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Abstract	
Soils	across	sub-Saharan	Africa	are	exposed	to	extensive	degradation,	reducing	their	
ability	to	produce	crops	and	support	livestock.	While	there	has	been	a	signiOicant	25	
research	effort	focussing	on	soil	degradation	in	sub-Saharan	croplands,	less	research	
effort	had	been	directed	towards	grasslands.	Here,	we	tested	the	effectiveness	of	remote	
sensing	to	classify	the	soil	degradation	status	of	smallholder	grazing	lands.	Focussing	on	
grasslands	used	by	smallholders	in	the	districts	of	Nyando	and	Kuresoi	in	Western	
Kenya,	we	Oirst	used	remote	sensing	(RS)	to	classify	grasslands	as	either	equilibrium,	30	
transition	or	degraded,	and	then	tested	how	this	classiOication	related	to	measured	soil	
parameters	indicative	of	soil	degradation.	We	then	used	this	classiOication,	which	was	
based	on	a	temporal	analysis	of	Normalised	Differential	Vegetation	Index	(NDVI),	
Enhanced	Vegetation	Index	(EVI)	and	Normalised	Differential	Water	Index	(NDWI)	
between	2013	and	2018,	to	identify	90	Oield	sites	across	the	two	districts,	which	we	then	35	
sampled	and	analysed	for	a	range	of	physical,	chemical	and	biological	soil	properties.	
Only	soil	microbial	biomass	carbon	(C)	showed	consistent	alignment	with	the	RS	
classiOication,	although	there	was	some	overlap	with	other	soil	parameters	at	one	or	
other	of	the	sites.	To	group	the	sites	using	the	soil	parameters,	which	we	split	by	district	
and	into	stable	and	transient	soil	variables,	K-means	clustering	was	undertaken.	Two	40	
clusters	were	produced.	One	of	the	clusters	included	sites	with	higher	levels	of	C,	
nitrogen	(N),	phosphorus	(P)	and	pH,	that	aligned	well	with	the	RS	classiOication	at	
Kuresoi,	with	seven	out	of	ten	equilibrium	sites	being	assigned	to	this	cluster.		The	other	
cluster,	in	Nyando,	had	high	soil	C	and	P,	but	low	pH	and	relatively	low	soil	bulk	density,	
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and	corresponded	to	12	out	of	the	16	equilibrium	sites.	Overall,	our	results	suggest	that	45	
while	the	use	of		RS	methods	for	classifying	degraded	grasslands	and	the	soils	
supporting	them	does	have	signiOicant	advantages	in	terms	of	time	and	costs	over	Oield	
survey,	supplementing	these	methods	with	a	limited	set	of	soil	parameters	related	to	
nutrient	cycling,	such	as	microbial	biomass	C,	soil	P,	percent	C	and	N,	and	soil	pH,	could	
enhance	our	ability	to	identify	degraded	soils		and	target	restoration	efforts.	50	

Introduction	
Approximately	660	million	hectares	of	sub-Saharan	African	(SSA)	soils	are	estimated	to	
be	degraded,	which	represents	a	signiOicant	portion	of	the	global	extent	of	degraded	
soils	(Gibbs	and	Salmon,	2015).	Soil	degradation	reduces	the	functioning	of	soils	and	is	a	
result	of	multiple	processes	including	soil	erosion	by	wind,	water	and	tillage,	55	
salinisation,	nutrient	depletion,	and	compaction	(Bridges	and	Oldeman,	1999)	and	may	
be	triggered	by	shifts	in	land	use,	management	or	climatic	changes.	Most	attention	has	
been	placed	on	the	impacts	of	soil	degradation	on	food	security,	and	it	has	been	cited	as	
the	leading	cause	of	stagnation	in	food	production,	creating	uncertainties	for	income	
and	nutritional	security	for	rural	populations	(Barbier	and	Hochard,	2016).	Reduced	60	
plant	productivity	associated	with	degraded	soil	also	reduces	the	input	of	carbon	(C)	to	
the	soil	leading	to	lower	C	stocks	(Bai	and	Cotrufo,	2022)	and	less	biomass	to	support	
livestock.	Further,	when	grazing	lands	are	degraded,	farmers	are	often	forced	to	graze	
their	livestock	in	adjacent	forests,	which	can	negatively	affect	forest	plant	communities	
(Mullah	et	al.,	2023).	Thus,	restoring	degraded	soils	has	become	a	priority	for	securing	65	
future	food	supply	while	simultaneously	avoiding	biodiversity	and	C	losses.	This	has	
resulted	in	several	initiatives	supporting	landscape	restoration	in	Africa,	notably	the	
African	forest	restoration	initiative	(Messinger	and	Winterbottom,	2016),	which	
gathered	commitments	from	African	governments	to	restore	100	million	hectares	of	
degraded	land	by	2030.	70	
The	East	African	highlands	of	Kenya	are	densely	populated	areas	of	high	agro-ecological	
potential.	Farms	here	are	small,	typically	smaller	than	2	hectares	(Lowder	et	al.,	2016).	
Production	includes	a	mix	of	grains	and	vegetables	for	local	consumption,	some	cash	
crops,	such	as	tea	(Camellia	sinensis	(L.)	O.	Kuntze),	and	livestock	keeping.	Milk	from	
livestock	is	important	to	smallholder	families	as	a	valuable	source	of	protein	in	a	75	
protein-poor	diet	(Hulett	et	al.,	2014).	Grazing	animals	are	also	culturally	signiOicant,	
reOlecting	the	social	standing	of	the	owner	and	providing	meat	for	celebrations	and	an	
additional	source	of	cash	when	sold	(Moll,	2005).	Grazing	animals	include	sheep,	goats	
and	cattle,	and	animal	numbers	range	between	5-10	sheep	and	goats,	and	1-2	cattle	per	
hectare.	Additionally,	grazing	takes	place	on	farms	and	on	utility	areas,	which	are	80	
controlled	by	local	institutions;	these	often	come	under	higher	greater	pressure	because	
multiple	livestock	owners	have	access	to	the	land.	In	response	to	these	pressures,	
grassland	soil	degradation	is		widespread	in	Kenya	(Nzau	et	al.,	2018)	although	we	know	
little	about	its	extent	and	severity.	
Given	the	importance	of	grazing	land	for	sustaining	rural	livelihoods	it	is	surprising	that	85	
globally	much	less	recent	research	attention	has	been	placed	on	understanding		
degradation	of	grazing	lands	(Bardgett	et	al.,	2021),	particularly	in	SSA.	High	grazing	
pressures	can	degrade	soil	fertility	with	associated	declines	in	soil	properties	
underpinning	soil	health	(Pelster	et	al.,	2017),	for	instance	causing	soil	compaction	and	
reducing	soil	inOiltration	rates	(Owuor	et	al.,	2018)	and	C	inputs	to	soil	due	to	the	90	
removal	of	plant	material	by	livestock	and	reductions	in	root	mass	(Zhou	et	al.,	2017).	
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Further,	catchments	with	high	livestock	densities	have	larger	nutrient	and	sediment	
loads	in	streams	(Jacobs	et	al.,	2017),	have	greater	emissions	of	greenhouse	gases	
(Arias-Navarro	et	al.,	2017),	and	increase	the	risk	of	forest	degradation	(Brandt	et	al.,	
2018).	Low	soil	nutrient	availability	and	the	deterioration	in	soil	physical	properties	95	
impairs	plant	growth	and	alters	plant	nutrient	concentrations	(Augustine	et	al.,	2003),	
and	reduces	organic	matter	return	to	soil.	With	poorer	vegetation	cover	and	lower	
organic	matter	contents,	soils	become	increasingly	vulnerable	to	erosion,	leading	to	less	
soil	depth	and	organic	matter,	which	further	reduces	water	and	nutrient	retention	
(Quinton	and	Fiener.,	2024).	This	leads	to	a	downward	spiral	of	productivity	loss	and	100	
reduced	capacity	of	systems	to	resist	and	recover	from	climate	extremes	(Quinton	and	
Fiener.,	2024;	Van	De	Koppel	et	al.,	1997).		
The	UN	Decade	(2021-30)	on	ecosystem	restoration	(Unep,	2019)	has	focused	attention	
on	understanding	where	and	how	severely	soils	are	degraded	and	whether	they	can	
recover,	which	is	clearly	important	for	the	design	of	restoration	programmes.	In	grazed	105	
systems,	soil	degradation	is	often	recognised	by	the	presence	of	bare	soil.	However,	
using	bare	soil	as	an	indicator	can	be	problematic	in	systems	where	erratic	rainfall	
patterns	lead	to	seasonal	and	inter-annual	Oluctuations	in	vegetation	growth	coupled	
with	reduced	vegetation	cover	due	to	grazing	(Ellis	and	Swift,	1988).	In	such	
environments,	poor	vegetation	growth	may	or	may	not	indicate	degraded	soils.	110	
However,	utilising	the	response	of	vegetation	to	changed	soil	properties	and	water	
availability	is	an	approach	that	has	been	used	by	several	authors	(e.g.	Eckert	et	al.,	2015;	
Zhou	et	al.,	2017).		
Here,	we	tested	the	reliability	of	remote	sensing	approaches	for	classifying	degradation	
status	of	smallholder	grazing	land	and	compared	it	with	an	approach	based	on	the	115	
sampling	of	soils	and	characterisation	of	soil	properties	related	to	soil	structural	
stability	and	C,	nitrogen	(N)	and	phosphorus	(P)	cycling.		Working	in	two	areas	
representing	smallholder	grazing	land	of	western	Kenya	(Nyando	and	Kuresoi),	we	
assessed		degradation	using	a	dynamic	multi-year	approach	to	derive	a	range	of	metrics	
to	quantify	the	magnitude,	seasonality	and	interannual	variability	of	the	vegetation	120	
(RuOino	et	al.,	2016),	and	then	tested	whether	or	not	the	classiOication	was	related	to	
measured	soil	parameters.	We	then	explored	whether	soil	variables	classiOied	as	either	
stable	or	transient	could	be	used	to	classify	soil	degradation	status	in	grasslands.		

