
Evaluating the effects of preprocessing, method selection, and
hyperparameter tuning on SAR-based flood mapping and water
depth estimation
Jean-Paul Travert1,2, Cédric Goeury1,2, Sébastien Boyaval2,3, Vito Bacchi1, and Fabrice Zaoui1

1EDF R&D, Laboratoire National d’Hydraulique et Environnement (LNHE), Chatou, France
2Laboratoire d’Hydraulique Saint-Venant (LHSV), ENPC, Institut Polytechnique de Paris, EDF R&D, Chatou, France
3Inria, Paris, France

Correspondence: Jean-Paul Travert (jean-paul.travert@edf.fr)

Abstract. Flood mapping and water depth estimation from Synthetic Aperture Radar (SAR) imagery are crucial for calibrating

and validating hydraulic models. This study uses SAR imagery to evaluate various preprocessing (especially speckle noise

reduction), flood mapping, and water depth estimation methods. The impact of the choice of method at different steps and its

hyperparameters is studied by considering an ensemble of preprocessed images, flood maps, and water depth fields.

The evaluation is conducted for two flood events on the Garonne River (France) in 2019 and 2021, using hydrodynamic5

simulations and in-situ observations as reference data. Results show that the speckle filtering method choice can significantly

alter flood extent estimations with variations of several square kilometers. Additionally, the selection and tuning of flood

mapping methods significantly affect performance. While supervised methods outperformed unsupervised ones, well-tuned

unsupervised approaches (such as local thresholding or change detection) can achieve comparable results. The compounded

uncertainty from preprocessing and flood mapping steps also introduces substantial variability in the water depth field estimates.10

This study highlights the importance of considering the entire processing pipeline, encompassing preprocessing, flood map-

ping, and water depth estimation methods and their associated hyperparameters. Rather than relying on a single configuration,

adopting an ensemble approach and accounting for methodological uncertainty should be privileged. For flood mapping, the

method choice has the most influence. For water depth estimation, the most influential processing step was the flood map input

resulting from the flood mapping step and the hyperparameters of the methods.15

1 Introduction

Flood risk management largely benefits from accurate, timely, and spatially extensive observations of flood events. Satellite

remote sensing allows the monitoring of large areas with increasing spatial and temporal resolution. Among the various types

of satellite sensors, Synthetic Aperture Radar (SAR) sensors are particularly valuable for flood monitoring (Oberstadler et al.,

1997; Bates, 2012). Unlike optical sensors, SAR sensors acquire images regardless of cloud coverage and daylight, making20

them suitable for detecting flood events with high spatial resolution (Tarpanelli and Benveniste, 2019). Flood mapping with

SAR imagery exploits the interaction between the emitted signal and water surfaces, which typically results in dark spots in
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the images due to specular reflection where the smooth water surface mirrors the signal away from the sensor (Hostache et al.,

2009; Mason et al., 2009; Martinis, 2010).

Numerous methods have been developed to extract flood maps from SAR imagery, including global and local thresholding25

methods (Chini et al., 2017; Mason et al., 2012), active contour models (Horritt, 1999), change detection methods (Giustarini

et al., 2012; Bovolo and Bruzzone, 2007) or supervised classification approaches (Bentivoglio et al., 2022; Mateo-Garcia et al.,

2021; Bonafilia et al., 2020). These flood maps provide essential data for model calibration and validation (Di Baldassarre

et al., 2009; Montanari et al., 2009), and data assimilation in hydraulic forecasting systems (Hostache et al., 2010; Lai et al.,

2014; Giustarini et al., 2011; Dasgupta et al., 2021).30

Beyond generating flood maps, estimating water depth from SAR data is also valuable for hydraulic model calibration and

validation (Hostache et al., 2009; Schumann et al., 2007; Betterle and Salamon, 2024). These estimations usually involve

combining flood maps and ancillary datasets, such as Digital Elevation Models (DEMs) (Hostache et al., 2009; Schumann

et al., 2007; Betterle and Salamon, 2024) or outputs from hydrodynamic simulations (Brown et al., 2016).

However, extracting hydraulic information such as flood maps and water depth fields from SAR images is subject to various35

sources of uncertainty. These include measurement noise (e.g., speckle), terrain-induced distortions, and vegetation and in-

frastructure influence. Furthermore, uncertainty arises from methodological choices in the processing workflow, such as noise

filtering strategy, flood mapping methods, and hyperparameter settings. Previous studies attempted to quantify these uncer-

tainties. For example, Schumann et al. (2008) propagated geolocation uncertainties to derive ensembles of flood maps and

associated water depth. Similarly, Martinis et al. (2015b) compared various operational flood mapping strategies to study their40

relevance in operational contexts. Landuyt et al. (2018) compared flood mapping methods with hyperparameter tuning across

multiple flood events in Ireland and the UK (comparison to Copernicus Emergency Mapping Service flood maps), highlighting

that method performance was highly variable depending on the study case. They also underlined that the variability in flood

extent maps outputs due to hyperparameters was important for some method choices. However, flood studies rarely analyze

the influence of preprocessing or hyperparameter tuning across the complete workflow, including flood mapping and water45

depth estimation. For instance, (Landuyt et al., 2018) assume a unique preprocessing strategy for the satellite images without

evaluating its role in the subsequent analysis.

In this study, we proposed a comprehensive workflow for SAR-based flood analysis, evaluating the sensitivity of flood

mapping and water depth estimation to different combinations of preprocessing, flood mapping, and water depth estimation

methods. The objective is to quantify the uncertainty introduced at each stage of the SAR image processing and identify robust50

configurations for operational use. The preprocessing (speckle filtering), flood mapping, and water depth estimation methods

were all evaluated for varying hyperparameter settings. This evaluation was carried out in an operational context with two

flood events on the Garonne River in France in 2019 and 2021, with two Sentinel-1 SAR observations available for both

flood events. All code and data are publicly available to facilitate reproducibility and further experimentation by the hydraulic

modeling community at https://github.com/jtravert/sar-flood-evaluation-framework.55

This article is structured as follows. Section 2 describes the methodology and study area, including the satellite data and

validation datasets. Section 3 describes and applies the SAR image preprocessing steps, explicitly focusing on speckle filter-
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ing strategies. Section 4 reviews and evaluates flood mapping approaches. Section 5 presents the estimation of water depths

from SAR-derived flood maps using DEMs. Section 6 discusses limitations of this study and their operational use for model

calibration. Finally, Section 7 provides conclusions and implications for operational flood monitoring.60

2 Methodology

The study presents a workflow for processing Synthetic Aperture Radar (SAR) images to support hydraulic information ex-

traction, specifically for generating flood maps and water depth fields. The main objective was to investigate the influence on

the final outputs (flood maps and water depth fields) of different method choices, including their associated hyperparameters.

Although validation datasets, such as hydrodynamic simulations, were used to support a better understanding of the methodol-65

ogy, the main focus of the study was to explore the variability in outputs resulting from these choices, rather than to perform a

strict validation. Each combination of preprocessing, flood mapping, and water depth estimation methods listed in Table 1 was

evaluated. Each stage of the workflow generates a set of outputs that feed into the next stage, resulting in an ensemble of flood

maps and water depth fields.

The general workflow for processing SAR satellite images for flood applications is illustrated in Fig. 1 and consists of the70

following steps:

1. SAR image preprocessing: Raw SAR images are first preprocessed to improve flood signal extraction. Five filtering

methods were tested, including the Median filter, Lee filter (Lee, 1980), Lee Sigma filter (Lee et al., 2008), Frost fil-

ter (Frost et al., 1982), and the SAR2SAR deep-learning-based approach (Dalsasso et al., 2021). Each speckle filtering

method was applied with a specific set of hyperparameters, resulting in 26 unique configurations: one configuration with-75

out any preprocessing (no hyperparameters), three configurations each for the Median and Lee filters, nine configurations

each for the Frost and Lee Sigma filters, and one configuration for SAR2SAR.

Section 3 provides a detailed overview of the preprocessing step, and Table 1 presents the different configurations.

2. Flood mapping: Each preprocessed image is used as input for flood mapping. Five methods were tested: Global thresh-

olding, local thresholding, active contour models, change detection, and supervised classification. These methods are80

also parameterized, resulting in an ensemble of flood maps for each preprocessed input. Post-processing morphological

operations are optionally applied to remove isolated water pixels or small nonphysical holes caused by SAR speckle,

geometric distortions, or flood map processing. In total, for each input preprocessed image, 48 flood mapping configu-

rations are tested: one configuration each for the supervised classification models (no hyperparameters), two for global

thresholding, two for change detection, six for active contour, and 36 for local thresholding. When using morphological85

post-processing, nine configurations were evaluated. With morphological operations, 432 flood mapping outputs (48×9)

were generated per preprocessed image.

