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1. Abstract 

Landslides hinder sustainable development in mountain regions, threatening livelihoods and 
impacting linear and water infrastructure. Susceptibility maps are a common tool for estimating 15 
and managing landslide hazards, exposure, and risks. Yet, susceptibility maps omit hillslope 
connectivity, a critical shortcoming for mapping the magnitude of landslide hazards, including 
cascading hazards from slope failure and downslope runout. Herein we propose the COHESION 
(COnnected HillslopE SusceptibIlity for slOpefailure and ruNout) approach to couple susceptibility 
mapping with an assessment of hillslope connectivity to identify downslope-connected landslide 20 
objects (LSOs) and associated runout pathways. As we demonstrate for the Kaligandaki basin in 
Nepal, analyzing LSOs enables estimating the magnitude of slope failures in terms of mobilized 
sediment volume and to quantify additional impacts from landslide runout. After calibration 
using a remotely sensed landslide inventory, we find that 16 % of the basin’s slopes are 
susceptible to failure, while an additional 9 % of the basin area is impacted by runout. Around 33 25 
% of buildings and 65 % of roads in the basin are on susceptible slopes, while more than 27 % of 
buildings and 69 % of roads are in landslide runout pathways. Omitting runout from landslide 
assessments would thus result in a major underestimation of risk. Our results emphasize the 
importance of connectivity for slope stability modeling on landscape scales, leading to improved 
assessments of slope hazards and management of river basin sediments.  30 

2. Introduction 

Like through a magnifying glass, the world’s mountain regions epitomize challenges for sustainable 
human development (Grumbine and Xu, 2021). Mountain ranges cover 13 % of the worlds surface, are 
home to a large and growing human population (Thornton et al., 2022), support many more through their 
role as “water towers of the world” (Immerzeel et al., 2020), and harbor outstanding biodiversity (Ly et 35 
al., 2023). Yet, human development in mountain regions lags lowlands.  
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Landslides are a significant hindrance for human development and reflect many of the unique 
development challenges of mountain regions (Emberson et al., 2022; Marc et al., 2023). While landslides 
are a natural part of the evolution of mountain landscapes, they turn into significant natural hazards when 
they intersect with human populations. Worldwide, it has been estimated that at least 4600 people per 40 
year lost their lives in landslides between 2004 and 2010 (Petley, 2012). Even when no lives are lost, 
landslides are highly disruptive for socio-economic activities and human development. Landslides destroy 
croplands and impact infrastructure. Notably, roads (Mey et al., 2023; Meyer et al., 2015) and other linear 
infrastructure such as power lines are vulnerable to landslides (Emberson et al., 2020), impeding access to 
education, markets, medical care, and energy security. As landslides contribute sediment to rivers, their 45 
occurrence impacts downstream water infrastructure, such as dams and hydroelectric powerplants (Fort et 
al., 2010; Schwanghart et al., 2018), with repercussion for sectors such as irrigation and hydropower.  

Slope failures and the resulting landslides are natural processes, but human activities increase their 
occurrence across scales. On global scales, a warming climate increases the probability of extreme 
precipitation events that can trigger shallow landslides (Gariano and Guzzetti, 2016). On regional scales 50 
deforestation and climate-driven changes in vegetation can increase landslide occurrence, as vegetation 
support soils with their root system (McGuire et al., 2016; Sidle et al., 2006a, b; Swanson and Dyrness, 
1975). On local scales, road construction is notorious for causing landslides because of road impacts on 
slope hydrology and statics (McAdoo et al., 2018; Sudmeier-Rieux et al., 2019; Vuillez et al., 2018). 
Landslide risks for roads are thus a prime example for how humans are both impacted by, and drivers 55 
behind, increases in natural hazards and associated risks.  

Managing the impacts of landslides is best addressed by a two-pronged approach. On the one hand, better 
planning can reduce exposure, for example by avoiding landslide-prone zones when developing 
infrastructure or settlements. On the other hand, there are opportunities for reducing hazards. For instance, 
roads can be constructed with better drainage and cut-and-fill slopes can be stabilized with grey 60 
engineering or nature-based solutions. Proactive land use policies can help to encourage reforestation in 
landslide-prone areas. Such nature-based solutions can create co-benefits for people and nature, and the 
reduction of landslide hazards often motivates sustainable land use planning in mountain regions (Sidle et 
al., 2006b; Vogl et al., 2019a). Understanding landslide hazards and exposure is thus of relevance for 
disaster awareness and prevention and is critical for sustainable human development in the world’s 65 
mountain regions.  

The numerical modeling of landslides has a long legacy, yet significant gaps remain in bringing the 
conceptual understanding of hillslope processes into landscape-scale slope stability assessments. Such 
assessments would be critical for landslide management and for understanding the contribution of 
mountain ecosystems to reducing landslide hazards. Finite elements and similar methods are now 70 
commonly used to study slope stability for individual slopes (Holcombe et al., 2012; Thiebes et al., 2014; 
Wilkinson et al., 2002). Despite numerical advances, such approaches remain computationally very 
demanding and require a large amount of data regarding sub-soil properties and slope hydrology, which 
are challenging to collect even for a single slope (see, e.g., reviews in (Intrieri et al., 2019; Jiang et al., 
2022)). Thus, those approaches are not suitable to inform larger-scale studies of hazards, risks and 75 
adaptation opportunities, particularly in data-scarce regions. For regional scales, susceptibility mapping 
approaches abound, as evidenced by the fact that a search on Web of Science revealed 150 review articles 
for “landslide susceptibility” since 2010. Broadly, susceptibility mapping approaches fall into two classes. 
Firstly, statistical methods, including machine learning (Huang and Zhao, 2018; Zhang et al., 2023), can 
be used to link observed slope failures to environmental covariates (e.g., soil characteristics, landuse 80 
legacy, and precipitation) and to extrapolate observations to larger scales. Secondly, “factor of safety” 
(FOS) models are based on the Mohr Coulomb failure criterion for infinite slopes as a measure landslide 
susceptibility that can be readily calculated with globally available data (Dietrich et al., 1995; 
Montgomery David R. and Dietrich William E., 2010; Vanacker et al., 2003).  
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Common susceptibility mapping approaches lack consideration of hillslope connectivity, a significant 85 
shortcoming, which impedes the understanding and management of landslide risk. Typically, 
susceptibility maps are derived in a gridded model domain (“rasters”) consisting of individual grid cells. 
Susceptibility values are then determined for each of the individual cells. The resulting maps represent the 
distribution of landslide hazards in a spatially continuous grid, but do not consider the connectivity 
between adjacent grid cells. This seemingly minor technical distinction has major implications for 90 
management and science.  

Landscapes are highly connected systems (Heckmann et al., 2015; Heckmann and Schwanghart, 2013). 
This is obvious for landslides, where the failure of one part of a hillslope (represented as a cell) could 
trigger the failure of surrounding cells. Without considering connectivity, the ability to estimate two 
parameters that are critical for estimating landslide hazards remains limited. Firstly, the mass mobilized in 95 
a landslide has been shown to exponentially increase with the size of the slope failure (Larsen et al., 2010) 
An increased area of connected slope failures will thus exponentially increase the hazard, and will limit 
opportunities for mitigation (smaller landslides are more readily addressed with engineered or nature-
based solutions). Secondly, runout from an upslope landslide might reach lives and livelihoods even if 
those locations are not at risk of slope failure. This mechanism of exposure is not considered in common 100 
susceptibility mapping approaches, notably because calculating runout pathways would require 
information on both hillslope connectivity and the initial mass of a landslide (Fan et al., 2017; 
Rickenmann, 2005)  

Herein we set out to develop a connectivity-based approach that is compatible with common approaches 
for large-scale susceptibility mapping in data-scarce regions. The objective of this work is to demonstrate 105 
how concepts of connectivity, now widely used for hillslope (Heckmann et al., 2015; Heckmann and 
Schwanghart, 2013) and fluvial (Czuba and Foufoula-Georgiou, 2014; Schmitt et al., 2016) processes, can 
be applied to landslide assessments. We demonstrate of application for a major river basin in Nepal, 
because Nepal is amongst the countries where landslides are most destructive, with 78 fatalities per year 
reported on average from 1978-2005 (Petley, 2012).  110 

Our framework is based on globally available data, except for remote sensing data on observed landslides 
(Marc et al., 2018, 2019a) which we use for model verification. In a nutshell, our framework uses single-
cell probabilistic approach to slope stability (how likely a cell is to fail given the observed precipitation 
regimes) similar to other susceptibility mapping approaches (Vanacker et al., 2003). We then use 
geomorphic terrain analysis (Schwanghart and Kuhn, 2010) to group susceptible cells into downslope-115 
connected groups, or landslide objects (LSOs) a term we borrow from image classification for landslide 
detection (Ghorbanzadeh et al., 2022)). For each LSO, we calculate magnitude (i.e., volume and mass), 
failure probability, and delineate the runout pathway. Finally, we overlay information on buildings and 
roads, derived from Open Street Maps (OpenStreetMap contributors, 2017), to estimate exposure and risk 
for people and livelihoods.  120 

We propose that combining susceptibility maps with connectivity-based assessments is a relatively 
straightforward and scalable way to improve the usefulness of susceptibility mapping, with applications 
ranging from creating disaster awareness, studying future risks under different landuse and climate 
scenarios to designing nature-based solutions for landslide control. These insights can be useful for 
managing landslide risk and the associated impacts on human livelihoods in mountain regions around the 125 
world.   

3. Study Area 

Our study area, the Kaligandaki basin, lies in the Nepal Himalayas with elevation ranging from 504 m to 
8144 m. Rainfall mostly occurs in the monsoon season (June-September) with average of about 500 
mm/year near Tibetan plateau to 2000 mm/year in Himalayas (Struck et al., 2015). The 7600 km² expanse 130 
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of the Kaligandaki Basin spans seven districts of central Nepal namely Mustang, Myagdi, Baglung, 
Parbat, Syangja, Kaski and Gulmi with total population exceeding half a million (Nepal Population and 
Housing Census 2021). Total road network length, as mapped from OpenStreetMap is 6093 km 
(OpenStreetMap contributors, 2017) with additional roads under construction. There are 54 present and 
planned hydropower projects in this region with a total capacity of 1853 MW, of which hydropower 135 
projects producing a total of 172 MW are currently operational (Nepal Hydropower Portal, 2025).  

 

 

Figure 1: Map of the study area, comprising the Kaligandaki Watershed in Nepal. A: elevation and general location of the 
Kaligandaki basin. Panels B and C show available information on building footprints (B) and roads (B). Road and 140 
building footprint layers © OpenStreetMap contributors 2025. Distributed under the Open Data Commons Open 
Database License (ODbL) v1.0. 

