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Abstract. The UKCP18 Convection-Permitting Model (CPM) provides the latest high-resolution climate projections for the 

UK. Compared with regional climate model projections, the CPM projections are more capable of simulating small-scale 

atmospheric convection particularly during extreme weather events such as intense rainfall and localized storms. However, 10 

systematic biases still exist in these projections. To improve the reliability of these projections, bias correction is crucial. In 

this study, we applied a quantile mapping (QM) method to correct hourly precipitation and daily temperature for four 

selected ensemble members (EM01, EM04, EM07, EM08) of the UKCP18-CPM for England. The raw UKCP18-CPM 

simulations exhibit wet precipitation biases, particularly in northern England, with annual mean biases ranging from 4.6% to 

18.3%, and cool temperature biases, with annual mean biases from -0.87 °C to 0.02 °C. Bias correction substantially 15 

improved agreement with observational datasets, increasing R² values for the 95th percentile of hourly precipitation from 

0.80-0.88 to 0.98 and achieving near-perfect alignment (R² = 1) for temperature extremes. Future projections for the 2070s 

indicate notable increases in annual maximum precipitation by 25.1-39.1% and mean daily temperature by 3.1 °C to 4.5 °C, 

highlighting the potential for more intense climate-related events. These results emphasize the effectiveness of bias 

correction in reducing model biases and improving the reliability of the CPM climate projections, thereby supporting more 20 

reliable future high-resolution climate and hydrological impact assessments in England. 

1 Introduction 

Global climate models (GCMs) are important tools for simulating present and future climates, widely used to project 

potential climate scenarios and assess the impacts of climate change on a global scale (IPCC, 2023a). However, GCMs often 

operate at relatively coarse spatial resolutions (ranging from 0.5° to 2.5°) and temporal scales (e.g., daily or monthly, 25 

seasonally, or annually), which can limit their ability to accurately represent fine-scale regional climate variations (IPCC, 

2023b; Keller et al., 2022; Tabari et al., 2021). This underscores the need for higher-resolution climate data to improve 

regional impact assessments. To address this, regional climate models (RCMs) are commonly employed to dynamically 

downscale GCM outputs, generating data with finer spatial resolutions (typically between 0.1° and 0.5°). RCMs provide 

several potential benefits over GCMs, such as the ability to better represent local topographical features, improve simulations 30 
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of extreme weather events, and offer more refined regional climate projections, particularly in areas with complex terrain and 

climate variability (Chokkavarapu and Mandla, 2019; Kendon et al., 2010; Vichot-Llano et al., 2020). 

The UK Climate Projections 2018 (UKCP18) provides the latest generation of national climate projections for climate 

impact studies for the UK (Murphy et al., 2018). Several recent studies have employed the UKCP18-RCM 12 km regional 

perturbed parameter ensemble (PPE), which was released in November 2018, to assess the potential impacts of climate 35 

change. These applications include investigations into river and groundwater flow (Hannaford et al., 2023; Kay et al., 2023), 

extreme weather events (Hanlon et al., 2021), flood risks (Gudde et al., 2024), and droughts (Reyniers et al., 2023). In 2019, 

an additional UKCP18 toolkit was introduced, featuring the 2.2 km Convection-Permitting Model (UKCP18-CPM), which 

offers access to reliable climate information at local and hourly scales (Kendon et al., 2019b). CPMs have become a valuable 

tool in short-range weather forecasting due to their enhanced ability to represent convective processes in detail, improve 40 

forecast accuracy, and capture localized high-impact rainfall that coarser models often miss (e.g. Done et al., 2004; Lean et 

al., 2008; Roberts and Lean, 2008; Weisman et al., 2008; Weusthoff et al., 2010).  It has been widely applied in Europe 

(Berthou et al., 2020; Pichelli et al., 2021), Asia (Murata et al., 2017; Yun et al., 2020), and Africa (Kendon et al., 2019a; 