Methodology	

Field	areas	125	
We	used	a	comparative	landscape-level	analysis	of	two	agro-ecosystems	with	different	
ecologies	(Figure	1).	The	sites	are	in	western	Kenya	covering	the	neighbouring	basins	of	
the	rivers	Sondu-Miriu	and	Nyando	spanning	land	use	transitions	from	East	African	
montane	forests	to	grasslands	and	croplands.	Site	1	(Kuresoi)	is	in	Kericho	county	
located	in	the	Sondu	river	basin	in	the	proximity	of	the	Mau	Forest,	at	an	altitude	130	
ranging	from	1,700	to	3,000	masl,	with	an	average	rainfall	of	1,988±328	mm.	The	
geology	originates	from	the	early	Miocene,	with	phonolites	dominating	in	the	lower	part	
of	the	catchment,	and	phonolitic	nephelinites	in	the	upper	part.	A	variety	of	Tertiary	
tuffs	are	found	on	the	highest	part	of	the	Mau	Escarpment	(Jennings,	1971).	Site	2	is	in	
Lower	Nyando	located	in	the	Nyando	river	basin,	with	an	average	rainfall	of	1,150	mm	135	
and	spanning	from	the	foot	of	a	plateau	at	1,600	towards	Lake	Victoria	at	1,200	masl.	
Soils	are	derived	from	Holocene	alluvial	deposits,	and	a	variety	of	parent	materials	
including	phonolites	and	granitic	gneisses	(Iuss,	2015).	The	Lower	Nyando	site	covers	
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an	area	which	is	approximately	160	km2,	whilst	the	Kuresoi	site	covers	an	area	that	is	
approximately	1,300	km2	next	to	the	Mau	Forest.	More	details	on	land	use	and	140	
vegetation	are	given	below.	
		

	
Figure	1:	Location	map	showing	project	sites	in	Kenya	(bottom	left)	and	expanded	
views	of	Kuresoi	(top	right)	and	Lower	Nyando	(top	left).	Map	produced	using	ArcGIS®	145	
software	by	Esri.	Road	network,	river	and	settlement	were	reproduced	using	
OpenStreetMap	vector	data.	Accessed	on	2019-06-09	and	are	licensed	under	the	Open	
Database	1.0	License.	Digital	Elevation	Model	was	produced	using	ASTER	Global	Digital	
Elevation	Model	(GDEM)	30-meter	resolution	as	input	and	under	license	from	NASA	
Earth	Science	Information	Partners	Data	Preservation	and	Stewardship	Committee.	150	
2019.	Earth	Science	Data.	Ver.	2.		
	
The	Oirst	step	to	deOine	degradation	states	following	the	concepts	developed	by	(Briske	
et	al.,	2003)	involved	an	analytical	approach	using	remote	sensing	images	of	both	study	
sites.	This	spatio-temporal	analysis	covered	a	period	of	5	years	(2013	–	2018),	where	155	
productive	grazing	lands	were	classiOied	as	being	in	equilibrium,	grazing	lands	that	
followed	a	variable	trend	were	deOined	as	transition,	and	degraded	grazing	land	were	
those	shown	as	unstable	and	unproductive.	

Remote	sensing	data	selection	
To	classify	degradation	status,	35	satellite	image	scenes	were	collected	from	the	archives	160	
of	European	Space	Agency	(Esa,	2016)	and	the	United	States	Geological	Surveys	earth	
explorer	(Usgs,	2025)	(Supplementary	Table	S1).	The	selection	of	different	sensors	was	
necessary	to	Oill	missing	dates	from	the	Sentinel	collection	which	had	a	higher	spatial	
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resolution	(10	m)	but	has	been	deployed	in	space	for	a	shorter	period	(since	2015)	
compared	to	the	Landsat	sensors.	The	Oinal	satellite	imagery	was	from	Landsat-Thematic	165	
Mapper	(TM),	Landsat	Operational	Land	Imager	(OLI)	and	Sentinel-2	sensors.	Landsat-
TM	and	OLI	imagery	have	a	spatial	resolution	of	30	m.	The	mapping	of	grasslands	in	
smallholder	production	systems	required	high-resolution	imagery	because	of	the	
relatively	small	sizes	of	the	Oields,	which	are	often	less	than	1	ha.	Therefore,	the	Landsat-
derived	images	were	resampled	to	10	m	using	the	Sentinel-2	imagery	as	reference.	170	

Temporal	and	seasonal	analysis	
Three	vegetation	indices,	Normalised	Differential	Vegetation	Index	(NDVI),	Enhanced	
Vegetation	Index	(EVI)	and	Normalised	Differential	Water	Index	(NDWI)	were	calculated	
using	blue,	red,	near	infra-red	(NIR),	and	shortwave	infra-red	bands	(Equations,	1,	2	and	
3).	These	indices	were	selected	because	vegetation	and	water	indices	are	effective	to	175	
estimate	changes	in	ecosystems	(He	et	al.,	2018)	and	grassland	biomass	(Todd	et	al.,	
1998),	distinguish	canopy	density	(Huete	et	al.,	1997),	and	characterise	drought	
(Rulinda	et	al.,	2012).			
	