Since 2010, the Kaligandaki region alone has experienced over 400 larger landslides, resulting in 206 
deaths, the destruction of 201 houses, and infrastructure damages totaling around 57.5 million Nepalese 
Rupees, around 400,000 USD (National Disaster Risk Reduction and Management Authority, 2025). 145 
However, national databases might significantly underestimate both the frequency of landslide incidents 
and the associated losses. For instance, Marc et al. (2019) recorded over 1,000 landslides in a smaller area 
within the Kaligandaki region from 2010 to 2015, which contrasts sharply with official records. Because 
of the fragile geology, triggering factors like earthquakes and heavy rainfall, and anthropogenic activities 
like road construction, the number of landslide incidents has been escalating in recent years in Nepal (Kc 150 
et al., 2024; McAdoo et al., 2018).  
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4. Methods 

Herein we introduce an approach to evaluate slope susceptibility based on the Mohr Coulomb failure 
criterion, and stochastic analysis of precipitation events (sections 4.1 – 4.3). We then couple the resulting 
maps of pixel-level susceptibility with an assessment of hillslope connectivity, resulting in the 155 
COHESION (COnnected HillslopE SusceptibIlity for slOpefailure and ruNout) model (section 4.4), 
which builds on ideas laid out by some of us in an earlier report (Vogl et al., 2019a, b; World Bank., 
2019). The COHESION model translates pixel-level maps of slope susceptibility into information on the 
size of a slope failure (section 4.5), the resulting downslope runout (section 4.6). This information can 
finally be used to assess risks to infrastructure (section 4.7). Finally, we present how we calibrated and 160 
benchmarked the model with remotely sensed landslides from the Kaligandaki watershed from Marc et al. 
(2019a), Figure 2). 

  

 

Figure 2: Combining susceptibility mapping and hillslope connectivity into a framework for evaluating landslide risk 165 
(COHESION: COnnected HillslopE SusceptibIlity for slOpefailure and ruNout). Boxes detail the workflow and the 
section in which the methods are described. The result is a wider perspective on landslide risks, including landslide 
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magnitude and runout, than what would be possible by susceptibility mapping approaches that do not consider 
connectivity. Note that different methods can be used for pixel-level susceptibility assessments.  

4.1. Factor of safety (FOS) based susceptibility mapping  170 
At large scales, landslide susceptibility is often evaluated by assessing the stability of individual grid cells 
within a digital elevation model (DEM) using the Mohr–Coulomb failure criterion (Dietrich et al., 1995; 
Huang and Zhao, 2018; Montgomery David R. and Dietrich William E., 2010; Vanacker et al., 2003). 
Under the assumption of an infinite slope with a shallow, planar failure surface parallel to the ground, 
slope stability is measured through the factor of safety, defined as the ratio between the available shear 175 
strength, 𝜏𝜏𝑖𝑖, and shear stress, 𝜏𝜏𝑚𝑚,𝑖𝑖, (where 𝑖𝑖 denotes a cell in a DEM) 

𝐹𝐹𝑆𝑆𝑖𝑖 =
𝜏𝜏𝑖𝑖
𝜏𝜏𝑚𝑚𝑚𝑚

 

A cell is considered susceptible to failure when its factor of safety falls below one (𝐹𝐹𝑆𝑆𝑖𝑖 < 1). When 
expanding numerator and denominator, 𝐹𝐹𝑆𝑆𝑖𝑖 is 

 𝐹𝐹𝑆𝑆𝑖𝑖 =
𝑐𝑐𝑖𝑖 + 𝛿𝛿𝑐𝑐𝑖𝑖 + (𝛾𝛾𝑠𝑠 − 𝛾𝛾𝑤𝑤 ∗ 𝑚𝑚𝑖𝑖) ∗ 𝑧𝑧𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙 

𝛾𝛾𝑠𝑠 ∗ 𝑧𝑧𝑖𝑖 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖
 180 

1 

Parameters used in this calculation are soil cohesion (𝑐𝑐𝑖𝑖 , [kPa]), added cohesion because of plant roots 
(𝛿𝛿𝛿𝛿𝑖𝑖, [kPa]), unit weight of soil (𝛾𝛾𝑠𝑠, [kN/m3]), unit weight of water (𝛾𝛾𝑤𝑤 , [kN/m3]), soil water saturation 
(𝑚𝑚𝑖𝑖, [ − ]), soil depth (𝑧𝑧𝑖𝑖, [m] ), slope (𝛼𝛼𝑖𝑖 , [°]), soil angle of fricvtion (𝜙𝜙 , [°]).  

In this formulation, some parameters are treated as spatially uniform constants, while others vary between 185 
cells to reflect local conditions within the catchment (the latter are identified by the subscript 𝑖𝑖). 

It should also be noted that many assessments of slope susceptibility use a global value for 𝜙𝜙𝑖𝑖. However, 
recent studies suggests that a relative, rather than an absolute slope angle matters most for landslide 
susceptibility (Marc et al 2018, Milledge et al., 2019, Emberson et al., 2022). These studies suggest that 
local ground strength (characterized by cohesion and internal angle of friction) may scale with the local 190 
slope angle, so that soils on steeper slopes are characterized by higher values of cohesion and internal 
angle of friction so that .  

𝜙𝜙𝑖𝑖 = 𝑏𝑏 ∗ 𝛼𝛼𝑖𝑖 

2 

Here 𝑏𝑏 is a constant that can be used for model calibration while 𝜙𝜙𝑖𝑖 varies as a function of the local slope 195 
angle 𝛼𝛼𝑖𝑖. Such scaling was required to, e.g., produce meaningful results when modelling shallow 
landslides caused by the monsoon in Nepal (Burrows et al., 2023).  

 

4.2. Hillslope hydrology 
 200 

Soil water saturation varies over in response to local infiltration, subsurface inflow from the upslope 
contributing area and the spatial and temporal patterns of precipitation. A common way to approximate 
water saturation 𝑚𝑚𝑖𝑖 over extended periods and on large scales is to assume steady-state hydrological 
conditions. (Montgomery David R. and Dietrich William E., 2010). The local soil saturation can be 
derived from  205 
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𝑚𝑚 =  
𝑞𝑞𝑖𝑖 ∗ 𝐴𝐴𝐷𝐷,𝑖𝑖

𝐵𝐵𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖
  

3 

(O’Loughlin, 1986). 𝑞𝑞𝑖𝑖 is the specific subsurface flow into 𝑖𝑖 [m/s]. 𝐴𝐴𝐷𝐷,𝑖𝑖 is the contributing upslope area 
[m2], 𝐵𝐵𝑖𝑖 denotes the side length of 𝑖𝑖 [m] which equals the DEM resolution, while the transmissivity 𝑇𝑇𝑖𝑖 is 
defined as  210 

𝑇𝑇𝑖𝑖 = 𝐾𝐾 ∗ 𝑧𝑧𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

4 

[m2/s], where 𝐾𝐾 is the hydraulic conductivity [m/s]. Conceptually, equation 3 compares the 
incoming subsurface water from the contributing area to the soil’s ability to conduct water at the 
downslope edge of the cell. 215 

In equation 3, 𝑞𝑞𝑖𝑖 can be derived from a water balance considering for upslope precipitation 𝑝𝑝 
minus evapotranspiration (𝐸𝐸𝐸𝐸) and surface runoff (𝑄𝑄𝑅𝑅) (all in meters)  

𝑞𝑞𝑖𝑖 ∗ 𝐴𝐴𝐷𝐷,𝑖𝑖 = 𝑄𝑄𝑖𝑖 = � (𝑝𝑝𝑗𝑗
𝑗𝑗∈𝐴𝐴𝐷𝐷𝑖𝑖

− 𝐸𝐸𝑇𝑇𝑗𝑗 − 𝑄𝑄𝑅𝑅,𝑗𝑗 − 𝑄𝑄𝐷𝐷,𝑗𝑗) ∗ 𝐵𝐵𝑗𝑗2  

5 

Herein, we estimate evapotranspiration from gridded global reference evaporation (𝐸𝐸𝑇𝑇0) and a landcover 220 
coefficient, 𝑘𝑘𝑓𝑓, so that  

𝐸𝐸𝑇𝑇𝑖𝑖 = 𝐸𝐸𝑇𝑇0𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑖𝑖  

6  

 

Lastly, 𝑄𝑄𝑅𝑅,𝑗𝑗,𝑄𝑄𝐷𝐷,𝑗𝑗 and denote surface runoff, and deep percolation, i.e., water that is not contributing to 225 
soil water saturation. While we do not account for deep percolation,. We use Kent’s (1973) curve 
number model to estimate surface  

𝑄𝑄𝑅𝑅,𝑖𝑖 =  �
(𝑝𝑝𝑖𝑖 − 0.2𝑆𝑆𝑖𝑖)2

𝑝𝑝𝑖𝑖𝑖𝑖 + 0.8𝑆𝑆𝑖𝑖
0

𝑖𝑖𝑖𝑖 𝐼𝐼𝑎𝑎,𝑖𝑖 < 𝑝𝑝𝑖𝑖   

7 

with 230 

𝑆𝑆𝑖𝑖 =
1000
𝐶𝐶𝑁𝑁𝑖𝑖

− 10 

8 

and  

𝐼𝐼𝑎𝑎,𝑖𝑖 = 0.2 ∗ 𝑆𝑆𝑖𝑖 
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9 235 

𝐶𝐶𝑁𝑁𝑗𝑗 reflects local land use and soil properties and is documented extensively in standard engineering 
references and textbooks (Rawls et al., 1992)..  