Maurer et al., 2017), as well as other regions (Trapp et al., 2011), to enhance the representation of convective processes and 

improve the accuracy of climate projections. 45 

Despite their widespread use, climate model projections often show systematic biases relative to observations (Kotlarski et 

al., 2014; Vautard et al., 2021). For example, the UKCP18-RCM 12 km ensemble shows biases, including  overestimation of 

winter precipitation, particularly in the mean and the 95th percentile of daily precipitation (representing heavy precipitation 

events) across most regions, and strong spatial variability in summer, with overestimations in the north and underestimations 

in the south (Reyniers et al., 2025). For temperature, the ensemble generally underestimates values across the mean, cold, 50 

and hot tails of the distribution, with larger cold biases in winter, overestimated temperature variability during winter, and 

underestimated summer temperatures, except for an overestimated urban heat island effect (Reyniers et al., 2025). Building 

on the UKCP18-RCM, the UKCP18-CPM offers improvements, though notable issues persist. In winter, it remains too wet 

across most of the UK, while in summer it shows spatial variability, being too wet in the north and too dry in the south 

(Kendon et al., 2021). For temperature, the UKCP18-CPM slightly reduces UK-wide biases in summer compared to the 55 

UKCP18-RCM, although it remains cooler in the far north and exhibits minimal differences elsewhere (Kendon et al., 2021). 

In winter, the UKCP18-CPM introduces colder biases, particularly in northern regions, which are linked to its improved 

representation of snow processes, leading to greater snow accumulation and cooler temperatures (Kendon et al., 2021). 

These biases, if left uncorrected, can severely affect the accuracy of climate impact assessments in sectors such as hydrology, 

ecology, and agriculture. The non-linear responses of impact models to these biases can amplify errors in projections, 60 

underscoring the importance of applying bias correction (BC) before using climate data in impact studies. Various BC 

methods, such as statistical downscaling, linear scaling, local intensity scaling, histogram equalizing, rank matching, and 

quantile mapping (QM), have been developed and evaluated (Gutmann et al., 2014; Maraun et al., 2019; Teutschbein and 

Seibert, 2012). Amongst these, QM has emerged as a particularly effective approach (Lafon et al., 2013; Shah et al., 2024; 
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Themeßl et al., 2011), not only adjusting the mean but also correcting standard deviations and percentiles, making it suitable 65 

for temperature and precipitation adjustments in climate impact studies (Fang et al., 2015; Themeßl et al., 2012; Wilcke et 

al., 2013). For example, Cannon et al. (2015) evaluated the QM for bias correction of GCM precipitation outputs, 

emphasizing its effectiveness in adjusting mean values and precipitation extremes, while Sangelantoni et al. (2019) 

demonstrated its applicability for RCM temperature and precipitation corrections over Central Italy, particularly for seasonal 

and extreme climate variables.  70 

In the UK, the UKCP18-RCM ensemble dataset has been widely used and bias-corrected for applications such as river flow, 

flood risk, and drought assessments (Hannaford et al., 2023; Robinson et al., 2023; Smith et al., 2024). In contrast, bias 

correction of the UKCP18-CPM ensemble remains limited. Kay and Brown (2023) applied a simple monthly scaling method 

to correct daily UKCP18-CPM precipitation data from the ensemble member 01 (EM01) against observations and kept 

temperature data uncorrected. However, the scaling method applies a uniform adjustment across all precipitation values and 75 

cannot account for the distributions. As a result, it may not accurately correct biases in extreme precipitation events. It also 

fails to correct the diurnal cycle of precipitation which is a key feature of high-resolution climate models (Bannister et al., 

2019; Scaff et al., 2019). Moreover, bias correction of sub-daily variables from CPMs is rare, largely due to two main 

challenges: (1) the substantial computational and memory demands associated with processing sub-daily data from high-

resolution climate models, and (2) the relative scarcity of hourly observational datasets compared to daily observations, 80 

which poses challenges for the evaluation and correction of sub-daily variables from CPMs. 

This study leverages a 1 km resolution gridded hourly observation-based rainfall dataset (CEH-GEAR1hr) for bias 

correcting the UKCP18-CPM hourly precipitation data. The CEH-GEAR1hr dataset (Lewis et al., 2022). integrates data 

from over 1,900 quality-controlled rainfall gauges over Great Britain, providing highly accurate precipitation measurements 

and enabling more precise hydrological simulations by allowing detailed analysis of rainfall patterns on an hourly basis. For 85 

temperature, there is currently no observation-based hourly temperature dataset across the UK. Therefore, bias correction 

was performed on the UKCP18-CPM daily temperature using the Met Office’s 1 km HadUK-Grid dataset (Hollis et al., 

2019; Met Office et al., 2022). Faghih et al. (2022) compared two bias-corrected time series using a multivariate quantile 

mapping method, both with and without correction of the diurnal cycle, and found that bias correction of the diurnal cycle 

for sub-daily precipitation and temperature is preferable. 90 

In this study, we bias-corrected and evaluated the hourly precipitation and daily temperature variables from the UKCP18-