A more detailed explanation of the flood mapping step can be found in Section 4, along with the flood mapping config-

urations in Table 1.
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Category Method/Filter Hyperparameter Hyperparameter Values

Speckle Filtering

No preprocessing - -

Median Window size {3; 5; 7}

Lee Window size {3; 5; 7}

Lee Sigma Window size {3; 5; 7}

Cumulative probability (ξ) {0.7; 0.8; 0.9}

Frost Window size {3; 5; 7}

Damping factor (α) {1; 2; 3}

Deep-learning-based (SAR2SAR) Model weights Pre-trained model weights (fixed)

Flood Mapping

Global thresholding Threshold selection procedure {Otsu, Kittler and Illingworth}

Local thresholding Minimum tile size in pixels {100× 100; 200× 200}

Ashman’s D threshold {1.9; 2.0; 2.1}

Bhattacharyya coefficient {0.98; 0.99}

Surface ratio {0.05; 0.1; 0.15}

Active contour Contour smoothness (α) {0.05; 0.1; 0.2; 0.3; 0.4; 0.5}

Change detection Classification method Global or local thresholding

Supervised classification Model CNN or Random Forest (fixed weights)

Morphological operations Holes area in pixels {10; 50; 100}

Patches removal in pixels {10; 50; 100}

Water Depth Estimation

Fw-DET Slope threshold {no threshold; 5%; 10%}

Number of smoothing iterations {3; 5; 10}

FLEXTH Slope threshold {no threshold; 5%; 10%}

Maximum number of neighbors {5; 10; 20}

Cross-section analysis - -

Table 1. Overview of speckle filtering, flood mapping, and water depth estimation methods used in this study along with their associated

hyperparameter sampling.

3. Water depth estimation: Each flood map generated in the previous step, together with a Digital Elevation Model90

(DEM), is used to estimate water depth fields using three methods: Fw-DET (Cohen et al., 2019), the FLEXTH (Betterle

and Salamon, 2024), and a cross-sectional hydraulic approach. For each input flood map, 19 water depth estimation

configurations are tested: one configuration for the cross-section approach (no hyperparameters), nine for Fw-DET, and

nine for FLEXTH.

A comprehensive discussion of this step is presented in Section 5, and the water depth estimation configurations are95

presented in Table 1.
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The outputs from preprocessing, flood mapping, and water depth estimation were analyzed to study the influence of method

selection and hyperparameter choices. The range of the hyperparameters is based on classical values used in the literature to

avoid non-physical hyperparameter values.
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images
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Figure 1. Workflow for processing Sentinel-1 (SAR) images to derive flood maps and water depth fields. Raw images are preprocessed using

26 hyperparameter configurations, then each image is turned into 48 flood maps (or 432 if using morphological operations). Each Flood map

is transformed into water depth fields using 19 configurations. The configurations are described in Table 1.

2.1 Study area and materials100

The study area was the Garonne River between Tonneins and La Réole, in southwest of France (see Fig. 2). In this section

of the river, the river width is around 250 m and the floodplain is 1-4 km wide, mainly comprises rural areas used for agri-

cultural purposes. Since the end of the nineteenth century, the area has been equipped with dikes to protect urban areas and

infrastructures. The floodplain, aside from the presence of dikes, displays minimal topographic variation.

2.1.1 Satellite observations105

The study area was observed during two flood events in December 2019 and early February 2021 by the Sentinel-1 C-band

Synthetic Aperture Radar (SAR) instrument at 5.405 GHz. The extent of the study area and the satellite image acquisitions

are visualized in Fig. 2. Sentinel-1 “Ground Range Detected” products were downloaded from ASF Data Search Vertex (https:
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//search.asf.alaska.edu/) in both V H and V V polarizations. The role of polarization is beyond the scope of this study. Most

flood mapping methods rely on the analysis of a single polarization image. Accordingly, the V H polarization was used since,110

in the literature, V H polarization better distinguishes flooded from dry areas than V V polarization (Henry et al., 2006). Two

additional Sentinel-1 images, acquired under non-flooded conditions, were used as references for one of the flood mapping

methods. For the 2019 event, the reference image was acquired on 10 December 2019. For the 2021 event, the reference

observation was acquired on 28 January 2021. Each image consists of an Nx×Ny grid of pixels, with a spatial resolution of

10× 10 m. The images are projected onto a common grid that covers the entire study area. Here, the image’s dimensions are115

Nx = 2644 and Ny = 2312. All times reported below are given in Coordinated Universal Time (UTC).

Figure 2. Visualization of the study area on the Garonne River in France and the extent of the Sentinel-1 A (S1A) and Sentinel-1 B (S1B)

acquisitions during 2019 and 2021 flood events.

2.1.2 Validation data

For comparing the outputs of the observed flood maps and water depth fields, observed water marks and stage gauging stations

are available. We also compare the outputs to simulated flood maps and water depth fields. The simulations are not the ground

truth, but serve as a reference for comparison. The main goal of the study is to compare the variability of the outputs due to120

preprocessing, method choices, and hyperparameters, so the validation dataset is not the most important. We describe these

datasets below.

Watermarks are visible traces left on buildings, trees, or other infrastructures during a flood event at the peak water level.

For both the 2019 and 2021 flood events, watermarks were collected and made available on the French collaborative platform
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“Repères de Crues” (https://www.reperesdecrues.developpement-durable.gouv.fr/). For the 2019 and 2021 flood events, 121125

and are available 178, respectively. For both events, satellite images were acquired near the flood peak (17 December 2019 and

3 February 2021), so the watermarks should coincide with the water depths extracted from the satellite images.

Three stage-gauging stations are available in the study area (Tonneins, Marmande, and La Réole). Discharge and water level

data at these locations during the flood events are available on Vigicrues (https://www.vigicrues.gouv.fr/, a flood-monitoring

service that collects watermarks during floods in France). The measured discharges at the three stations for both flood events130

are shown in Fig. 3.

(b)(a)

(c)

Figure 3. Measured discharge at gauging stations (Tonneins, Marmande, and La Réole) during the (a) December 2019 and (b) February 2021

flood event, along with (c) spatially distributed Strickler values used in the model domain.

For flood simulations, a numerical solution of the Shallow Water Equations (SWEs) was used and solved with TELEMAC-

2D, part of the openTELEMAC open-source hydrodynamic modeling system (www.opentelemac.org) (Hervouet, 2007). The

SWEs are expressed in Cartesian coordinates where gravity acts uniformly in the vertical direction as −g−→ez :135
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∂h

∂t
+

∂(hu)
∂x

+
∂(hv)

∂y
= 0, (1)

∂(hu)
∂t

+
∂(hu2)

∂x
+

∂(huv)
∂y

=−gh
∂η

∂x
+∇ · (hνe∇u)− 1

ρ
τbx, (2)

∂(hv)
∂t

+
∂(hv2)

∂y
+

∂(huv)
∂x

=−gh
∂η

∂y
+∇ · (hνe∇v)− 1

ρ
τby. (3)

The system unknowns are the water depth h≥ 0 and the depth-averaged velocity u−→ex +v−→ey both functions defined as function

of spatial coordinates x, y and time t ∈ [0,T ). The water surface is denoted by η = h + zb, where zb(x,y) is the prescribed140

bottom elevation. A constant viscosity νe > 0 is assumed, and the bed shear stress is expressed as τbx
−→ex + τby

−→ey depending on

the variables h, u, and v. The bed shear stress is computed using Manning-Strickler formulation (Manning et al., 1890):




τbx = ρ·g·u
h1/3·K2

s

√
u2 + v2

τby = ρ·g·v
h1/3·K2

s

√
u2 + v2

, (4)

where Ks is the Strickler coefficient which varies spatially with x, and y (Morvan et al., 2008).

Upstream discharge was retrieved from the Tonneins stations for 11-21 December 2019 and 25 January-10 February 2021145

and reported in Fig. 3. A rating curve was imposed at the downstream boundary. The simulations were initialized at t = 0 with

a base flow of 800 m3/s for the 2019 event, and 2300 m3/s for the 2021 event. One simulation was conducted for each flood

event. The Strickler values were calibrated in previous studies for the river channel (Besnard and Goutal, 2011; El Garroussi

et al., 2019; Nguyen et al., 2022), and are fixed in the floodplains based on the land use and tabulated values in the literature

(Chow et al., 1988) as described in Table 2. The spatial distribution of Strickler values used in the simulation is reported in Fig.150

3.

Table 2. Strickler values used in the floodplains.

Land use Strickler value (m1/3 · s−1)

Waterbodies 35

Fields and meadows without crops 20

Cultivated fields with low vegetation 17.5

Cultivated fields with high vegetation 12.5

Shrublands and undergrowth areas 10

Areas of low urbanization 9

Highly urbanized areas 6.5

As this article focuses on processing satellite observations, the numerical model is not detailed. The reader can refer to

Besnard and Goutal (2011) and Travert et al. (2025) for more information on the construction and parameterization of the

numerical model.
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3 Satellite images preprocessing155

Synthetic Aperture Radar (SAR) images, such as those acquired by Sentinel-1, require several preprocessing steps to correct

for sensor geometry, normalize radiometric responses, and suppress speckle noise. The processing chain adopted in the present

study is presented in Fig. 4 and comprises sequential operations: application of orbit files, removal of thermal and border noise,

radiometric calibration, speckle filtering, and terrain correction using the Range-Doppler method. In the processing workflow

for terrain correction and georeferencing, a Digital Elevation Model of the study area at a 1 m resolution is used. Two alternative160

workflows were used depending on the speckle filtering strategy since the deep-learning-based speckle filtering (SAR2SAR

method) was trained on images without preprocessing, while the other traditional filters were applied on calibrated images.