4.3. Factor of safety calculations under consideration of rainfall probabilities  
The values of many parameters of the factor of safety equation (equation 1), such as slope or soil depth,  
vary in space, but not in time over management-relevant timespans. In contrast, soil moisture fluctuates 240 
not only in space, but also in time in response to precipitation events. Herein, we consider for the spatio-
temporal variability in soil moisture through a statistical approach. Specifically, we solve equation 1 for 
𝑚𝑚𝑖𝑖  

 

 245 

𝑚𝑚𝑖𝑖 = �
𝐹𝐹𝑆𝑆𝑖𝑖 ∗ 𝜏𝜏𝑚𝑚,𝑖𝑖 − (𝑐𝑐𝑖𝑖 + 𝛿𝛿𝑐𝑐𝑖𝑖)
𝑧𝑧𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑖𝑖

− 𝛾𝛾𝑠𝑠,𝑖𝑖�
1

−𝛾𝛾𝑤𝑤
 

10 

 

with that we can solve for condition of 𝐹𝐹𝑆𝑆𝑖𝑖 ≤ 1, i.e., when slope failure will occur. Equation 10 can then 
be used to define a threshold saturation, 𝑚𝑚𝑖𝑖

∗, at a value of 𝐹𝐹𝑆𝑆𝑖𝑖 = 1  250 

𝑚𝑚𝑖𝑖
∗ = �

1 ∗ 𝜏𝜏𝑚𝑚,𝑖𝑖 − (𝑐𝑐𝑖𝑖 + 𝛿𝛿𝑐𝑐𝑖𝑖)
𝑧𝑧𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑖𝑖

− 𝛾𝛾𝑠𝑠,𝑖𝑖�
1

−𝛾𝛾𝑤𝑤
 

11 

Based on this, we then substitute 𝑚𝑚𝑖𝑖
∗ into equation 3  

𝑚𝑚𝑖𝑖
∗ =

𝑄𝑄𝑖𝑖∗

𝑏𝑏𝑖𝑖𝑇𝑇𝑖𝑖
 

12 255 

to define a threshold subsurface flow  

𝑄𝑄𝑖𝑖∗ 𝑚𝑚𝑖𝑖
∗𝑏𝑏𝑖𝑖𝑇𝑇𝑖𝑖 = 𝑄𝑄𝑖𝑖∗ 

13 

(Vogl et al., 2019a, b; World Bank., 2019). 

Given that landslides in subtropical settings are generally triggered in the wet season (Dahal and 260 
Hasegawa, 2008) we define 𝑄𝑄𝑖𝑖∗ based on average wet season conditions as  

𝑄𝑄𝑖𝑖∗ = 𝑄𝑄𝚤𝚤� + 𝑄𝑄𝑖𝑖(𝑒𝑒)∗ 

14 

Here, 𝑄𝑄𝑖𝑖∗ is the threshold subsurface flow, 𝑄𝑄𝚤𝚤�  is the average antecedent subsurface flow during the wet 
season, and 𝑄𝑄𝑖𝑖(𝑒𝑒)  is the additional subsurface flow from a rain event 𝑒𝑒.  265 
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We then use the curve number approach and a water balance for cell 𝑖𝑖 to determine the threshold rainfall 
that would be required to reach the threshold soil moisture conditions during an event 𝑒𝑒, under 
consideration of average antecedent moisture conditions during an average wet season.  

𝑄𝑄𝑖𝑖∗(𝑒𝑒) = 𝑝𝑝𝑖𝑖 ∗(𝑒𝑒) − 𝐸𝐸𝑇𝑇𝑖𝑖(𝑒𝑒) −𝑄𝑄𝑅𝑅,𝑖𝑖(𝑒𝑒) 

15 270 

Thus,  

𝑝𝑝𝑖𝑖∗(𝑒𝑒) =  𝑄𝑄𝑖𝑖∗(𝑒𝑒) + 𝐸𝐸𝑇𝑇𝑖𝑖(𝑒𝑒) + 𝑄𝑄𝑅𝑅,𝑖𝑖(𝑒𝑒) 

 

 can be interpreted as the critical precipitation amount needed to trigger failure at cell 𝑖𝑖, given typical 
moisture conditions during an average wet season and the hydrologic partitioning of rainfall. Evaluating 275 
the likelihood of 𝑝𝑝𝑖𝑖∗(𝑒𝑒) being exceeded then depends on local rainfall characteristics. We assume that the 
annual precipitation maxima at cell 𝑖𝑖follow an extreme value distribution described as: 

𝑓𝑓(𝑝𝑝𝑖𝑖| 𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖) = 𝐸𝐸𝐸𝐸(𝑝𝑝𝑖𝑖) =
1
𝜎𝜎𝑖𝑖

 𝑒𝑒
𝑝𝑝𝑖𝑖−𝜇𝜇𝑖𝑖 
𝜎𝜎𝑖𝑖 𝑒𝑒

−𝑒𝑒𝑒𝑒𝑒𝑒��𝑝𝑝𝑖𝑖−𝜇𝜇𝑖𝑖𝜎𝜎𝑖𝑖
��

 

16 

𝑓𝑓(𝑝𝑝𝑖𝑖| 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖) denotes the probability of an event with precipitation 𝑝𝑝. 𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖 are the scale and location 280 
parameters of annual rainfall maxima . The corresponding cumulative distribution of 𝑝𝑝𝑖𝑖 is  

𝐹𝐹�𝑝𝑝𝑖𝑖�𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖� =  
1
𝜎𝜎𝑖𝑖

 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑒𝑒𝑒𝑒𝑒𝑒 �
𝜇𝜇𝑖𝑖 − 𝑝𝑝𝑖𝑖
𝜎𝜎𝑖𝑖

�) 

 

17 

Thus 𝐹𝐹�𝑝𝑝 < 𝑝𝑝𝑖𝑖∗�𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖� represents the cumulative probability that precipitation remains below 𝑝𝑝𝑖𝑖 . With 285 
that, the probability of failure for a specific cell becomes 

 

𝐹𝐹𝑖𝑖∗ = 1 − 𝐹𝐹�𝑝𝑝 < 𝑝𝑝𝑖𝑖∗�𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖� 

18 

Rainfall observations are usually collected at discrete gauge locations, whereas the proposed method 290 
requires 𝜇𝜇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑖𝑖 values for every grid cell 𝑖𝑖 in the model domain. To overcome this challenge, we 
estimated 𝜇𝜇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑖𝑖 for available precipitation gauge records in the Kaligandaki area. We then 
used Krigging to interpolate 𝜇𝜇𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑖𝑖  for each cell in the Kaligandaki basin (Figure 3). 

In summary, this approach accounts for several sources of spatial variability affecting slope stability: (i) 
natural differences in static controls such as slope gradient, soil cohesion, and friction angle; (ii) factors 295 
influenced by management, including local root reinforcement and vegetation-driven hydrologic changes 
at the catchment scale (as represented by changes in crop factors and curve numbers); (iii) temporal 
variation in soil moisture at seasonal and event scales, estimated via the curve number method; and (iv) 
spatial variation in extreme rainfall. Together, these components yield spatially distributed probabilities of 
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slope failure, expressed as the likelihood that conditions at cell 𝑖𝑖 roduce a factor of safety below one.300 

 

Figure 3: Extreme value distribution parameters (equation 21) for annual precipitation maxima across the Kaligandaki 
catchment, derived from gauge records (white squares) and interpolated to a continuous surface using kriging. This 
spatial dataset enables estimating the probability of exceedance for any rainfall threshold at the cell level. Connected 
slope failure assessments  305 

Slope failures are unlikely to be confined within the arbitrary limits of single raster cells. Understanding 
this spatial linkage is crucial for three reasons. (i) Because landslide volume increases nonlinearly with 
area, it is important to delineate contiguous clusters of unstable cells rather than treat each pixel in 
isolation (Larsen et al., 2010). (ii) Larger volumes increase runout distances, influencing how far debris 
will travel and what downslope assets may be affected (Rickenmann, 2005). (iii) Connectivity also 310 
determines whether mobilized material enters the fluvial sediment system, with implications for 
catchment sediment budgets and downstream infrastructure (Dow et al., 2024). Traditional pixel-based 
hazard maps cannot provide this information. We therefore present a method that groups individual, 
potentially unstable, cells into downslope-connected landslide objects (LSOs), and show how delineating 
LSOs enables estimating landslide volume and to delineating runout-prone zones. 315 

To derive LSOs, we firstly perform a classification of all cells according to their potential failure 
probability. The lowest risk of failure is when saturation is zero, i.e.,  

𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝑆𝑆𝑖𝑖) = 𝐹𝐹𝐹𝐹(𝑚𝑚𝑖𝑖 = 0)  

 On the opposite, the highest risk of failure is when soils are fully saturated  

𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝑆𝑆𝑖𝑖) = 𝐹𝐹𝐹𝐹(𝑚𝑚𝑖𝑖 = 1)  320 

Based on these criteria, each slope cell can be classified into one of three conditions: 

1) 𝐹𝐹𝐹𝐹(𝑚𝑚𝑖𝑖 = 0) < 1. These cells are unstable even when completely dry and therefore represent 
areas likely lacking a stable soil mantle.  

2) 𝐹𝐹𝐹𝐹(𝑚𝑚𝑖𝑖 = 1) > 1. These cells remain stable even under fully saturated conditions. 
3)  𝐹𝐹𝐹𝐹(𝑚𝑚𝑖𝑖

∗) ≤  1. These cells can become unstable only under certain soil moisture conditions. 325 
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We filter out all cells for conditions (1) and (2) because slope failure cannot occur for those cells. Instead, 
cells with condition (3) are potentially susceptible to failure (Figure 4 a, red cells). To delineate 
contiguous zones of instability, we then group conditionally unstable cells that are connected along the 
downslope flow direction using functions from TopoToolbox (Schwanghart and Kuhn, 2010). 

Each connected group of cells is treated as a single landslide object (LSO) and assigned a unique 330 
identifier 𝑘𝑘. A cell 𝑖𝑖 ∈ 𝐿𝐿𝐿𝐿𝑂𝑂𝑘𝑘 belongs to the landslide object k, which consists of 𝑛𝑛𝑘𝑘 cells. We then derive 
the properties of each 𝐿𝐿𝐿𝐿𝑂𝑂𝑘𝑘 based on the characteristics of its constituent cells. 

The next step is to estimate the joint probability that all cells within 𝐿𝐿𝐿𝐿𝑂𝑂𝑘𝑘 will fail. Because these cells are 
physically connected and exposed to similar rainfall forcing, their failure probabilities cannot be 
considered independent. We therefore assume that the overall failure probability of 𝐿𝐿𝐿𝐿𝑂𝑂𝑘𝑘 can be 335 
expressed as: 

𝐹𝐹(𝑘𝑘) =
∑ (1 −  𝐹𝐹�𝑝𝑝𝑖𝑖�𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖�𝑖𝑖∈𝑘𝑘 )

𝑛𝑛𝑘𝑘
 

19 

i.e., that the failure probability of 𝐿𝐿𝐿𝐿𝐿𝐿_𝑘𝑘 is the average of failure probabilities for all cells belonging to 
𝐿𝐿𝐿𝐿𝑂𝑂𝑘𝑘. This assumption could be replaced with alternatives, e.g.,  340 

𝐹𝐹(𝑘𝑘) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝑘𝑘

 �1 −  𝐹𝐹�𝑝𝑝𝑖𝑖�𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖�� 

20 
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his corresponds to a “weakest-link” assumption, meaning that failure of the entire slope is initiated once 
the most vulnerable cell fails.