CPM for England using the quantile mapping (QM) method. The UKCP18-CPM (Kendon et al., 2019b) consists of a 12-

member convection-permitting model ensemble, which is nested within a 12-member RCM perturbed parameter ensemble 

(PPE), and further nested within a 12-member GCM PPE. Due to storage and computational constraints, we referenced the 

CHESS-SCAPE dataset (Robinson et al., 2023) and selected four ensemble members for this study (Sect. 2.3.1 Choice of 95 

sub-ensemble), including the default configuration (EM01) and the driest member, the wettest members (EM04 and EM07), 

and a more moderate member (EM08). The bias-corrected dataset features a high spatial resolution of 1 km, with hourly 

precipitation and daily temperature data. Specifically, we address the following research questions: 
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1. What biases are contained in the UKCP18-CPM simulations?  

2. Can the QM bias correction method successfully correct errors in simple and more challenging metrics?  100 

3. What climatic changes do the UKCP18-CPM ensemble members broadly project for England? 

Addressing these questions is crucial for understanding and improving the applicability of UKCP18-CPM data in climate 

impact assessments. 

2 Study area, data and methods 

2.1 Study area 105 

This study focuses on 249 catchments in England (Figure 1; catchment IDs are listed in Table A1 in Appendix A), selected 

from the CAMELS-GB dataset (Coxon et al., 2020). The catchments were chosen based on the availability of complete 

gauged data during the period from December 1990 to November 2000 (overlapping with the CEH-GEAR1hr observational 

dataset and the UKCP18-CPM baseline period; as detailed in Sect. 2.2.2 Observation-based datasetshereafter ‘reference 

period’) and minimal influence from anthropogenic activities, providing a basis for assessing natural hydrological responses. 110 

Bias correction was applied to the UKCP18-CPM precipitation and temperature data for 62,488 grid points at a 1 km 

resolution. The mean annual precipitation across the selected grid points is approximately 2.64 mm/day, and the mean annual 

temperature is around 9.3 °C, calculated using the CEH-GEAR1hr and HadUK-Grid datasets, respectively. 
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Figure 1: Location of the 249 selected catchments and their flow gauges in England overlapped on the elevation map. 115 
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2.2 Datasets 

2.2.1 UKCP18 Convection-permitting model projections (UKCP18-CPM) 

The UK Climate Projections 2018 (UKCP18) represent the latest set of national climate projections for the UK, offering a 

broad range of temporal coverage and spatial resolutions (Murphy et al., 2018). The land component of UKCP18 comprises 

three strands of information. Strand 1 updates the probabilistic predictions from UKCP09, providing a more comprehensive 120 

range of possible climate outcomes under specified emission scenarios. Strand 2 delivers a new set of global climate model 

(GCM) projections at approximately 60 km resolution, and it captures uncertainties in large-scale climate processes. Strand 3 

is a new perturbed parameter ensemble (PPE) of regional climate model (RCM) projections. It introduces a new ensemble 

consisting of 12 RCM simulations, which form a PPE of RCM variants derived from 12 out of the 15 GC3.05-PPE 

simulations (Murphy et al., 2018). The projections from Strands 1, 2, and the 12 km RCM from Strand 3 were initially 125 

released in November 2018 (Murphy et al., 2018). 

The UKCP18 convection-permitting model (UKP18-CPM) projections, a new addition to the UKCP18 toolkit, provide high-

resolution climate information at ~2.2 km resolution (Kendon et al., 2019b). These projections explicitly capture small-scale 

physical processes and extreme weather events that are inadequately represented at coarser resolutions. CPM data are 

available on their native ~2.2 km rotated lat-lon grid and re-projected to a 5 km grid aligned with the Great Britain national 130 

grid (Met Office Hadley Centre, 2019). This study uses the re-projected 5 km CPM data for ensemble members 01 (EM01), 

04 (EM04), 07 (EM07), and 08 (EM08) (see details in Sect. 2.3.1 Choice of sub-ensemble). These ensemble members adopt 

the standard RCM parameterizations (note that CPM-specific parameters are not adjusted between ensemble members). The 