SAR data Apply orbit file Thermal noise removal Border noise removal Calibration Terrain correction

Speckle filtering
(SAR2SAR)

Speckle filtering

LeeMedian Lee Sigma Frost

Traditional method
Deep-learning based method

Figure 4. Preprocessing workflow for Sentinel-1 SAR images.

The main source of error in SAR imagery is speckle noise, which arises from the coherent summation of scattered electro-

magnetic waves. It resembles salt and pepper with dark and bright pixels (see Fig. 5). It alters the statistical properties of the

image, preventing them from maintaining a consistent mean radiometric level in homogeneous areas (Bruniquel and Lopes,165

1997). Speckle noise is modeled with a randomly fluctuating variable, such as (Goodman, 1976):

Ii,j = Ri,j ·Si,j , (5)

where I ∈ RNx×Ny denotes the observed intensity (raw image), R ∈ RNx×Ny the true radar backscatter, S ∈ RNx×Ny the

speckle component, and i, j the pixel locations. Si,j and Ri,j are assumed to be statistically independent.

3.1 Speckle filters methods170

To mitigate the effects of noise, several speckle filters that aim to recover R the true radar backscatter while preserving image

structures have been proposed in the literature. The choice of filters and their hyperparameters affects the interpretability of

the image and the accuracy of downstream tasks such as flood mapping. A review on speckle filtering methods is available in

Deledalle et al. (2014); Lee and Pottier (2017). In this study, we selected a representative set of widely used traditional filters
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such as Frost, Lee, Lee Sigma, and median filter, due to their simplicity and strong track record in SAR image denoising.175

Additionally, we included a recent deep learning-based method to evaluate potential performance improvements from modern

data-driven approaches. The characteristics of these filters are summarized in Table 1. In the following sections, each method

is described in more detail.

The deep-learning based model (SAR2SAR model) was implemented via the deepdespeckling Python library available

at https://pypi.org/project/deepdespeckling/ (Dalsasso et al., 2021). The other traditional filtering operations were conducted180

using the ESA SNAP toolbox. The complete preprocessing chain was automated using SNAP’s Graph Processing Tool (GPT)

and Python scripting, facilitating large-scale processing of SAR image stacks.

3.1.1 Median filter

The Median filter replaces the center pixel with the median value of all pixels within a local scanning window, such that:

R̂i,j = median{Im,n | i− k ≤m≤ i + k, j− k ≤ n≤ j + k} , (6)185

with a window size of 2k + 1 with k a non-negative integer. In this study, the window size is treated as a hyperparameter. The

median filter is effective at removing isolated spot noise, but it tends to blur edges and erase thin linear features (Lee, 1983).

To address this limitation, other approaches referred to as adaptive filters have been developed that incorporate local image

statistics to better preserve structural details.

3.1.2 Lee filter190

The Lee filter (Lee, 1980) accounts for the local statistics of the image within a moving window. From the multiplicative noise

definition in Equation 5, the mean and variance of R can be estimated, such as:

R̄i,j = Īi,j , Var(Ri,j) =
Var(Ii,j)− Ī2

i,jVar(Si,j)
Var(Si,j) + S̄2

i,j

, (7)

where the quantities Īi,j and Var(Ii,j) are the local mean and variance of pixel intensities within a window of size 2k + 1

centered at (i, j). In this study, the window size is treated as a hyperparameter. The Lee Filter assumes a linear estimator of195

the form R̂ = aR̄ + bI , where R̂ is the minimum mean square estimate of R, and a and b are constants to minimize the mean

square error. Then, using the local mean and variance within each scanning window, the estimator is written as:

R̂i,j = R̄i,j +
Var(Ri,j)
Var(Ii,j)

(Ii,j − S̄i,jR̄i,j). (8)

The Lee filter aims to reduce speckle in homogeneous areas while preserving image details, such as edges and fine structures,

in areas of high variance.200
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3.1.3 Lee Sigma filter

The Lee filter effectively reduces speckle noise but can cause blurry edges and loss of detail in heterogeneous areas. To address

this issue, the Lee Sigma filter (Lee, 1983) was introduced. It calculates local statistics similarly to the Lee filter but using only

the pixels whose intensities fall within a range to exclude outliers. The range is defined as [R̄i,j − 2
√

Var(Si,j)R̄i,j , R̄i,j +

2
√

Var(Si,j)R̄i,j ]. Because the a priori mean, R̄i, j, is unknown, it is approximated by Ii,j, the value of the center pixel.205

An improved version (Lee et al., 2008) relaxes the usual range and introduces a new interval (I1, I2) that meets two condi-

tions:

– The interval captures a fixed cumulative probability ξ:

ξ =

I2∫

I1

p(I)dI, (9)

where p(I) is the empirical probability distribution of the pixel intensity computed on the scanning window.210

– The mean within the interval must match the overall mean:

Ī =
1
ξ

I2∫

I1

I p(I)dI. (10)

A value of ξ = 0.8 or 0.9 is often used, but a lower value of ξ may be selected to preserve SAR image texture information

and prevent potentially over-smoothing details (Lee et al., 2008). Two hyperparameters are used for the Lee Sigma filter, the

window size and ξ.215

3.1.4 Frost filter

Similarly to the Lee filter, the Frost filter (Frost et al., 1982) is based on the local statistics of the images and the multiplicative

noise model. The Frost filter replaces a pixel value with a weighted sum of the values of its neighbors within a moving scanning

window, such that:

R̂i,j =
k∑

m=−k

k∑

n=−k

wm,n · Ii+m,j+n, (11)220

where the weights wm,n decrease with distance from the pixel of interest with an exponential decay controlled by a damping

factor α, such that:

wm,n =
e−αd(m,n)

∑k
m=−k

∑k
n=−k e−αd(m,n)

, (12)

with d(m,n) the Euclidean distance of pixels at position m,n from the pixel at the center of the scanning window. For a pixel

center located at i, j the distance is defined as d(m,n) =
√

(m− i)2 + (n− j)2. For the Frost filter, two hyperparameters are225

considered in this study, the window size and the damping factor α.
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3.1.5 Deep-learning based filtering

Due to the difficulty of removing speckle noise with empirical models based on image statistics, deep learning approaches are

increasingly used. SAR2SAR (Dalsasso et al., 2021) is a deep learning-based despeckling method using a U-Net architecture

(Ronneberger et al., 2015) which aims to predict speckle noise. The U-Net is trained with synthetic speckle realizations, then230

fine-tuned on real SAR image pairs from a time series. After training, weights are used to compute the denoised image as a

function of input pixel intensities. In this study, we used a pre-trained model with weights are available at https://gitlab.telecom-

paris.fr/ring/sar2sar. For SAR2SAR, no hyperparameters were tested.

3.2 Application of speckle filtering

We applied the five filtering methods for all hyperparameters configurations to the four Sentinel-1 SAR images (and to the235

reference non-flooded images). In our implementation, the computation time for the speckle filtering step ranged from a few

seconds for the Lee and Median filters, to approximately 20-30 seconds for Lee Sigma and Frost filters, and up to around

4 min for SAR2SAR method, on Intel(R) Core(TM) i7-11850H @ 2.50GHz processor. Visual inspection and quantitative

evaluations were carried out to compare the outputs of each method and their variability due to hyperparameter settings. This

section analyzes the results for the V H polarization, but the results for V V polarization were similar. Figure 5 illustrates how240

these filters (for one hyperparameter configuration) influence the backscatter for the same Sentinel-1 image.

The raw Sentinel-1 image (see Fig. 5a) exhibited significant speckle noise, appearing as salt and pepper granular regions.

All tested filter configurations reduced the noise to varying extents, with variable success for preserving the edges. The Median

and Lee filter (see Fig. 5b-c) reduced speckle noise but significantly blurred structural details along curvilinear structures.

The Lee Sigma and Frost filters (see Fig. 5d-e) better balance noise reduction and detail preservation, effectively preserving245

both edges and textures. The SAR2SAR approach (see Fig. 5f) reduced the speckle noise while visually preserving edge

features. Visually, for these hyperparameter configurations and on this zone, the SAR2SAR approach seemed to outperform

the traditional methods.

The amount of speckle reduction can be quantified by calculating the Equivalent Number of Looks (ENL) over a quasi-

homogeneous area, defined as:250

ENL =
¯̂
R2

Var(R̂)
, (13)

where ¯̂
R is the mean estimated intensity over a homogeneous area, and Var(R̂) is the variance of the estimated intensity over

that same area. ENL estimates the signal-to-noise ratio, and the higher the ENL, the better the speckle suppression.

