
1 

 

Structural uncertainty in the direct human forcing of future global 

burned area 
Oliver Perkins1,2, Olivia Haas1,3, Matthew Kasoar1,4, Apostolos Voulgarakis1,4,5, and James D. A. 

Millington1,2 

1The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, London, UK. 5 
2Department of Geography, King's College London, London, UK. 
3Geography and Environmental Science, University of Reading, Reading, UK. 
4Department of Physics, Imperial College London, London, UK. 
5School of Chemical and Environmental Engineering, Technical University of Crete, Kounoupidiana, Greece. 

 10 

Correspondence to: Oliver Perkins (oliver.perkins@kcl.ac.uk) 

 

Abstract. The first fire model intercomparison project (FIREMIP) gave rise to two distinct proposals around how best to 

improve the fire modules of dynamic global vegetation models. The first proposal was to develop representation of direct 

human impacts on burned area, particularly managed fire use in agriculture and other land management. The second 15 

proposal was to improve representation of the ecological dimensions of fire, including relationships of fuel load, 

connectivity, dryness and fire. Here, we present future projections from two models that have attempted to advance model 

representation and understanding of the human (WHAM-INFERNO) and ecological (Haas) dimensions of global fire 

regimes. The models project radically different future burned area for the same sets of scenario forcings. There is particularly 

strong disagreement regarding direct human impacts (or “direct human forcing”) of global burned area: differences in model 20 

assessment of the impact of direct human forcing is greater between models than between scenarios. We show how such 

structural uncertainty constrains understanding of climate change adaptation, including its limits and pitfalls. Differences in 

model outputs are largely traceable back to model assumptions. Hence, we argue that advances made by the two models 

could be combined in a future fire model that better captures the socio-economic and ecological drivers of burned area. We 

identify key challenges to the development of such integrated socio-ecological models, highlighting crucial uncertainties 25 

around how anthropogenic and biophysical factors interact to produce patterns of fuel fragmentation and hence fire spread. 

Overall, advancing understanding of the interactions between human and biophysical drivers of fire remains a central 

challenge in fire science.  
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1 Introduction 30 

Fire is simultaneously a fundamental Earth-system process (Jones et al., 2022) and central to many lives and livelihoods 

globally (Smith et al., 2022). These two dimensions are well demonstrated by diverging trends in satellite observations: in 

the boreal North, burned area, fire intensity and emissions are increasing due to climate change (Cunningham et al., 2024; 

Jones et al., 2024), but total global burned area is declining, primarily due to land use change in the tropics (Andela et al., 

2017; Chen et al., 2023). Similarly, observational and model studies both increasingly point to a contrast between 35 

anthropogenic land management fires (hereafter “managed fires”), which are smaller, less intense and have lower interannual 

variability (IAV; Randerson et al., 2012; Archibald et al., 2013; Shuman et al., 2022) than unmanaged wildfires that are 

generally larger and more intense (hereafter ‘wildfires’; Kirchmeier-Young et al., 2024; McClure et al., 2024). Furthermore, 

managed fires are likely declining globally owing to increased land use intensity (Perkins et al., 2024a; Smith et al., 2022), 

whilst trends in wildfires are more strongly influenced by climate change, and hence have higher IAV (Burton et al., 2024; 40 

Gincheva et al., 2024). 

A primary tool available to understand the complex drivers of present-day fire regimes are global models, typically 

dynamic global vegetation models (DGVMs; Rabin et al., 2017). These are the land surface components of Earth system 

models used to project the response of the climate to anthropogenic greenhouse gas emissions (Kasoar et al., 2024). DGVMs 

have struggled to capture the land-use-driven decline in burned area and instead often show increasing historical burned area 45 

in line with climate forcings (Teckentrup et al., 2019). However, at the same time, DGVMs have also struggled to capture 

the climate-driven interannual variability of fire (Hantson et al., 2020).  

Consequently, the first fire model intercomparison project (FIREMIP; Rabin et al., 2017) gave rise to two distinct 

proposals concerning how best to improve the performance of global-scale fire models. The first proposal was that models 

needed to improve the representation of direct human impacts on fire regimes (Ford et al., 2021). Such direct human impacts 50 

(or ‘direct human forcings’; hereafter ‘DHF’) include intentional human fire use in agriculture and landscape management 

(Forrest et al., 2024; Millington et al., 2022), fire suppression (Kreider et al., 2024), and the spillover effects of land use 

changes including cropland conversion and road building (Bowring et al., 2024; Rosan et al., 2022). The proposal to focus 

on improving representation of DHF was driven by the finding that models had no agreement on how DHF had influenced 

burned area over the last century, with estimates ranging from c. 50% increase to c. 50% decrease in burned area from 1900 55 

levels (Teckentrup et al., 2019). Such inter-model disagreement was underpinned by highly simplistic representations of 

humans in the existing global fire models, often restricted simply to a function of population density (Kasoar et al., 2024). 

The second proposal was to focus on improving representation of the ecological dimensions of fire regimes, including the 

role of fuel loads and fire-specific adaptations in vegetation (Harrison et al., 2021). This suggestion was given weight by the 

fact that models which better captured the global distribution of gross primary production (GPP) also better captured the 60 

distribution of burned area (Hantson et al., 2020).  
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Here, we compare projections from two global fire models, one that attempts to improve representation of the socio-

economic dimensions of fire and the other to improve the ecological. We assess the degree to which differences in 

assumptions about direct human drivers of burned area influence future fire regimes simulated by these models. The first 

model is WHAM-INFERNO: the offline integration of a global agent-based model of human fire use and management 65 

(WHAM!;  Perkins et al., 2024a) with the JULES-INFERNO dynamic global vegetation model (Mangeon et al., 2016). 

WHAM-INFERNO is the first coupled model ensemble to explicitly represent (and distinguish between) managed human 

fire uses – spanning agricultural burning, fire use in hunting and gathering, and prescribed fire use - and their interactions 

with fire’s biophysical drivers (Perkins et al., 2025a). The second model is the generalised linear model of Haas et al., (2022; 

hereafter “Haas model”), which focused on gross primary production as the underlying driver of global fire regimes, and in 70 

its original publication is driven by outputs from the process-based P-model of photosynthesis (Stocker et al., 2020; Wang et 

al., 2017).  