5 km dataset (Met Office Hadley Centre, 2019) was further re-gridded to the 1 km grid using the nearest neighbour 

interpolation method, assigning each 1 km grid cell the value of the corresponding 5 km grid cell in which it is located. This 135 

method was chosen to preserve the original value distribution and avoid artificial smoothing or interpolation artefacts that 

could arise from bilinear or higher-order methods, which is particularly important for preserving extreme values in 

precipitation and temperature relevant to impact studies. At the time of this study, the UKCP18-CPM data was available in 

three 20-year time slices: 1980-2000 (December 1980 to November 2000; baseline period), 2020-2040 (December 2020 to 

November 2040; 2030s), and 2060-2080 (December 2060 to November 2080; 2070s). The latter two are based on the high 140 

emissions scenario RCP8.5, which assumes high population growth and energy demand (Riahi et al., 2011). The data has 

360 days for each meteorological year that begins on 1st December and ends on 30th November.  

2.2.2 Observation-based datasets 

As an observational reference for the evaluation and bias correction of UKCP18-CPM hourly precipitation, we used the 1 

km resolution gridded hourly observation-based rainfall dataset, CEH-GEAR1hr (Lewis et al., 2022). This dataset is derived 145 

through the application of the nearest neighbour interpolation method to a national database of hourly rain gauge 

observations. The initial version of this dataset was published in 2019, covering the period from 1990 to 2014, and 
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subsequently updated in 2022 (CEH-GEAR1hr v2) to extend the coverage to 1990-2016 (Hollis et al., 2019). For this study, 

we used CEH-GEAR1hr v2, which is available at the UKCEH Environmental Information Data Centre (Lewis et al., 2022). 

To evaluate the bias in the raw UKCP18-CPM projections compared to observations, we selected the overlapping portion of 150 

data from December 1990 to November 2000 (reference period). 

To the best of our knowledge, there is currently no gridded, observation-based dataset in the UK that provides nationwide 

hourly temperature at high spatial resolution. Additionally, uncertainties exist when disaggregating temperature variables 

from daily to sub-daily scales, as indicated by previous studies on meteorological disaggregation processes (Breinl and Di 

Baldassarre, 2019). Therefore, this study focuses on the bias correction of the UKCP18-CPM daily temperature. For 155 

reference, the HadUK-Grid dataset (Hollis et al., 2019) is used. This dataset comprises gridded climate variables derived 

from the network of UK land surface observations and is produced by the Met Office Hadley Centre. It interpolates in situ 

observations to a regular grid, following methods developed in earlier datasets made available through the UK Climate 

Projections project (UKCIP02, UKCP09). The study uses Version 1.1.0.0 of the dataset, available on the CEDA Archive 

(Met Office et al., 2022). 160 

2.3 Methods 

2.3.1 Choice of sub-ensemble 

As described in Sect. 2.2.1 UKCP18 Convection-permitting model projections (UKCP18-CPM), UKCP18 Strand 3 

introduces a new ensemble consisting of 12 RCM simulations, which form a PPE of RCM variants derived from 12 out of 

the 15 GC3.05-PPE simulations (Murphy et al., 2018). Ensemble member 01 (EM01) serves as the standard configuration, 165 

generated without any parameter perturbations to provide a baseline reference for the ensemble. The other members are 

produced by varying specific parameters, such as cloud microphysics, aerosol forcing, ocean heat uptake, and atmospheric 

processes, to assess the model’s response under diverse conditions (Sexton et al., 2021). 

The UKCP18-CPM consists of 12 projections, driven by the 12 km RCM ensemble. Due to storage and computational 

constraints, bias-correcting the entire UKCP18 CPM-PPE was impractical. Bias-correcting a single grid requires 170 

approximately 50 minutes on a single node of the University of East Anglia’s HPC cluster. With 62,488 grids within the 249 

catchments for bias correction, multiple nodes were required for running parallel jobs on the cluster to ensure timely 

completion. Storage requirements further compounded these challenges, with pre-processed UKCP18-CPM hourly 

precipitation amounting to 576 GB, observational data 7.6 GB, and bias-corrected outputs 57 GB per ensemble member. The 

significant computational and storage demand limit this study to select a subset from the 12 ensemble members. Four 175 

ensemble members were selected to represent the broad range of possible precipitation outcomes within the ensemble. This 

selection included the default configuration (EM01), as well as members representing the driest, wettest, and a more 

moderate response, focusing on variability in precipitation. It is reasonable to assume the CPM members inherit the larger 

scale patterns and projected changes from their parent RCMs members due to the one-way nesting approach applied within 
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UKCP18. Therefore, we referred to the future precipitation changes projected by the UKCP18-RCM ensemble to guide the 180 

selection of CPM ensemble members. Table 1 summarises the percentage changes of precipitation in the 12 UKCP18-RCM 

ensemble members for the period 2060-2080 relative to 1980-2000. 
Table 1. Percentage changes of precipitation in the 12 UKCP18-RCM ensemble members between the 1980-2000 and 2060-2080 
(Robinson et al., 2023). 

