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Table S1 Comparison of environmental variables between climate regions. Results of independent t-tests 

comparing the mean values between Mediterranean and Temperate ponds. Statistically significant 

differences (p < .05) are highlighted. 

 
Mediterranean Temperate  

Variable Mean Sd Mean Sd P value 

Temperature 40 (K) 287.31 1.57 282.44 0.47 <0.001 

Precipitation 40 (mm S-1) 2.52 0.64 1.97 0.19 <0.001 

Annual temperature (° C) 15.97 1.70 10.80 0.54 <0.001 

Annual precipitation (mm) 0.08 0.02 0.07 0.01 NS 

Hydroperiod length 

(months) 

6.29 3.52 9.15 2.31 < 0.05 

Area (m2) 2884.14 4827.94 912.00 773.62 n.s 

Max depth (Cm) 111.82 27.73 104.08 54.53 n.s 

Coverage (%) 59.75 22.12 84.29 31.59 < 0.05 

PVI (%) 55.36 36.41 37.65 35.64 n.s 

Conservation status 72.68 17.17 79.79 16.23 n.s 

Sediment temperature (° 

C) 

20.44 8.52 15.91 5.26 <0.01 

Water content (%) 22.97 13.47 55.42 24.40 <0.001 

pH 6.54 1.08 6.70 0.72 n.s 

Conductivity (µS/cm) 420.26 269.29 603.52 500.30 n.s 

Carbonate content (%) 4.76 7.54 4.31 5.72 n.s 

Organic matter (%) 10.21 9.57 23.07 18.93 < 0.05 

DOC (mg C g-1) 1.02 1.71 2.77 3.67 < 0.05 

Absorbance 254 0.24 0.23 0.57 0.44 < 0.05 

Absorbance 300 16.79 8.11 20.23 8.78 < 0.05 

SUVA (L mg C-1 m-1) 1.89 0.87 1.35 1.54 n.s 

BIX 0.53 0.07 0.58 0.18 n.s 

FI 1.21 0.11 1.21 0.13 n.s 

HIX 0.87 0.06 0.84 0.11 n.s 

C1 42.66 8.61 41.81 9.72 n.s 

C2 42.70 6.88 37.70 5.97 <0.01 

C3 14.64 7.47 20.50 12.89 n.s 

Open nature 100 (%) 29.67 36.35 8.85 16.21 n.s 

Forest 100 (%) 34.38 33.94 18.59 18.13 n.s 

Pasture 100 (%) 3.61 10.59 29.86 27.47 <0.001 

Arable 100 (%) 31.99 41.57 31.24 29.24 n.s 

Grassland 100 (%) 0.00 0.00 3.78 12.55 n.s 

Urban 100 (%) 0.35 1.28 7.69 15.78 n.s 

Open nature 5 (%) 50.81 29.17 29.73 39.28 n.s 

Forest 5 (%) 41.91 31.61 28.97 34.10 n.s 

Pasture 5 (%) 3.80 13.29 25.96 35.59 < 0.05 

Arable 5 (%) 3.48 12.77 14.33 31.24 n.s 

Grassland 5 (%) 0.00 0.00 1.03 2.88 n.s 

Urban 5 (%) 0.00 0.00 0.00 0.00 n.s 

TN water (mg/L) 1.91 1.24 4.29 4.88 n.s 

TP water (mg/L) 0.20 0.27 0.63 0.56 < 0.05 

DOC water (mg/L) 26.49 18.83 21.64 9.95 n.s 

Chlorophyll a (µg/L) 20.53 21.65 54.73 47.67 < 0.05 

 
  



Figure S1.  Relationship between sediments water content, temperature and CO₂ emissions. The plot shows 

the standardized relationship between sediment temperature and water content with CO₂ emissions during 

the dry phase. Each point represents an individual observation, color-coded by variable (red = sediment 

temperature and blue = water content). Fitted quadratic regression lines depict the non-linear trends in the 

data. 