𝑁𝐷𝑉𝐼	 = ("#$	&	$'()

("#$	*	$'()
	 	 	 	 	 	 	 	 	 (1)	180	

𝐸𝑉𝐼	 = 	𝐺	 ∗ 	 * ("#$	&	$'()
("#$	*	+,	∗	$'(	&	+.	∗	/01'	*	2)

+	 	 	 	 	 	 	 (2)	

𝑁𝐷𝑊𝐼	 = ("#$	&	34#$)
("#$	*	34#$)

		 	 	 	 	 	 	 	 (3)	
where	NIR	is	near-infra	red;	G	represents	a	gain	factor;	L	adjusts	for	canopy	background;	
C1	and	C2	are	coefOicients	for	atmospheric	resistance	(G	=	2.5,	C1	=	6,	and	C2	=	7.5).	
Applying	these	coefOicients	allows	for	index	calculation	as	a	ratio	between	Red	and	NIR	185	
values,	while	reducing	the	background	noise,	atmospheric	noise,	and	data	saturation.	
Index	values	were	calculated	on	a	scale	of	-1	to	1.	
The	seasonality	of	the	vegetation	was	interpolated	using	TIMESAT	v3.3	algorithm	
(Eklundh	and	Jönsson,	2015).	An	adaptive	Savitzky-Golay	smoothed	function	was	Oitted	
over	the	time-series	of	Lower	Nyando	to	model	bi-modal	seasons	and	to	determine	the	190	
timings	of	the	growing	seasons.	A	double	gaussian	function	was	Oitted	over	the	time-
series	of	Kuresoi	to	model	seasonal	peaks	where	the	vegetation	dynamics	is	less	
variable.	The	adaptive	function	of	TIMESAT	modelled	abrupt	changes	in	vegetation	
effectively,	which	was	often	the	case	in	the	Lower	Nyando	landscape	consisting	of	an	
intricate	mosaic	of	land	covers.	A	double	logistic	function	allowed	to	isolate	noise	(e.g.	195	
caused	by	clouds)	in	Kuresoi	data.	To	capture	seasonal	peaks,	the	functions	were	Oitted	
to	the	upper	envelope	of	the	time-series	following	Eklundh	and	Jönsson	(2015).	After	
Oitting	the	statistical	functions	to	the	data,	the	following	seasonal	parameters	were	
estimated:	Seasonal	Amplitude	(Amp),	Start	of	Season	(StoSt),	End	of	Season	(EoS),	
Function	value	at	Start	of	Season	(SoSv),	Function	value	at	End	of	Season	(EoSv),	Season	200	
Length	(Len),	Base	level,	Mid	of	the	Season	(Mid),	Largest	data,	Maximum	Value	(MV),	
Left	Derivative/greening	rates	(LD/GR,	and	Right	Derivative/browning	rates	(RD/BR),	
Large	Seasonal	Integral	and	Small	Seasonal	Integral.	For	deOinitions	of	seasonal	
parameters	and	further	explanations	see	(Eklundh	and	Jönsson,	2017).	

Degradation	units'	classi>ication	205	
Six	seasonal	parameters	were	selected	for	the	classiOication	of	degradation	units:	SoSv,	
EoSv,	MV,	GR	and	BR	because	of	the	phenology	characteristic	of	the	ecosystems	under	
study	(Kong	et	al.,	2022).	Vegetation	at	equilibrium	state	was	expected	to	have	higher	
values	for	SoSv,	EoSv,	MV	and	experience	faster	greening	compared	to	vegetation	of	the	
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units	with	transition	and	regime-shift	states	(Xiao	et	al.,	2006;	Yu	et	al.,	2012).	There	are	210	
no	predeOined	seasonal	parameter	values	that	deOine	the	stages	of	grassland	degradation	
in	Western	Kenya.	For	instance,	Tagesson	et	al.	(2015)	quantiOied	maximum	NDVI	values	
between	0.59	and	0.82	for	different	grasslands	in	a	semi-arid	region	of	Senegal.	
Therefore,	thresholds	were	deOined	using	the	average	distribution	of	the	selected	
seasonal	parameters	(Table	1).	Thresholding	was	implemented	using	written	functions	215	
in	R	to	partition	parameter	values	into	three	groups	corresponding	to	equilibrium,	
transition,	and	regime-shifts.	Several	models	were	generated	using	different	
combinations	of	seasonal	parameter	classiOications	(Table	1).	However,	only	two	models	
were	visually	consistent	with	the	spatial	distribution	of	dominant	land	cover	types	(e.g.,	
large	forest	patch).	All	land	cover	types	were	retained	during	seasonal	parameter	220	
estimation	and	classiOication	to	allow	for	accurate	seasonal	models	of	the	sites.	Using	the	
above	approach	and	thresholds,	vegetation	at	equilibrium	state	was	assigned	to	high	
MV(>0.8),	high	GR	(>0.5),	and	low	BR	(<0.3).	Vegetation	at	the	regime-shift	state	had	
low	MV	(<0.5),	low	GR	(≤0.8),	and	high	BR	(≤	0.5).	Finally,	the	classiOication	from	each	
index	was	combined	to	determine	areas	of	common	agreement.		225	
	
Table	1:	Summary	of	models’	description,	seasonal	parameters	and	threshold	values	
used	for	degradation	unit	classiOication	of	Lower	Nyando	and	Kuresoi.	
	
Descriptio
n	 Index	 Threshold	values	(Nyando)§		 Threshold	values	(Kuresoi)§		
	 	 MV	 SoSv	 EoSv	 GR	 BR		 MV	 SoSv	 EoSv	 GR	 BR		

Model	1	
NDVI	 0.54	 0.55	 0.55	 0.58	 0.56	 0.81	 0.78	 0.81	 0.8	 0.78	
EVI	 0.49	 0.5	 0.49	 0.54	 0.54	 0.75	 0.76	 0.76	 0.79	 0.74	
NDWI	 0.81	 0.79	 0.79	 0.77	 0.81	 0.83	 0.82	 0.82	 0.79	 0.80	

Model	2	 NDVI	 0.54	 0.55	 0.55	 0.58	 	 0.81	 0.78	 0.81	 0.80	 	
EVI	 0.49	 0.50	 0.49	 0.54	 	 0.75	 0.76	 0.76	 0.79	 	

Model	3*	 NDVI	 0.54	 0.55	 0.55	 	  0.81	 0.78	 0.81		 	  
NDWI	 0.81	 0.79	 0.79	 	  0.83	 0.82	 0.82		 	  

Model	4	 EVI	 0.49	 0.50	 0.49	 0.54	 0.54	 0.75	 0.76	 0.76	 0.79	 0.74	
NDWI	 0.81	 0.79	 0.79	 0.77	 0.81	 0.83	 0.82	 0.82	 0.79	 0.80	

Model	5**	 NDWI	 0.81	 0.79	 0.79		 		 		 0.83	 0.82	 0.82		 		 		
*	More	consistent	classiOication	of	degraded	grasslands	and	bare	grounds	as	regime-shift	230	
in	Nyando	
**	More	consistent	classiOication	of	grasslands	at	equilibrium	in	Kuresoi	
§	Threshold	values	represent	the	average	distributions.	