Ensemble member 
Precipitation (%) 

Annual DJF MAM JJA SON 

01* −7 8 −2 −21 −17 

04* 5 21 4 −14 3 

05 −2 8 1 −18 −4 

06 −3 11 11 −40 −6 

07* 5 20 14 −27 5 

08* 1 15 9 −32 1 

09 3 29 10 −33 −5 

10 −2 13 7 −26 −8 

11 −2 15 −5 −25 2 

12 −3 13 −8 −17 −10 

13 −5 23 −15 −38 −6 

15 1 14 2 −25 4 

*Ensemble members used for this study 185 

We chose the following: 

• EM01 represents the default parameterisation of the climate model, chosen as a reference point. EM01 is the driest 

member, showing an overall decrease in annual precipitation, characterised by the smallest increase in winter (DJF) 

precipitation and the largest reduction in autumn (SON) precipitation. It has the largest decrease in annual 

precipitation, making it a suitable choice for representing scenarios with very dry conditions. 190 

• EM04 exhibits the largest increase in annual precipitation, with substantial growth during winter (DJF), alongside 

smaller increases in spring (MAM) and autumn (SON), and the smallest reduction in summer (JJA). It represents 

the upper limit of precipitation increase, which is crucial for assessing wet scenario impacts. 

• EM07 is similar to EM04 in terms of annual precipitation increase but with a different seasonal distribution. EM07 

shows pronounced increases in spring (MAM) and autumn (SON) but a greater decrease in summer (JJA). It is thus 195 

used to represent a scenario with more extreme seasonal variability. 

• EM08 represents a moderate change in annual precipitation, lying near the middle range of all 12 ensemble 

members. It shows limited change in autumn (SON) precipitation, various increases in winter (DJF) and spring 
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(MAM), and a moderate decrease in summer (JJA). This makes EM08 an appropriate choice to illustrate balanced 

seasonal changes. 200 

These four ensemble members were selected to capture a wide range of precipitation responses, from the driest to the wettest 

scenarios. This approach ensures that the corrected dataset captures a wide spectrum of possible outcomes, offering a robust 

understanding of potential precipitation changes across different seasons. The ensemble mean presented in this study 

represents the mean of these four selected members. 

2.3.2 Bias correction 205 

Quantile Mapping (QM) is a widely used bias correction method designed to address systematic discrepancies (biases) in 

climate model outputs by aligning their distributions with observed data, thereby enhancing the reliability of regional impact 

assessments (Ayugi et al., 2020; Ngai et al., 2017; Reyniers et al., 2025; Tani and Gobiet, 2019). The QM method applies a 

statistical transformation to correct modelled values based on observed distributions. This transformation can be expressed as 

(Piani et al., 2010): 210 

 𝑥𝑥𝑜𝑜 = 𝑓𝑓(𝑥𝑥𝑚𝑚) (1) 

Where 𝑥𝑥𝑜𝑜 and 𝑥𝑥𝑚𝑚 are the observed and modelled values, respectively, and 𝑓𝑓( ) is the transformation function. In practice, 

the transformation is achieved by aligning the cumulative distribution functions (CDFs) of modelled and observed data. It 

can be defined as: 

 𝑥𝑥𝑜𝑜 =  𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−1 (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑚𝑚)) (2) 

Where 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is CDF of the modelled value and 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜−1  is the inverse of the observed CDF, also referred to as the quantile 

function. Therefore, QM effectively adjusts the CDFs of modelled climate variables to match the observed, thereby 215 

correcting not only the mean but also the variance and extreme values in the data (Cannon et al., 2015; Thrasher et al., 2012). 

Among the different variants of QM, the non-parametric variant, often referred to as empirical QM, adjusts modelled values 

using the empirical CDFs of the observed and modelled values, rather than assuming specific parametric distributions (e.g. 