The ENL was computed for two zones, including a dry vegetated region and flooded region in blue and orange, respectively,

in Fig. 6, for all the preprocessed images (corresponding to 26 configurations in total according to Table 1 plus one configuration255

without filtering) and for the four satellite images. The results are reported in Fig. 7, where each point corresponds to the ENL

of the zone for one of the preprocessed images. All filtering methods contributed to speckle reduction, as indicated by the
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Backscattering intensity (dB)
-25 -10

(a) Raw image
No preprocessing

(b) Median
Window size 7×7 (k=3)

(f) SAR2SAR
No hyperparameters

(c) Lee
Window size 7×7 (k=3)

(e) Frost 
Window size 7×7 (k=3)
Damping factor 2 (α)

(d) Lee Sigma
Window size 7×7 (k=3)
Cumulative probability (ξ=0.9)

Figure 5. Backscatter intensity results from applying various speckle filters on a Sentinel-1 image in VH polarization.

systematically higher ENL values than the images without preprocessing. The SAR2SAR consistently achieved the highest

ENL values across all dates and regions, particularly for the dry region (see Fig. 7a). Traditional statistical filters, such as

the Lee and Frost filters, also significantly improved ENL for some hyperparameter configurations (largest window size and260

higher damping factor). The high variability of the ENL (e.g., from 10 to 30 for Fig. 7a) for the Lee, Median, and Frost filters

underlined the significant impact of the method’s hyperparameters on speckle reduction.

The quantitative analysis of edge and structure preservation is difficult because fine structures are close to the speckle noise

spatial resolution (Lee et al., 1994). Edge preservation was not quantitatively evaluated in this study. The SAR2SAR approach

gave the best quantitative results on noise reduction in homogeneous areas while visually preserving edges and structures.265

Traditional filtering methods had similar ENL values for some hyperparameter settings, showing their potential to reduce

speckle noise but at the cost of preserving details (edge blurring) and the need for hyperparameter tuning.

Speckle reduction aims to improve the interpretability of the images and the extraction of information. Thus, the role of

speckle reduction is analyzed in more detail in Section 4 and 5 to show its impact on interpreting SAR images and how the

variability in speckle reduction changes the output.270
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Backscattering intensity (dB)
-25 -10

(a) 16 December 2019 (b) 17 December 2019

(d) 3 February 2021(c) 2 February 2021

Figure 6. Four raw Sentinel-1 images of the 2019 and 2021 flood events on the Garonne River in France. The blue and orange polygons are

used for the Equivalent Number of Looks computation.

4 Flood Mapping

In this study, we generated an ensemble of flood maps by applying several flood mapping methods across a range of hy-

perparameters, listed in Table 1. The methodology for flood map generation is illustrated in Fig. 8, and follows this general

workflow:

1. Input: Preprocessed SAR images R̂. Only V H polarization images are used except for supervised classification, which275

uses both V H and V V polarizations.
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(a) (b)

Figure 7. Equivalent Number of Looks (ENL) for the four satellite images with different preprocessing for the dry homogeneous area (a)

and flooded homogeneous area (b).

2. Method selection: Global thresholding, local thresholding, active contour models, change detection, or supervised clas-

sification (Convolution Neural Networks, Random Forest). Each method is evaluated over a range of hyperparameters

(see Table 1). For instance, two methods for evaluating the threshold parameter are tested for global thresholding.

3. Flood map generation: Each parameter configuration results in a flood map O ∈ {0,1}Nx×Ny280

4. Post-processing (optional): Morphological operations are applied on the flood maps to fill small holes and remove small

elements not connected to the flood.

4.1 Methods

4.1.1 Global thresholding

Global thresholding of SAR images is a straightforward method to separate foreground (e.g., flooded pixels) from background285

(e.g., dry pixels). This approach assumes that the two-pixel classes (e.g., flooded and dry pixels) can be separated with a

threshold value for the whole image. The threshold value is usually determined automatically with various methods (Sezgin

and Sankur, 2004).

In this study, we evaluated the impact on the flood mapping of two widely used global thresholding methods: Otsu’s method

(Otsu, 1979) and the Kittler and Illingworth (KI) method (Kittler and Illingworth, 1986), each briefly described below.290

– Otsu’s method selects the threshold that maximizes the between-class variance, which separates the histogram of pixel

intensities into two distinct classes. The between-class variance is defined as:

σ2
B = ωfωb(µf −µb)2, (14)
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1) Global thresholding

2) Local thresholding

3) Active contour model

4) Change detection

VH polarization
Pre-processed reference imagePre-processed flood images

VH polarizationVV polarization

Level
2

Selected
tiles

Compute global
threshold

Iteration
1

Iteration
2

Etc.

Apply global or local thresholding on
the new image, and add permanent water

5) Supervised classification
VH polarization VV polarization Labeled flood maps

Segmented flood map

I) Inputs 

II) Flood mapping methods

- Histrogram of VH  polarization
- Otsu, or KI method to dichotomize
flooded from dry pixels

- Sub-quadrant decomposition 
on VH polarization until a 
minimum quadrant size
- Ashman'D, Battacharrya, 
and surface ratio coefficients 
for each sub-tile

- Determine or provide 
(permanent water mask)
an initial contour
- Minimize a cost function on 
contour curve with a smoothness 
parameter

- Compute logarithmic difference
between VH flood and reference 
images

Training dataset: Sen1Floods11
CNN 
- Generate model weights with training data 
Random Forest
- Generation of other features with textural 
information (average for each pixel with 3×3
and 5×5 windows)
- Training on dataset and new features

-Apply both models to flood image inputs

III) Flood map IV) Morphological operations (optional)
-Fill holes and remove unconnected patches below a surface area

Figure 8. Schematic overview of the flood mapping methodology.
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where µf and µb are the mean intensities of the background and foreground classes, respectively. ωf and ωb are the

foreground and background class fractions, respectively.295

– The Kittler and Illingworth (KI) method also considers a mixture of two Gaussian distributions. The optimal threshold

separates both classes by minimizing a cost function that quantifies the overlap between the distributions and is calculated

as follows:

J = 1 + 2(ωf log(σf ) +ωb log(σb))− 2(ωf log(ωf ) +ωb log(ωb)) , (15)

where σf and σb are the standard deviations of the foreground and background classes, respectively.300

Global thresholding methods are widely used in flood mapping for their simplicity (Martinis et al., 2009; Schumann et al.,

2010; Pulvirenti et al., 2013). However, they assume that the histogram is bimodal, which may not hold when the number of

flooded pixels is low or due to spatial variability in backscatter caused by terrain or surface conditions across the image.

4.1.2 Local thresholding

To address the limitations of global thresholding, local-based thresholding was introduced (Martinis et al., 2015a; Twele et al.,305

2016; Chini et al., 2017). Images are divided into smaller tiles to identify bimodal histograms representing flooded and dry

classes. From these identified sub-tiles, a threshold is computed with global thresholding. Following Chini et al. (2017), we

used quad-tree decomposition to recursively split the image until reaching a minimum tile size (to guarantee statistical repre-

sentativeness). A tile is eligible for thresholding if its histogram is bimodal, the distributions are normally distributed, and both

classes are sufficiently represented. These conditions are evaluated by computing three qualitative coefficients:310

– Ashman’s D coefficient (Ashman et al., 1994), which quantifies the separation between two Gaussian distributions, and

is defined as:

AD =
|µf −µb|√
0.5(σ2

f + σ2
b )

. (16)

– Bhattacharyya Coefficient (Bhattacharyya, 1943), which quantifies the amount of overlap between two distributions, and

is computed as:315

BC =
∑

k

√
hist(yk)

√
histf (yk), (17)

where y is the pixel values in the tiles, hist is the histogram of the distribution, and histf is the fitted histogram with

two Gaussian curves, and k is the bins of the two discrete histograms.

– The surface ratio is defined as the ratio of the area (measured in number of pixels) covered by the smaller population

(e.g., dry or flooded pixels) to that of the larger population.320

This study evaluated the impact on flood maps of the minimum tile size and the thresholds on the Ashman D, Surface

coefficient, and Bhattacharyya coefficient for different values reported in Table 1. For instance in Chini et al. (2017), AD

should be above 2, BC above 0.99 and the surface ratio above 10%.
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4.1.3 Active contour models

A classical active contour model is based on the Chan-Vese segmentation method (Chan and Vese, 2001), which is inspired by325

the Mumford–Shah model (Mumford and Shah, 1989). This approach determines a contour C that segments the image into two

regions so that the pixel intensities are approximately constant within each region. The segmentation problem is formulated as

the following minimization:

min
C

αLength(C) + ν Area(inside(C)) +λ1

∑

(i,j)∈inside(C)

(R̂i,j − c1)2 + λ2

∑

(i,j)∈outside(C)

(R̂i,j − c2)2, (18)

where α≥ 0 controls the smoothness of the contour, ν ≥ 0 penalizes the area inside the contour, λ1,λ2 > 0 are weighting the330

data fidelity inside and outside the contour, respectively, and c1 and c2 are the average intensities inside and outside the contour

C, respectively. The algorithm is adapted so that the c2 < c1, forcing flooded pixels with lower backscattering to be inside C.