Selecting	sampling	locations		
Through	visual	inspection,	model	3	and	model	5	were	found	to	be	the	most	consistent	235	
with	Google	Earth	Images	of	the	sites.	Subsequently,	the	land	cover	data	from	the	
European	Space	Agency	(ESA	2016)	was	used	to	mask	forests,	urban	and	water	bodies	
to	detect	grazing	areas.	Afterwards,	locations	were	selected	using	the	Fishnet	tool	of	
ArcGIS.	StratiOied	random	sampling	was	used	to	create	sampling	locations	separated	by	
a	minimum	distance	of	1	km	to	select	approximately	30	sampling	locations	for	each	240	
degradation	unit,	resulting	in	100	sampling	locations	including	replacements.	The	status	
of	the	locations	was	checked	visually	in	Google	Earth	(2008	-	2018)	to	remove	locations	
that	coincided	with	recently	cultivated	areas	(<10	years)	and/or	road	tracks.	Locations	
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that	had	signs	of	recent	cultivation	or	tillage	lines	were	excluded.	In	October-November	
2019,	the	locations	were	visited	to	remove	sample	locations	that	were	inaccessible	or	245	
when	landowners	denied	access.	In	total,	90	sites	were	Oinally	selected	after	land	use	
history	checks	and	obtaining	consent	of	farmers/landowners	(Figure	2).	

	
Figure	2:	Classi.ication	of	Lower	Nyando	(A)	and	Kuresoi	(B)	project	sites	into	three	ERUs:	equilibrium,	
transition	and	regime-shift.	Sampling	sites	are	overlaid	and	show	the	distribution	of	.ield	experiments	and	250	
locations	of	soil	and	aboveground	biomass	samples.	Map	produced	using	ArcGIS®	software	by	Esri.	Road	
settlement	information	were	reproduced	using	OpenStreetMap	vector	data.	Accessed	on	2019-06-09	and	are	
licensed	under	the	Open	Database	1.0	License.	.		

Soil	sampling	and	analyses	
Soils	at	each	site	were	sampled	to	10	cm	depth	and	analysed	for	a	range	of	physical,	255	
chemical	and	biological	parameters	(Table	S1).		
Bulk	density	was	calculated	following	sampling	of	intact	soil	with	45	mm	diameter	rings	
and	soil	texture	was	determined	by	laser	diffraction	(Beckman-Coulter	LSI3	320),	after	
soil	dispersion	in	sodium	hexametaphosphate.	Aggregate	stability	was	determined	using	
the	fast-wetting	method	of	aggregate	stability	(Le	Bissonnais,	1996),	which	subjects	the	260	
aggregates	to	rapid	immersion	in	water	for	10	min.	After	that,	aggregate	samples	were	
sieved	in	ethanol	before	oven	drying	to	determine	Oinal	aggregate	size	distribution,	
producing	a	mean	weight	diameter	(MWD).	
For	each	sampled	plot	we	measured	total	soil	C,	N,	P,	and	selected	microbial-mediated	
functions	related	to	nutrient	cycling		These	were	microbial	biomass	(C	and	N),	nutrient	265	
availability	(i.e.	soluble	inorganic	and	organic	N	and	P	pools,	and	dissolved	organic	C),	
rates	of	N	mineralisation	and	nitriOication,	and	a	suite	of	extracellular	enzyme	activities	
involved	in	the	degradation	of	cellulose,	chitin,	lignin	and	proteins	(i.e.	β-glucosidase	
(GLC),	cellobiohydrolase	(CBH),	β-xylosidase	(XYL),	N-acetylglucosaminidase	(NAG),	
phosphatase	(PHO),	phenol	oxidase	(POX),	peroxidase	(PER),	and	urease	(URE)),	270	
following	Fry	et	al.	(2018)	and	De	Vries	and	Bardgett	(2016),	and	as	described	in	
Broadbent	et	al.	(2022)	for	extracellular	enzymes.	
BrieOly,	percentage	C	and	N	in	dry,	ground	soil	were	measured	using	an	elemental	
combustion	analyser	(Elementar	Vario	EL,	Hanau,	Germany).	We	measured	dissolved	
total	and	organic	C	(DC	and	DOC	respectively),	plant	available	nitrate	(NO3-)	and	total	275	
dissolved	N	(TDN)	by	weighing	5g	of	fresh	soil	accurately	and	shaking	in	35ml	Milli-Q	
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water	for	10	minutes	at	150rpm,	before	Oiltering	through	Whatman	42	Oilter	paper.	C	in	
the	Oiltrate	was	quantiOied	using	an	Aurora	1030W	TOC	analyser	(OI	Analytical,	UK),	and	
N	was	quantiOied	using	an	autoanalyser	(AA3,	Seal	Analytical,	Wrexham	UK).	Organic	N	
was	calculated	by	subtracting	inorganic	N	values	(nitrate	and	ammonium)	from	total	N.		280	
pH	of	the	Oiltrate	was	determined	using	a	pH	probe	(Mettler	Toledo	FE20,	Salford,	UK).	
Values	were	adjusted	for	soil	moisture.	Soil	ammonium	(NH4+)	was	measured	by	
shaking	5g	of	fresh	soil	in	25ml	1M	KCl	for	30	minutes,	extracting	through	Whatman	1	
Oilter	paper	and	analysing	on	the	autoanalyser	as	before.	For	potential	mineralisation	
and	nitriOication,	5g	of	each	soil	sample	was	incubated	for	14	days	at	25	°C	before	being	285	
extracted	and	analysed	for	NH4+	and	NO3-	using	the	KCl	procedure.	The	values	from	the	
initial	KCl	extraction	(summed	NH4+	and	NO3-)	were	subtracted	from	the	day	14	
extraction	and	divided	by	14	to	give	a	rate	of	potential	mineralisation	per	day.	
NitriOication	was	calculated	by	using	the	NO3-	values	only.	Negative	values	imply	
denitriOication,	i.e.	loss	of	N	as	N2	gas.	Microbial	biomass	C	and	N	were	determined	using	290	
the	chloroform-fumigation	method	(Vance	1987).		We	weighed	5	g	of	each	sample	twice.	
The	Oirst	replicates	were	shaken	in	25	ml	0.5M	K2SO4	for	30	minutes,	before	passing	
through	Whatman	42	Oilter	paper.	The	second	were	placed	in	a	desiccator	containing	a	
beaker	of	chloroform	under	vacuum	for	24	hours	to	lyse	microbial	cells,	before	being	
extracted	as	before.	Total	dissolved	C	and	total	extractable	N	were	analysed	using	the	295	
Aurora	and	the	autoanalyser	respectively.	Microbial	biomass	C	and	N	were	calculated	by	
subtracting	the	unfumigated	values	from	the	fumigated	ones.			
Total	soil	P	was	measured	using	the	Kjeldahl	digestion	method	(Kjeldahl,	1883).	We	
mixed	420	ml	concentrated	sulfuric	acid	with	12	g	lithium	sulphate.	We	added	0.5	ml	of	
this	mixture	to	50	mg	of	dry	ground	soil	per	sample	in	glass	digestion	tubes.	We	then	300	
added	0.5	ml	30%	hydrogen	peroxide.	Samples	were	heated	at	200°C,	then	we	added	a	
50°C	heat	increase	every	30	minutes	until	it	reached	360°C.	Samples	were	heated	at	
360°C	for	two	hours	before	cooling.	When	cool,	0.5ml	of	hydrogen	peroxide	was	added	
and	samples	were	digested	at	360°C	for	a	further	two	hours.	Samples	were	diluted	to	
50ml	using	Milli-Q	water.	They	were	analysed	using	the	ascorbic	acid	microplate	method	305	
after	(Kuo,	1996),	where	samples	were	measured	colourimetrically	at	880	nm.	For	
inorganic	P,	we	placed	2g	of	dry	soil	into	a	falcon	tube	with	50ml	of	0.5M	sulfuric	acid.	
This	was	shaken	at	150rpm	for	16	hours.	The	samples	were	centrifuged	at	1500	rpm	for	
10	minutes,	and	the	supernatant	was	analysed	using	the	ascorbic	acid	method	(Olsen	
and	Sommers,	1982).	Broadbent	et	al.	(2022)	310	