Boé et al., 2007; Themeßl et al., 2011, 2012). The empirical CDFs are estimated using tables of empirical percentiles, with 

linear interpolation applied to approximate values falling between the percentiles (Boé et al., 2007). This makes empirical 220 

QM particularly suitable for handling variables like temperature and precipitation, which frequently exhibit non-linear and 

heterogeneous behaviours (Gudmundsson et al., 2012). In this study, the empirical QM method was selected to perform bias 

correction on hourly precipitation and daily temperature data from the UKCP18-CPM.  

As Reiter et al. (2018) pointed out, QM can correct the distribution of the complete timeseries, but does not correct for errors 

in the annual cycle. They reviewed different subsampling lengths for quantile mapping applications and found that 225 

subsampling improves the performance of bias correction for daily precipitation from climate models, with monthly 

timescales being optimal across all QM methods. Therefore, we applied empirical QM for both precipitation and temperature 

using monthly subsampling. For daily temperature. the data was first divided into 12 groups, one for each month, and 
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empirical quantile mapping was applied to each group individually. For hourly precipitation, additional steps were taken to 

address finer temporal variability. Applying a uniform correction across all hours may overlook the diurnal variability 230 

inherent in sub-daily precipitation data. Hourly precipitation often exhibits diurnal variability, leading to discrepancies 

between modelled and observed values that vary over the course of the day. These discrepancies can influence the reliability 

of climate model outputs, particularly in regional impact assessments involving small catchments that exhibit rapid 

hydrological responses to precipitation (Ban et al., 2014; Dai et al., 1999). To account for temporal variability, we applied a 

diurnal quantile mapping (DBC) method for hourly precipitation, based on Faghih et al. (2022). The data for each month was 235 

further divided into 24 hourly groups, with a 3-hour moving window used to compute the hourly data. This resulted in 24 

unique correction factors, one for each hour of the day, to account for diurnal variability. Empirical QM was then applied to 

each hourly group. This approach enhances the representation of the diurnal cycle and improves the accuracy of bias 

correction for sub-daily precipitation. The QM method was implemented using the 'fitQmapQUANT' function from the 

qmap R package (version 1.0-4), developed by Lukas Gudmundsson (Gudmundsson et al., 2012). Key parameters were 240 

configured to enhance the accuracy of the correction: the argument ‘qstep’ was set to 100, following the findings of Lafon et 

al. (2013), who demonstrated that increasing the number of quantiles reduces errors, with 100 quantiles achieving optimal 

results. Additionally, ‘type’ was set to linear to specify the type of interpolation between quantiles. 

3 Results 

3.1 Bias of raw simulations 245 

Figure 2a shows the spatial distribution of precipitation biases (%) and the frequency of events exceeding 20 mm/hour in the 

UKCP18-CPM datasets for the reference period (December 1990 to November 2000), with rainfall events exceeding 20 

mm/hour identified as causing flash floods in the UK (Kendon et al., 2023). The figure includes data from four ensemble 

members (EM01, EM04, EM07, EM08) and the ensemble mean (EMean). The figure is structured into three rows 

representing different temporal scales: annual bias (ANN, top row), winter season bias (DJF: December, January, February, 250 

middle row),  and summer season bias (JJA: June, July, August, bottom row). A positive bias (blue) indicates an 

overestimation of precipitation, leading to wetter conditions, while a negative bias (red) indicates an underestimation, 

resulting in drier conditions. 

From a spatial perspective, the annual bias (ANN) demonstrates a consistent pattern across the four ensemble members, 

showing a consistent tendency for wetter biases in the north and drier biases in the south, although the spatial differentiation 255 

between north and south is relatively moderate on an annual basis. The numerical biases for the annual average range from 

4.6% (EM07) to 18.3% (EM04), indicating an overall overestimation of precipitation throughout the year. 

In the winter season (DJF), biases are overall higher than those observed annually, with values ranging from 20.4% (EM01) 

to 43.5% (EM08). This suggests that the UKCP18-CPM tends to overestimate precipitation during winter across all four 

ensemble members. Spatially, the north-south contrast persists, with the northern regions generally showing wetter biases 260 
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compared to the southern regions, although this gradient is not as pronounced as in the summer months. The general increase 

in wet bias across England during DJF implies a systematic overestimation of winter precipitation by the model.  

The summer season (JJA), however, reveals the most distinct spatial gradient among four ensemble members, with a clear 

north-wet and south-dry pattern visible across all of them. The biases during JJA range from -0.8% (EM08) to 31% (EM04).  