 345 

Figure 4: Workflow for delineating connected landslide objects (LSOs) and estimating their failure probabilities. (a) 
Conditionally unstable cells are identified. (b) These cells are grouped into downslope-connected LSOs (shown in 
different colors). (c) Cell-scale failure probabilities (blue) are aggregated to the LSO level (green to red outlines).  

4.4. Estimating LSO volume  
Empirical studies show that landslide volume scales nonlinearly with landslide size. Using a global 350 
dataset of landslide scars, Larsen et al. (2010) derived a power-law relationship linking landslide surface 
area to the volume of mobilized sediment as:  

VLS = α ∗ ALS
γ  

21 

 with VLS and ALS being the volume [𝑚𝑚3] and the area [𝑚𝑚2] of a landslide. Based on a set of more than 355 
4000 observations, they found a best fit between Equation 21 with logα = 0.86 (i.e., α = 100.86 = 7.24) 
and γ = 1.322 with an R2 = 0.95.  

Using these definitions, the area of an LSO can be computed from the areas of its constituent cells 

ALSO,k = � 𝐵𝐵2
𝑖𝑖∈𝑘𝑘
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22 360 

Where 𝑏𝑏 is the side length of a cell in the DEM so that the volume of a LSO [m3] finally reads as  

VLSO,k = 7.24 ∗ ALSO,k
1.322  

23 

 

4.5. Calculating landslide runout  365 

As a final step, we relate landslide runout length to the volume of mobilized material. The distance 
traveled by debris is controlled both by landslide volume, which determines the available kinetic energy, 
and by slope gradient. Consequently, large failures on steep slopes generally produce longer runouts than 
small failures on gentle slopes. This relationship has been established through empirical studies 
(Rickenmann, 1999, 2005). Following the equations presented in Rickenmann (1999, 2005) we calculate 370 
runout downslope of an LSO as 

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟏𝟏.𝟗𝟗𝑽𝑽𝑳𝑳𝑳𝑳𝑳𝑳𝟎𝟎.𝟏𝟏𝟏𝟏𝑯𝑯𝑳𝑳𝑳𝑳𝑳𝑳
𝟎𝟎.𝟖𝟖𝟖𝟖 

24 

LLSO is the runout length and HLSO is the vertical drop between the starting point of runout (the lowest 
point of the landslide scar) and the downslope end point along the runout path (both in meters). These two 375 
quantities are not independent, as longer runout distances naturally involve greater vertical drops. In a 
gridded model, it is practical to evaluate the condition in Equations 30 sequentially for all cells along each 
potential downslope path. For every step downslope, both cumulative travel distance and vertical drop are 
updated. Runout is considered to terminate once the predicted runout length from Equations 30 becomes 
shorter than the remaining distance to the next downslope cell or as soon as the runout encounters a river.  380 

To perform this calculation, we first delineate all cells located between LSOk and the channel network, 
denoting this downslope runout path as γk. For any cell i ∈ γk , δHhi represents the elevation drop from 
LSOkto 𝑖𝑖 and δLh is the horizontal distance from LSOk to i. Moving along all cells in γ, we can then 
compute the cumulative L and H ratio at each cell (Figure 5). 
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 385 

Figure 5: Schematic of runout modeling in a gridded domain. Individual cells may lie on the runout paths (γ\gammaγ) of 
multiple landslides. The inset shows a longitudinal hillslope profile (A–B) illustrating how runout length is estimated 
using the empirical relationship of Rickenmann (2005).  

4.6. Calculation of risks to structure and roads 

When assessing risks from landslides, it is important to distinguish between calculating hazard for assets 390 
located on an LSO and for assets located on its runout path. Any given asset, such as a building or a road, 
can be only on a single LSO. Instead, runout paths of several different LSOs can overlap (Figure 5). For 
instance, suppose cell 𝑖𝑖 lies on the runout pathways of LSOs 𝑙𝑙,𝑚𝑚, and 𝑘𝑘. For this paper we adopt a “worst 
case” approach  

𝐹𝐹(ℎ) =  𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹

(𝑘𝑘, 𝑙𝑙,𝑚𝑚) 395 

25 

in which the runout hazard of a cell is defined by the maximum failure probability 𝐹𝐹 for any upslope 
LSO. 

4.7. Model verification and calibration  

Model verification and calibration was performed using the database of landslides from Marc et al. (2019) 400 
in the central part of the Kaligandaki area. This database consists of 1170 remotely sensed landslide scars 
observed in the period from April 2010 to October 2015.  

Direct comparison of the observational data and model results is challenging, because observational data 
capture only a brief snapshot of slope failures while our model represents long-term average failure 
probabilities, with probabilities estimated from 20 year long time series of precipitation (1985-2005 for 405 
most stations). We thus resort to comparing the distribution of failed slopes between model and 
observations. By doing so, we aim to measure if the model correctly represents the topographic locations 
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where slopes become unstable under the local precipitation regime. For this comparison, we firstly 
calculate the mean slope for all observed landslides and the modelled LSOs from the DEM. We then 
compare the distribution of observed and modelled slope failures through calculating the Kolmogorov–410 
Smirnov (KS) statistics as a measure for how similar the two distributions are (a KS value of 0 would 
indicate a perfect match, and a value of 1 would indicate increasing divergence).  

To study model sensitivity, we first ran our model by changing various uncertain parameters like soil 
density (𝜌𝜌𝑆𝑆), soil cohesion (𝑐𝑐), internal friction angle (𝜙𝜙) and hydraulic conductivity (𝐾𝐾). Notably, we 
focused on subsoil parameters that, while known to be spatially highly variable (Marc et al., 2019b), 415 
cannot be derived from remote sensing in a spatially distributed manner. Thus, single values from 
literature are used in general for larger-scale susceptibility assessments. We found that model results were 
most sensitive to 𝑐𝑐 and 𝜙𝜙, which we thus selected for further calibration.  

We also found that no combination of 𝑐𝑐 and a single value for 𝜙𝜙 led to satisfactory KS values. We thus 
adopted a model formulation where 𝜙𝜙 is a function of the local slope angle and global parameter, 𝑏𝑏. We 420 
then used 𝑏𝑏 as parameter for model calibration (see section 4.1 and equation 2).  

For calibration, we sampled a parameter space spanning parameter value from 1-10 for 𝑐𝑐 (in steps of 1) 
and from 0.6 - 1 for 𝑏𝑏 (in steps of 0.05). For each of the resulting 100 combinations we then calculated the 
KS value by comparing the mean slope of modelled and observed landslides.  

4.8. Data needs  425 

Table 1 lists the data required for the COHESION framework, as well as specific data sources used for 
the Kaligandaki watershed. It should be noted that the resolution of the model is determined by the 
resolution of the digital elevation model. In the case of Kaligandaki, many parameters were derived from 
global datasets with low resolution (1km at the equator). For those data, we deployed nearest neighbor 
resampling to match the DEM resolution of 30 m. Table 2 lists a full list of parameters and additional 430 
descriptions and references. 

Table 1: Data sources used in this paper  

Data Description Source 

Digital Elevation 
Model 

ASTER, 30m GeoTIFF ASTER (Earth Science Data Systems, 
2025) 

Land Use Land Cover National Land Cover/Land Use, 
2000, 30m GeoTIFF 

Nepal Department of Survey, 2000 

Soil Depth 1km GeoTIFF ISRIC Soil Grids: 
https://www.isric.org/explore/soilgrids 

Precipitation Gauged precipitation data 
(1985-2005)  

Department of Hydrology and 
Meteorology, Nepal 

Building Footprints Polygon shapefiles Open Street Map (OpenStreetMap 
contributors, 2017) 

Road Network Line and polygon shapefiles Open Street Map (OpenStreetMap 
contributors, 2017) 
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Observed Landslides 5m RapidEye Satellite imagery Marc et al. (2019) 

 

  

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

Table 2: List of parameter symbols, units, names, value sources and used values for this case study. Note that parameters 435 
for which the value source is empty (−) are calculated from other input parameters. The column “Global value” lists the 
numeric values for parameters that are considered constant across the model domain, a “−" in this column indicates that 
values are spatially distributed.  

Parameter Unit Name Value source  Global Value 

𝐴𝐴𝐷𝐷,𝑖𝑖  𝑚𝑚2 Upslope area Digital elevation model − 

𝐴𝐴𝐿𝐿𝐿𝐿 𝑚𝑚2 Landslide area − − 

𝐵𝐵𝑖𝑖  𝑚𝑚 Cell size Digital elevation model − 

𝐼𝐼𝑎𝑎,𝑖𝑖  𝑚𝑚/𝑑𝑑 Initial abstraction − − 

𝑄𝑄𝐷𝐷,𝑖𝑖  𝑚𝑚3/𝑑𝑑 Subsurface runoff  − − 

𝑄𝑄𝑅𝑅,𝑖𝑖  𝑚𝑚3/𝑑𝑑 Surface runoff − − 

𝑆𝑆𝑖𝑖  𝑚𝑚 Maximum soil 
moisture retention 

− − 

𝑇𝑇𝑖𝑖  𝑚𝑚2/𝑠𝑠 Transmissivity − − 

𝑐𝑐𝑖𝑖 𝑘𝑘𝑘𝑘𝑘𝑘 Soil cohesion  Calibration  − 

𝑚𝑚𝑖𝑖 − soil water saturation − − 

𝑝𝑝𝑖𝑖  𝑚𝑚/𝑑𝑑 Precipitation  − − 

𝑝𝑝𝑖𝑖∗ 𝑚𝑚/𝑑𝑑 Threshold precipitation − − 

𝑞𝑞𝑖𝑖  𝑚𝑚3/𝑑𝑑 Subsurface flow − − 

𝑧𝑧𝑖𝑖  𝑚𝑚 soil depth ISRIC soil grids − 

𝛼𝛼𝑖𝑖  − Slope angle Digital elevation model − 

𝛾𝛾𝑠𝑠 𝑘𝑘𝑘𝑘/𝑚𝑚3 unit weight of soil (Vanacker et al., 2003) 15.6 

𝛾𝛾𝑤𝑤 𝑘𝑘𝑘𝑘/𝑚𝑚3 unit weight of water (Vanacker et al., 2003) 9.81 

𝛿𝛿𝛿𝛿𝑖𝑖 𝑘𝑘𝑘𝑘𝑘𝑘 Root cohesion  (Dhakal and Sidle, 2003; McGuire et 
al., 2016; Sidle, 1991) 

2  

𝜇𝜇𝑖𝑖  − Location parameter 
extreme value 
distribution 

Local precipitation data, kriging − 

𝜌𝜌𝑆𝑆 𝐾𝐾𝐾𝐾/𝑚𝑚3  Soil density  (Vanacker et al., 2003) 1600 

𝜎𝜎𝑖𝑖  − Scale parameter 
extreme value 
distribution 

Local precipitation data, kriging − 

𝐻𝐻 𝑚𝑚 Vertical runout travel 
distance 

− − 
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𝑘𝑘 𝑚𝑚/𝑠𝑠 Saturated hydraulic 
conductivity 

