At the times around peak snow accumulation, SWE storage increases with elevation with maximum volumes 

stored in elevations between 2750-3250 m (45% of the basin area), and decreases with elevation above 3250 m 

(Figure 7 and Figure 8 only include elevations between 2250 m and 3500 m, although the general behavior 320 

outside this range is represented by the lower and upper elevation curves). Snowmelt rates are very different 

between lower and higher elevations. Lower elevations (e.g., 2250-2500 m) show early melt and snow 

disappearance while elevations above 3250 m display flatter SWE curves with delayed melting and slower melt 

rates, generally crossing lower elevation curves towards the end of the snow season, indicating later snow 

disappearance than at lower elevations. In WYs 2013-2015 (driest years), the lower elevation bands (e.g., 2250-325 

2500 m) have lower snow storage and exhibit faster melt that starts earlier than at the higher elevations (e.g., 

3250-3500 m). In WYs 2016 and 2017 (wettest snow years), the two elevation bands (2250-2500 m and 3250-

3500 m) store almost the same SWE volume until the onset of melt at the lowest elevation band, after which the 

higher elevation band retains its snow storage through a period of two (2016) to three (2017) months before the 

onset of melt at higher elevations. This contrasting behavior highlights the very different dynamics in the mass 330 

and energy balances between the lower and higher elevations. 
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Figure 7. SWE storage for 250-m elevation bands in the Tuolumne Basin for the study period WYs 2013-

2017. The markers denote the flight dates for each year. Elevations are provided in meters. 335 

 

In contrast, mean SWE curves (Figure 8) show an increase in mean SWE with elevations to a maximum at 

elevations between 3000-3250 m (in black) at the time of peak, although slower melt rates lead to larger mean 

SWE at 3250-3500 m and above towards the end of the season. These differences between both SWE storage 

and mean SWE across elevations reflect a complex behavior in response to mass and energy balances across 340 

elevational gradients. The mean SWE curves (Figure 8) provide additional information to the SWE storage 

analysis (Figure 7) because they represent the mass per unit area, as opposed to the storage per elevation band, 

which is also a consequence of the basin morphology, in particular, variations in contributing areas across the 

vertical gradient (hypsometry in Figure 2c and d). 

 345 
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Figure 8. Mean SWE for 250-m elevation bands in the Tuolumne Basin for the study period WYs 2013-

2017. The markers denote the flight dates for each year. Elevations are provided in meters. 

 

Figure 7 and Figure 8 illustrate some of the variability of peak SWE across the basin, with later peak SWE dates 350 

with elevation (Figure S 1), with the exception of the extreme drought WY 2015. The intermittency of the 

snowpack during this extreme drought year makes the characterization of an individual peak difficult as the 

snow water equivalent curve displays intermittent accumulation and melt cycles. Also, in water years 2013 and 

2016, the lowest elevation snow pillow peaked over a month before the first ASO acquisition, limiting the 

applicability of using the ASO SWE to evaluate peak SWE in the lowest elevation bands for those years (e.g., < 355 

2750 m in 2016). Peak dates can be delayed markedly across the elevational gradient of the basin, with snow 

accumulations at highest elevations peaking in late May - early June most years, while March - early April at 

mid and lower elevations (e.g., March 26 at 2500-2750m and May 9 above 3500 m in 2016, March 3 below 

2500 m and May 2 and later above 3000 m in 2017). 

3.4 Spatially Resolved Date of Peak SWE Across the Basin 360 

Water years 2015, 2016 and 2017 are particularly useful for identifying spatial patterns of peak snow 

accumulation across the watershed, as they represent a transition from one of the driest years on record (WY 

2015), to a near average year (WY 2016), and to one of the snowiest years on record (WY 2017). The ASO 

surveys for these years covered a long enough period to properly characterize the variation in the timing of peak 

for each grid-cell across the watershed (10 flights between February 18 and June 8 in WY 2015, 13 flights 365 

between March 26 and July 8 in WY 2016, and 8 flights between January 29 and August 16 in WY 2017, Table 

1). The following analyses are presented such that the focus is on the transition from the drought WY 2015 to 
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the extreme snow WY 2017. The snow conditions during WY 2013 and 2014 are used to fill in the gap between 

these extremes, and the results are discussed following the analysis of WYs 2015-2017 for completion. 