 Both models are better able to reproduce the observed spatial distribution of burned area than models that 

participated in the latest published FireMIP assessments (WHAM: r = 0.83, Haas: r = 0.84, FIREMIP: 0.50 < r <= 0.81; 

Teckentrup et al., 2019). Yet, the two models have profoundly different structures and assumptions, particularly regarding 75 

the role of humans (Table 1). WHAM! conceptualises humans as active participants in fire regimes – making decisions about 

where, when and how much to burn according to boundedly rational land use objectives (Perkins et al., 2022). Humans 

respond both to socio-economic conditions, for example their access to fire-free land management methods (e.g. 

mechanisation, chemical fertilisers), and environmental conditions, for example the net primary production of a cattle 

pasture (Perkins et al., 2024a). However, anthropogenic management of fire regimes is far from perfect, and at least 50% of 80 

burned area is generated by uncontrolled wildfires (Perkins et al., 2025a). These are either ignited by lightning, accidental or 

incidental anthropogenic fires, or are ‘escaped fires’: fires that were ignited intentionally for a specific purpose but which 

subsequently grew out of control (Cano-Crespo et al., 2015; Li et al., 2025). WHAM! projects the burned area from 

successfully controlled human fires, whilst JULES-INFERNO calculates the burned area of free-burning wildfires based on 

biophysical factors.  85 

 By contrast, in the Haas model the effect of human activity is represented primarily via landscape fragmentation 

through road building and cropland conversion (Haas et al., 2022). As such, the largest human influence on fire is indirect, 

through land cover changes which perturb underlying ecological processes, rather than direct (intentional) interaction with 

the fire regime. The model adopts an empirically-defined, weakly positive relationship between human population density 

and burned area, but implicitly it is assumed that many ecosystems are “ignition saturated”: the presence of anthropogenic 90 

fire use does not necessarily lead to increased overall burned area but rather serves primarily to reduce individual fire size 

proportionally to the number of additional fires (Archibald et al., 2012; Knorr et al., 2014).  Both models, then, seek to move 

away from the representation of humans primarily as generators of ‘ignitions’, yet they do this in opposite ways. The Haas 

model focuses on fuel connectivity, whilst WHAM-INFERNO highlights human impacts not only on fire ignition, but also 

on controlling fire spread (Kasoar et al., 2024). 95 
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Table 1: Representation of differing dimensions of global fire regimes in the WHAM-INFERNO ensemble (Perkins et al., 2025a) 

and the Haas generalised linear model (Haas et al., 2022). 

Model process Model representation 

 WHAM-INFERNO Haas model 

Climate INFERNO combines process-based & empirical 

representation of climate impacts on fire in a 

vegetation flammability calculation. An upper 

limit is derived from the vapour pressure deficit, 

which is then constrained by fuel availability, 

precipitation, and soil and atmospheric moisture 

content.  

Empirically defined as a function of the 

vapour pressure deficit, dry days and their 

seasonality, diurnal temperature range, and the 

interaction of windspeed and temperature 

(maximum wind speed of the hottest month).  

 

Vegetation 13 plant functional types are each assigned an 

empirical mean fire size. 

Gross primary production (GPP) and its 

seasonality are the fundamental model drivers. 

In its original conceptualisation, these were 

sourced from the P-model to ensure faithful 

representation (Stocker et al., 2020). 

Relationships of GPP to burned area in the 

model are empirical. 

Human fire use Represented in detail as a function of land 

system and land user types and their relationship 

with varying socio-ecological contexts. 

Not represented beyond a weakly positive 

empirical relationship between population 

density and burned area. 

Human fire 

management 

Fire control – the degree to which managed fires 

stay managed and fire suppression intensity (i.e. 

fire-fighting) are both represented explicitly. 

Not represented 

Landscape 

fragmentation 

Road density and cropland cover decrease the 

mean fire size, and hence burned area, of 

unmanaged wildfires. However, cropland can 

also increase managed burned area where 

agricultural residue burning occurs.  

Represented through cropland conversion and 

roads; these empirically reduce the burned 

area of all fires. 
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This paper presents and analyses model outputs from WHAM-INFERNO and the Haas model. It explores how the 

two models’ distinctly different conceptualisations of the DHF of burned area shape model projections under climate and 

socio-economic change. We assess whether there are commonalities between models, despite their contrasting assumptions 100 

and structures. Discussion focuses on the distinct fire-adaptation challenges under different Shared Socio-economic 

Pathways and the key priorities for future research highlighted by the model intercomparison.  

2 Methods 

We present outputs from model runs of WHAM-INFERNO and the Haas model for two Shared Socio-economic Pathways 

(SSPs) used in the Intersectoral Model Intercomparison Project (ISIMIP; Lange, 2019). These are SSP1 with representative 105 

concentration pathway 2.6 (SSP1-2.6) and SSP3 with representative concentration pathway 7.0 (SSP3-7.0). We adopt these 

as they represent a range of warming scenarios from low (SSP1-2.6) to high (SSP3-7.0). We first briefly introduce WHAM-

INFERNO and the Haas model, as well as describing their respective forcing data sets (Table 2). We then describe bias 

correction and harmonisation procedures for forcing data to be used with both models. Finally, we describe experiments 

undertaken and analysis of model outputs. All code and data to reproduce results presented here are made available as 110 

Perkins et al., (2025b).  

2.1 Model description & setup 

2.1.1 WHAM-INFERNO 

WHAM-INFERNO combines runs of the WHAM! global model of human fire and management with the JULES-INFERNO 

dynamic global vegetation model. WHAM! was setup as described in Perkins et al., (2024a). The offline model coupling 115 

with JULES-INFERNO is described in detail in Perkins et al., (2025a). Hence, here we provide a brief overview of model 

structure, before describing the calculation of vegetation flammability for future model runs.  

WHAM-INFERNO calculates burned area as the sum of managed and unmanaged fire. Managed fire is calculated 

by WHAM!, whilst unmanaged fire is calculated by INFERNO. The six managed fire use types in WHAM! are those 

originally identified in Millington et al., (2022): crop field preparation (i.e. shifting cultivation), crop residue burning, 120 

hunting and gathering, pasture management, pyrome management (the use of fire explicitly to reduce the intensity of the fire 

regime by fragmenting fuel loads), and vegetation clearance (deforestation). Indigeous fire use frequently does not sit neatly 

in any one purpose: fires may be lit for multiple purposes at the same time (Nikolakis and Roberts, 2020). Hence “hunter 

gatherer” fire use in WHAM! attempts to capture the overall systems of fire use practiced by such communities 

(Christianson et al., 2022). WHAM! calculates managed fire use through the modelled distribution of “agent functional 125 

types” (AFTs; Arneth et al., 2014), which aim to capture characteristic syndromes of human fire use and management across 

different land use systems - arable farming, livestock farming, forestry and non-extractive land uses (Perkins et al., 2022; 

Table S1). 
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Unmanaged burned area is calculated by INFERNO as: 

𝐵𝑢𝑟𝑛𝑒𝑑_𝑎𝑟𝑒𝑎𝑈𝑀 = 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑓𝑡 ∗ 𝐵𝐴̅̅ ̅̅
𝑝𝑓𝑡                                                                                                                   (1)  130 

where 𝐵𝑢𝑟𝑛𝑒𝑑_𝑎𝑟𝑒𝑎𝑈𝑀is the burned area from unmanaged fires, 𝐵𝐴̅̅ ̅̅
𝑝𝑓𝑡 is a mean fire size per plant functional type, and 

𝐹𝑖𝑟𝑒𝑠𝑈𝑀 is the sum of lightning fires, escaped managed fires, arson, and a constant rate of accidental / miscellaneous fires. 