Description	of	the	data	set	
For	testing	and	clustering	analysis,	we	focused	on	a	total	of	28	variables	measured	from	
the	samples	collected	from	the	0-0.1m	depth	in	Kuresoi	and	Nyando,	respectively.	These	
variables	were	grouped	as	either	stable	or	transient	soil	variables	and	relate	to	the	rate	
of	change	of	these	parameters	in	response	to	degradation.	Changes	in	bulk	density	and	315	
soil	hydraulic	properties	can	persist	over	seasonal	to	multi-annual	timescales	(Berisso	
et	al.,	2012),	as	can	contents	of	C,	N	and	P	along	with	pH,	aggregate	stability,	sand	
percentage,	silt	percentage,	and	clay	percentage;	hence,	these	parameters	were	
considered	to	be	stable	soil	variables.	In	contrast,	soil	biological	parameters,	including	
enzyme	activities,	microbial	biomass,	and	rates	of	nutrient	mineralisation,	respond	320	
rapidly	to	change	in	environmental	conditions	(Cordero	et	al.,	2023)	and	therefore	soil	
enzymes	(	PHO,	GLC,	NAG,	XYL,	CBH,	PER,	POX,	URE),	water	extractable	NO3,		and	KCl-
extracted	NH4,	microbial	C,	microbial	N,	total	dissolved	C,	organic	dissolved	C,	
mineralisation	and	nitriOication	were	considered	transient.	Finally,	the	sites	with	
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incomplete	data	(i.e.,	with	missing	observation	in	any	of	the	variables	in	the	stable	or	325	
transient	variable	sets)	were	removed,	resulting	in	31	sites	in	Nyando,	41	sites	in	
Kuresoi	for	the	stable	variables,	and	42	sites	in	Nyando,	38	sites	in	Kuresoi	for	the	
transient	variables.	The	distribution	of	degradation	states	of	these	sites	is	summarised	
in	Table	S2.	

Statistical	analysis	of	>ield	data	330	
Statistical	analyses	were	carried	out	to	investigate	differences	in	Oield	sampling	data	
between	sites	with	different	degradation	labels	allocated	from	remote	sensing	(Table	2).	
First,	analysis	of	variance	(ANOVA)	was	applied	to	all	soil	variables	to	identify	any	mean	
differences	between	the	degradation	classes	within	Kuresoi	and	Nyando	respectively.	
For	soil	variables	with	a	signiOicant	mean	difference,	t-test	was	then	applied	to	each	pair	335	
of	degradation	classes	(e.g.,	equilibrium	vs..	degraded,	transition	vs..	degraded)	to	
further	investigate	the	content	of	the	mean	differences.	

Description	of	the	clustering	methods	
Considering	the	features	of	our	data	sets,	i.e.,	relatively	large	number	of	variables	as	
compared	to	the	number	of	sites	and	relatively	high	variability	in	some	variables,	and	340	
the	initial	experiments	with	different	clustering	methods,	we	chose	to	use	k-means	
clustering	for	our	main	analysis.	In	particular,	the	k-means	clustering	was	applied	to	the	
principal	components	extracted	from	the	data.	We	also	applied	the	Gaussian	mixture	
model	to	the	data	sets,	but	only	for	reference.	Below	we	brieOly	introduce	the	clustering	
methods	and	provide	some	details	on	the	approach	we	took.		345	
K-means	clustering	is	a	popular	method	for	grouping	a	population	of	n	subjects	(n	being	
the	number	of	sites	in	this	case),	each	of	p-dimensional	(p	being	the	number	of	
covariates),	into	a	number	of	k	clusters,	using	algorithms	developed	by	e.g.,(Hartigan	
and	Wong,	1979;	Lloyd,	1957;	Macqueen,	1967).	Gaussian	mixture	model	is	another	
popular	clustering	approach.	It	is	a	model-based	clustering	method	introduced	by	Fraley	350	
and	Raftery	(2002),	where	it	assumes	that	the	population	follows	a	mixture	of	k	p-
dimensional	Gaussian	distributions.	Few	assumptions	are	required	for	applying	the	k-
means	algorithm,	although	it	has	been	acknowledged	that	the	method	works	better	with	
clusters	that	are	of	similar	shapes	or	sizes	(Steinley,	2006).	The	result	can	be	sensitive	to	
outliers	(Johnson	and	Wichern,	2007).	In	contrast,	a	Gaussian	mixture	model	needs	355	
speciOic	assumptions	on	the	covariance	structure,	some	of	which	involve	the	estimation	
of	a	large	number	of	parameters	and	hence	is	not	suitable	for	a	small	sample	size.	
Considering	these	features,	k-means	clustering	seems	to	be	a	more	suitable	choice	over	
Gaussian	mixture	model	when	it	comes	to	data	sets	with	high	dimensionality,	high	
variability	and	relatively	small	sample	size.	360	
To	determine	the	number	of	clusters	for	k-means	clustering,	methods	such	as	elbow	plot	
of	the	total	sum	of	squared	distance	between	points	and	cluster	centres	and	gap	
statistics	(Tibshirani	et	al.,	2001)	can	be	used.	For	Gaussian	mixture	model,	Bayesian	
information	criterion	(BIC)	can	be	used	to	select	cluster	numbers		(Scrucca	et	al.,	2023),	
providing	a	more	objective	solution.	Due	to	the	relatively	small	population	size	in	this	365	
analysis,	only	cluster	numbers	from	two	to	Oive	were	investigated.	Based	on	the	model	
selection	criteria,	after	taking	the	robustness	of	the	clustering	results	into	account	and	
discounting	the	cluster	numbers		thatced	singletons	(i.e.,	one	site	as	a	group	of	its	own),	
the	cluster	number	was	settled	to	be	two	for	both	stable	and	transient	variable	sets	in	
Kuresoi	and	Nyando,	respectively.	370	
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Due	to	the	relatively	large	number	of	variables	(p)	as	compared	to	the	relatively	small	
number	of	sites	(n),	principal	component	analysis	(PCA)	was	Oirst	applied	to	reduce	the	
dimension	of	the	data.	The	number	of	principal	components	(PCs)	was	selected	to	
account	for	at	least	80%	of	the	information	in	the	data,	or	the	correlation	matrix	to	be	
precise.	This	resulted	in	a	much	smaller	number	(six)	of	“variables”	in	the	form	of	PCs	to	375	
be	used	in	the	clustering	analysis,	which	helped	to	improve	the	stability	of	the	clustering	
algorithms.			
As	the	analysis	was	purely	exploratory,	it	was	carried	out	as	if	we	had	little	prior	
knowledge	on	the	subject	(i.e.,	we	did	not	use	the	degradation	states	to	guide	the	
clustering	analysis).	We	explored	the	results	from	three	different	clustering	methods	380	
and	used	Rand	index	(Rand,	1971)	to	investigate	the	correspondence	between	the	
results.	In	this	case,	the	Rand	indices	were	moderate	in	the	clustering	of	stable	and	
transient	variables.	This	suggested	that	the	two	clustering	methods	agreed	to	some	
extent.	Finally,	t-tests	were	applied	to	see	if	one	clustering	result	separated	the	
population	better,	and	the	results	from	the	k-means	clustering	appeared	to	perform	385	
better	in	this	case.	Considering	all	the	analyses	and	tests	above,	we	chose	to	focus	on	
discussing	the	clustering	results	from	the	k-means	in	the	next	section.		
The	clustering	analysis	was	implemented	in	R	using	the	“kmeans”	function	from	base	R	
(R.	Core	Team,	2023)	and	the	“mclustBIC”,	“Mclust”	functions	from	the	“mclust”	package	
(Scrucca	et	al.,	2023).	Comparison	of	the	clustering	results	was	carried	out	using	the	390	
“rand.index”	function	from	the	“fossil”	package	(Vavrek,	2011).		