 

  



Analysis components of the dissolved organic matter 

 

We analysed the composition of organic matter components to assess their distribution across climate 

regions, seasons and hydroperiods, as well as their relationship with CO₂ emissions. Significant differences 

were observed between climate regions in the humic-like component (C2) (Fig. S5a). In contrast, the overall 

composition of organic matter remained consistent across seasons (Fig. S4 and S5b). Regarding 

hydroperiod, we found a correlation between hydroperiod length and tryptophan-like component (C3) (Fig 

S6). Moreover, the effect of these components on CO₂ emissions was significant only during the summer, 

particularly for the humic-like (C2) and tryptophan-like (C3) components (Fig. S7). 

 

Figure S2. PARAFAC-extracted components of dissolved organic matter by season (summer and autumn). 

C1 represents terrestrial humic-like substances (yellow), C2 humic-like (blue), and C3 tryptophan like 

substances (green). 



Figure S3. ANOVA results for dissolved organic matter components by climate regions (a) and seasons 

(b). C1 = terrestrial humic-like (yellow), C2 = humic-like (blue), and C3 = tryptophan like (green). Asterisks 

indicate significant differences between groups p < 0.01; absence of asterisk indicate no significant 

difference. 

 

  



Figure S4. Scatterplots with fitted linear regressions (dashed lines) and 95% confidence intervals (grey 

shaded areas) showing the relationship between hydroperiod length and the concentration of three DOM 

components: C1= terrestrial humic-like (yellow), C2= humic- like (blue) and C3 = tryptophan –like (green). 

Each dot represents an individual pond measurement. 

 



Figure S5. Relationship between CO₂ fluxes and the relative concentration (%) of fluorescent DOM 

components, grouped as terrestrial humic-like, humic-like, and tryptophan-like compounds. Each point 

represents the average CO₂ flux from a pond during the dry phase (summer or autumn). Lines show linear 

regressions with 95% confidence intervals (shaded areas) with blue indicating summer data and orange 

indicating autumn. Asterisks above each panel denote the significance of the interaction between 

component concentration and season on linear models:  ***p < 0.001; *p < 0.05; absence of asterisk 

indicate no significant difference. 



Figure S6. Principal Component Analysis (PCA) showing the distribution of ponds and the main 

environmental variables driving their separation. Points are coloured by country: Spain (red), Denmark 

(green), Germany (blue) and Belgium (yellow), as indicated in the legend. Ellipses represent the confidence 

intervals for the climate groups: Mediterranean (red) and Temperate (blue). Each dot corresponds to an 

individual pond measurement.



WEOM and DOM PROTOCOL  

First, we ground the sediment samples in a mixer mill (MM 400 RETSCH MM400) for 2 minutes at 400 

Hz. We prepared a sediment-to-water solution at a 1:40 ratio (w/w)  using milli-Q water and placed it in a 

in an agitator (IKA ® KS 260) set at 150 rpm inside a dark incubator at 4°C for 48h. Samples were then 

centrifuged for 10 minutes at 4500 rpm and 4°C (Beckman coulter avanti J-26XPI) and subsequently 

filtered through pre-combusted (450°C for 4 h) 0.47 µm GF/F filters (Whatman) followed by  0.2 nylon 

filters (Whatman). The filtered water was used for analyses of dissolved organic matter (DOM) (see below) 

and dissolved organic carbon (DOC). For DOC measurements, samples were acidified to a pH 2 by adding 

1 M hydrochloric acid (HCl) and stored in darkness at 4 °C until analysis  with a Shimadzu TOC-VCS.  

 

Dissolved Organic Matter (DOM)  

 

We analysed DOM samples by their absorbance and fluorescence properties. We measured UV-VIS 

absorbance spectra (200-800 nm) using a Cary 4000 UV-Vis spectrophotometer with a 1 cm quartz cuvette. 