The biases in the frequency of hourly events exceeding 20 mm/hour (Figure 2b) are generally low, which indicates that the 265 

UKCP18-CPM captures the occurrence of extreme rainfall events reasonably well, particularly in winter. 
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Figure 2: Spatial distribution of (a) biases (%) of mean precipitation between UKCP18-CPM and CEH-GEAR1hr and (b) 
differences in the number of events exceeding 20 mm/hour between UKCP18-CPM and CEH-GEAR1hr for the reference period 
(December 1990 to November 2000) over England. Rows represent annual (ANN), winter (DJF: December, January, February), 270 
and summer (JJA: June, July, August) biases, while columns show individual ensemble members (EM01, EM04, EM07, EM08) 
and the ensemble mean (EMean). 

Figure 3 shows the spatial distribution of biases in daily mean temperature from the UKCP18-CPM datasets for the reference 

period (December 1990 to November 2000). Each panel represents a different ensemble member (EM01, EM04, EM07, and 

EM08) and the ensemble mean (EMean). A positive bias (red) indicates an overestimation of temperature by the UKCP18-275 

CPM, while a negative bias (blue) indicates an underestimation, compared to HadUK-Grid observations. 

For the annual mean temperature (ANN), most ensemble members exhibit a cooler bias across England compared to the 

HadUK-Grid data, with biases ranging from -0.87 °C (EM04) to -0.42 °C (EM01). EM08, however, presents a slight warm 

bias of 0.02 °C, which contrasts with the cooler tendencies observed in other ensemble members. The spatial distribution of 

the annual temperature bias shows that the UKCP18-CPM generally predicts lower temperatures in the northern regions of 280 

England, while the southern regions show a tendency towards a warmer bias.  

During the winter season (DJF), the biases are more pronounced, particularly in EM04, which shows a bias of -0.85 °C, 

indicating a substantial underestimation of winter temperatures compared to the observed dataset. EM08, conversely, has a 

warm bias of 0.46 °C, indicating an overestimation of winter temperatures. The spatial distribution of winter biases is 

consistent with the annual trend, where the northern regions are generally colder in the model compared to the observed 285 

values, while some areas in the south exhibit a warmer bias. However, the contrast between ensemble members is evident, 

with EM07 showing only a slight positive bias (0.09 °C), indicating that the model's performance in simulating winter 

temperatures varies considerably between ensemble members. 

For the summer season (JJA), all four ensemble members display a cooler bias. The biases range from -0.57 °C (EM07) to -

0.08 °C (EM08), suggesting that the UKCP18-CPM tends to underestimate summer temperatures. The spatial pattern during 290 

JJA shows a clear north-south gradient, with the north experiencing a stronger cooling bias compared to the south. This is 

consistent across all ensemble members, indicating a systematic underestimation of summer temperatures in the northern 

part of England, while the southern regions are closer to observed temperatures. 
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Figure 3: Temperature biases (°C) in UKCP18-CPM for the reference period (December 1990 to November 2000) over England. 295 
The panels show biases for each ensemble member (EM01, EM04, EM07, and EM08) and the ensemble mean (EMean). Rows 
represent different time scales: annual (ANN), winter (DJF: December, January, February), and summer (JJA: June, July, 
August). 

3.2 Evaluation of bias correction 

Figure 4 compares observed data with UKCP18-CPM simulations before and after bias correction for monthly precipitation 300 

(left, mm/hour) and temperature (right, °C) during the reference period (December 1990 to November 2000). Dashed lines 

represent raw (un-corrected) ensemble members (EM01, EM04, EM07, EM08), while solid lines indicate bias-corrected data 

(EM01BC, EM04BC, EM07BC, EM08BC). Observed values are marked with triangular symbols. 
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In the precipitation panel (left), the raw ensemble members deviate from observed values, particularly in winter and late 

summer. After bias correction, the solid lines align closely with observations, indicating effective reduction of errors. In the 305 

temperature panel (right), raw ensemble members also show noticeable deviations, especially during spring and winter. Bias 

correction improves the match, with the bias-corrected outputs closely following the observed temperatures throughout the 

year. Overall, Figure 4 shows that bias correction effectively aligns both precipitation and temperature simulations with 

observed data, reducing systematic discrepancies and improving the reliability of the UKCP18-CPM outputs. 