Water year 2015 provides a unique opportunity to characterize one of the driest years on record (Figure 9). 370 

Generally, locations with shallow peak snow accumulations tend to have ephemeral snowpacks with multiple 

accumulation and melt cycles throughout the season (~ less than 20 cm of SWE at the point scale, (Trujillo and 

Molotch, 2014)). This intermittency makes the characterization of peak SWE challenging as individual 

precipitation events can deliver enough snow to create a local maxima in the SWE curve, which can occur even 

later in the snow season (e.g., areas below 2500 m in Figure 7c and Figure 8c). This was the case in WY 2015, 375 

with late peaks (i.e., peaks later than basin peak SWE volume; green in Figure 9, emphasized in the elevation 

distributions on the lower left panel) occurring both at lower and higher elevations, but with intermediate 

elevations peaking at the same time as basin SWE storage (March 6, blue in in Figure 9). A precipitation event 

in early April delivered enough snow to cause local maxima that led to late peak dates at lower elevations, and 

increased snow accumulations at higher elevations to a new peak, where the onset of spring melt was just being 380 

initiated (e.g., > 3250 m in Figure 7c and Figure 8c). 

 

 
Figure 9. Spatially resolved date of peak SWE across the Tuolumne basin for WY 2015. For simplicity, 

the areas in which peak SWE is reached prior to the date of basin peak SWE storage (i.e., Figure 3a) is in 385 

red, at basin peak SWE storage in blue, and later than basin peak SWE storage in green. Aspect and 
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elevation distributions in these three categories are also shown following the same symbology, and 

frequencies are relative to the area in each category. “<” is used to indicate “earlier than”, and “>” is 

used to indicate “later than”. 

 390 

WY 2016 was characterized by a steady accumulation season with frequent precipitation events occurring 

throughout season (Figure 3b). This water year, the timing of peak SWE varied across the watershed with 

elevation and aspect partially explaining these variations (Figure 10). Elevation distributions indicate later peaks 

with elevation (lower left elevation distribution in Figure 10), while earlier peaks were generally aligned with 

southerly aspects (upper right aspect distribution in Figure 10). Northerly aspects and higher elevations were 395 

associated with later peak SWE timing, and middle elevations and north-west/south-east aspects peaked at the 

same time as basin peak SWE storage (areas in blue in Figure 10). 65% of the basin area peaked prior to April 

16, 29% peaked on April 16, and 6% peaked after April 16. Here, we must clarify that some of the aspect 

variations are not only caused by radiative effects, but also by snow redistribution by wind from the upwind 

westerly slopes to the downwind easterly slopes at higher elevations. These effects are evident when closely 400 

evaluating the 3-m lidar snow depths, which provide an additional level of detail (not shown). 

 

 
Figure 10. Same as Figure 9 but for WY 2016. 

 405 
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In contrast, the WY 2017 snow season was characterized by a steep rising limb of the SWE curve with the 

presence of multiple major precipitation events that delivered large amounts of snow in relatively short periods 

of time (Figure 3b), characteristic of large atmospheric river (AR) precipitation events (Lundquist et al., 2015; 

Neiman et al., 2008b, a; Guan et al., 2013, 2010). One large AR event occurred after the April 1 ASO flight 410 

(Figure 3b) and delivered considerable amounts of snow at the snow pillows located close to the north-eastern 

boundary of the watershed, all of which are located at elevations above 2800 m (stations HRS, SLI, VRG, DAN, 

GEM, and AGP). This event, however, did not deliver precipitation in the form of snow at the lower elevation 

stations (stations KIB, TUM, TNY, and WHW). In contrast with WY 2016, the timing of peak SWE in WY 

2017 (Figure 11) was more evenly distributed around the timing of basin peak SWE storage (Figure 3a) with 415 

39% and 30.5% of the area peaking before and after April 1, respectively, while the remaining 30.5% peaked on 

April 1. Once again, the elevation distributions (lower left panel, Figure 11) indicate later peaks with elevation, 

although the influence of elevation was less pronounced for the areas that peaked on April 1 and later. The 

influence of aspect on the timing of peak (upper right panel, Figure 11) is relatively similar to WY 2016 with 

south-westerly aspects peaking earlier, while north-west and south-east aspects were more frequent in the areas 420 

that peaked on April 1. However, the areas that peaked after April 1 were not as clearly aligned with northerly 

aspects as in WY 2016. 
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Figure 11. Same as Figure 9 but for WY 2017. 425 