In this study, we considered α as a hyperparameter, while the remaining parameters were fixed as follows for computational

cost reasons: λ1 = 2, λ2 = 1, and ν = 0. We chose to constrain the problem with λ1 < λ2 in order to favor the identification of

regions with lower mean intensities (typically associated with flooded areas in SAR imagery) as the foreground while assigning335

higher-intensity regions to the background. Active contour models require an initial contour as a starting condition for the

segmentation process. Horritt (1999) suggests selecting the initial contour manually. The simplest method is to initialize the

contour using a mask of permanent water bodies. Maps of permanent water bodies are available on the Global Flood Monitoring

Service with a 10 m resolution (https://global-flood.emergency.copernicus.eu/) (Martinis et al., 2022).

4.1.4 Change detection340

Change detection methods require at least two satellite images of the same area, one during the flood and the others before

or after the event. The output of change detection methods depends on the reference image without floods, so the reference

image should be chosen carefully (Hostache et al., 2012). Although there are methods using a stack of images (Clement et al.,

2018), we focused on a pair of images. First, we computed the logarithmic difference between the two images because of the

multiplicative character of speckle noise (see Equation 5) (Bazi et al., 2005). Flooded pixels are then classified using global345

thresholding in Section 4.1.1 with consistent parameter sampling. Similarly to global thresholding, the hyperparameter in the

change detection method is the method to find the threshold on the image (Otsu or KI).

4.1.5 Supervised classification

With the growing number of satellite observations, new datasets have become available. For instance, the Sen1Floods11 dataset

(Bonafilia et al., 2020) includes raw Sentinel-1 imagery labeled for flood applications. These datasets are often leveraged to350

train machine learning methods for supervised classification of floods (Bentivoglio et al., 2022). Random Forests (RF) and

Convolutional Neural Networks (CNN) are widely used methods for classification tasks based on labeled training data (Zhao

et al., 2020; Bentivoglio et al., 2022), and are described below:
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– Random Forest classifier (Breiman, 2001) consists of an ensemble of decision trees, each trained on a subset of the

data. The state of the pixels is classified by aggregating the predictions of all trees with majority voting. For Sentinel-1355

data, the pixel intensity on both VV and VH polarizations is used as a feature. With only two features, the prediction

capability of Random Forest is limited. We added textural information by providing the mean value of each pixel with

window sizes of 3, 5, and 7 pixels for both polarizations, resulting in 8 features. The Random Forest classifier was trained

for various numbers of estimators, maximum depth, and minimum leaf number with Bayesian optimization using the

Optuna Python library (Akiba et al., 2019) (https://pypi.org/project/optuna/).360

– Convolutional Neural Networks (CNN) (LeCun et al., 2015) exploit spatial context by applying convolutional filters over

local neighborhoods of pixels to extract information. Unlike Random Forest, CNN is adapted for identifying texture in

images. This spatial awareness makes CNNs particularly effective in capturing contextual information that single-pixel

classifiers, such as Random Forest, may miss.

Both models are trained with the Sen1Floods11 dataset (Bonafilia et al., 2020) using V V and V H polarization bands and365

hand-labeled data dichotomizing flooded from dry regions. The trained model weights were used to generate flood maps from

satellite imagery based on pixels’ backscattering intensity. For reproducibility, the weights of both models are available at:

https://github.com/jtravert/sar-flood-evaluation-framework/tree/main/sources/1_FloodExtent/methods/MLweights. The train-

ing procedure for the CNN was adapted from Bonafilia et al. (2020). For supervised classification methods, no hyperparameters

are considered.370

4.2 Post-processing of flood maps

After applying flood mapping methods, the flood maps can still contain artifacts caused by measurement noise, speckle, or

processing errors. To improve the spatial coherence of flood maps, morphological operations (standard methods used in image

processing) can be used to refine the flood maps. These operations include hole filling, which fills small gaps within flooded

regions, and removal of isolated patches not physically connected to the flooded areas.375

In this study, the influence of these operations was studied for holes and small patches of water from 1,000 m2 to 10,000

m2. We applied morphological operations by filling holes of less than 10, 50, or 100 pixels and removing unconnected patches

of less than 10, 50, or 100 pixels, representing nine configurations. The number of filled/removed pixels is the hyperparameter

for morphological operations.

4.3 Results380

Flood maps were generated using the five flood mapping methods with the hyperparameter settings detailed in Table 1. For

each satellite acquisition, 1,222 generated flood maps were produced (26 speckle filtering configurations × 48 flood mapping

setups). These flood maps were optionally processed with morphological operations (nine configurations), resulting in 10,998

additional possible flood map variations for each satellite acquisition. In our implementation, the computation time for mapping

a flood on a single preprocessed image was a few seconds for all methods, except for active contour, which required 5 to385
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10 minutes (depending on the smoothing hyperparameter), on Intel(R) Core(TM) i7-11850H @ 2.50GHz processor. Each

generated flood map was compared against hydrodynamic simulations, as described in Section 2.1.2. Using a pixel-to-pixel

comparison approach, the evaluation focused on floodplain areas, excluding permanent water bodies. At the grid points, a hit

occurs when a pixel is correctly predicted to be flooded (True Positive (TP )), and a correct rejection (True Negative (TN ))

occurs when it is correctly predicted to be dry. A false alarm (False Positive (FP )) and a miss (False Negative (FN )) occur390

when a pixel is simulated as flooded or dry, respectively, whereas the opposite is observed. Two standard metrics for comparing

flood maps (Hunter, 2005; Grimaldi et al., 2016) were used:

– Accuracy: Proportion of correctly predicted pixels (both flooded and non-flooded) relative to the total number of pixels:

ACC =
TP + TN

TP + TN + FP + FN
. (19)395

– F1-score: The F1-score is the harmonic mean of precision and recall:

F1 =
2 ·TP

2 ·TP + FP + FN
. (20)

Both metrics range from 0 to 1, with higher values indicating better performance.

4.3.1 Flood mapping methods evaluation

First, the images generated without applying morphological post-processing operations are analyzed. Figure 9 shows the vari-400

ability of the Accuracy and F1-score metrics across the four satellite acquisitions. Each box plot represents the range of metric

variations of a flood mapping method due to varying input preprocessing and hyperparameter settings. For each method, box

plots for Accuracy and F1-score are displayed in different colors for the four satellite images. These box plots should be com-

pared with one another for the same acquisition date to assess method performance variability under consistent conditions.

405

CNN and Random Forest methods (supervised classification) outperformed unsupervised methods on median F1-score and

Accuracy. The CNN approach presented the highest median performance (between 0.79 and 0.91 for F1-score) with a narrow

inter-quartile range (<0.005) in three out of the four acquisition dates. The Random Forest also performed well (F1-score

median between 0.67 and 0.84), but with slightly lower scores and higher variability. Both supervised classification methods

exhibit low variance because of the absence of hyperparameter tuning, leaving speckle filtering as the main source of vari-410

ation. In contrast, active contour models exhibited larger variability in Accuracy and F1-score across all dates. It underlined

the sensitivity to either the smoothing parameter (α) or image preprocessing. While they occasionally achieved reasonable

performance for specific configurations, their inconsistency (e.g., F1 range between 0.4 and 0.65 on the 16 December 2019

image) makes them less reliable in operational settings. This method can work only after careful manual tuning, limiting its op-

erational appeal. Active contour models are usually better for local scales and simple flood patterns around the initial contour.415

Thresholding methods (global and local) showed moderate performance and low variability. Additional configurations with a
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Figure 9. Accuracy and F1-score for the generated flood maps for four satellite images and various flood mapping methods compared against

their respective simulated flood maps for four satellite images.

larger hyperparameter space showed that the thresholding methods were not very sensitive to their hyperparameters. For some

configurations, local thresholding resulted in comparable metric values to supervised classification while being easy to use.

Finally, change detection methods provided similar moderate results regarding F1-scores and Accuracy. Their variance was

relatively low but was higher for some acquisition dates (17 December 2019 and slightly 3 February 2021), likely due to dif-420

ferences in magnitude change between the pre- and during-flood images, with smaller flood extent on 17 December 2019. The

supervised classification method provided the best trade-off between accuracy and robustness. When training data or model

weights are unavailable, local thresholding or change detection methods remain attractive because they require almost no user

input and result in similar scores with appropriate tuning.

Figure 10 complements the analysis of the ACC and F1-score metrics by analyzing the flooded area for all flood mapping425

methods and satellite acquisitions. Out of a total domain area of 135.82 km2, the simulated flooded areas were 112.38 km2 (3

February 2021), 83.11 km2 (2 February 2021), 103.63 km2 (16 December 2021), and 68.02 km2 (17 December 2021). CNN

produced the largest flooded area estimates, closely matching the simulated extents, though it occasionally overestimates (17

December 2019). In contrast, the other methods underestimated the flooded areas systematically relative to the simulations. In

21

https://doi.org/10.5194/egusphere-2025-3726
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



general, outputs from hydrodynamic models provide smooth flooded surface water extent with hydraulic connectivity. How-430

ever, for the generated flood maps from SAR imagery, floods in vegetated or urban areas or between the dikes are often not

well detected which can cause an underestimation of the flooded area. On the one hand the simulations are conservative and

overestimate the flooded area while the extracted flood maps underestimate the flooded areas. However, the main goal should

be to match the geometric pattern and have a similar flood map geometry between the simulations and the observations even

if there are small holes in the observed flooded area. The estimated flooded area can differ by 20 to 30 km2 between methods,435

highlighting significant differences in flood map extraction approaches. Additionally, for a given method, the impact of hyper-

parameters or input images can be significant, with variations of 5 to 10 km2 for active contour or change detection and CNN

for 17 December 2019.