WHAM! calculates a probability of fire escape for each agent functional type and managed fire use type, as well as numbers 

of fires due to arson – defined as fire use explicitly as a weapon (Perkins et al., 2024a). Lightning strikes and the background 

rate of incidental fires are reduced linearly with WHAM!’s calculation of fire suppression intensity.  135 

INFERNO’s flammability calculation (eq. 2) serves the role of capturing the impact of climate, hydrology, and fuel 

availability on fire (Mangeon et al., 2016; Table 1). This was reproduced offline such that all the inputs to the flammability 

calculation could be bias corrected to allow comparison with Haas-model outputs (see section 2.2). As in Mangeon et al., 

(2016), INFERNO calculates flammability as: 

𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑓𝑡 = 𝑉𝑃 ∗ 𝑓(𝑅𝐻) ∗ 𝑓(𝐹𝑢𝑒𝑙𝑝𝑓𝑡) ∗ 𝑓(𝜃) ∗ 𝑓(𝑃𝑟𝑒𝑐𝑖𝑝)                                                                                                (2) 140 

where 𝑉𝑃  is the saturation vapour pressure, 𝑓(𝑅𝐻) is a function of relative humidity, 𝑓(𝐹𝑢𝑒𝑙𝑃𝐹𝑇) is a function of fuel 

availability, 𝑓(𝜃) is a function of soil moisture content, and 𝑓(𝑃𝑟𝑒𝑐𝑖𝑝) a function of precipitation. In other words, the 

(temperature dependent) saturation vapour pressure sets an upper ceiling on flammability, which is then reduced by four (0-

1) constraint functions. Datasets used for this offline calculation were sourced from JULES’ ISIMIP3b outputs (detailed in 

Table 2).  145 

Finally, the coupling of WHAM! with JULES-INFERNO was conducted as in Perkins et al., (2025a); the 

calibration described therein identified 10 pareto optimal combinations of model free parameters. These free parameters 

include the mean burned area per fire for each plant functional type in INFERNO (as in eq. 1), the impact of road density in 

reducing this burned area per fire, and parameters to calibrate the impact of fire suppression (see Perkins et al., 2025a, 

supplementary information for details). We ran the WHAM-INFERNO coupled model using each of these parameter sets 150 

and present the full-range of outputs for WHAM-INFERNO runs. When comparing with the Haas model, we take the mean 

of these runs as the maximum likelihood (best) estimate. 

2.1.2 Haas generalised linear model 

The Haas model was developed to capture overall spatial patterns of burnt area given background climate and vegetation 

state. It was applied as originally presented in Haas et al., (2022), with three changes. Firstly, the model was run at the same 155 

resolution as WHAM-INFERNO (1.875° x 1.25°). Secondly, the Haas model was originally trained against GFED4 burned 

area (Giglio et al., 2013; Haas et al., 2022). However, as the 5th edition of GFED has revealed burned area to be as much as 

61% higher than previously estimated (Chen et al., 2023), and WHAM-INFERNO adopts GFED5 as its baseline, the Haas 

model was retrained against this more recent dataset. Thirdly, rather than using the P-model gross primary production (GPP), 
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the MUSES satellite-derived product was used (Wang et al., 2021). This was to ensure comparability with WHAM!, which 160 

uses MUSES NPP data as a baseline input (Table 2).  

2.2 Bias correction of scenario forcing 

Our goal was to run both WHAM-INFERNO and the Haas with initial states and forcings as similar as possible, such that 

outputs were directly comparable. Therefore, we sought to bias correct scenario forcings to a common baseline state. We 

sourced future biophysical forcing data from the Intersectoral Model Intercomparison Project 3b (Frieler et al., 2017), using 165 

runs forced by the UK Earth System Model (Sellar et al., 2020). For each variable, we identified a reference dataset for the 

present day (Table 2) and took 2020 as a common baseline. We then calculated the annual anomaly of the scenario forcing 

(compared to 2020 in the scenario data) and added this to the baseline reference state. For variables without readily available 

remote sensing observations - leaf and soil carbon content and soil moisture - we adopted JULES ISIMIP3a outputs using 

ERA5 forcings (Frieler et al., 2024) as the reference. For soil moisture, INFERNO uses the top-layer of soil as represented 170 

by JULES only and hence has no direct observational analogue (Mangeon et al., 20216).   

The main challenge for model input data harmonisation was in the models’ respective treatment of land covers. 

Both WHAM-INFERNO and the Haas model treat cropland as an explicitly anthropogenic land use category. However, 

WHAM-INFERNO treats pasture as a separate land cover class from natural grasslands, whilst the Haas model groups these 

together. Furthermore, WHAM-INFERNO was built using the LUH2 data for anthropogenic land covers (Hurtt et al., 2020), 175 

whilst the Haas model adopts the ESA CCI remote-sensing product (Li et al., 2018). This led to ontological differences in 

the treatment of bare soil. Bare soil can have fractional pixel coverage in JULES’ vegetation scheme, and is frequently 

combined with crop PFTs to represent croplands (Burton et al., 2019), whilst in ESA CCI it is a binary class. WHAM! uses 

the bare soil fraction of a pixel to constrain agent decision making (Perkins et al., 2024a), whilst in the Haas model the 

cropland land cover class implicitly includes both crops and bare soil present in such land use systems. 180 

Hence, we could not fully reconcile these two approaches. However, it was possible to ensure the scenario anomaly 

was the same. For anthropogenic land covers, we adopted the LUH2 land cover data across both models. For natural land 

covers, we used JULES plant functional type (PFT) projections in WHAM-INFERNO and then reconciled JULES PFT 

projections to the ESA CCI land cover baseline state for the Haas model. As such, we first calculated the natural vegetation 

coverage for the Haas model as: 185 

𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐻𝑎𝑎𝑠 = 𝐿𝑎𝑛𝑑𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑 − 𝑈𝑟𝑏𝑎𝑛                                                                                                                            (3) 

where 𝐿𝑎𝑛𝑑𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the proportion of each pixel covered by land, and 𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐻𝑎𝑎𝑠 is the pixel fraction covered by natural 

vegetation. As noted above, the Haas model treats pastures as natural grasses and hence they were treated as natural land. We 

then calculated the fractional composition of natural vegetation in both the ESA CCI data (between forest, shrubs and 

grasses) and the fractional coverage of the natural JULES PFTs in SSP projections. For the Haas model, the PFTs used were 190 

the 9 natural PFTs and 2 pasture PFTs grouped into trees, grasses and shrubs.   
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Table 2: Model input datasets, source of projections and baseline data for harmonisation. Key: * denotes input data sets used in 

WHAM! and not in INFERNO; + denotes inputs used by INFERNO but not WHAM! References (where not given): 1Sellar et al. 