 

WYs 2013 and 2014 (Figure S 2 and Figure S 3) provide additional information for intermediate snow 

conditions. In WY 2013 (Figure S 2), most of the basin peaked on April 3 (82%), which was the time of the first 

ASO flight. As mentioned earlier, peak snow accumulation could have been reached just prior to the time of this 

first flight at middle and lower elevations. However, snow pillow SWE indicates that the timing of the flight 430 

was adequate and most of the pillows peaked at or just prior to the flight (Figure 3). Similarly, later peak SWE 

was associated with higher elevations and northerly aspects and occurred over 17% of the basin. The same 

observation applies to WY 2014 (Figure S 3), although the distribution of peak around basin peak SWE was 

more evenly distributed with 19% peaking early, 52% peaking at the time of basin peak SWE (April 7), and 

28% peaking after. The residual values in these percentages correspond to water bodies and areas without 435 

information. 

3.5 Spatially Resolved Peak SWE 

The analyses above illustrate the large range of variability in the timing of peak SWE across a large headwater 

catchment, with the earliest peaks reached as far as two months prior to the latest peaks, albeit this variability 

greatly depends on each season’s weather patterns. Here, we discuss the differences between the spatially 440 

distributed peak SWE maps and SWE at the timing of basin peak SWE storage, as described in the Data and 

Methods section. 

During the drought year 2015, the smallest SWE differences (> 0 to 100 mm, red in Figure 12) are concentrated 

on the south-east facing slopes and middle elevations (2250 m – 3000 m). These differences increase with 

elevation and towards the northern aspects, with the largest differences (> 300 mm, green in Figure 12) 445 

markedly aligned with the northerly slopes. The total volume of these SWE differences amounts to 42 M m3 of 

water (23% negative bias relative to spatially resolved peak SWE – negative bias hereinafter), which would 

correspond to the amount of SWE volume that would be unaccounted for if a single snowpack snapshot is 

obtained at the date of basin peak SWE volume (March 6 in 2015, Figure 3). Furthermore, if a single snowpack 

snapshot is captured on April 3 (closest lidar survey date to the commonly used April 1), the total SWE volume 450 

unaccounted for would be 102 M m3 of water (56% negative bias). The estimates and statistics for this year 

must be given some special considerations because of the challenges of characterizing a single peak value and 

date because of the ephemeral nature of snowpacks during a drought year, with multiple accumulation and 

melting events throughout the season. 

 455 
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Figure 12. Difference between the spatially resolved peak SWE minus SWE at basin peak SWE storage 

(i.e., Figure 3a) for WY 2015. The locations in white have a SWE difference of zero (e.g., areas that peak 

at the same time as basin SWE storage or areas without snow accumulation during the surveys). “>” is 

used to indicate “greater than”. The area in red is 38 % of the basin area, in blue is 9.1 %, and in green is 460 

1.3 %. 

 

In the average WY 2016 (Figure 13) SWE differences tend to decrease with elevation, contrary to what was 

observed in 2015. Differences of less than 100 mm are concentrated at the highest elevations, but the aspect 

distribution is similar to that of the entire watershed (Figure 2a and b). Differences between 100 mm and 300 465 

mm are present in all aspects but predominantly along the southeastern slopes. Lastly, the largest differences (> 

300 mm) are observed predominantly on northerly slopes, although they cover a very small area (1.3 % of basin 

area). The total volume of these SWE differences amounts to 62 M m3 of water (9 % negative bias), which 

would correspond to the amount of SWE volume that would be unaccounted for if a single snowpack snapshot 

is obtained at the date of basin peak SWE volume (April 16 in 2016, Figure 3). If a single snowpack snapshot is 470 

captured on April 1, the total SWE volume unaccounted for would be 82 M m3 of water (12 % negative bias). 
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Figure 13. Same as Figure 12 but for WY 2016. The area in red is 40.6 % of the basin area, in blue is 17.7 

%, and in green is 1.3 %. 475 

 

In the snowiest WY 2017 (Figure 14), SWE differences have different and complex characteristics when 

compared to the driest and average years prior. The largest differences (> 300 mm, in green) are predominantly 

present both at low and high elevations, with a bimodal distribution with a low at the middle elevations around 