Figure 10. Flooded surface area for the generated flood maps for four satellite images and every flood mapping method.

4.3.2 Impact of preprocessing

In most flood studies, the preprocessing of speckle noise is often assumed to be deterministic, with only one method (usually440

the Lee or Lee Sigma filter) (Di Baldassarre et al., 2009; Landuyt et al., 2018); however, the influence of speckle filtering choice

on flood mapping can be significant. The preprocessing strategies should be evaluated for fixed configurations (flood mapping

method and hyperparameter) to study the impact of preprocessing alone. For instance, the effect of preprocessing for CNN-

generated flood maps is reported in Figure 11 for the flooded surface areas. It highlighted the impact of preprocessing with a

highly variable flooded area for Median filtering, depending on the window size of the filter (the only parameter for the Median445

filter). With filtering, the flooded area is larger than that of images without preprocessing. Between the different preprocessing

methods, the flooded area has important variations showing the impact of the preprocessing method on the generated flood

maps.

Figure 11 illustrates the impact on the flooded area of the different filtering methods with a single flood mapping config-

uration. In total, Table 1 lists 48 configurations (2 for global thresholding and change detection, 36 for local thresholding, 6450
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Variations due 
to window size

Figure 11. Impact of different filtering methods on the flooded area for flood maps generated using Convolutional Neural Networks.

for active contour, and one for each supervised classification method). For the Median, Lee, Lee Sigma, and Frost filters, we

analyzed the impacts of their hyperparameters on these 48 configurations. The difference between the minimum and maximum

value for each metric was calculated for every filter configuration (e.g., for the CNN configuration on 2 February 2021, the

range of variation between the min and max values for the Median filter was 38 km2). Figure 12 presents the min-max variation

in F1-score and flooded area due to speckle filtering hyperparameters for 2 February 2021. Each flood mapping configuration455

is visualized with a point, and each has distinct markers for the different methods. The results indicate that the sensitivity to

speckle filter hyperparameters varies by flood mapping method. For instance, the active contour method exhibits high sensi-

tivity to the Median filter’s window size, with variations ranging from 7 to 23 km2. In contrast, global and local thresholding

methods exhibit minimal sensitivity, with variations of less than 1 km2. Overall, the Lee Sigma filter exhibited the lowest vari-

ability across all configurations. Local thresholding, change detection, and Random Forest configurations are more sensitive to460

Lee filter or Frost filter hyperparameters than Lee Sigma or Median filters.

4.3.3 Impact of hyperparameters

The role of hyperparameters used in flood mapping methods was evaluated, excluding the supervised classification methods

(CNN and Random Forest), for which no hyperparameters were defined in this study. Similarly to the preprocessing analysis,

we fixed the preprocessing configuration to isolate and evaluate the impact of flood mapping hyperparameters. For instance,465

Fig. 13 shows the effect of hyperparameters for the active contour models for a fixed speckle filtering configuration (SAR2SAR

without hyperparameters). With this speckle filtering configuration, the sensitivity to hyperparameters is evident for the active

contour model, revealing a significant spread in Accuracy and F1-score across different hyperparameter configurations. It

highlights the importance of hyperparameter tuning for this method. Thresholding and change detection methods exhibit much

lower sensitivity to hyperparameters (given the sampling used in this study). A more detailed analysis, similar to that in Fig. 12,470

was conducted to determine the range of variability due to the hyperparameters of flood mapping methods for all 26 speckle
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Figure 12. Range of variation (between the minimum and maximum values) of F1-score and flooded area due to filtering methods hyper-

parameters for the 48 flood mapping configurations for 2 February 2021 acquisition. The points are jittered horizontally for visualization

purposes.

Stacked pointsStacked points

Figure 13. Impact on Accuracy and F1-score of different flood mapping configurations with fixed speckle filtering (SAR2SAR approach)

for the four satellite acquisitions.

filtering configurations (3 configurations for Median and Lee filters, nine configurations for Lee Sigma and Frost Filters, one

configuration for SAR2SAR and no preprocessing). The results for the acquisition on 2 February 2021 are presented in Fig.

14. In this study, the active contour method showed the highest sensitivity to flood mapping hyperparameter variations, with

F1-score differences reaching up to 0.34 and differences in flooded surfaces ranging between 30 and 40 km2 for all speckle475

filtering configurations. In contrast, change detection and local thresholding methods demonstrated low sensitivity, with F1-

score differences of less than 0.03 and flooded area variations limited to just a few square kilometers. For active contour models,

most of the variability can be attributed to the flood mapping hyperparameters. While thresholding methods showed limited
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Figure 14. Range of variation (between the minimum and maximum values) of F1-score and flooded area due to flood mapping methods

hyperparameters for the 26 speckle filtering configurations for 2 February 2021 acquisition. The points are jittered horizontally for visualiza-

tion purposes.

variability, both active contour and change detection methods displayed greater sensitivity depending on the fixed speckle

filtering configuration. For instance, variations in F1-score or flooded area due to hyperparameters for change detection were480

smaller for Lee Sigma configurations compared to Median filtering configurations.

4.3.4 Impact of Morphological Operations

Figure 15 shows the improvement or degradation in the F1-score for global thresholding, local thresholding, and change

detection approaches for one of the acquisitions (2 February 2021) when using morphological operations. The color intensity

represents the average gain (or loss) relative to the configurations without morphological post-processing. The active contour485

and supervised classification approaches are not reported here, as morphological operations had negligible or no effect on the

generated flood maps due to the minimal presence of holes or small unconnected flood elements in those flood maps. We

observed that the F1-score increased for the three methods for large hole filling (50 to 100 pixels) and small patch removal (10

to 50 pixels). This is mainly due to eliminating isolated false positives and filling small gaps, improving the spatial coherence

of flood maps. However, with the increasing size of patch removal, the performance decreases, suggesting that the small-scale490

features are well-captured and should not be removed. The F1-score improvements are smaller for change detection since the

generated flood maps were closer to the reference than for thresholding before applying morphological operations. While the

role of morphological operations was evaluated, the relative improvements in the F1-score metric are relatively low.

Finally, Fig. 16 compares the flood maps with the highest F1-scores obtained for each method, including those enhanced

with morphological operations for 2 February 2021. The CNN-based approach achieved the best overall performance, with an495

F1-score of 0.793, followed by the Change Detection and Random Forest methods. The flood map produced by the CNN is the

most continuous and closely aligns with the simulated flood map. The active contour model also exhibits a continuous flood
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Global thresholding Local thresholding Change detection

Figure 15. Heatmaps representing the average gain (or loss) in F1-score due to morphological operations relative to configurations without

morphological post-processing.

extent, but it significantly underestimates inundation in both the upstream and downstream regions. The other methods result

in less smoothed flood extent, capturing more localized details and irregularities. While some of these details may correspond

to actual observations, their fragmented nature results in poorer alignment with the continuous structure of the simulated flood500

map.

Figure 16. Comparison of the simulated flood maps (green) with the generated flood maps (blue) for 2 February 2021.
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5 Water Depth Estimation

The flood maps extracted from the preprocessed SAR images can be used with other inputs, such as Digital Elevation Models

(DEM), to construct water depth fields. In the literature, the approach of Hostache et al. (2009) for water depth estimation has

proved effective but requires prior expertise in the flow motions and extensive fieldwork to constrain the method. In this study,

we preferred to compare automatic water depth estimation methods on the whole flood map or specific cross sections. Methods505

such as the Flood Water Depth Estimation Tool (Fw-DET) (Cohen et al., 2018) or the FLEXTH methodology (Betterle and

Salamon, 2024) are available to derive water depth fields across the entire domain based on a flood map and DEM. Other

methods rely on cross-section analysis by considering that the free surface is flat on a cross-section, thus retrieving the water

depth field by knowing the locations of the edges of the flood and topography. We generated water depth fields by applying

these methods across a range of hyperparameters, as summarized in Table 1. The water depth estimation workflow follows a510

structured sequence illustrated in Fig. 17:

1. Input: Flood maps derived from SAR imagery and a Digital Elevation Model (DEM), all projected on the same spatial

grid.

2. Methods: Fw-DET, FLEXTH, or cross-section analysis. Each method is evaluated for different hyperparameters.

3. Water depth estimation: Each method determines the water surface elevation and subtracts the underlying terrain515

elevation from the DEM to generate a water depth field.