Estimated average from Vanacker et 
al., 2003 

5e-5 

𝐶𝐶𝑁𝑁𝑗𝑗 − Curve number ISRIC soil grids − 

𝐸𝐸𝑇𝑇𝑗𝑗  𝑚𝑚/𝑑𝑑 Actual 
evapotranspiration 

− − 

𝐸𝐸𝐸𝐸0i 𝑚𝑚/𝑑𝑑 Reference 
evapotranspiration 

WordClim − 

𝐹𝐹𝑆𝑆𝑖𝑖  − Factor of safety − − 

𝑀𝑀 𝑘𝑘𝑘𝑘 Landslide mass − − 

𝑉𝑉 𝑚𝑚3 Landslide volume − − 

𝑏𝑏 − Scaling parameter  
𝛼𝛼𝑖𝑖 −  𝜙𝜙 relationship 

Calibration − 

𝜙𝜙 ° Internal angle of 
friction  

Calibration − 

 

5. Results  440 

In this section we provide three core results. Firstly, we describe the results of the model calibration, 
laying out the results and thus how parameters for further modeling were determined. Secondly, we 
discuss the patterns and probabilities of modelled landslides. Lastly, we present a high-level scenario 
analysis, demonstrating how the LSO framework can be used for evaluating changes in landslide 
occurrence and resulting hazards in response to changes in landscape management.  445 

5.1. Model sensitivity and calibration  

Only a small set of parameter values generates model results for which observed and modelled unstable 
slopes are in good agreement in terms of KS values (Figure 6 a). Specifically, we find that using a global 
value for 𝜙𝜙, i.e., the same 𝜙𝜙 everywhere, only results in acceptable KS values (around KS = 0.1) if we 
select very low values of 𝜙𝜙 (𝜙𝜙 < 5°) and very high values of c (c>8 kPa) (see dark blue area at bottom of 450 
Figure 6 c). We deemed that such low values of 𝜙𝜙 are not in good agreement with observational studies 
which usually place 𝜙𝜙 between 20° and 50° (Schellart, 2000; Schmidt and Montgomery, 1995).  

The alternative model formulation, where  
𝜙𝜙 = 𝑏𝑏 ∗  𝛼𝛼𝑖𝑖 

result in low KS values for a wider range of parameter values (𝑏𝑏 and 𝑐𝑐 in this case).There is some 455 
equifinality, as different combinations of b and c lead to similar, low KS values. These parameterization 
follow a diagonal, with either high values of b and low values of c, or low values of b and high values of c 
leading to similar results (see blue diagonal band of low KS values in Figure 6 b). Yet, we found that 
parameterizations at the top left of the parameter space Figure 6 b, e.g., b=0.95 and c = 2 kPa leads to 
very large fraction of slopes being unstable. We thus selected a value of b=0.65 and c = 5 kPa as final 460 
parameterization for the model, a combination that resulted in a low KS values (KS= 0.10). Figure 6 d 
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shows the resulting cumulative distribution of modelled unstable slopes, compared to the cumulative 
distribution of slopes for observed slope failures.  

 

Figure 6: Model sensitivity analysis and calibration, by comparing the observed and modelled distributions of unstable 465 
slopes. Observations and model results are compared by means of the KS statistic. a) results for models with a single 
global value of 𝝓𝝓, and for models where 𝝓𝝓 is coupled to 𝜶𝜶 via a constant (𝒃𝒃), in both panels, colors show the KS values for 
different combinations of parameters. (c) and (d) highlight the comparison between observed and modelled cumulative 
distributions of slopes for two selected points in the parameter space. (d) represents the parameterization used for further 
experiments.  470 

5.2. Patterns of LSO and runout hazards and exposure  

Figure 7 shows the spatial distribution of modeled LSOs (A) and runout (B) throughout the Kaligandaki 
catchment. We find that most LSOs are in the southern part of the basin, below the main range of the 
Himalayas. As expected, this concurs with locations where steep parts of the basin receive high amounts 
of rainfall (Figure 3). The general pattern also shows that there are few LSOs in high mountain areas. The 475 
reason for this is that most of these very steep slopes are identified as unconditionally unstable and are 
thus filtered out from the results. The spatial characteristics of LSOs are shown in the cutout in Figure 7 a 
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where an LSO consists of multiple cells that are assigned the same failure probability. We find that the 
average failure probability of LSOs is 19.4 %/year (𝜎𝜎 = 20.7%). The high value of 𝜎𝜎 indicates that few 
LSOs with large failure probabilities strongly skew the distribution and summary statistics, when 480 
excluding LSOs with a failure probability larger than the 95th percentile, we find that average LSO failure 
probability is around 5.7%/year (𝜎𝜎 = 5.7%). The total area of unstable slopes covers 1209 km2 or 16 % of 
the total basin area. After considering the failure probability of each LSO, 0.9% of the study area are 
expected to become unstable per year.   

Including runout in the analysis greatly increases the area impacted by slope failures. As shown in Figure 485 
7 b, many areas that are below LSOs would be impacted by runout (green in Figure 7 b), and are often in 
the runout pathways from multiple upslope LSOs. The total area of runout pathways is 626 km2 and the 
total impacted by either slope failures or runouts is 1835 km2. Thus, considering only LSOs, without 
runout, would underestimate the area at risk by 66 %.  

Threshold rainfall intensities are a common metric for landslide occurrence (Gonzalez et al., 2024), and 490 
we thus compared COHESION results with observations. For Nepal, previous studies indicated a 
threshold precipitation of 144 mm/d (Dahal and Hasegawa, 2008), with a range from 132 to 358 mm/d 
(read from Dahal & Hasegawa, 2008, Figure 6). Our estimates for threshold precipitation are in a similar 
range with an median threshold precipitation 𝑝𝑝𝑖𝑖∗ = 218 mm/d (see EQ. 18), with percentiles p25 = 
112mm/d and p75=316mm/d.  495 
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Figure 7: The LSO model highlights joint hazards from slope failure and runout on reginal scales. Shown are modelled 500 
LSOs (a) and the runout pathways associated with each LSO (b) for the entire Kaligandaki catchment. Magnified cutouts 
show identical areas between A and B and highlight local patterns of joint hazards that can be derived from the proposed 
model.  

Maps of LSOs, runout pathways, and exposed assets can be used for risk assessments. Figure 8 highlights 
how the spatially distributed information of the LSO model (i.e., information on natural hazards) can be 505 
overlaid with information on exposed assets, such as structures and roads. This information then yields 
information on risk, i.e., what values are exposed, from which process exposure originates, and with 
which probability assets might be impacted. Additionally, the LSO model results in information about the 
magnitude of potential hazards. For instance, hazards can be measured as the probability of an LSO 
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failing, the size or volume of an LSO, the probability of resulting runoff, or a combination thereof. It 510 
should also be noted that the current model does not account for sediment deposition along the runout 
path, thus an asset located more downslope on runout pathway might be damaged less than a more 
upslope asset.  

 

Figure 8: The LSO model enables detailed assessments of landslide hazards and exposure. Specifically, the results of the 515 
LSO model, which indicate hazards from landslides and runout, can be combined with information on exposed assets, 
such as structures (magenta) and roads (white lines). Combined, this information enables detailed assessment of what is at 
risk, from which process, and with which probability. This information would not be available based on common 
susceptibility analysis. Road and building footprint layers © OpenStreetMap contributors 2025. Distributed under the 
Open Data Commons Open Database License (ODbL) v1.0. 520 

One opportunity arising from the COHESION model is to perform spatially distributed statistical 
assessments of landslide hazards for different sectors. For the Kaligandaki area we find that landslide 
hazards are greater for roads than for structures, and more often related to runout, rather than landslides. 
This enables us to identify sectors at highest risk, as well as the process (e.g., runout vs. landslides) 
behind those risks (Figure 9). For the Kaligandaki area, we find that linear infrastructure is at much 525 
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greater risk than structures. 27 % of buildings are directly exposed to slope failures (Figure 9a, rightmost 
point on blue line), compared to 69 % of roads (Figure 9b, rightmost point on blue line). 27 % of 
buildings are exposed to runout (Figure 9 a, rightmost point on red line) while 65 % of roads are exposed 
to runout (Figure 9 a, rightmost point on red line). These numbers also indicate that many road segments 
are exposed to multiple risks from both slope failure and runout. Analyzing the statistical distribution of 530 
failure probabilities for structures (Figure 9 a) and roads (Figure 9 b) reveals that most structures are 
threatened by landslides/runout with a relatively low failure probability (<=10 %, stacked bars in Figure 9 
and b). Nearly all exposure of buildings to damage from high probability (>50%) comes from runout, 
indicating that there are few buildings on unstable slopes with high failure probabilities, but such failure-
prone slopes still contributes to downslope risk via runout.  535 

5.2 Leveraging LSO level data to inform management  

As a last experiment, we deployed the LSO model to study the impact of vegetation and land management 
on landslide risk, deriving useful information for sustainable development and restoration planning in 
mountain regions. To demonstrate such a scenario analysis, we consider two common scenarios. The first 
scenario is complete deforestation, while the second scenario consists of reforestation of potentially 540 
unstable slopes (i.e., on pixels that are identified as LSO objects below the tree line). Note that neither of 
the two scenarios is designed as a realistic management plan for the Kaligandaki basin. The 
“deforestation” scenario could be used, for instance, for environmental accounting (such as in the United 
Nations Systems for Eco-Environmental Accounting, SEEA, Edens et al., (2022)) to understand where 
nature provides the greatest benefits for landslide prevention. The “reforestation” scenario could be used 545 
for selecting areas where reforestation could lead to greatest benefits for risk reduction. For both scenarios 
we consider that reforestation would increase root cohesion by 2kPa.  

For buildings and roads, landuse changes could lead to a major change in exposure (Figure 9 c and d). For 
the reforestation scenario, the fraction of buildings exposed (considering on LSOs for clarity) would 
decrease from more than 30 % (rightmost point on blue line, Figure 9 c) to 7.5 % (rightmost point on 550 
green line, Figure 9 c) and the number of exposed road segments would decrease from 65 % to 38% 
(Figure 9 c). Deforestation only slightly increases the exposure buildings by around 1.5 % compared to 
the baseline. Reforestation could decrease the fraction of roads at risk from around 65 % to less than 40 
%.  