2500 m. The lowest differences (> 0 to 100 mm, in red) are concentrated between 2500-3000 m, although with a 480 

mild second mode at elevations around 1500 m. Similarly, differences between 100 and 300 mm are 

concentrated around the same elevations between 2500-3000 m, but the distribution does not have a second 

mode as the other two cases. When analyzed in parallel with the date of peak SWE (Figure 11), the lower 

elevation modes on these distributions are within the range that peaks earlier, while the higher elevation modes 

are located in areas that peak later than the timing of basin peak volume (April 1 in 2017). This indicates that 485 

early precipitation events delivered large amounts of snow at lower elevations, but melt was well underway by 

the time of peak basin snow volume (April 1). At the higher elevations, a second SWE peak occurred in 2017 

due to multiple late season precipitation events after April 1. Aspect distributions in 2017 do not show much 

variation between the three SWE difference ranges, with a signal that indicates little influence from aspect 

during this extreme snowiest year. The total volume of these SWE differences amounts to 149 M m3 of water (9 490 
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% negative bias), which would correspond to the amount of SWE volume that would be unaccounted for if a 

single snowpack snapshot is obtained at the date of basin peak SWE volume (April 1 in 2017, Figure 3). 

Lastly, WYs 2013 and 2014 (Figure S 4 and Figure S 5, respectively) show similar distribution patterns of peak 

SWE differences, with the areas with SWE differences greater than zero concentrated in the middle elevations 

(around 3000 m) and northerly and north-westerly aspects. However, the differences in WY 2014 increase with 495 

elevation and towards northerly aspects. This is partly due to the lack of early season flights in WY 2013, which 

impeded a better determination of the peak in areas that may have peaked earlier than the first flight. The total 

volumes of these SWE differences amount to 28 M m3 (7 % negative bias) and 27 M m3 (8 % negative bias) of 

water in WYs 2013 and 2014, respectively, which would correspond to the amount of SWE volume that would 

be unaccounted for if a single snowpack snapshot is obtained at the date of basin peak SWE volume (April 3 in 500 

2013, and April 7 in 2014, Figure 3). 

 

 
Figure 14. Same as Figure 12 but for WY 2017. The area in red is 26.4 % of the basin area, in blue is 28.8 

%, and in green is 11.8 %. 505 
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4 Discussion 

In this study, we have taken advantage of the ranging snowpack conditions during the period between WYs 

2013 and 2017 to characterize the spatial and temporal features of snow distribution (SWE) in a snow 

dominated headwater catchment of 1180 km2. There are many analyses of snow distribution from lidar and 510 

Structure from Motion (SfM) snow depths at similar or higher resolutions in the western US (Trujillo et al., 

2009, 2007; Trujillo and Lehning, 2015; e.g., Deems et al., 2006, 2008; Kirchner et al., 2014; Pflug and 

Lundquist, 2020; Meyer and Skiles, 2019), the Canadian Rockies (e.g., Pelto et al., 2019), the Alps (Grünewald 

et al., 2010, 2014; Schirmer et al., 2011; Schirmer and Lehning, 2011; Mott et al., 2011; e.g., Dadic et al., 

2010), the Andes (e.g., Mendoza et al., 2020; Shaw et al., 2020), and polar environments (Williams et al., 2013; 515 

Trujillo et al., 2016; Sommer et al., 2018; e.g., Petrich et al., 2012), among many others. However, no similar 

analyses have been performed with snow water equivalent and the combined spatial and temporal coverage 

herein. These aforementioned studies were focused on individual or a small number of snapshots of the snow 

distribution, and over smaller domains, in great part limited by the available datasets and the contemporary state 

of development of snow measurement technologies. 520 

There are many advantages in analyzing SWE instead of snow depth for hydrological purposes and water 

resources applications. SWE provides information about the water storage in headwater catchments, which 

cannot be inferred from snow depth alone; a spatial estimate of mean snow density is also required. Distributed 

SWE is necessary for examining how snowpack accumulation and melt varies throughout a watershed. 