5.1 Methods

5.1.1 Fw-DET method

The Flood Water Depth Estimation Tool (Fw-DET) (Cohen et al., 2018, 2019) quantifies water depth continuously in the

domain using a flood extent polygon and a Digital Elevation Model. A schematic representation of Fw-DET principle is520

presented in panel II)1) of Figure 17. Flood boundaries are derived from the flood map and converted into a line layer, while

steep slope cells are filtered out using a slope threshold as a hyperparameter. This line layer is rasterized to align with the

DEM grid. Elevation values are extracted for these boundary cells, and each cell within the flood extent polygon is assigned the

elevation of the nearest boundary cell under the assumption of a flat water surface. Water depth is computed by subtracting the

DEM elevation from the water surface elevation. To mitigate artifacts caused by mismatches between the DEM and the flood525

extent, a smoothing procedure is applied multiple times using a 3× 3 window.

This study considered the number of smoothing iterations and the slope threshold as model parameters. The latest version

of the code developed by Cohen et al. (2019) is available at https://github.com/csdms-contrib/fwdet. For the present study, the

code was adapted to operate without the QGIS interface, using standalone Python scripts to enable batch processing.
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II) Water depth methods
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c) Propagate elevation to inner cells
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river cross-section (red)
b) Compute the mean of the border 
elevations and consider flat surface

(a) (b)

Cross-section water depth

Figure 17. Schematic overview of the water depth estimation methodology.

5.1.2 FLEXTH method530

The FLEXTH method (Betterle and Salamon, 2024) presents an approach similar to the Fw-DET methodology but introduces

improvements to mitigate unrealistic water depth estimates (Cohen et al., 2019). Figure 17, panel II)2), depicts the FLEXTH

methodology schematically. The methodology was extended to account for additional inputs, such as exclusion or permanen-

t/seasonal water body masks. The exclusion layer indicates areas where the satellite sensor cannot accurately discriminate

flooded areas from dry areas due to water-look-alike conditions (e.g., roads, dikes, vegetated areas). The method expands the535
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flooded area into adjacent no-data regions and estimates the water depths based on the DEM (Betterle and Salamon, 2024). As

in Fw-DET, pixels along the flood boundaries with a slope exceeding a user-defined threshold are excluded from the boundary.

Water depths within the flooded area are then estimated using a weighted average of the boundary cell elevations based on the

closest cells up to a specified maximum number of neighbors.

The slope threshold and the maximum number of neighbors used in the computation were considered hyperparameters. In540

(Betterle and Salamon, 2024), they highlighted that these two parameters are the most influential in the FLEXTH method. The

FLEXTH method, initially developed by (Betterle and Salamon, 2024), is available as a Python code at https://code.europa.eu/

floods/floods-river/flexth and was adapted for the needs of our study.

5.2 Cross-section approach

The two previous methods estimated the water depths continuously across the domain. An alternative approach is to perform545

cross-section analysis along the river channel by extracting the surface elevation at the dry/flood interface along predefined

cross-sections. The water surface is assumed to be flat for each cross-section, and its elevation is computed as the mean

elevation of the identified boundary cells. However, this method is sensitive to errors caused by over-detection of the wet/dry

interface along the cross-sections. To address this issue, an alternative strategy involves considering only the left and right

banks of the flood extent (Schumann et al., 2007), excluding other points within the flooded area. This strategy is displayed550

schematically in Section II)3) of Figure 17. In this study, we tested this second approach. The cross-section approach did not

use any hyperparameters in this study.

5.3 Results

The methods for estimating water depth fields were applied to the flood maps generated in Section 4. For each satellite acqui-

sition, more than 10,000 flood maps were generated. In our implementation, the processing time to generate the water depth555

field for each flood map was approximately 15 seconds for Fw-DET, 30 seconds to 1 minute for FLEXTH, and only a few

seconds for the cross-section approach. All computations were conducted on an Intel® Core™ i7-11850H CPU @ 2.50GHz.

Thus, generating water depth fields for all hyperparameter combinations (nine configurations of the Fw-DET method, nine

configurations of the FLEXTH method, and one for the cross-section approach) would result in an impractically large number

of outputs and computation time. Since the generation of water depth fields depends on the input flood contour, our focus560

is on analyzing the variations of the water depth fields due to variations in the flood contour (due to speckle filtering, flood

mapping methods, and hyperparameters used previously). We selected 10 flood maps per flood mapping method to capture a

representative range of potential flood map inputs. These were sampled uniformly across the full span of their F1-scores, from

the lowest to the highest score, to ensure coverage of both high- and low-quality segmentation results. The Fw-DET, FLEXTH,

and cross-section methods were applied for these flood maps. For the cross-section approach, the results were analyzed for two565

user-defined cross-sections shown in Fig. 18. The estimated water depths were compared with the hydrodynamic simulations

and watermarks presented in Section 2.1.2. The watermarks were used only for the 16 December 2019 and 3 February 2021 ac-
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quisitions (near the flood’s peak). For the comparison against simulations, the Root Mean Square Error (RMSE) was computed,

comparing pixel-to-pixel values. The rasterized results were projected at the measurements’ locations for the watermarks.

1

2

Figure 18. Visualization of the two cross-sections (cross-section 1 in orange and cross-section 2 in green) used in the study.

5.3.1 Water depth estimation methods evaluation570

Figure 19 shows the RMSE of the estimated water depths compared to hydrodynamic simulations (see Fig. 19a) and watermarks

(see Figure 19) for the FwDET and FLEXTH methods. Each box plot indicates the variability explained by the input flood map

or water depth estimation hyperparameters.

FLEXTH and Fw-DET demonstrate comparable performance in terms of median RMSE, particularly for the December 2019

acquisitions. Both methods achieve relatively low median RMSE values on December 16 and 17, 2019, although FLEXTH575

occasionally shows a slightly narrower spread in error distribution. However, neither method consistently outperforms the other

across all dates or reference datasets.

FLEXTH and Fw-DET demonstrate comparable performance in terms of median RMSE. Both methods exhibit a median

RMSE ranging from 0.8 to 1.9 m, depending on the satellite image acquisition. The variability of the RMSE is also comparable

for both algorithms, with slightly more outliers for the FLEXTH method, which may be caused by the used hyperparameter580

values. These conclusions are similar either with the simulated water depth fields or watermarks as validation dataset. For the

watermarks, the variability is more important. The observed variability and elevated RMSE values can be attributed to the flood

map selection from previous processing steps, including high and low F1-score maps relative to the reference. This variability

and the influence of water depth estimation method hyperparameters are further analyzed in Section 5.3.2 for the Fw-DET and

FLEXTH methods.585
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(a) (b)

Figure 19. Root Mean Square Error (RMSE) between the estimated water depths and simulated (a) or watermarks (b) for Fw-DET and

FLEXTH methods for four satellite images.

Next, Fig. 20 presents the RMSE of water depth estimates on the two selected cross-sections (see Fig. 18) for the cross-

section approach, along with Fw-DET and FLEXTH methods projected onto these cross-sections. The Fw-DET and FLEXTH

(a) (b)

Figure 20. Comparison of Fw-DET, FLEXTH, and cross-section approaches on cross-section 1 (a) and cross-section 2 (b) for four satellite

acquisitions against hydrodynamic simulations.

methods exhibited similar RMSE performance for both cross-sections, though FLEXTH showed higher variability. The cross-

section approach, while showing similar or slightly higher median RMSE values compared to FLEXTH and Fw-DET on
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the two cross-sections, exhibited more variability, particularly for the 2 February 2021 image, which was likely related to590

challenging flood contour detection conditions for that image. The Fw-DET and FLEXTH algorithms propagate the surface

elevation from the edges of the flood to the inner flood. The cross-section approach, on the other hand, relies only on the

identification of the right and left edges of the flood. Then, the cross-section approach is highly sensitive to identifying the

border of the flood on the cross-section, while it is less the case for Fw-DET and FLEXTH, which rely on the whole flood

extent borders. The variability of the RMSE for the cross-section approach was entirely due to the variability of the input flood595

maps, since the cross-section approach was considered without hyperparameters.

5.3.2 Impact of hyperparameters and flood map inputs

The influence of flood map inputs and method hyperparameters on water depth estimation performance was evaluated for

the Fw-DET and FLEXTH methods. Figure 21 presents the distribution of RMSE values, computed against hydrodynamic

simulations across four satellite acquisitions, grouped by flood mapping method used as input to the water depth estimation600

methodology.

The results indicated that the flood map used as input for the water depth estimation process significantly influenced the esti-

mation accuracy. Flood maps derived from global and local thresholding yielded lower RMSE and variability. In contrast, flood

maps produced with CNN and Active contour models lead to greater variability and higher RMSE in water depth estimates.

However, the median RMSE values for CNN and active contour flood mapping methods are close to the other algorithms, sug-605

gesting that they can achieve comparable or better results with water depth estimation method parameter tuning. The outputs

from CNN and active contour models are smoother, but their ability to precisely delineate flood boundaries is reduced due to

the smoothness. This can result in significant errors in water depth estimates, particularly in areas with steep terrain.