A spatial assessment indicates that response of risk to reforestation is mostly driven by the distribution of 555 
assets (Figure 10). The reforestation scenario targets LSOs and thus benefits structures and roads (blueish 
colors in Figure 10 a). For deforestation, there is a relatively small change in risk which is not because 
there is no change in landslide occurrence, but because only few buildings and roads are in forest areas 
(green in Figure 10). Instead, there is a clear increase in LSO occurrence and failure probabilities in 
deforested areas (see red colors in currently forested areas in Figure 10 b). Note increased/decreased risks 560 
from deforestation/reforestation can also impact areas outside where landcover is changing. These 
extended spatial impacts are because even if one cell of an LSO is located in a deforestation/reforestation 
area, the change in local failure probability would alter the average failure probability of the LSO, and of 
the associated runout pathway.  

 565 
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Figure 9: Statistical analysis highlights cumulative risk from landslides and runouts. a) and b) highlight which fraction of 
buildings (a) and roads (b) is exposed to landslides/runout with a certain probability. The total y value indicates the total 570 
fraction of exposed buildings/roads. Panels c and d show the cumulative exposure (from both landslides and runout) 
under two different scenarios, deforestation (red dotted line) and reforestation (green dash-dotted line), compared to the 
baseline (blue solid line).  
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 575 

 

Figure 10: Impacts of landuse on LSO failure probability. Shown is the difference in failure probability between a 
scenario where all current forest (green) is removed (a) and a scenario where reforestation occurs one currently unstable 
slopes (b). Runout pathways associated with LSOs are not shown for clarity. Road layer © OpenStreetMap contributors 
2025. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 580 
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6. Discussion 

Landslides and mass movements are important means of natural erosion in mountain landscapes (Attal 
and Lavé, 2006; Lavé J. and Avouac J. P., 2001; Marc et al., 2019a). At the same time, landslides pose 585 
major hazards to livelihoods (Petley, 2012), either through direct exposure, or through their impacts on 
water infrastructure (Fort et al., 2010; Schwanghart et al., 2018) or linear infrastructure, such as 
powerlines and roads (Emberson et al., 2020; McAdoo et al., 2018). Climate and landuse change might 
increase landslide hazards (Gariano and Guzzetti, 2016), while non-strategic planning of infrastructure 
and other development can increase both hazards and exposure, leading to increased risks for human lives 590 
and infrastructure assets. A better understanding of landslide hazards under current and future conditions, 
as well as proactive planning for reducing such hazards can play an important role in designing landscape 
scale interventions (such as deploying nature-based solutions at scale, or for strategically siting assets in 
less hazard-prone areas), and for improving our understanding of geomorphologic processes on hillslopes 
and in river channels.  595 

Herein, we argue that integrating approaches for susceptibility mapping with hillslope connectivity can 
improve the modeling and management of landslides in some critical ways. To operationalize this idea, 
we introduce the COHESION (COnnected HillslopE SusceptibIlity for slOpefailure and ruNout). 
Traditional susceptibility mapping approaches, while effective for identifying failure-prone areas on large 
scales and data-scarce regions, fall short in addressing the magnitude and interconnected nature of slope 600 
failure processes. The COHESION framework bridges this gap by incorporating connectivity into 
susceptibility mapping and improves large-scale assessments of landslide hazards. For instance, our 
findings indicate that connectivity significantly increases which areas area are classified as being at risk, 
as downslope runout can extend risks far beyond the initial failure zone. For instance, we find including 
runout into our analysis increases the area at risk by more than 60 %.  605 

After calibration, we found that COHESION reproduces the statistical distribution of slope failures well 
(KS = 0.10). However, we also found that the modelled landslide density exceeds the value indicated by 
available remote sensing assessments. For instance, Marc et al.’s (2019a) assessment of several areas in 
Nepal, including Kaligandaki, indicated a density of unstable slopes of 200-250 m2/km2/year (0.02-0.025 
%/year). Our modelled densities are two orders of magnitude higher (0.9%/year), yet still much smaller 610 
than other modeled estimates in Nepal (Kincey et al., 2024). With that regard, some aspects should be 
noted. Firstly, our handling of hydrology (as saturation along the hillslope flow paths) might overestimate 
the saturation, compared to approaches based on, e.g., transient water accumulation. Secondly, as we 
scaled 𝜙𝜙 with 𝛼𝛼 we did not set a lower limit to 𝜙𝜙, which might result in unrealistically low values of 
𝜙𝜙. E.g., if the slope angle in a cell was 𝛼𝛼 = 20°, then would be 𝜙𝜙 = 20° ∗ 0.6 =  12°, very low compared 615 
to laboratory and observational data, typically placing 𝜙𝜙 in the range of, e.g., 28° – 45° (Schellart, 2000) 
or 17 - 45° (Schmidt and Montgomery, 1995) . Indeed, when setting a lower limit of 30° to 𝜙𝜙, we find 
that the unstable area decreases to 0.04 %. Lastly, some observational bias might also play a role, as it has 
been shown that extending the observed area results in much greater estimates of landslide densities 
(Harvey et al., 2025). Also other metrics of COHESION, such as threshold precipitation, are in a very 620 
similar range to observations (Dahal and Hasegawa, 2008).  

Our model evaluation based on observed landslide occurrence highlights several avenues for future 
research as well as data needs. Firstly, having some information on observed landslides is critical to 
calibrate the model. As our handling of moisture is statistical, and not based on specific events or seasons, 
we needed to compare general statistics, such as angles of unstable slopes to observations, rather than 625 
actual landslide occurrence to observations. Herein, we focused on the slope angle to understand if 
modelled and observed landslides occur on slopes of similar steepness. Additional parameters could be 
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compared as well, such as the area of LSOs, but we found such a comparison difficult because of the 
relatively low resolution of our model (30m) compared to the area of observed landslides. Secondly, our 
analysis highlights that COHESION is most sensitive to soil cohesion (𝑐𝑐) and internal friction angle (𝜙𝜙) 630 
in terms of spatially distributed parameters, similar to studies deploying higher fidelity models (Almeida 
et al., 2017).We find that expressing 𝜙𝜙 as a function of slope angle is needed for a well-fitting model , 
closely aligned with observations from large-scale landslide datasets (Emberson et al., 2022) and local 
studies for monsoon-induced landslide in Nepal (Burrows et al., 2023).Thirdly, data on soil depth and 
thus the only distributed subsurface parameter used in this framework are of low resolution compared to 635 
other types of data (500 m, compared to 30 m for topography or landuse). With this regard, exploring 
further links between observed topography (slope angle), climate, and subsoil processes might be 
worthwhile, as studies suggest that e.g., slope angle (Prancevic et al., 2020) and long-term climatology 
(Marc et al., 2019b) influence the spatial distribution of subsoil properties.. Fourthly, soil saturation and 
thus slope failures (and threshold precipitation) are sensitive to antecedent conditions (Gabet et al., 2004). 640 
Our model, being statistical, is instead based on a representative average wet season, thus modeling 
different representative seasons (e.g., with high vs. low average precipitation rates) could allow to 
estimate ranges of failure probabilities for each LSO.  

Coupled assessments of landslide susceptibility and connectivity can inform scenarios and planning 
irrespective of the type of deployed susceptibility mapping. Herein, COHESION uses a probabilistic 645 
approach to identify conditionally unstable slopes and their failure probability. Such information on 
failure probability can be useful for economic evaluations (e.g., by multiplying the value of a structure 
with the probability of it being damaged), or for estimating the average annual contribution of landslides 
to a basin’s sediment budget (Vogl et al., 2019a). However, susceptibility maps as input into COHESION 
(as input into Step 4.4 in  Figure 2) can be generated through other common approaches, e.g., multi-650 
criteria analyses (Asadi et al., 2022; Kavzoglu et al., 2014; Lorentz et al., 2016), factor of safety 
assessments based on single empirical rainfall thresholds (Dahal and Hasegawa, 2008; Gabet et al., 2004), 
or assessments of co-seismic hazard (Milledge et al., 2019). Through frameworks for rapid terrain 
analysis (Schwanghart and Kuhn, 2010), global digital elevation models with a high resolution 
(OpenTopography, 2025), and increasing computation resources, the proposed ex-post connectivity 655 
assessment will be feasible on any scale on which susceptibility assessments are performed today. The 
resulting additional information on the magnitude of potential slope failures and the risk of runout can 
then be used to inform infrastructure planning and to determine optimal locations for deploying traditional 
(grey), green, or grey-green engineering measures to protect existing assets.  

COHESION also offers avenues to link hillslope-channel connectivity to fluvial processes and water 660 
infrastructure. For instance, information on runout and landslide volume could be intersected with river 
networks and be used as inputs into network scale sediment connectivity models, such as CASCADE 
such as CASCADE (Schmitt et al., 2016) or others (Czuba, 2018; Czuba et al., 2017; Czuba and 
Foufoula-Georgiou, 2014). Such a coupling would not only be interesting from the perspective of 
developing a catchment perspective on connectivity including catchment and river processes, but could 665 
also be of operational use for downstream water infrastructure. Many dams in Nepal are at risk from 
landslides(Fort et al., 2010; Sangroula, 2009; Schwanghart et al., 2018; Sharma and Awal, 2013), not 
only endangering their operation but also downstream lives, as landslides can trigger dam failures. To our 
knowledge, this hazard is not commonly included in decisions about dam development, a major limitation 
in a hydropower-rich country. In this context, COHESION could help to develop assessments of upstream 670 
risk for hydropower plants beyond common local geotechnical assessments of slope stability around the 
dam site.  

Understanding landslides is critical for understanding landscape sediment connectivity, fluvial sediment 
transport and for managing disaster risk for human livelihoods and infrastructures in mountain regions. 
Despite prevalent data limitations, our COHESION framework highlights that combining susceptibility 675 
mapping and connectivity assessments is a promising landscape-scale approach in modelling landslide 
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hazards in a scalable, spatially explicit way. This apporoach supports science, and helps to design 
adaptation and mitigation strategies against landslide hazards in mountain ranges worldwide.  

7. Acknowledgement  

This research was supported World Bank contract 7184416 “Mapping and Valuing Ecosystems Services, 680 
and Prioritizing Investments in Select Watersheds in Nepal and Pakistan to support Sustainable 
Hydropower”. The authors acknowledge the contribution of Dr. David Simpson (American University) 
for many productive discussions regarding the treatment of landslide probabilities as prerequisite for 
economic damage analysis and the guidance of Dr. Urvashi Narain (World Bank). ChatGPT 4o was used 
to review and harmonize some code for ex-post analysis of results to improve readability, resulting 685 
changes were carefully reviewed by the first author.  