Similarly, decreases in snow depth do not equate to snowmelt because bulk snow density increases translate into 525 

snow depth decreases without melt necessarily. The snowpack densification process is dynamic and ubiquitous 

throughout the snow season (Kojima, 1967, 1975; Bormann et al., 2013; Sturm and Holmgren, 1998; Mizukami 

and Perica, 2008). This can be easily appreciated when observing co-located time series of snow depth and 

snow density (e.g., snow pillows and ultrasonic snow depth sensors at SNOTEL stations), in which seasonal 

peak snow depth is generally reached at the same time or prior to peak SWE. Often, peak SWE levels can be 530 

maintained for an extended period of time until melting is initiated, as long as atmospheric losses (e.g. 

evaporation and sublimation) are minimal, while at the same time snow depth experiences a decreasing limb 

because of densification. In consequence, analyzing distributed lidar time series of snow depth (e.g., airborne 

lidar, TLS, SfM, or UAS based lidar) as a proxy for snowpack storage would not allow for an accurate 

assessment of the progression in snowpack storage, peak snow accumulation (SWE) and timing, and differential 535 

melt rates, all of which are features of snowpacks in headwater catchments. Here, although comprehensive, our 

analyses were limited to these spatiotemporal features of snowpack storage over the Tuolumne basin. 

The study period notably included the transition between one of the driest (WY 2015) to one of the wettest (WY 

2017) snow seasons in recorded history in the Sierra Nevada. Peak snowpack storage in the Tuolumne basin 

above the Hetch Hetchy reservoir ranged from 142 M m3 to 1467 M m3. Such a wide range in snowpack storage 540 

highlights hydroclimatic vulnerability in regions like California that depend on winter snowpacks as the 

principal water resource. The effects of such extremes in the region have been well documented from the dust 

bowl in the 1930s (Schubert et al., 2004; Hornbeck, 2012) to the extreme snow year 2017, during which 

infrastructure failure, such as the spillway damage in the Oroville Dam (Henn et al., 2020), threatened 

downstream communities. 545 
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Generally, SWE empirical distributions were unimodal and truncated at zero around peak accumulation, and as 

the melting seasons progressed, they showed a decaying function (Figure 4-Figure 6). Only in some years with 

late season precipitation events delivering snow at higher elevations (e.g., WY 2017), these distributions 

showed a second mode towards higher SWE values. These empirical distributions are similar to those of lidar 

snow depths in the Tuolumne at the same basin scale (Mason et al., 2019; Mason, 2020), and other mountain 550 

environments in smaller domains and at higher resolutions (< 50 m) (Mendoza et al., 2020). 

The elevational variations of both snow volume storage (Figure 7) and mean SWE (Figure 8) reflect the 

dynamics of accumulation and melt processes and the influence of basin morphology on snow storage. The 

general elevational increase in snow storage to a maximum at elevations between 2750-3250 m is a combination 

of the increase in SWE with elevation and the greater apportionment of basin area in those middle elevations. 555 

The increase in snow accumulations with elevation at distributed scales has been well established using lidar 

snow depths in mountain environments (Lehning et al., 2011; Grünewald et al., 2014; Kirchner et al., 2014; 

Trujillo et al., 2009). These studies have identified that snow accumulation (i.e., snow depth) increases with 

elevation to a maximum above which there is an observed decrease in accumulations. This decrease could be 

caused by cloud water depletion (Kirchner et al., 2014), and increases in snow redistribution by wind, 560 

sublimation and direct sun exposure above the tree-line (Grünewald et al., 2014; Trujillo et al., 2009). Other 

snow processes such as avalanching can also redistribute snow from higher to lower elevations affecting the 

snow distribution at these elevations (Mock and Birkeland, 2020). The elevational variations in snow volume 

and mean SWE at the Tuolumne Basin show similar maxima at the middle elevations and a subsequent 

decrease, although the maxima occur at different elevations for mean SWE because hypsometry is ignored by 565 

definition. 

Such elevational variations in water storage have implications for both the timing of the largest snowmelt pulse 

and the travel time of snowmelt inputs to the outlet of the basin. In the event of rain-on-snow (ROS) events, the 

storage in these middle elevations at the time of the event can be an important factor in resulting flows at the 

outlet. Luo and Harlin (2003) explored the relationship between basin hypsometry and hydrologic response 570 

using a theoretical travel time distribution approach, building on the previous work relating hydrologic response 

to basin morphology (Rodríguez-Iturbe et al., 1979; Gupta et al., 1980; Howard, 1990). In their approach, Luo 

and Harling (2003) relate the hypsometric curve (e.g., Figure 2d) to basin hydrologic response because the 

watershed geomorphology determines the distribution of potential energy. The potential energy can then be 

described by the hypsometry attributes when the hypsometric curve is treated as a cumulative probability 575 

distribution. Vivoni et al. (2008) later showed that basin hypsometry exerts control on surface and subsurface 

runoff partitioning. These works generally explore the hydrologic response to rainfall, and few examples exist 

of similar analyses in snow dominated watersheds. The results here further highlight the added complexity of 

runoff processes in snow dominated watersheds, with the hypsometry of the basin also partially controlling 

basin snow storage and snowmelt timing because of the relationships between elevation, snowfall and snowpack 580 

energetics. 