2020; 2Lange et al., 2019; 3Mathison et al., 2023; 4Hurtt et al., 2020; 5Hersbach et al., 2020; 6Martens et al., 2017; 7Wang et al., 

2021. ISIMIP3b outputs were those using UK Earth System Model forcings, whilst ISIMIP3a baseline outputs used ERA5 climate 195 
inputs. 

 

Variable 
WHAM-

INFERNO 

Haas 

model 
Scenario forcing Baseline 

Air temperature ✓ ✓ UKESM ISIMIP3b 

forcing1,2 
ERA55 

Precipitation ✓ ✓ UKESM ISIMIP3b 

forcing1,2 
ERA55 

Atmospheric humidity ✓ ✓ UKESM ISIMIP3b 

forcing1,2 
ERA55 

Wind speed  ✓ UKESM ISIMIP3b 

forcing1,2 
ERA55 

Potential evapotranspiration* ✓  JULES ISIMIP3b3 GLEAM6 

Gross primary production  ✓ JULES ISIMIP3b3 MUSES7 

Net primary production* ✓  JULES ISIMIP3b3 MUSES7 

Leaf carbon content ✓  JULES ISIMIP3b3 JULES ISIMIP3a3 

Soil carbon content ✓  JULES ISIMIP3b3 JULES ISIMIP3a3 

Soil moisture ✓  JULES ISIMIP3b3 JULES ISIMIP3a3 

Land cover (natural) ✓ ✓ JULES ISIMIP3b3 

ESA-CCI8 (Haas) / 

JULES ISIMIP3a3 

(WHAM-INFERNO) 

Land cover (anthropogenic) ✓ ✓ LUH24 LUH24 

GDP* ✓  Murakami et al., 

(2021) 
Kummu et al., (2018) 

HDI* ✓  Perkins et al., (2024b) Kummu et al., (2018) 

Market access* ✓  Perkins et al., (2024b) Verburg et al., (2011) 

Population density* ✓ ✓ Jones and O’Neill, 

(2016) 
CIESIN (2017) 

Road density* ✓ ✓ Meijer et al., (2018) Meijer et al., (2018) 
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We then calculated the annual change in (natural) PFT composition and used this as an anomaly from the ESA CCI 

baseline state. We multiplied this bias corrected natural land cover composition by the natural fraction derived from LUH2 

data (eq 3) to calculate the coverage of natural land cover types. This made the coverage of (natural) PFT i at timestep j: 200 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖,𝑗 = (
𝑃𝐹𝑇𝑖,𝑗

∑ 𝑃𝐹𝑇𝑗

− 
𝑃𝐹𝑇𝑖,1

∑ 𝑃𝐹𝑇1

+ 𝐸𝑆𝐴_𝑓𝑟𝑎𝑐𝑖) ∗  𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐻𝑎𝑎𝑠                                                                                                    (4) 

where 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖,𝑗 is the coverage of the ith (natural) 𝑃𝐹𝑇 at timestep j. 

 

2.3 Model experiments & analysis 

2.3.1 Model experiments 205 

As well as comparing the respective model outputs for SSP1-2.6 and SSP3-7.0, we explicitly investigate model projections 

of direct human forcings on burned area. After Burton et al. (2024), we define DHF as the modelled impact of human actions 

taken at the land surface on burned area. These include land cover change, road building, managed fire use and suppression. 

DHF is calculated in the models based on the socio-economic scenario forcings in each of the SSPs. Human impacts on 

climate (and their subsequent impacts on fire), then, are treated separately through the RCPs and associated projections of 210 

climate change under differing greenhouse gas concentrations.  

Therefore, we ran both models with all scenario forcings variable over time (hereafter “scenario runs”). We then ran 

a set of experiments with the human forcings held constant at 2020 levels (hereafter “2020 DHF runs”). As the models treat 

land cover differently, in the 2020 DHF runs, we held cropland constant (as it is treated as an anthropogenic land cover in 

both models), but allowed other land cover types (grasses, trees, shrubs) to change transiently. 215 

2.3.2 Model output analysis 

We used linear correlations to understand the level of agreement between model outputs across the two SSPs, and between 

baseline runs and 2020 DHF runs. To understand drivers of differences in model projections of DHF we calculated 

correlations between anthropogenic land cover change (cropland, pasture) and changes in socio-economic forcings (the 

human development index [HDI], population density) with model projections of DHF.  220 

We then sought to understand whether overall scenario anomalies and anomalies in modelled DHF were predictable 

based on historical model outputs. Therefore, we calculated model error against GFED5, using outputs for 2011-2014 (the 

Haas model training period). We calculated model error for each grid cell and calculated mean absolute error by GFED 

region (Chen et al., 2023). When performing this calculation for GFED regions, we divided errors and future anomaly by the 

mean GFED5 burned area in each region for the present-day. This accounted for the fact that we would expect model outputs 225 

to diverge more in the present in regions with the greatest biophysical capacity to sustain fire.  
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To assess whether differences in model projections were linked to differences in historical model errors, we 

calculated linear correlations between absolute differences in model error and absolute differences in future projections. 

When also sought to identify whether model error against GFED5 followed predictable patterns in line with different levels 

of human activity. Therefore, we also tested whether differences in absolute model error were linked to differences in socio-230 

economic variables (HDI and population density).  

Finally, we calculated the interannual variability (IAV) of model outputs between 2020-2029 and, although a direct 

evaluation was not possible, we compared this against GFED5 observations between 2011-2020. This was done as models 

have struggled to reproduce the IAV of historical present-day fire regimes and therefore allows assessment of whether 

WHAM-INFERNO or the Haas model have improved model capacity to represent this dimension of global fire regimes 235 

(Hantson et al., 2020). To account for the human-driven decline in global burned area that is distinct from weather-driven 

IAV (Andela et al., 2017; Gincheva et al., 2024), we first detrended the GFED5 observations and model outputs using linear 

models (such that mean BA = 0). We then took the mean of the absolute difference between years as a measure of IAV. 

Following observational studies (Gincheva et al., 2024; Randerson et al., 2012), we would expect unmanaged wildfires to 

have a larger interannual variability than managed fires. 240 

3 Results 

Future projections from WHAM! have not previously been presented. Therefore, we first present these and their coupling 

with INFERNO, before comparing outputs with the Haas models. We then focus on understanding the relative impact of 

DHF across models and scenarios. 