We processed the measurements using the Scan software. We used Milli-Q water as the reference baseline 

before analyzing the samples and rinsed the cuvette thoroughly with Milli-Q water between measurements 

to prevent cross-contamination. Before analysis, we equilibrated the samples to room temperature in the 

dark to avoid photochemical alterations. We calculated the absorption coefficient at wavelength λ (a λ, m-1) 

using the equation: 

 

a λ = a λ0 e S (λ0- λ) 

 

Where λ0 is a reference wavelength, as described by (Stedmon et al., 2000). 

 

We obtained the fluorescence Excitation Emission Matrix (EEMs) using a HITACHI F-700 fluorescence 

spectrophotometer, with excitation wavelengths set between 250 and 450 in 3 nm intervals and emission 

wavelengths between 250 and 600 nm within 3 nm intervals. We processed the data using FL Solutions 

software. We measured a Milli-Q water blank prior to sample analysis and subtracted it from each spectrum 

to correct for background fluorescence and eliminate solvent interference. We normalized fluorescence 

intensities using the Raman peak area of Mili-Q water to ensure consistency across samples. 

We analysed the fluorescence and absorbance data of DOM using the R package StaRdom (Pucher et al., 

2019). Data pre-processing included smoothing to enhance peak detection, subtraction of blanks, correction 

for inner-filter effects and instrument-specific biases, removal of scattering regions (Rayleigh and Raman 

scattering) and normalization of fluorescence intensities using the Raman peak area. 

We calculated classical fluorescence  peaks B, T, A, M and C based on manual peak picking and indices as 

follows: the humification index (HIX; unitless) defined as the ratio between the peak area under the 

fluorescence emission spectra of 435–480 nm and 300–345 nm at an excitation wavelength of 254 nm; and 

the autochthonous productivity index or freshness index, biological index (BIX; unitless) calculated as the 

ratio of the fluorescence intensity emitted at 380 and 430 nm for an excitation of 310 nm (Fellman et al., 

2010; Gabor et al., 2014; Huguet et al., 2009). We also calculated the fluorescence index (FI; unitless) as 

the ratio of emission spectra of 475-500 nm at an excitation of 370 nm, and specific ultraviolet absorbance 

(SUVA; L mg⁻¹ m⁻¹), an indicator of aromaticity,  by dividing the UV coefficient absorbance at 254 nm by 

DOC (mg/L) (Weishaar et al., 2003). Additionally, we calculated absorbance at 254 nm and at 300nm, the 

ratio of absorbance at 250 to 365 nm (E2/E3), the ratio at 465 to 665 nm (E4/E6), the spectral slope for log-

transformed absorption spectra ranges (S275-295, S350-400, S300-700) and the slope ratio (SR) of S275-

295 to S350-400 (Helms et al., 2007) . 

 

Parallel Factor Analysis (PARAFAC) 

 

We applied Parallel factor analysis (PARAFAC) following Murphy et al., (2013) to characterize the DOM 

and identify its main components. We used StarRdom package (Pucher et al., 2019) to split the 252 EEMs 

via PARAFAC (Fig S4). We processed data as previously outlined for DOM analysis, removed scatter 

peaks and normalized each to its total fluorescence. 

We built several models to determine the most suitable number of components, using split-half analysis 

validation, core consistency, model fit, and residual examination. Based on these criteria, we selected a 

PARAFAC model with three components (Murphy et al., 2013). We identified the origin and nature of 

these components using the Openfluor.org platform, achieving 0.99 Tucker Congruence Coefficients 

(TCC) in both excitation and emission spectra, based on model matches in the repository (Table S3).  

For the PARAFAC analysis, we evaluated the model stability and robustness through split-half analysis 

(splithalf function in staRdom package (Pucher et al., 2019)), which randomly split the dataset into subsets 

https://openfluor.lablicate.com/


to ensure consistency across. We computed the Shift- and Shape-Sensitive Congruence (SSC) and the Total 

Congruence Coefficient (TCC), including the modified form (mTCC) that combines excitation and 

emission spectra (Parr et al., 2014; Wünsch et al., 2019). These metrics confirmed the stability and 

reproducibility of the final three-component model. 