One of the main differences in the hydrology of snow dominated versus rainfall dominated watersheds lies in 

the process of differential snowmelt that dominates headwater catchments in the Sierra Nevada and other 

regions. This differential melting consists of partial surface water inputs from areas where snowmelt starts and 

stops as the season progresses and the snowpack depletes according to the local water and energy balances, 585 
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resulting in an elongated streamflow pulse over several weeks when compared to that caused by rainfall. In the 

Tuolumne Basin, this differential melting is evident in the elevational variations in snow volume (Figure 7) and 

mean SWE (Figure 8) as the season progresses, with slower and later melt at higher elevations. Few examples 

exist of analyses of these differential melting processes at distributed watershed scales and their relationship to 

hydrologic response. 590 

With the expansion of integrated lidar/modeling datasets like the one in this study, with full spatial coverage 

across a watershed and throughout the melt season, new analyses of the relationships between geomorphologic 

basin characteristics (e.g., hypsometry, river network structure, slope and aspects), basin snow storage, and 

hydrologic response will be possible for snow dominated basins. Some previous analysis based on snow and 

hydrological modeling include Comola et al. (2015), in which an artificial rotation of a 43 km2 snow dominated 595 

headwater catchment in the Swiss Alps was used to explore the effects of radiative fluxes and basin orientation 

on the hydrological response, based on results from the Alpine3D and Streamflow models. They concluded that 

the effects of these rotations, simulating changing shortwave inputs, became muted with increasing contributing 

area because aspect distributions stabilized regardless of basin orientation. Extending these types of analyses of 

the effects of basin morphology on snow storage, snow melt and the corresponding hydrologic response will 600 

become possible with accurate distributed snow measurements and improved models using data assimilation of 

distributed information (e.g., Hedrick et al., 2018b, 2020). 

The spatially resolved date of peak SWE (Figure 9-Figure 11 and Figure S 2-Figure S 3) explicitly demonstrates 

the large variability in the timing of peak SWE across a watershed of the size of the Tuolumne basin (1180 

km2). Accordingly, the assumption that peak SWE is reached at similar times across a watershed of this size 605 

should be carefully considered, given that the controlling processes in the mass and energy balances are highly 

heterogeneous in both time and space. This observation is also important to illustrate that the onset of melt, 

which is generally well represented by the timing of peak SWE (Trujillo and Molotch, 2014), is highly variable 

across headwater catchments with strong elevational gradients and clear aspects variations (Figure 2). 

Additionally, there are relevant implications about what the optimal timing of snow surveying should be to 610 

appropriately account for snow water storage in headwater catchments, both from in-situ measurements (e.g., 

snow courses and snow pillow stations) and remote sensing (e.g., airborne lidar or satellite sensors). This topic 

is particularly pertinent as federal, state, and local agencies (e.g., California Department of Water Resources 

(CDWR), NASA, Denver Water and many others) explore new and extended deployments of airborne and 

satellite snow measurement programs. These variations in the timing of peak and the onset of melt also have 615 

important implications for water managers and reservoir operators, as the variable timing of snow melt inputs 

will strongly affect decision making regarding when to hold, release and use water for energy generation. 