  245 

3.1 WHAM-INFERNO projections for the Shared Socio-economic Pathways 

3.1.1 Managed burned area 

WHAM! outputs for managed burned area show sharply differing trends for SSP1-2.6 and SSP3-7.0 (Figure 1). In SSP1-2.6, 

WHAM! projects that managed burned area will drop to 231 Mha by 2050 and continue to decline to 148 Mha in 2100. By 

contrast, in SSP3-7.0, global managed fire remains at approximately 2020 levels in 2050 (418 Mha) and declines only to 366 250 

Mha by 2100. In other words, SSP1-2.6 shows an acceleration of observed global declines in managed fire use, whilst SSP3-

7.0 sees fire use persist.  
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The composition and distribution of managed fire also differs between scenarios. WHAM! suggests that pasture 

management fire (36%) and crop residue burning (CRB; 31%) comprise the largest proportion of human fire use in 2020 255 

(Perkins et al., 2024a). These fire use types decline most strongly in SSP1-2.6, reaching 16% (CRB) and 7% (pasture fire) of 

managed burned area by 2100 (Figure 2). By contrast, in SSP3-7.0, pasture fire declines modestly as a proportion of 

managed burned area to 26% in 2100, whilst CRB increases to 37%. For pasture fire, this difference is because of the 

empirical relationship between economic growth and the replacement of fire-based with machinery-based management in 

agricultural systems, which is a stronger forcing under SSP1 than SSP3 (Cammelli et al., 2020; Dellink et al., 2017). For 260 

crop residue burning, increased yields under intensification empirically produce an initial increase in burning, which then 

tends to decline under improved environmental and air quality legislation accompanying wider societal development 

(Millington et al., 2022; Forrest et al., 2024). 

 

Figure 1: WHAM! projections of managed fire use in the Shared Socio-economic Pathways (SSPs). Agricultural fire uses decline 265 
sharply in SSP1 but persist in SSP3. Key: CFP = Crop field preparation; CRB = Crop residue burning; HG = Hunter gatherer; 

Pyrome = Pyrome management; VC = Vegetation clearance.  
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Figure 2: WHAM! projections for managed human fire in 2100 under the Shared Socio-economic Pathways (SSPs). Clear 270 
differences are observed in projected Agriculture and Pasture fires between the SSPs, particularly in Africa and the Indian 

subcontinent.  Vegetation fire combines crop field preparation, hunter-gatherer fire, pyrome management (fuel load reduction) 

and vegetation clearance. A non-linear colour stretch was applied for interpretation.  

 

  275 
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3.1.2 Fire suppression 

Fire suppression (active firefighting) increases in both scenarios, reaching a mean value of 0.39 (meaning 39% of 

unmanaged wildfires are suppressed) in SSP1, and a mean value of 0.29 in SSP3 (Figure 3). Hence, the greater economic 

development in SSP1 leads WHAM! to project larger increases in suppression, and vice-versa. Beneath this overall pattern, 

there is some regional heterogeneity. For example, in the eastern USA, suppression intensity is lower in SSP1 than in SSP3 280 

(Figure 4). This occurs as WHAM! projects that such areas begin to adopt a ‘pyro-diverse’ management approach, in which 

prevention and fuel load reduction through prescribed fire replace intensive firefighting and an overall fire-exclusion strategy 

(Perkins et al., 2022). The most pronounced differences between SSP1 and SSP3 are in South America, India and eastern 

China, with the higher socio-economic development in SSP1 leading to higher suppression in each case.   

 285 

 

 

Figure 3:  Suppression intensity in WHAM! across Shared Socio-economic Pathways 1 & 3. The shaded area represents the range 

of outcomes projected by parameter sets identified as pareto optimal during model calibration. 

  290 
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Figure 4:  Suppression intensity in WHAM! in 2100 across Shared Socio-economic Pathways 1 & 3. Values shown are the mean of 

model projections.  

 

3.1.3 Coupled WHAM-INFERNO outputs 295 

We briefly describe key trends in coupled WHAM-INFERNO outputs, before presenting more detailed analysis through 

comparison with outputs from the Haas model in sections 3.2 and 3.3. The WHAM-INFERNO coupled model shows 

diverging trends in SSPs 1 & 3. In line with declining anthropogenic fire and increased suppression, outputs for SSP1-2.6 

suggest a sharp decline in unmanaged fire (Figure 5) reaching a minima of -425 Mha in 2095. By contrast, in line with 

increased warming, SSP3-7.0 outputs show increased wildfire (120 Mha) leading to an overall increase in burned area of 65 300 

Mha, even as managed fire declines (-55 Mha). As such, in SSP1-2.6, WHAM-INFERNO projects socio-economic change 

will dominate the effect of climate change, whilst in SSP3-7.0, the effect of climate comes to dominate by 2100. 
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Figure 5: Managed and unmanaged (wildfire) burned area in the Shared Socio-economic Pathways in WHAM-INFERNO. The 

shaded area represents the range of outcomes projected by parameter sets identified as pareto optimal during model calibration. 305 

3.2 Comparison of WHAM-INFERNO and Haas projections 

WHAM-INFERNO and the Haas model provide fundamentally different assessments of the two SSPs (Figure 6). In contrast 

to WHAM-INFERNO, the Haas model projects little long-term trend in global burned area in SSP1-2.6: the mean burned 

area from 2020-2030 is 620 Mha compared with 634Mha between 2090-2100. Furthermore, in SSP3-7.0, the Haas model 

projects a large increase in burned area, peaking at some 1178 Mha in 2098. Overall, therefore, the Haas model projects 310 

climate will be the dominant driver of change in global burned area, with its impact dampened by socio-economic forcings in 

SSP1-2.6. By contrast, WHAM! suggests a dominant role for socio-economic drivers in SSP1-2.6 and a more mixed picture 

in SSP3-7.0 (Figure 6).  

The models have modest agreement about the spatial distribution of change (Figure 7). At the GFED region level, 

in SSP3-7.0 both models project an increase in burned area in 8 of 15 regions (Figure 8). This includes boreal North America 315 

and boreal Asia, where the climate signal is least disrupted by DHF in the present. By contrast, in SSP1 the models disagree 

on the direction of the trend in 11 of 15 GFED regions. Regions in which models disagree in both scenarios include Central 

Eastern Asia and Southeast Asia, which currently experience large amounts of agricultural residue burning (Hall et al., 2024; 

Figure 8). In addition, models disagree in the USA, with WHAM! projecting little change, and the Haas model projecting 

increases. Notably, dynamic global vegetation models have tended to overestimate burned area in the USA, perhaps due to 320 

the omission of the impact of intensive fire suppression policies (Hantson et al., 2020; Kreider et al., 2024; Parks et al., 

2025).  
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Figure 6: Comparison of burned area anomaly in WHAM-INFERNO and the Haas model for: A) SSP1-2.6; and B) SSP3-7.0.   