Results	

Relation	of	remote	sensing	classi>ication	to	measured	soil	parameters	

Microbial	biomass	C	and	soil	bulk	density	were	the	only	two	variables	that	showed	
signiOicant	differences	(p<0.1)	between	degradation	classes	at	both	areas.	There	was	a	395	
signiOicant	increase	(p<0.05)	of	74%	in	mean	microbial	biomass	C	from	degraded	sites	
to	equilibrium	sites	at	Kuresoi,	and	a	signiOicant	increase	(p<0.05)	of	70%	at	Nyando.	
Although	the	differences	between	the	transition	and	degraded/equilibrium	sites	were	
not	signiOicant,	the	rankings	of	the	class	means	were	consistent	
(degraded<transition<equilibrium)	for	both	areas.	The	largest	difference	in	soil	bulk	400	
density	was	seen	between	the	transition	class	and	the	equilibrium	class	for	both	Kuresoi	
(p<0.05)	and	Nyando	(p<0.05).	In	this	case,	the	rankings	are	inconsistent,	with	
equilibrium>degraded>transition	at	Kuresoi	and	transition>degraded>equilibrium	at	
Nyando,	although	the	absolute	differences	between	the	classes	were	small	(c.f.	0.1	g	
cm3).	Of	the	other	soil	variables	that	showed	signiOicant	differences	between	405	
degradation	classes	within	each	area,	only	pH,	total	N	and	C	and	XYL	at	Kuresoi	and	C:N	
ratio	at	Nyando	ranked	the	classes	in	the	order	degraded<transition<equilibrium.	
SpeciOically:	at	Kuresoi,	mean	pH	increased	by	0.4	from	degrade	class	to	equilibrium	
class,	mean	total	C	increased	from	6.1%	to	7.9%,	mean	total	N	from	0.5%	to	0.7%,	and	
mean	XYL	increased	by	approximately	54%,	from	172.9	to.	267.6	nmol	h-1	g-1	dry	soil;	at	410	
Nyando	C:N	ratio	increased	from	12.1	in	the	degraded	class	to	13.2	in	the	equilibrium	
class.	
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Which	stable	and	transient	soil	variables	explain	the	clustering	of	soils	in	the	two	
study	sites?	
Table	3	summarises	the	number	of	sites	in	Kuresoi	and	Nyando	that	have	been	grouped	
into	two	clusters	by	the	k-means	algorithm	for	stable	and	transient	variables.	Note	that	5	
the	total	number	of	sites	used	in	each	clustering	analysis	is	different.	

Table	3:	Number	of	Stable	and	transient	sites	allotted	to	cluster	1	and	two	at		
Kuresoi	and	Nyando	using	K-means	clustering.	.	
		 Kuresoi	 Nyando	
		 Cluster	1	 Cluster	2	 Cluster	1	 Cluster	2	
Stable	 18	 23	 10	 21	
Transient	 16	 22	 15	 27	
	
For	the	stable	variables,	in	Kuresoi,	sites	in	cluster	2	had	signiOicantly	higher	values	of	10	
total	N,	total	inorganic	N,	organic	N,	total	P,	total	C	and	pH.	There	was	a	signiOicant	
difference	in	silt	and	clay	contents	of	the	two	clusters.	We	found	that	7	out	of	9	Kuresoi	
equilibrium	sites,	from	the	remote	sensing	classiOication,	were	assigned	to	this	cluster	2,	
but	the	numbers	of	transitional	and	degraded	sites	were	distributed	evenly	between	two	
clusters.	Similarly,	in	Nyando,	one	cluster	(Cluster	2)	tended	to	have	higher	levels	of	total	15	
P,	total	N	and	total	C,	but	lower	pH	and	relatively	low	soil	bulk	density.	There	was	a	
signiOicant	difference	in	sand,	silt	and	clay	percentages.	In	total,	12	out	of	16	equilibrium	
sites	in	Nyando	were	assigned	to	this	cluster.	The	transitional	and	degraded	sites	
appeared	to	be	equally	likely	in	two	clusters.	Density	plots	showing	how	the	two	
clusters	differ	in	selected	stable	variables	are	given	in	the	top	Oive	panels	in	Figures	3	20	
(Kuresoi)	and	4	(Nyando).	
For	the	transient	variables,	in	Kuresoi,	sites	in	one	cluster	(Cluster	1)	tended	to	have	
higher		PHO,		GLC,	XYL,		CBH,	but	lower		POX.	It	also	had	higher	microbial	N,	nitrate	
(extracted	in	H2O	NO3),	microbial	C,	total	dissolved	C.	In	Nyando,	one	cluster	(Cluster	1)	
consisted	of	sites	with	higher		PHO,		GLC,		XYL,		NAG,	total	dissolved	C,	but	lower			PER	25	
and		POX.	The	cluster	labels	did	not	match	the	degradation	labels	in	both	cases.	This	is	
not	surprising	as	the	transient	variables	are	highly	variable	and	can	change	substantially	
in	a	short	period	of	time.	Density	plots	showing	how	the	two	clusters	differed	in	selected	
transient	variables	are	given	in	the	bottom	panels	of	Figures	3	(Kuresoi)	and	4	
(Nyando).	30	
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Figure	3.	Density	plots	of	selected	stable	variables	from	sites	that	are	grouped	into	two	clusters	(top	panels)	35	
and	transient	variables	from	sites	that	are	grouped	into	two	clusters	(bottom	panels)	in	Kuresoi.	