8. Author contributions 

RJPS: Conceptualization of the COHESION Framework, software, methodology, formal analysis 
(equal), writing - original draft, writing – review and editing (equal), visualization, supervision, 
design of experiments. SB: formal analysis (equal), software, methodology, writing - original draft, 690 
writing – review and editing (equal), visualization, data-curation. AV: conceptualization, funding 
acquisition, writing – review and editing. OM: methodology, writing – review and editing. 

9. Data availability 

The model code for the COHESION model and for model verification are available on Zenodo 
https://zenodo.org/records/16595396. 695 

10. References 

 

Almeida, S., Holcombe, E. A., Pianosi, F., and Wagener, T.: Dealing with deep uncertainties in landslide 
modelling for disaster risk reduction under climate change, Natural Hazards and Earth System Sciences, 
17, 225–241, https://doi.org/10.5194/nhess-17-225-2017, 2017. 700 

Asadi, M., Goli Mokhtari, L., Shirzadi, A., Shahabi, H., and Bahrami, S.: A comparison study on the 
quantitative statistical methods for spatial prediction of shallow landslides (case study: Yozidar-Degaga 
Route in Kurdistan Province, Iran), Environ Earth Sci, 81, 51, https://doi.org/10.1007/s12665-021-10152-
4, 2022. 

Attal, M. and Lavé, J.: Changes of bedload characteristics along the Marsyandi River (central Nepal): 705 
Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, 
and denudation in active orogenic belts, Geological Society of America Special Papers, 398, 143–171, 
2006. 

Burrows, K., Marc, O., and Andermann, C.: Retrieval of Monsoon Landslide Timings With Sentinel-1 
Reveals the Effects of Earthquakes and Extreme Rainfall, Geophysical Research Letters, 50, 710 
e2023GL104720, https://doi.org/10.1029/2023GL104720, 2023. 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



29 
 

Czuba, J. A.: A Lagrangian framework for exploring complexities of mixed-size sediment transport in 
gravel-bedded river networks, Geomorphology, 321, 146–152, 
https://doi.org/10.1016/j.geomorph.2018.08.031, 2018. 

Czuba, J. A. and Foufoula-Georgiou, E.: A network-based framework for identifying potential 715 
synchronizations and amplifications of sediment delivery in river basins, Water Resources Research, 50, 
3826–3851, https://doi.org/10.1002/2013WR014227, 2014. 

Czuba, J. A., Foufoula‐Georgiou, E., Gran, K. B., Belmont, P., and Wilcock, P. R.: Interplay between 
spatially explicit sediment sourcing, hierarchical river‐network structure, and in‐channel bed material 
sediment transport and storage dynamics, Journal of Geophysical Research: Earth Surface, 720 
https://doi.org/10.1002/2016JF003965, 2017. 

Dahal, R. K. and Hasegawa, S.: Representative rainfall thresholds for landslides in the Nepal Himalaya, 
Geomorphology, 100, 429–443, https://doi.org/10.1016/j.geomorph.2008.01.014, 2008. 

Dhakal, A. S. and Sidle, R. C.: Long-term modelling of landslides for different forest management 
practices, Earth Surface Processes and Landforms, 28, 853–868, https://doi.org/10.1002/esp.499, 2003. 725 

Dietrich, W. E., Reiss, R., Hsu, M.-L., and Montgomery, D. R.: A process-based model for colluvial soil 
depth and shallow landsliding using digital elevation data, Hydrol. Process., 9, 383–400, 
https://doi.org/10.1002/hyp.3360090311, 1995. 

Dow, H. W., East, A. E., Sankey, J. B., Warrick, J. A., Kostelnik, J., Lindsay, D. N., and Kean, J. W.: 
Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021, Journal 730 
of Geophysical Research: Earth Surface, 129, e2024JF007725, https://doi.org/10.1029/2024JF007725, 
2024. 

Earth Science Data Systems, N.: ASTER Global Digital Elevation Model V003 | NASA Earthdata, 2025. 

Edens, B., Maes, J., Hein, L., Obst, C., Siikamaki, J., Schenau, S., Javorsek, M., Chow, J., Chan, J. Y., 
Steurer, A., and Alfieri, A.: Establishing the SEEA Ecosystem Accounting as a global standard, 735 
Ecosystem Services, 54, 101413, https://doi.org/10.1016/j.ecoser.2022.101413, 2022. 

Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, 
Natural Hazards and Earth System Sciences, 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, 
2020. 

Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., and Marc, O.: Insights from the topographic 740 
characteristics of a large global catalog of rainfall-induced landslide event inventories, Natural Hazards 
and Earth System Sciences, 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, 2022. 

Fan, L., Lehmann, P., McArdell, B., and Or, D.: Linking rainfall-induced landslides with debris flows 
runout patterns towards catchment scale hazard assessment, Geomorphology, 280, 1–15, 
https://doi.org/10.1016/j.geomorph.2016.10.007, 2017. 745 

Fort, M., Cossart, E., and Arnaud-Fassetta, G.: Hillslope-channel coupling in the Nepal Himalayas and 
threat to man-made structures: The middle Kali Gandaki valley, Geomorphology, 124, 178–199, 
https://doi.org/10.1016/j.geomorph.2010.09.010, 2010. 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



30 
 

Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A., and Ojha, T.: Rainfall thresholds for 
landsliding in the Himalayas of Nepal, Geomorphology, 63, 131–143, 750 
https://doi.org/10.1016/j.geomorph.2004.03.011, 2004. 

Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, 
https://doi.org/10.1016/j.earscirev.2016.08.011, 2016. 

Ghorbanzadeh, O., Shahabi, H., Crivellari, A., Homayouni, S., Blaschke, T., and Ghamisi, P.: Landslide 
detection using deep learning and object-based image analysis, Landslides, 19, 929–939, 755 
https://doi.org/10.1007/s10346-021-01843-x, 2022. 

Gonzalez, F. C. G., Cavacanti, M. do C. R., Nahas Ribeiro, W., Mendonça, M. B. de, and Haddad, A. N.: 
A systematic review on rainfall thresholds for landslides occurrence, Heliyon, 10, e23247, 
https://doi.org/10.1016/j.heliyon.2023.e23247, 2024. 

Grumbine, R. E. and Xu, J.: Mountain futures: pursuing innovative adaptations in coupled social–760 
ecological systems, Frontiers in Ecology and the Environment, 19, 342–348, 
https://doi.org/10.1002/fee.2345, 2021. 

Harvey, E. L., Kincey, M. E., Rosser, N. J., Gadtaula, A., Collins, E., Densmore, A. L., Dunant, A., Oven, 
K. J., Arrell, K., Basyal, G. K., Dhital, M. R., Robinson, T. R., Van Wyk de Vries, M., Paudyal, S., 
Pujara, D. S., and Shrestha, R.: Review of landslide inventories for Nepal between 2010 and 2021 reveals 765 
data gaps in global landslide hotspot, Nat Hazards, 121, 5075–5101, https://doi.org/10.1007/s11069-024-
07013-1, 2025. 

Heckmann, T. and Schwanghart, W.: Geomorphic coupling and sediment connectivity in an alpine 
catchment — Exploring sediment cascades using graph theory, Geomorphology, 182, 89–103, 
https://doi.org/10.1016/j.geomorph.2012.10.033, 2013. 770 

Heckmann, T., Schwanghart, W., and Phillips, J. D.: Graph theory—Recent developments of its 
application in geomorphology, Geomorphology, https://doi.org/10.1016/j.geomorph.2014.12.024, 2015. 

Holcombe, E., Smith, S., Wright, E., and Anderson, M. G.: An integrated approach for evaluating the 
effectiveness of landslide risk reduction in unplanned communities in the Caribbean, Nat Hazards, 61, 
351–385, https://doi.org/10.1007/s11069-011-9920-7, 2012. 775 

Huang, Y. and Zhao, L.: Review on landslide susceptibility mapping using support vector machines, 
Catena, 165, 520–529, https://doi.org/10.1016/j.catena.2018.03.003, 2018. 

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., 
Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, 
M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., 780 
Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., 
Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water towers, Nature, 577, 
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020. 

Intrieri, E., Carla, T., and Gigli, G.: Forecasting the time of failure of landslides at slope-scale: A 
literature review, Earth-Sci. Rev., 193, 333–349, https://doi.org/10.1016/j.earscirev.2019.03.019, 2019. 785 

Jiang, S.-H., Huang, J., Griffiths, D. V., and Deng, Z.-P.: Advances in reliability and risk analyses of 
slopes in spatially variable soils: A state-of-the-art review, Computers and Geotechnics, 141, 104498, 
https://doi.org/10.1016/j.compgeo.2021.104498, 2022. 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



31 
 

Kavzoglu, T., Sahin, E. K., and Colkesen, I.: Landslide susceptibility mapping using GIS-based multi-
criteria decision analysis, support vector machines, and logistic regression, Landslides, 11, 425–439, 790 
https://doi.org/10.1007/s10346-013-0391-7, 2014. 

Kc, R., Sharma, K., Dahal, B. K., Aryal, M., and Subedi, M.: Study of the spatial distribution and the 
temporal trend of landslide disasters that occurred in the Nepal Himalayas from 2011 to 2020, Environ 
Earth Sci, 83, 42, https://doi.org/10.1007/s12665-023-11347-7, 2024. 

Kent, K. M.: A Method for Estimating Volume and Rate of Runoff in Small Watersheds, U.S. 795 
Department of Agriculture, Soil Conservation Service, Washington, D.C, 64 pp., 1973. 

Kincey, M. E., Rosser, N. J., Swirad, Z. M., Robinson, T. R., Shrestha, R., Pujara, D. S., Basyal, G. K., 
Densmore, A. L., Arrell, K., Oven, K. J., and Dunant, A.: National-Scale Rainfall-Triggered Landslide 
Susceptibility and Exposure in Nepal, Earth’s Future, 12, e2023EF004102, 
https://doi.org/10.1029/2023EF004102, 2024. 800 

Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, 
Nature Geosci, 3, 247–251, https://doi.org/10.1038/ngeo776, 2010. 

Lavé J. and Avouac J. P.: Fluvial incision and tectonic uplift across the Himalayas of central Nepal, 
Journal of Geophysical Research: Solid Earth, 106, 26561–26591, https://doi.org/10.1029/2001JB000359, 
2001. 805 

Lorentz, J. F., Calijuri, M. L., Marques, E. G., and Baptista, A. C.: Multicriteria analysis applied to 
landslide susceptibility mapping, Nat Hazards, 83, 41–52, https://doi.org/10.1007/s11069-016-2300-6, 
2016. 