Additionally, we evaluated model adequacy using the core consistency diagnostic (eempf_corcondia 

function in package (Pucher et al., 2019)), which compared the modelled and actual data structure. Finally, 

we integrated the EEMqual parameter to synthesize model fit, core consistency, and split-half results (Bro 

and Vidal, 2011). 

 

Figure S7. Excitation-Emission Spectra (EEM) of the dissolved organic matter components (C1, C2, C3) 

identified though PARAFAC analysis. 

 

 

  



Table S2. Tucker congruence coefficients (TCC = 0.99) with published spectra from OpenFluor.org, 

including matching PARAFAC models and the corresponding components from related studies. 

Components N Component and PARAFAC models 

matched 

Description at papers 

C1 18 Gueguen_NelsonR (C1);Shutova_G 
(C1);Combinations-R (C2);DarkOcean 

(C1);Peleato_biofilter 

(C2);Dainard_BeaufortBering2013 
(C1);West Greenland Lakes (C1);Wheat 

(C2);Gueguen_JOIS (C1);Galveston Bay 

(C1);Lake_Ice (C1);  
RecyclePC(C1);Combinations-O/R/S 

(C2);Forest soil with freeze-thaw 

disturbance (C2);Macaronesia_POS533 
(C3);vale3C (C2);AmoRiver(C2); 

DOMIPEX (C1). 

Terrestrial humic-like (plant/soil derived), 

traditionally peak C, Terrestrial origin, soil humic -

like, terrestrial delivered OM, consisted of a 
combination of Peak A and Peak C, where terrestrial 

and non-processed OM would dominate, Fulvic-

like. 
 

 

C2 9 Sources_Soil_Leaf leachate 
(C3);Gueguen_NelsonR 

(C2);poyang_five river (C1); Shallow-

Lakes Patagonia(C1);Uryu 
(C1);Combinations-R (C1); 

ORCA_flume 

(C1);Lake_Ice(C2);Graeber_2012 (C1). 

Humic-like, Humic-like fluorophorea, probably 
composed of humic-like compounds derived from 

biological/microbial activity, traditionally peak A. 

 
C3 8 NeusePOMDOM (C5); Microcystis_BB 

(C3); Antarcticlce (C3); LeafLeachate 

(C2); Graeber-Macro_Acces (C2); MRE 
Model (C6);Anammox_EPS 

(C1);Borisover_wastewater treatment 
plants (C1). 

Tryptophan-like, Autochthonous production, 

proteinaceous tryptophan-like matter, most 

ubiquitous, traditionally peak T 

Models 
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Table S3.  Fluorescence peaks of dissolved organic matter location and classification by Coble (1996).  

Component 

label  

Excitation 

Location 

(nm) 

Emission 

Location 

(nm) 

Traditional classification by Coble 

et.al (1996) 

Description  

C1 350 481 Peak C (Ex 330-350; Em 420-480) Terrestrial 

humic-like 

C2 311 412 Peak A (Ex 250-260; Em 380-480) Humic-like 

C3 278 334 Peak T (Ex 270-280; Em 320-350) Tryptophan-

like 

 

 

Table S4. Fluorescence components of dissolved organic matter: chemical interpretation and sources. 

Component 

label 

Chemical interpretation  Source 

C1 Associated with low molecular weight 

humic-like substances. These are less 

aromatic and represent more degraded 

organic matter 

Often linked to microbially processed or 

autochthonous DOM, typically found in 

aquatic environments with significant 

microbial activity. 

C2 Represents high molecular weight humic-

like substances. These are highly aromatic 

compounds indicative of terrestrial inputs 

Derived from humification processes in 

soils and vegetation, reflecting 

terrestrial or allochthonous DOM 

inputs. 

C3 Associated with protein-like substances, 

specifically aromatic amino acids such as 

tryptophan. 

Indicates the presence of freshly 

produced, labile DOM. Often linked to 

microbial and phytoplankton activity, as 

well as wastewater inputs. 
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