	
	

	40	
Figure	4.	Density	plots	of	selected	stable	variables	from	sites	that	are	grouped	into	two	clusters	(top	panels)	
and	transient	variables	from	sites	that	are	grouped	into	two	clusters	(bottom	panels)	in	Nyando.	

Discussion	
Remote	sensing	is	a	powerful	tool	to	assess	soil	degradation	and	has	been	utilised	
globally	in	many	studies	(e.g.	Cordell	et	al.,	2017;	Manić	et	al.,	2022;	Wang	et	al.,	2024)	45	
The	ability	to	classify	degradation	status	over	large	areas,	at	relatively	low	cost	and	
utilising	data	that	can	be	rapidly	updated	as	new	images	become	available,	is	an	
attractive	proposition,	since	it	provides	land	managers,	policy	makers	and	scientists	
with	a	mechanism	for	targeting	interventions.	Soil	mapping	of	soil	properties	and	soil	
degradation	has	combined	remote	sensing	and	measured	soil	properties	to	map	soils	in	50	
Africa	with	some	success	(Vågen	et	al.,	2016).		Nevertheless,	there	have	been	relatively	
few	attempts	to	compare	remotely	sensed	classiOication	against	soil	data	collected	from	
soil	sampling	programmes.	Our	work	demonstrates	that,	while	it	is	relatively	
straightforward	to	generate	classiOications	using	derived	parameters,	such	as	NDVI,	
NDWI	and	EVI,	that	reOlect	vegetation	dynamics,	the	resulting	classiOication	poorly	55	
reOlects	changes	in	multiple	in-situ	soil	parameters	related	to	soil	degradation.	However,	
across	the	two	studied	districts		(i.e.,	Nyando	and	Kuresoi)	we	detected	consistent	
alignment	between	remote	sensing	classiOication	of	degradation	and	microbial	biomass	
C,	a	key	soil	biological	parameter	related	to	nutrient	and	C	cycling	processes	in	soil	
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(Tate,	2017)	that	is	tightly	linked	to	plant	diversity	and	productivity	(Chen	et	al.,	2019)	60	
and	is	known	to	respond	quickly	(c.100	days)	to	inputs	of	fresh	organic	matter	to	soil,	
including	plant	litter	and	animal	wastes	(Dai	et	al.,	2021).		Therefore,	it	is	likely	that	we	
are	seeing	the	soil	response	to	the	amount	of	litter,	root	exudates,	and	dung	from	grazing	
animals,	that	is	returned	to	the	soil,	all	of	which	are	functions	of	above-ground	biomass	
reOlected	in	the	dynamics	of	NDVI.		65	
Apart	from	microbial	biomass	C,	there	was	little	consistent	agreement	between	the	
remotely	sensed	classiOication	with	Oield-based	soil	variables	(Table	2).		Some	variables	
related	to	soil	degradation,	such	as	C	and	N	concentrations,	C:N	ratio	and	pH,	were	
statistically	signiOicant	for	one	site,	but	not	the	other.	Soil	C	and	N	concentrations	are	
considered	good	proxy	indicators	for	soil	health	and	are	correlated	with	other	70	
important	soil	functions	(Lal,	2016),	and	they	were	lower	in	degraded	soils	in	Burkina	
Faso	compared	to	those	under	native	vegetation	(Traoré	et	al.,	2015).	However,	in	our	
study	all	sampled	sites	are	managed	grasslands,	providing	less	of	a	contrast.			
An	additional	problem	with	the	RS	classiOication	is	the	difOiculty	associated	with	
unravelling	the	effect	of	rainfall	variability	and	soil	degradation	(Wessels	et	al.,	2007).	75	
These	difOiculties	are	compounded	in	the	context	of	smallholder	farming	due	to	grazing	
occurring	on	small	parcels	of	land	where	plant	biomass	is	variable	and	depends	not	only	
on	soil	and	rainfall,	but	upon	frequency	and	intensity	of	grazing.	Thus,	in	these	
situations	counter-intuitive	results	are	possible.	For	example,	following	a	drought	it	is	
likely	that	grazing	takes	place	on	the	most	resilient	and	rapidly	recovering	areas,	the	80	
equilibrium	and	transitional	plots	in	this	study,	rather	than	those	that	are	slow	to	
revegetate,	potentially	resulting	in	misclassiOication	of	equilibrium	conditions	as	
degraded	with	RS	vegetation	indices.	
Using	a	statistical	approach	to	classifying	the	sites	without	the	guidance	of	the	RS	
degradation	labels,	the	plots	were	grouped	into	two	distinct	clusters.	These	were	85	
distinguished	based	on	stable	soil	properties	which	would	be	expected	to	be	associated	
with	good	soil	health,	such	as	total	C,	N,	P	and	pH.	The	clustering	has	some	overlap	with	
the	equilibrium	plots	in	both	sites	and	therefore	provides	an	indication	of	a	reduced	
number	of	soil	properties	that	could	be	used	to	guide	targeting	efforts	for	restoration.	
The	cluster	analysis	revealed	some	consistent	patterns	within	the	soil	data	and	some	90	
agreement	between	the	clustering	and	the	classiOication	derived	from	remote	sensing	
with	seven	out	of	nine	and	12	out	of	16	equilibrium	sites	attributed	to	the	same	cluster	
at	Kuresoi	and	Nyando,	respectively.		These	‘equilibrium’	clusters	were	characterised	by	
higher	soil	P	and	C	contents	at	both	sites,	suggesting	that	these	clusters	are	more	fertile.	
pH	was	also	an	important	variable	in	the	two	clusters	at	both	sites,	but	with	lower	pHs	95	
featuring	in	the	Nyando	site	and	higher	pHs	at	Kuresoi.	This	reOlects	the	different	soils	
present	in	the	two	areas:	soils	at	Nyando	are	prone	to	salinisation	and	tend	to	have	a	
higher	overall	pH	compared	to	the	more	acidic	soils	at	Kuresoi,	so	it	appears	that	what	
we	are	seeing	in	the	‘equilibrium’	clusters	is	the	inclusion	of	more	favourable,	slightly	
acid	pHs	at	both	sites.		Of	the	transient	variables,	the	enzymes	PHO,	GLC	and	XYL	100	
featured	in	the	‘equilibrium’	clusters	at	both	sites.		Both	GLC	and	XYL	are	key	for	
breaking	down	cellulose	and	releasing	energy	for	the	soil	microbial	community,	while	
PHO	plays	an	important	role	in	releasing	P	from	organic	matter	for	plant	uptake.	Their	
presence	here	could	indicate	that	C	and	P	are	more	limiting	in	the	‘equilibrium’	cluster.,		
however,	there	is	a	lack	of	corroboration	for	this	in	the	macronutrient	data	with	C:N,	C:P	105	
and	N:P	ratios	showing	no	signiOicant	difference	(p	<0.-5)	between	clusters	at	either	site.	
Our	work	points	to	the	need	to	combine	remote	sensing	techniques	with	Oield	surveys,	
but	with	a	reduced	set	of	measurements.	Remote	sensing	is	a	powerful	tool	and	provides	
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a	cost-effective	methodology	for	soil	degradation	assessment	at	ever	increasing	
resolution,	but	it	is	prone	to	error.	This	is	particularly	the	case	in	landscapes	with	highly	110	
heterogeneous	smallholder	grazing	lands,	such	as	those	in	Nyando	and	Kuresoi,	where	
vegetation	cover	and	greenness,	may	be	affected	by	intense	grazing	pressure	resulting	in	
the	misclassiOication	of	some	sites,	as	shown	in	our	work.	On	the	other	hand,	Oield-work	
is	expensive	and	requires	laboratory	support,	which	is	also	costly	and	not	always	
available	in	SSA.		However,	our	work	demonstrates	that	utilising	a	relatively	small	set	of	115	
soil	variables	(soil	microbial	C,	total	C	and	Total	N)	can	provide	additional	support	for	
classiOications	derived	from	remote	sensing.			