As the overarching goal of global snow monitoring gains traction thanks to the recent improvements in snow 

remote sensing and modeling, discussions focus on the optimal timing and frequency of satellite missions and 

airborne surveys (e.g., Hall and Vuyovich, 2020). Though it is now well-understood that spatial patterns of 620 

snow distribution are relatively consistent inter- and intra-seasonally (Sturm and Wagner, 2010; Deems et al., 

2008; Pflug and Lundquist, 2020; Schirmer et al., 2011; Schirmer and Lehning, 2011), this work shows that a 

single survey is inadequate for capturing the evolving nature of SWE storage throughout the year. Figures 9-11 

show that if one survey was used near the date of peak SWE, a significant portion of water that has already 

melted or has yet to accumulate would not be accounted for due to hypsometric and climatologic factors. 625 
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Though this study only concerns snapshots of the ever-evolving SWE distribution, we can see that at the very 

least, survey dates before, during, and after the date of peak SWE better constrain accumulation and melt 

process in this large basin. This approach is already being taken up by the California Aerial Remote Sensing of 

Snow (ARSS) program, which now requests three to five surveys at a minimum from ASO, Inc. for all of the 

basins throughout the Sierra Nevada. 630 

The spatially resolved date of peak SWE shows the wide range of variability in the timing of peak SWE across a 

watershed of this size (i.e., 1180 km2) across very different snow seasons. Interannually, snow accumulations in 

dry years can peak much earlier when compared to average or above average snow years (e.g., Figure 3), 

particularly in regions with the climatic variability of the Sierra Nevada region, even though the April 1 date of 

basin peak SWE volume appears to be representative on the average. Intra-seasonally, the date of peak SWE 635 

across a watershed can also vary by several weeks (e.g., Figure 9 versus Figure 11), with precipitation events 

and differential melting affecting the timing of peak SWE. We note here that the time intervals between flights 

add an inherent uncertainty to the dates of peak SWE of the order of half the interval (e.g., ± a few days or one 

week). 

Consequently, these results bring up the following question: What are the limitations of obtaining a single 640 

remote sensing survey of the snowpack at or around the time of maximum basin snow storage? It is clear from 

this study that a single survey does not adequately capture the evolving nature of SWE storage throughout the 

year. The spatially resolved peak SWE analysis (Figure 12-Figure 14, and Figure S 4 and Figure S 5) shows that 

a single survey around peak SWE, although representative of peak basin snow volume, would lead to an 

underestimation of spatially resolved peak SWE across the watershed. This underestimation was between 27 M 645 

m3 and 149 M m3, corresponding to negative biases between 7 % and 12 % for about average to extremely 

snowy water years (2013-2014, 2016-2017). For the special case of the extreme drought year 2015, which 

exhibited multiple snow accumulation and melt cycles throughout the snow season, this underestimation ranged 

widely between 42 M m3 and 102 M m3 (23 % and 56 % negative bias), depending on the lidar survey date. 

However, the interpretation of these results during drought years with multiple accumulation and melt cycles 650 

should be given special consideration since the snowpack has multiple local SWE maxima throughout the 

season.  

This underestimated volume can be thought of as the portion of water that has already melted or has yet to 

accumulate at the time of peak basin storage (e.g., April 1). A single peak SWE survey would limit the 

characterization of snow distribution patterns that can be used to inform snow, atmospheric and hydrological 655 

models (e.g., snowpacks at lower elevations that melt out prior to an April survey). Though this study only 

concerns snapshots of the temporally dynamic SWE distribution, it reveals that survey dates before, during, and 

after the date of peak SWE better constrain accumulation and melt process in this large basin. In fact, the 

California Aerial Remote Sensing of Snow (ARSS) program at the Department of Water Resources (DWR) is 

now operationally implementing this approach by annually requesting three to five surveys at a minimum from 660 

ASO, Inc. for all of the basins throughout the Sierra Nevada. Lastly, as with any technology, there are tradeoffs; 

more frequent airborne surveys can be associated with higher costs, or in the case of satellite missions, higher 

spatial resolutions can be associated with lower temporal resolutions. Our results provide insights into some of 

these tradeoffs when obtaining distributed measurements in headwater catchments. 

https://doi.org/10.5194/egusphere-2025-3736
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

5 Conclusions 665 

In this study, we present a comprehensive analysis of the spatial and temporal dynamics of snow distribution in 

a headwater catchment in the Sierra Nevada, California. Located above Hetch Hetchy Reservoir, the Tuolumne 

River Basin contains a contributing area of 1180 km2 and an elevational range from 1150 m to 4000 m. The 

dataset used is the product of ASO lidar snow depths and iSnobal modeled snow densities at 50-m resolution for 

the water years 2013-2017. A direct insertion approach is used in the model to constrain the snow depth 670 

distribution to the lidar observations. 