To study the influence of hyperparameters in the FLEXTH and Fw-DET methodologies, we proceeded similarly as in Section

4.3.3 for flood mapping methods. For each hyperparameter configuration (9 each for FLEXTH and Fw-DET) of water depth610

estimation methods, we computed the range between the lowest and maximum RMSE for every flood map input. Figure 22

presents a statistical analysis of the variability of this range for all the flood map input configurations for the 2 February 2021

acquisition.

While Fw-DET showed minimal variability in RMSE due to its hyperparameters alone (except for some outliers beyond

the interquartile range), the FLEXTH method displays a much larger interquartile range of RMSE values. In this study, the615

Fw-DET method demonstrates more consistent performance. In contrast, FLEXTH, while potentially more accurate in ideal

cases, was more sensitive to hyperparameter choices and could produce larger errors depending on the configuration used in

each test case.
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(a)

(b)

Figure 21. Impact of the flood mapping method used for water depth estimation for the Fw-DET method (a) and FLEXTH method (b) across

four satellite acquisitions.

6 Discussions

This study evaluated the influence of preprocessing, flood mapping, and water depth estimation methods using SAR imagery620

for hydraulic applications. Our results highlighted that each stage, from speckle filtering to method choices and hyperparameter

tuning, introduced variability that can propagate through to the final outputs.

6.1 Limitations of the evaluation process

The first limitation of the study was the unavailability of ground truth data for flood maps and water depth fields in the study

area. As an alternative, hydrodynamic simulations were used as a reference for evaluating performance. These simulations625

introduce their uncertainties due to discretization, modeled physical processes, or roughness parameterization. Then, some of
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Figure 22. Box plot analysis of the variability induced only by water depth estimation hyperparameters for the 2 February 2021 acquisition.

the observed discrepancies between estimated and reference values may stem from errors in the hydrodynamic model rather

than from the methods used to extract the information in this study. Although the availability of a reliable reference would

enhance validation, the primary goal of this study was to quantify the variability introduced by preprocessing, method choices,

and hyperparameter settings. However, to select the most accurate method, it is essential to use test cases where independent630

ground truth is available. For instance, Landuyt et al. (2018) used Copernicus Emergency Management Service flood maps

extracted from SAR or optical data, and Li et al. (2018) used labeled optical images (in cloud-free conditions) to validate

SAR-based flood maps.

In this study, hyperparameter tuning was not uniformly exhaustive across all methods. For instance, traditional flood map-

ping methods were evaluated across a range of hyperparameter settings, while supervised classification methods were applied635

using fixed configurations. This may limit their performance and underestimate their potential under optimal settings or hide

their variability due to hidden hyperparameters. Although we analyzed a range of key hyperparameters, additional influential

parameters may be embedded within the methods themselves. Nevertheless, we believe that the primary sources of uncertainty

were adequately captured by the parameters examined in this study. Future work could expand the range of hyperparame-

ters considered and apply uncertainty quantification techniques, such as sensitivity analysis, to quantify the influence of each640

parameter on the outcomes by using more exhaustive Design of Experiments.

6.2 Hydraulic analysis and implications for flood monitoring

The results of this study highlight that the quality of flood maps and water depths estimates is highly sensitive to preprocessing

choices, method selection, and hyperparameter tuning. If the variability in the generated output is essential, the derived products

may propagate errors into the hydrodynamic models, leading to inaccurate parameter estimation. For instance, Figure 10645

highlights that most configurations led to an underestimation of the flooded surface area compared to simulations. First, a
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fixed Strickler roughness parameter was used across the floodplain and channel subdomains. If the variability due to flood map

processing is more important than the changes in simulated flood maps due to the roughness parameter, the calibration could

be complicated. Ideally, the variability in the observations should be less than the variability in the simulations.

We evaluated the hydrodynamic model for the 2021 flood event using 2,000 parameter samples under three different Strickler650

roughness configurations described in Table 3.

Table 3. Three tested Design of Experiments (DoE) for Strickler parameterization for numerical model evaluation. DoE 1 is the baseline with

fixed channel values and narrow ranges in floodplains, DoE 2 accounts for wider ranges in floodplains, and DoE 3 also considers a varying

Strickler across the three channel subdomains.

Land use DoE 1 DoE 2 DoE 3

Main channel Fixed Fixed U(30,50)

Waterbodies U(32.5,37.5) U(5,50) U(5,50)

Fields and meadows without crops U(17.5,22.5) U(5,50) U(5,50)

Cultivated fields with low vegetation U(15,20) U(5,50) U(5,50)

Cultivated fields with high vegetation U(10,15) U(5,50) U(5,50)

Shrublands and undergrowth areas U(8,12) U(5,50) U(5,50)

Areas of low urbanization U(8,10) U(5,50) U(5,50)

Highly urbanized areas U(5,8) U(5,50) U(5,50)

Figure 23 compares the 94% variability range in simulated flooded area for each DoE with the flooded areas obtained using

various flood mapping configurations for the February 2, 2021, SAR acquisition. The variability in the simulated flooded

area is limited for DoE 1 and was lower than the variability across SAR-derived flood mapping methods. This complicates

calibration because uncertainty from SAR processing dominates over that from model parameters. For the second DoE, the655

larger variation in floodplain roughness resulted in a wider range of flooded areas (approximately 5 km2), which is comparable

to the variability observed for each SAR method, except for the active contour method. For DoE 3, there is a large spread in

simulated flood extents, which is similar to the spread between methods (for instance, between the change detection median

and the CNN median). For this study, only the CNN flood mapping method intersected with the simulation in terms of flooded

areas. For the intersection between areas of 71 km2 and 75 km2, the roughness values in the channel between Mas d’Agenais660

and La Réole fall at the upper end of the distribution, primarily ranging from 40 to 50 m1/3 · s−1. In that case, it results in

higher roughness values (and thus higher velocities and reduced water depths) than in the previous model calibrations based

on stage-gauging stations.

The variability introduced by SAR flood mapping methods and hyperparameters exceeds the uncertainty caused by model

roughness parameterizations, except for DoE 3. This reinforces the necessity of accounting for uncertainties in flood map665

generation from SAR images to use them for model calibration.
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Figure 23. Comparison of flooded surface area variability from hydraulic simulations using three Design of Experiment (DoE 1–3) against

SAR-based flood maps. The colored surface for the three DoE indicates the 95% confidence interval of simulated flooded areas.

Water depth estimation methods produced water depth fields with RMSE errors of around 2 m (for the median). These errors

are too significant to be ignored in the calibration of this study area. Then, the calibration should be spatially constrained to

areas where water depth estimates are more reliable, such as zones with low topographic gradient.

7 Conclusions670

By systematically evaluating the impact of preprocessing, flood mapping, and water depth estimation methods and their hy-

perparameters, this study aimed to inform best practices for generating flood maps and water depth fields from SAR imagery.

It contributes to improving the reliability of SAR-based hydraulic applications by underscoring the importance of assessing

the influence of speckle filtering and hyperparameter choices. Rather than relying on a single fixed configuration, the findings

highlight the need for a comprehensive evaluation of processing options. These options can significantly impact the extracted675

flooded areas or water depths, ultimately influencing the calibration and validation of hydraulic models. The choice of speckle

filtering method was shown to significantly influence the statistics of SAR images, with deep learning methods such as the

SAR2SAR approach outperforming the traditional approaches. For flood mapping, supervised classification methods demon-

strated the highest median accuracy and F1-score. While less accurate, unsupervised methods such as thresholding and change

detection offered reliable results with minimal tuning, making them suitable for rapid deployment. We highlighted the role of680

the speckle filter method choice and its hyperparameter on the flooded area estimates, with variations in flooded area estimates.

The hyperparameters of the flood mapping methods were also influential on the generated flood maps, especially for active
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contour models. Morphological operations provided modest but consistent improvements for specific methods by enhancing

the spatial coherence of flood maps. Three methods for estimating water depth fields were compared, showing that the accuracy

of water depth estimation is strongly influenced by both the quality of the input flood maps and the parameterization of the685

methods. In this study, and for the tested hyperparameters, FLEXTH and Fw-DET exhibited similar performance. For studying

the water depth on cross-sections, the cross-section analysis results in similar estimates but with a high variability depending

on the cross-sections or input flood maps.

In future flood studies using SAR imagery for hydraulic applications, the role of preprocessing, method choices, and hyper-

parameter tuning should be evaluated to account for the errors due to the processing pipeline. We studied only SAR images,690

but similar methodologies to evaluate the impact of method choices and hyperparameters could be applied to optical satellite

images.

Code and data availability. The openTELEMAC software is freely available on a Gitlab server with a track of all the developments and a

fixed branch for the v8p5 version used in the present study (https://gitlab.pam-retd.fr/otm/telemac-mascaret/-/tree/v8p5r0?ref_type=tags).

The result files of the simulations and their projections on raster grids are provided for easier reproducibility. The code and all the data used695

in this study are available online at https://github.com/jtravert/sar-flood-evaluation-framework with some instructions and Jupyter notebooks
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