Figure 7: Comparison of burned area anomaly by 2100 between WHAM-INFERNO and the Haas generalised linear model 

(GLM). WHAM-INFERNO outputs combine managed and unmanaged fire. 325 

  

A)  B) 
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Figure 8: Burned area across the GFED regions. A 1-sigma smoother was applied to Haas model outputs to aid interpretation. 

Key: AUST = Australia, BOAS = Boreal Asia, BONA = Boreal North America, CEAM = Central America & Mexico, CEAS = 

Central Asia, EQAS = Equatorial Asia, EURO = Europe, MIDE = Middle East & north Africa, NHAF = Northern Hemisphere 330 
Africa, NHSA = Northern Hemisphere South America, SEAS = South East Asia, SHAF = Southern Hemisphere Africa, SHSA = 

Southern Hemisphere South America, TENA = Temperate North America. See Chen et al., (2023) for GFED region boundaries. 

 

There is some evidence that divergence in models’ future projections is linked to model error in the present (Figure 

S1). Perhaps expectedly, model divergence is associated with higher model error in historical runs (ρ = 0.58). Similarly, at 335 

the GFED region-level, even accounting for the amplitude of present-day burned area, model outputs diverge more where 

they diverge more in the present (ρ = 0.67). Present-day model difference is linked to the human development index (HDI), 

with WHAM-INFERNO having lower absolute error in GFED regions where HDI is higher, and vice versa (ρ = 0.45). 

However, this pattern is not monotonic, with the Haas model performing better in Australia, a region with high HDI (Figure 

S2).  340 
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Furthermore, the Haas model exhibits higher interannual variability under both scenarios than WHAM-INFERNO. 

The detrended absolute IAV of the Haas model during 2020-2029 is 61.8 Mha in SSP1 and 40.8 Mha in SSP3-7.0. This 

compares to 28.5 Mha in GFED5 over 2011-2020. By contrast, WHAM-INFERNO outputs across 2020-2029 have 

detrended IAV of 23.6 Mha in SSP1-2.6 and 16.6 Mha in SSP3-7.0. As such, although a direct comparison between model 345 

outputs and observations was not possible, WHAM-INFERNO seemingly underestimates climate sensitivity, whilst the Haas 

model may overestimate it. Therefore, for both the spatial distribution and IAV of burned area, the models’ future outputs 

differ in ways that are consistent with their contrasting underlying assumptions. The implications of this are addressed in the 

discussion.  

3.3 Impact of direct human forcing 350 

Both models project that the impact of direct human forcing (DHF) on burned area is negative in both SSPs (Figure 9). 

However, whilst the impact of DHF is approximately equal in SSP1-2.6 and SSP3-7.0 in the Haas model (-170Mha vs -

200Mha) there is a sharp divide between SSP1-2.6 and SSP3-7.0 in WHAM-INFERNO (-490Mha vs -111Mha). Indeed, in 

WHAM-INFERNO in 2050, the modelled impact of DHF in SSP3 is marginally positive (+8Mha) before subsequently 

becoming negative in 2100. The models’ 2100 scenarios are also somewhat more consistent when DHF is held constant (r = 355 

0.56), than in baseline model runs with DHF updated dynamically (r = 0.49).  

The spatial correlation of the two models’ projections of DHF is greater between scenarios than between models: 

Pearson’s correlation coefficient between WHAM-INFERNO’s projected DHF across SSP1 and SSP3 is 0.52 (Haas SSP1-

2.6, SSP3-7.0: r = 0.39), compared with a correlation of r = 0.35 between WHAM-INFERNO’s projected DHF effect and the 

Haas model’s projected DHF (Figure S3). This implies that differences in model structure are at least as important as the 360 

scenario forcing in determining future projections of DHF. Notably, the models have much more agreement on the spatial 

distribution of DHF in SSP1-2.6 (r = 0.62) than in SSP3 (r = 0.15). This suggests there is greater agreement in determining 

how DHF will respond to socio-economic development (which dominates SSP1) than to a changing climate (which 

dominates SSP3). We address the implications of this finding for climate change adaptation in the Discussion.  

Underpinning such contrasting projections are different assessments of the processes through which humans 365 

directly impact burned area. Notably, the Haas model’s projection of DHF is strongly influenced by changes in cropland 

cover (r = -0.60; Figure S4), whilst WHAM-INFERNO has little response (r = -0.06). Conversely, WHAM-INFERNO’s 

projected DHF is more sensitive to the Human Development Index (r = -0.52) than the Haas model (r = -0.24). This is 

logical, as HDI is an input to WHAM-INFERNO, whilst in the Haas model its impact is only captured implicitly through 

increased road density. Notably, neither model projects population density as having an overall positive impact on the DHF 370 

of burned area (Haas: r = -0.25, WHAM-INFERNO: r = -0.09).  
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Finally, whilst the overall impact of DHF in both models is to reduce burned area, both also show areas where DHF 

increases burned area (Figure 10). WHAM-INFERNO shows a greater extent of increased burned area due to DHF in both 

SSP1-2.6 (41 vs 9 Mha) and SSP3-7.0 (111 vs 19 Mha). This occurs primarily because AFTs in WHAM! respond to a 375 

warmer climate by increasing pastoral burning (where it remains present) and using fire to manage fuel loads (as represented 

by pyrome management and hunter-gatherer fire use; Figure 1). This response is widespread in the boreal and Amazon 

forests, which undergo substantial climate change (Figure 2). Areas of increased burned area due to DHF in WHAM! are 

most associated with increased pasture (r = 0.36) and increased population density (r = 0.36). Similarly, increased burned 

area due to DHF in the Haas model area is associated with increased pasture (r = 0.27; though these are treated as natural 380 

grasslands), with a weaker relationship to population density (r = 0.12). As WHAM! has explicit representation of crop 

residue burning, positive DHF of burned area is associated with cropland cover (r = 0.28), whilst its impact is always 

negative in the Haas model (r = -0.13).  

Figure 9: Impact of direct human forcing (DHF) on burned area anomaly in WHAM-INFERNO and the Haas GLM. DHF 

represents the difference between model projections with all scenario forcings dynamic, and with DHF held constant at 2020 385 
levels.  

 

 

 

 390 
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Figure 10: Impact of direct human forcing (DHF) on burned area in 2100. DHF was calculated as the difference between model 

projections with all scenario forcings dynamic, and with DHF held constant at 2020 levels. A non-linear stretch was applied to the 

colour-scheme to aid interpretation. 

 395 

4 Discussion 

We have presented and compared SSP burned area outputs from WHAM-INFERNO and the Haas GLM. The two models 

project highly contrasting futures. The Haas model projects higher interannual variability (IAV), increased burned area in 

SSP3-7.0, and static (though noisy) mean burned area in SSP1-2.6 – indicative of large sensitivity to climate forcings. By 

contrast, WHAM-INFERNO projects lower IAV, a steep decline in SSP1-2.6, and a modest increase in SSP3-7.0 – 400 

indicative of larger sensitivity to socio-economic forcings. Therefore, differences in model output are consistent with the 

models’ respective underlying assumptions, particularly regarding the direct impacts of humans on burned area. We first 

discuss the implications of our findings for policy, particularly climate change adaptation, before discussing implications for 

fire science and modelling.  