The integrated SWE dataset analyzed in this study, where the snow depth component of SWE is periodically 

constrained by aerial lidar, is an alternative to statistical approaches that relate SWE to snow depth from 

historical station data or combine interpolated snow depths and snow densities across a landscape. With the 

continuing pursuit of improvements in remote sensing of snow properties in forested and mountainous terrain 675 

(e.g., NASA SnowEx (https://snow.nasa.gov/campaigns/snowex) and beyond), this study describes how high-

resolution snow models, when combined with periodic remote sensing products, can be used to analyze 

distributed SWE information over larger domains and mountain ranges, and throughout both accumulation and 

ablation seasons. 

The study period includes the progression from one of the driest to one of the snowiest years on record in the 680 

California Sierra Nevada, illustrating the wide range in snowpack water storage and snowpack dynamics that the 

region experiences. The analysis demonstrates how the distribution of SWE in a headwater catchment evolves 

throughout the season, with empirical probability distributions over the catchments varying from unimodal and 

bimodal distributions to decaying distributions towards the end of the snow seasons. Snowpack water storage is 

greatest at the middle elevations (2750-3250 m) because of the combined increases in snow accumulation and 685 

larger proportions of the basin area concentrated at these elevations. Lower, middle, and higher elevations 

contribute to streamflow at different times in the season, as spring melt is initiated at later times with increasing 

elevation and snowmelt rates vary largely across the gradient. The date of peak SWE also varies largely across 

the basin and between years, illustrating that a single point-in-time definition of peak SWE timing (e.g., April 1) 

does not capture the temporal dynamics over a headwater catchment of this size. It follows from this observation 690 

that a single distributed snow survey at or around the date of basin peak SWE volume would likewise not 

capture peak snowpack conditions across the watershed and would lead to an underestimation of the amount of 

snowmelt water that would contribute to streamflow and the soil and aquifer system in a given year. For WYs 

2013-2017, this underestimation for the Tuolumne Basin ranges between 27 and 149 M m3, corresponding to 

negative biases between 7 % and 12 % of peak snowpack storage. 695 

Results from this study provide insights into the type of data needed to advance our current understanding of 

snowpack dynamics in regions where snowpack water resources are critical. Quantifying the effects of the large 

meteorological variability in the Sierra Nevada region on water resources requires frequent and accurate 

snowpack estimates, with spatial and temporal resolutions capable of resolving the natural variability in 

complex terrain. The need for these types of datasets and the novel research that they provide is becoming 700 

increasingly evident, as these critical regions are exposed to frequent snow droughts, floods and large forest 

fires, among other disturbances, that have major impacts on ecosystems and societies. This analysis improves 

reservoir operations through understanding where the snow is and when it melts, supports decision making in 

the experimental design and operational deployment of airborne and satellite missions for snow mapping, and 
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provides opportunities to enhance ground survey design and planning for water supply forecasting. Similar 705 

analyses across different regions will be particularly relevant to support future global snow mapping efforts. 
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Supplementary Information 
 

Figure S 1. Dates of peak SWE per elevation bands across the full basin elevational gradient. 1005 

 

Figure S 2. Spatial organization of peak SWE across the Tuolumne basin for WY 2013. For simplicity, 

the locations in which peak SWE is reached prior to the date of basin peak SWE storage (i.e., Figure 3a) 

are in red, at basin peak SWE storage in blue, and later than basin peak SWE storage in green. Aspect 

and elevation distributions in these three categories are also shown following the same symbology. For 1010 

WY 2013, early peaks were not detected because the lidar flights did not covered a period prior to 2013-

04-03. “<” is used to indicate “earlier than”, and “>” is used to indicate “later than”. 

 

Figure S 3. Same as Figure S 2 and Figure 9-Figure 11 but for WY 2014. 

 1015 

Figure S 4. Difference between the spatially resolved peak SWE minus SWE at basin peak SWE storage 

(i.e., Figure 3a) at the Tuolumne Basin for WY 2013. The locations in white have a SWE difference of 

zero (i.e., areas that peak at the same time as basin SWE storage or did not accumulate any snow). “>” is 

used to indicate “greater than”. The area in red is 10.3 % of the basin area, in blue is 5.2 %, and in green 

is 1.9 %. 1020 

 

Figure S 5. Same as Figure S 4 and Figure 12-Figure 14 but for WY 2014. The area in red is 26.7 % of the 

basin area, in blue is 5.1 %, and in green is 0.9 %. 
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