Ly, A., Geschke, J., Snethlage, M. A., Stauffer, K. L., Nussbaumer, J., Schweizer, D., Diffenbaugh, N. S., 
Fischer, M., and Urbach, D.: Subnational biodiversity reporting metrics for mountain ecosystems, Nat 810 
Sustain, 6, 1547–1551, https://doi.org/10.1038/s41893-023-01232-3, 2023. 

Marc, O., Stumpf, A., Malet, J.-P., Gosset, M., Uchida, T., and Chiang, S.-H.: Initial insights from a 
global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence 
of total storm rainfall, Earth Surface Dynamics, 6, 903–922, https://doi.org/10.5194/esurf-6-903-2018, 
2018. 815 

Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-
term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant 
landslides, Earth Surface Dynamics, 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, 2019a. 

Marc, O., Gosset, M., Saito, H., Uchida, T., and Malet, J.-P.: Spatial Patterns of Storm-Induced 
Landslides and Their Relation to Rainfall Anomaly Maps, Geophysical Research Letters, 46, 11167–820 
11177, https://doi.org/10.1029/2019GL083173, 2019b. 

Marc, O., Gnyawali, K., Schwanghart, W., and Fort, M.: Landsliding in the Himalaya, in: Himalaya, 
Dynamics of a Giant 3, John Wiley & Sons, Ltd, 95–129, https://doi.org/10.1002/9781394228683.ch4, 
2023. 

McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., and 825 
Sudmeier-Rieux, K.: Roads and landslides in Nepal: how development affects environmental risk, Natural 
Hazards and Earth System Sciences, 18, 3203–3210, https://doi.org/10.5194/nhess-18-3203-2018, 2018. 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

McGuire, L. A., Rengers, F. K., Kean, J. W., Coe, J. A., Mirus, B. B., Baum, R. L., and Godt, J. W.: 
Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an 
extreme rainfall event in the Colorado Front Range, Geophysical Research Letters, 43, 9084–9092, 830 
https://doi.org/10.1002/2016GL070741, 2016. 

Mey, J., Guntu, R. K., Plakias, A., Silva de Almeida, I., and Schwanghart, W.: More than one landslide 
per road kilometer &ndash; surveying and modelling mass movements along the Rishikesh-Joshimath 
(NH-7) highway, Uttarakhand, India, Natural Hazards and Earth System Sciences Discussions, 1–25, 
https://doi.org/10.5194/nhess-2022-295, 2023. 835 

Meyer, N. K., Schwanghart, W., Korup, O., and Nadim, F.: Roads at risk: traffic detours from debris 
flows in southern Norway, Natural Hazards and Earth System Sciences, 15, 985–995, 
https://doi.org/10.5194/nhess-15-985-2015, 2015. 

Milledge, D. G., Densmore, A. L., Bellugi, D., Rosser, N. J., Watt, J., Li, G., and Oven, K. J.: Simple 
rules to minimise exposure to coseismic landslide hazard, Natural Hazards and Earth System Sciences, 840 
19, 837–856, https://doi.org/10.5194/nhess-19-837-2019, 2019. 

Montgomery David R. and Dietrich William E.: A physically based model for the topographic control on 
shallow landsliding, Water Resources Research, 30, 1153–1171, https://doi.org/10.1029/93WR02979, 
2010. 

National Disaster Risk Reduction and Management Authority: BIPAD: An Integrated Disaster 845 
Information Management System, 2025. 

Nepal Hydropower Portal: https://hydro.naxa.com.np/, last access: 7 July 2025. 

O’Loughlin, E. M.: Prediction of Surface Saturation Zones in Natural Catchments by Topographic 
Analysis, Water Resources Research, 22, 794–804, https://doi.org/10.1029/WR022i005p00794, 1986. 

OpenStreetMap contributors: OpenStreetMap, 2017. 850 

OpenTopography: https://opentopography.org/start, last access: 21 January 2025. 

Petley, D.: Global patterns of loss of life from landslides, Geology, 40, 927–930, 
https://doi.org/10.1130/G33217.1, 2012. 

Prancevic, J. P., Lamb, M. P., McArdell, B. W., Rickli, C., and Kirchner, J. W.: Decreasing Landslide 
Erosion on Steeper Slopes in Soil-Mantled Landscapes, Geophysical Research Letters, 47, 855 
e2020GL087505, https://doi.org/10.1029/2020GL087505, 2020. 

Rawls, W., Ahuja, L., Brakensiek, D., and Shirmohammadi, A.: Infiltration and soil water movement, in: 
Handbook of hydrology, edited by: Maidment, David. R., McGraw-Hill, New York, 1992. 

Rickenmann, D.: Empirical Relationships for Debris Flows, Natural Hazards, 19, 47–77, 
https://doi.org/10.1023/A:1008064220727, 1999. 860 

Rickenmann, D.: Runout prediction methods, in: Debris-flow hazards and related phenomena, Springer, 
305–324, 2005. 

Sangroula, D. P.: Hydropower development and its sustainability with respect to sedimentation in Nepal, 
Journal of the Institute of Engineering, 7, 56–64, 2009. 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



33 
 

Schellart, W. P.: Shear test results for cohesion and friction coefficients for different granular materials: 865 
scaling implications for their usage in analogue modelling, Tectonophysics, 324, 1–16, 
https://doi.org/10.1016/S0040-1951(00)00111-6, 2000. 

Schmidt, K. M. and Montgomery, D. R.: Limits to Relief, Science, 270, 617–620, 
https://doi.org/10.1126/science.270.5236.617, 1995. 

Schmitt, R. J. P., Bizzi, S., and Castelletti, A.: Tracking multiple sediment cascades at the river network 870 
scale identifies controls and emerging patterns of sediment connectivity, Water Resour. Res., 3941–3965, 
https://doi.org/10.1002/2015WR018097, 2016. 

Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for topographic analysis, 
Environmental Modelling & Software, 25, 770–781, https://doi.org/10.1016/j.envsoft.2009.12.002, 2010. 

Schwanghart, W., Ryan, M., and Korup, O.: Topographic and Seismic Constraints on the Vulnerability of 875 
Himalayan Hydropower, Geophysical Research Letters, 45, 8985–8992, 
https://doi.org/10.1029/2018GL079173, 2018. 

Sharma, R. H. and Awal, R.: Hydropower development in Nepal, Renewable and Sustainable Energy 
Reviews, 21, 684–693, https://doi.org/10.1016/j.rser.2013.01.013, 2013. 

Sidle, R. C.: A Conceptual Model of Changes in Root Cohesion in Response to Vegetation Management, 880 
Journal of Environmental Quality, 20, 43–52, https://doi.org/10.2134/jeq1991.00472425002000010009x, 
1991. 

Sidle, R. C., Tani, M., and Ziegler, A. D.: Catchment processes in Southeast Asia: Atmospheric, 
hydrologic, erosion, nutrient cycling, and management effects, Forest Ecology and Management, 224, 1–
4, https://doi.org/10.1016/j.foreco.2005.12.002, 2006a. 885 

Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F.: Erosion processes in 
steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia, Forest 
Ecology and Management, 224, 199–225, https://doi.org/10.1016/j.foreco.2005.12.019, 2006b. 

Struck, M., Andermann, C., Hovius, N., Korup, O., Turowski, J. M., Bista, R., Pandit, H. P., and Dahal, 
R. K.: Monsoonal hillslope processes determine grain size‐specific suspended sediment fluxes in a trans‐890 
Himalayan river, Geophysical Research Letters, 42, 2302–2308, https://doi.org/10.1002/2015GL063360, 
2015. 

Sudmeier-Rieux, K., McAdoo, B. G., Devkota, S., Rajbhandari, P. C. L., Howell, J., and Sharma, S.: 
Invited perspectives: Mountain roads in Nepal at a new crossroads, Natural Hazards and Earth System 
Sciences, 19, 655–660, https://doi.org/10.5194/nhess-19-655-2019, 2019. 895 

Swanson, F. J. and Dyrness, C. T.: Impact of clear-cutting and road construction on soil erosion by 
landslides in the western Cascade Range, Oregon, Geology, 3, 393–396, https://doi.org/10.1130/0091-
7613(1975)3<393:IOCARC>2.0.CO;2, 1975. 

Thiebes, B., Bell, R., Glade, T., Jäger, S., Mayer, J., Anderson, M., and Holcombe, L.: Integration of a 
limit-equilibrium model into a landslide early warning system, Landslides, 11, 859–875, 900 
https://doi.org/10.1007/s10346-013-0416-2, 2014. 

Thornton, J. M., Snethlage, M. A., Sayre, R., Urbach, D. R., Viviroli, D., Ehrlich, D., Muccione, V., 
Wester, P., Insarov, G., and Adler, C.: Human populations in the world’s mountains: Spatio-temporal 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



34 
 

patterns and potential controls, PLOS ONE, 17, e0271466, https://doi.org/10.1371/journal.pone.0271466, 
2022. 905 

Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Deckers, J., and De Bievre, B.: 
Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the 
impact of deforestation on slope stability in high Andean watersheds, Geomorphology, 52, 299–315, 
https://doi.org/10.1016/S0169-555X(02)00263-5, 2003. 

Vogl, A. L., Schmitt, R. J. P., Simpson, R. D., Bryant, B. P., Wolny, S., and Narain, U.: Valuing Green 910 
Infrastructure: Volume I: Case Study of Kali Gandaki Watershed, Nepal, The World Bank, Washington 
DC, 2019a. 

Vogl, A. L., Schmitt, R. J. P., Simpson, R. D., Bryant, B. P., Wolny, S., and Narain, U.: Valuing Green 
Infrastructure: Volume II: Case Study of Mangla Watershed, Pakistan, The World Bank, Washington DC, 
2019b. 915 

Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkota, S., Derron, M.-H., and Jaboyedoff, M.: Land use 
changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016, Applied 
Geography, 94, 30–40, https://doi.org/10.1016/j.apgeog.2018.03.003, 2018. 

Wilkinson, P. L., Anderson, M. G., and Lloyd, D. M.: An integrated hydrological model for rain-induced 
landslide prediction, Earth Surface Processes and Landforms, 27, 1285–1297, 920 
https://doi.org/10.1002/esp.409, 2002. 

World Bank.: Valuing Green Infrastructure: Technical Appendices, World Bank, Washington, D.C., 
2019. 

Zhang, J., Ma, X., Zhang, J., Sun, D., Zhou, X., Mi, C., and Wen, H.: Insights into geospatial 
heterogeneity of landslide susceptibility based on the SHAP-XGBoost model, J. Environ. Manage., 332, 925 
117357, https://doi.org/10.1016/j.jenvman.2023.117357, 2023. 

 

https://doi.org/10.5194/egusphere-2025-3733
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.