  405 
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4.1 Implications for policy: adaptation challenges in contrasting futures 

Understanding adaptation options in response to a changing climate is a primary challenge for policymakers (Pelling 2011). 

The presence of a dynamic adaptive response to climate change in WHAM-INFERNO (and its absence in the Haas model), 

underpins much of the models’ differing projections of end-of-century fire regimes. For example, whilst both models suggest 

that burned area will increase in the boreal forest, in the Haas model this mirrors present-day regimes driven by climate 410 

change (Cunningham et al., 2024; Haas et al., 2024). This same warming pattern is represented in WHAM-INFERNO, but 

occurs alongside a dynamic adaptative response, with increased managed fire used to reduce fuel loads (Figure 7).  

Such managed fire use has been widely suggested as a means of adapting to the impacts of climate change (e.g., 

Oliveras Menor et al., 2025). Consequently, given recent extreme fire years in Canada, support for indigenous-led fire 

management is gaining pace (Christianson et al., 2022; Hoffman et al., 2022). As noted above, in WHAM-INFERNO, this 415 

fire-inclusive (‘pyro-diverse’) approach to fire management is primarily represented through the ‘hunter-gatherer’ fire use 

type, which aims to capture the overall system of indigenous fire management. In highly-developed and fire-prone contexts, 

this fire inclusive management approach can be supported by state bodies and NGOs (Table S1). This is captured in 

WHAM! by empirically representing the relationships between the socio-economic and climate conditions that have 

produced the partnership between state agencies and indigenous groups in the present-day – principally in Northern Australia 420 

(Russell-Smith et al., 2015). It is notable, therefore, that hunter-gatherer fire increases more in SSP1-2.6 than SSP3-7.0, even 

whilst adaptation needs are higher in SSP3-7.0 owing to stronger climate forcing. This trend for stronger adaptive responses 

under SSP1-2.6 is particularly notable in WHAM! outputs for boreal Russia, an area projected to have substantial increases 

in burned area under SSP3-7.0 (Figure 2). By contrast, in boreal Canada, the adaptive response is stronger under SSP3-7.0, 

in line with greater climate forcing. This points to a “soft” limit to adaptation: the modest socio-economic development in 425 

SSP3-7.0 entails that WHAM! does not project a return of ‘hunter-gatherer’ fire in boreal Russia (because lower HDI 

implies that the conditions needed for successful state  partnership with traditional fire users do not occur; Croker et al.,  

2023). Hence, although SSP1-2.6 has lower climate forcing, WHAM! outputs in this scenario point to a stronger adaptive 

response.  

By contrast, in SSP1, WHAM! points to risks of maladaptation: management decisions that unknowingly 430 

exacerbate climate change impacts (Magnan et al., 2016). Perkins et al., (2025a) show that in the present-day, managed 

human fire use reduces global fire radiative power (FRP) – the amount of energy emitted by a fire and a common proxy 

variable for fire intensity (Wooster et al., 2005). As such, all else equal, the dramatic reductions in managed human fire use 

for pasture management and shifting cultivation projected in sub-Saharan Africa, Central and Southern Asia in SSP1, are 

likely to increase FRP by leaving greater unmanaged fuel loads on the landscape. Given the observed increases in fire 435 

intensity with around 1.5℃ of warming (Cunningham et al., 2024), the combination of a 2-degree world (implied by RCP 

2.6; van Vuuren et al., 2011) and the large reductions in managed fire use projected by WHAM! under SSP1 seems likely to 

create profound management challenges.  
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Therefore, an SSP3-7.0 world is likely to create severe adaptation challenges, particularly in regions which 

experience above average climate warming such as the boreal forest. By contrast, an SSP1-2.6 world will seemingly create 440 

challenges around fire management in the Tropics, particularly how to avoid syndromes of over-suppression, fuel 

accumulation and extreme fires currently being experienced in the extra-tropics (Fischer et al., 2016; Hayes, 2021; Moreira 

et al., 2020). Both situations could be ameliorated by partnerships between state agencies and indigenous fire users that 

enable integrated fire management systems tailored to diverse ecosystems, climates and socio-economic circumstance 

(Croker et al., 2023).  445 

4.2 Implications for fire science: understanding fuel load connectivity 

Whilst the dynamic human response to climate change may be amongst the most important aspect of our results for policy, it 

is also amongst the most uncertain. This uncertainty is rooted in a lack of understanding of the drivers of present-day fire 

regimes, and more specifically, in an uncertainty about how impactful managed human fire is on burned area (rather than its 

impact on fire intensity). The Haas model does not include an explicit dynamic human response to climate change and 450 

human impacts on burnt area reflect the indirect effects of changes in cropland, population and road density. There is no 

managed fire explicitly represented (Table 1). By contrast, WHAM! represents the hypothesis that human fire use and direct 

management are important drivers of global fire regimes (Ford et al., 2021). 

Underpinning these different hypotheses is uncertainty about to what extent managed fires fragment fuels, thereby 

reducing the observed burned area of wildfires. Or posed alternatively, how far removing managed fire would lead to an 455 

increase in burned area from wildfires (Greenwood et al., 2022). Two limitations in WHAM! serve to confound deeper 

exploration of this issue. Firstly, different modes of human fire use exhibit different levels of spatial autocorrelation on a 

landscape. For example, shifting cultivation and pasture fires may be highly clustered in plots of land close to settlements 

and roads (Jakimow et al., 2018; Jakovac et al., 2017). Such fires, if well controlled, may have substantial burned area, but 

may not reduce or fragment fuel loads outside of a few agricultural areas. By contrast, indigenous fire use in savanna-460 

grasslands is frequently with the intention of fragmenting fuels across large areas (Bliege Bird et al., 2008). However, 

WHAM! does not yet represent the spatial distribution of human fires at any resolution finer than the currently coarse 

(~150km2) grid cell size. Secondly, fires used to fragment fuels (pyrome management in Figure 1) are often set early in the 

dry season to prevent very large and intense late dry season fires (Laris, 2002). However, WHAM! does not yet represent 

fire use seasonality and so cannot capture this difference.  465 

To some extent, such complications may be addressed by an online coupling of WHAM! with JULES-INFERNO, 

which would enable dynamic feedback between human fire use and vegetation (this coupling work is in progress; Perkins et 

al., 2025c). However, in practice, this is unlikely to fully capture the sub-pixel distribution of different forms of fire and their 

respective impact on vegetation connectivity. Rather, uncertainties around the spatiotemporal distribution of managed fire at 

sub-pixel scale (i.e., here < c.150km2) combine with uncertainties around other anthropogenic and natural drivers of fuel 470 

fragmentation. For example, managed human fires are generally cooler and less intense than unmanaged wildfires, which 
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will impact rates of post-fire regrowth, and hence the ability of an ecosystem to sustain subsequent fires (Coppoletta et al., 

2016; Maia et al., 2012). Over prolonged periods, application of managed fire will likely lead to profound changes in 

ecosystems that evolved under a fire regime governed by rare, intense, and lightning-ignited fires (Keeley and Pausas, 2022).  