Conclusion	
Remote	sensing	was	able	to	map	grassland	degradation	over	large	areas	of	western	
Kenya	and	offers	the	potential	for	cost-effective	and	dynamic	monitoring.		However,	it	120	
aligned	only	with	a	small	subset	of	soil	parameters,	with	soil	microbial	C	being	the	only	
parameter	which	consistently	reOlected	changes	in	the	degradation	classes	identiOied	
from	RS	in	both	Nyando	and	Kuresoi.	Additionally,	some	soil	variables	reOlecting	soil	C	
and	N	status	did	relate	to	the	degradation	classes	at	one	or	the	other	site.	We	expect	that	
variability	in	livestock	grazing	patterns	and	local	climatic	differences	may	have	led	to	125	
some	of	the	miss-classiOications	by	RS.		
The	statistical	clustering	produced	two	clusters	at	each	of	the	sites	based	on	stable	and	
transient	or	dynamic	soil	properties.		The	clusters	at	each	of	the	sites	largely	reOlected	
differences	in	nutrient	status	and	biogeochemical	cycling,	particularly	P	and	C	contents	
and	PHO,	GLC	and	XYL	concentrations,	with	seven	out	of	nine	and	12	out	of	16	130	
equilibrium	sites	attributed	to	the	same	cluster	at	Kuresoi	and	Nyando,	respectively.			
Our	research	demonstrates	the	potential	power	of	RS	approaches	to	the	assessment	of	
soil	degradation,	allowing	temporally	and	spatial	patterns	of	degradation	to	be	resolved,	
but	also	suggests	that	sampling	a	small	additional	set	of	soil	variables	that	pertain	to	
biogeochemical	cycling	(soil	microbial	C,	total	C	and	Total	N)	can	provide	additional	135	
support	for	the	classiOication,	identifying	degraded	soils	and	helping	to	target	
restoration	efforts..	
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Regional	Crop	Gross	Primary	Productivity	and	Yield	Estimation	Using	Fused	Landsat-
MODIS	Data,	Remote	Sensing,	10,	2018.	
Huete,	A.	R.,	HuiQing,	L.,	and	Leeuwen,	W.	J.	D.	v.:	The	use	of	vegetation	indices	in	
forested	regions:	issues	of	linearity	and	saturation,	IGARSS'97.	1997	IEEE	International	
Geoscience	and	Remote	Sensing	Symposium	Proceedings.	Remote	Sensing	-	A	ScientiOic	220	
Vision	for	Sustainable	Development,	1966-1968,		
Hulett,	J.	L.,	Weiss,	R.	E.,	Bwibo,	N.	O.,	Galal,	O.	M.,	Drorbaugh,	N.,	and	Neumann,	C.	G.:	
Animal	source	foods	have	a	positive	impact	on	the	primary	school	test	scores	of	Kenyan	
schoolchildren	in	a	cluster-randomised,	controlled	feeding	intervention	trial,	The	British	
Journal	of	Nutrition,	111,	875–886,	2014.	225	
IUSS:	World	reference	base	for	soil	resources	2014.	Update	2015.	International	soil	
classiOication	system	for	naming	soils	and	creating	legends	for	soil	maps.	World	Soil	
Resources	Reports	No.	106,	FAO,	Rome2015.	
Jacobs,	S.	R.,	Breuer,	L.,	Butterbach-Bahl,	K.,	Pelster,	D.	E.,	and	RuOino,	M.	C.:	Land	use	
affects	total	dissolved	nitrogen	and	nitrate	concentrations	in	tropical	montane	streams	230	
in	Kenya,	Science	of	The	Total	Environment,	603-604,	519-532,	
https://doi.org/10.1016/j.scitotenv.2017.06.100,	2017.	
Jennings,	D.	J.:	Geology	of	the	Molo	area	(No.	86).		1971.	
Johnson,	R.	A.	and	Wichern,	D.	W.:	Applied	Multivariate	Statistical	Analysis,	Pearson	
Prentice	Hall,	U.S.2007.	235	
Kjeldahl,	J.:	Neue	Methode	zur	Bestimmung	des	Stickstoffs	in	organischen	Körpern,	
Zeitschrift	für	analytische	Chemie,	22,	366-382,	10.1007/BF01338151,	1883.	
Kong,	D.,	McVicar,	T.	R.,	Xiao,	M.,	Zhang,	Y.,	Peña-Arancibia,	J.	L.,	Filippa,	G.,	Xie,	Y.,	and	Gu,	
X.:	phenoOit:	An	R	package	for	extracting	vegetation	phenology	from	time	series	remote	
sensing,	Methods	in	Ecology	and	Evolution,	13,	1508-1527,	2022.	240	
Kuo,	S.:	Phosphorus:	Ascorbic	acid	method,	in:	Methods	of	Soil	Analysis,	Part	3.	Chemical	
Methods,	SSSA	Book	Series,	SSSA,	ASA,	Madison,	USA,	909,	1996.	
Lal,	R.:	Soil	health	and	carbon	management,	Food	and	Energy	Security,	5,	212-222,	
https://doi.org/10.1002/fes3.96,	2016.	
Le	Bissonnais,	Y.:	Aggregate	stability	and	assessment	of	soil	crustability	and	erodibility	245	
.1.	Theory	and	methodology,	European	Journal	Of	Soil	Science,	47,	425-437,	1996.	
Lloyd,	S.	P.:	Least	squares	quantization	in	PCM,	Bell	Lab,	1957.	
Lowder,	S.	K.,	Skoet,	J.,	and	Raney,	T.:	The	number,	size,	and	distribution	of	farms,	
smallholder	farms,	and	family	farms	worldwide,	World	development,	87,	16-29,	2016.	

https://doi.org/10.5194/egusphere-2025-3722
Preprint. Discussion started: 20 August 2025
c© Author(s) 2025. CC BY 4.0 License.



	

	 20	

MacQueen,	J.:	Some	methods	for	classiOication	and	analysis	of	multivariate	observations,	250	
Proceedings	of	the	Fifth	Berkeley	Symposium	on	Mathematical	Statistics	and	
Probability,		
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