Furthermore, human fire use interacts not only with ecological heterogeneity, but also heterogeneity in other 475 

anthropogenic fragmentation processes. For example, WHAM! adopts the Haas hypothesis that road density is an important 

constraint on fire size, and models fire size as exponentially decaying with increased road density (Perkins et al., 2025a). 

However, this is a somewhat limited, top-down view of fragmentation that assumes road density has a universal suppressive 

effect, and should be improved through consideration of interactions between differing fragmentation drivers (Bowring et al., 

2024; Chas-Amil et al., 2013; Driscoll et al., 2021). Even at a simple level, it does not account for varying road types: multi-480 

lane motorways and dirt tracks are treated as equivalent. Future research could therefore seek to incorporate explicit 

parameterisation of road type into fire models (data which are captured by Meijer et al., 2018). 

Fire-vegetation feedbacks are also a limitation of the Haas model, which does not account for the influence of 

previous burning on current vegetation. Including such feedbacks could have a significant effect on model projections, 

including by dampening interannual variability, whilst maintaining the current model assumptions about DHF. In addition, 485 

when run under dramatically different forcings (of similar magnitude of change to SSP3-7.0) at the Last Glacial Maximum, 

the model was able to capture the overall sign of change in burnt area compared to the charcoal record (Haas et al., 2023). 

This out-of-sample experiment provides some reassurance as to the ability of the model to capture the response of burnt area 

to the climate signal. Nevertheless, the ability of the model to capture DHF has not been evaluated and could dramatically 

influence future projections. 490 

Overall, understanding how human fire use interacts with wider anthropogenic fragmentation across different 

ecosystems represents a major challenge in fire science. Promising ways forward include observational studies of factors that 

constrain fire spread, such as that of Janssen and Veraverbeke (2025) in the boreal forest. This approach could be replicated 

in tropical savanna landscapes and others with higher levels of human perturbation, and could perhaps be complemented 

with reduced complexity modelling to develop and test hypotheses of constraints on fire spread across different ecosystems 495 

and socio-economic contexts (Archibald et al., 2012; Malamud et al., 1998). 

4.3 Implications for modelling: navigating structural uncertainty 

Comparison of modelled DHF between the Haas model and WHAM-INFERNO revealed that differences between models 

were greater than those between scenarios. This finding is similar to that of Alexander et al., (2017), who found that different 

approaches to representing human decision-making in models of land use change (e.g., agent-based, least-cost optimisation) 500 

had a greater impact than scenario forcing on model outputs. A similar finding was also produced by Brown et al., (2021) in 

the context of land use change in Europe. This is not to say that uncertainties in scenario forcings do not shape model 

outputs: for example, projections here for the Haas model and those presented in Haas et al., (2024) are notably different 

across the Amazon, where the UKESM projects earlier and more rapid change than other Earth system models (Drijfhout et 
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al., 2015). Nevertheless, it is seemingly a property of spatial modelling of socio-ecological systems that models are 505 

extremely sensitive to the way in which human decision making is represented. 

In the case of land use change modelling, such differences reflect differing model purposes and perhaps 

irreconcilable theories of economic behaviour (e.g., utility maximisation versus satisficing; Groeneveld et al., 2017). 

However, the two models presented here do not appear irreconcilable. For example, in common with many process-based 

fire models, WHAM-INFERNO’s modest increase in burned area in SSP3 and low IAV suggests it is likely under-sensitive 510 

to climate forcings (Hantson et al., 2020). Indeed during calibration, it was found to have this limitation (Perkins et al., 

2025a). By contrast, the Haas model’s seeming overestimation of IAV may mean it underestimates the effect of DHF. 

As such, our assessment is that each model has advanced on previous understanding of the processes driving global 

burned area within its domain, but both also remain incomplete. Therefore, the insights from the two models could be 

combined towards a new generation of coupled socio-ecological fire models. For example, such models could draw on 515 

insights from the Haas models including the central role of GPP in fire regimes, and how the biophysical-drivers of burned 

area differ from fire intensity (Haas et al., 2022). This could be combined with WHAM-INFERNO’s representation of DHF 

and dynamic human adaptation. Critical to the success of such models would be tackling issues of fuel-load connectivity, as 

discussed above.  

At the same time, the modest performance of process-based fire models in reproducing observations has given rise 520 

to deep-learning-based fire models as an alternative approach (Guo et al., 2025; Son et al., 2024). This is a broadly welcome 

step, particularly for fire risk forecasting and management (Cheng et al., 2022; Son et al., 2022), but results here should also 

give pause for thought for projections over longer timescales. The Haas model and WHAM-INFERNO can both 

approximately equally reproduce historical observations (Figure S1 & S2), yet do so with fundamentally different 

conceptualisation and representation of core processes. Consequently, projections from modelling methods that can have 525 

challenges with overfitting to noise, need to be treated with caution (Reichstein et al., 2019; Rocks and Mehta, 2022). In 

common with many environmental processes, there is still a comparatively short observational record of burned area 

(especially at fine spatial scales commensurate with much human fire use), and the socio-ecological conditions under which 

we wish to understand possible fire regimes differ greatly from the present-day (Haas et al., 2023; Schneider et al., 2024). 

Close collaboration between process-based and machine-learning modellers is likely to lead to optimal outcomes for both 530 

understanding and prediction of future fire regimes (Huang et al., 2024; Lampe et al., 2025). 
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5 Conclusion 

We have presented future projections of the WHAM! agent-based model coupled to the INFERNO biophysical fire model 

and compared these with the Haas generalised linear model of burned area. The models represent contrasting hypotheses 535 

about the drivers of global fire regimes. Consequently, they produce extremely different futures for the same scenarios yet do 

so in ways that are consistent with their underlying assumptions. We conclude that combining insights from both models is 

likely to prove a fruitful avenue for advancing global fire science. A critical disagreement between the models concerns how 

humans will respond and adapt to climate change. The WHAM-INFERNO ensemble demonstrates the potential for coupled 

human-Earth system models to explore both limits to adaptation and possible maladaptation under diverse futures. However, 540 

the differences in model representation of such processes also highlights large structural uncertainties. Future model 

development will need to grapple with these questions as adaptation becomes an ever-increasing policy challenge.  
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