 310 
Figure 4: Comparison of monthly precipitation (left, mm/hour) and temperature (right, °C) between observed data and UKCP18-
CPM simulations, before and after bias correction, for the reference period (December 1990 to November 2000). The blue, dark 
bule and yellow solid lines underneath the red line in both precipitation and temperature panels. 

Figure 5 demonstrates the effectiveness of the diurnal bias correction method (DBC) in adjusting the diurnal cycle of 

precipitation for the reference period (December 1990 to November 2000). The blue lines represent the UKCP18-CPM four 315 

ensemble members before bias correction, where the diurnal cycle exhibits noticeable discrepancies compared to CEH-

GEAR1hr (depicted by the red line with circles). Specifically, the uncorrected ensemble tends to overestimate precipitation 

during most hours in winter, with the ensemble mean (darker blue line) consistently showing higher precipitation compared 

to the observations. In contrast, during summer and autumn, the uncorrected ensemble generally underestimates precipitation 

across most hours. After DBC, the yellow lines (UKCP18-CPM ensemble BC) illustrate significant improvements, with the 320 

corrected ensemble mean (darker yellow line) closely aligning with the observed diurnal cycle's temporal distribution and 

overall magnitude. Despite these improvements, some residual discrepancies remain, particularly in the smoother appearance 

of the bias-corrected results compared to CEH-GEAR1hr. These discrepancies are primarily due to the 3-hour moving 

window used during the DBC process, which was applied to filter out unreliable and unrealistic fluctuations in the 

observational data. 325 
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Figure 5: Diurnal cycle of precipitation before bias correction (blue lines: UKCP18-CPM ensemble) and after bias correction 
(yellow lines: UKCP18-CPM ensemble BC) for the reference period (December 1990 to November 2000). The CHE-GEAR1hr 
(observations) are shown as a red solid line with circles. The ensemble mean before bias correction is shown as a darker blue line 
(UKCP18-CPM ensemble mean), and the bias-corrected ensemble mean is shown as a darker yellow line (UKCP18-CPM ensemble 330 
mean BC).  

To evaluate the bias-corrected precipitation extremes in the UKCP18-CPM dataset, the 95th percentile (P95) of hourly 

precipitation for the reference period was calculated and compared to that of the CEH-GEAR1hr dataset (observations), as 

shown in Figure 6. The top row displays scatter plots of the P95 values from UKCP18-CPM against CEH-GEAR1hr for each 

ensemble member, both before (light blue) and after (dark blue) bias correction. The closer the points are to the x=y line, the 335 

better the correspondence between the UKCP18-CPM and observations, indicating higher model accuracy. Initially, the raw 

UKCP18-CPM data shows a fair correlation with the observations, with gradients between 0.89 to 1 and R² values ranging 

from 0.80 to 0.88, indicating some discrepancies in capturing extreme values. After bias correction, the R² values improve to 

0.98, demonstrating a much closer fit to observations. Before bias correction, the higher P95 values (>2 mm/h) are largely 

underestimated by the CPM, which is shown as horizontal scatter of dots. Bias correction can correct these values closer to 340 

the observed values although still slightly underestimated. The bottom row presents violin plots of the P95 distributions for 

observations (black), raw UKCP18-CPM (light blue), and bias-corrected UKCP18-CPM (dark blue). These plots indicate 

that the bias correction not only adjusts the mean values but also better aligns the overall distribution of extreme 

precipitation with the observed data, reducing discrepancies in spread and central tendency.  

 345 
Figure 6: Comparison of 95th percentile (P95) hourly precipitation values for the reference period (December 1990 to November 
2000). The top row shows scatter plots of UKCP18-CPM P95 values for each ensemble member, plotted against CEH-GEAR1hr 
observations for each 1km grid, with raw (light blue) and bias-corrected (dark blue) data. The bottom row presents violin plots of 
P95 values for observations (black), raw UKCP18-CPM (light blue), and bias-corrected (dark blue) data. 
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As with precipitation, temperature extremes in the UKCP18-CPM dataset were evaluated by comparing the 95th (T95) and 350 

5th (T5) percentiles of daily mean temperature for the reference period with the HadUK-Grid dataset. Figure 7 and Figure 8 

illustrate these comparisons using scatter plots (Figure 7) and violin plots (Figure 8). 

The top panels of Figure 7 show scatter plots of T95 values from UKCP18-CPM against the corresponding observations from 

HadUK-Grid for each ensemble member, while the bottom panels present the same comparison for T5 values. For both T95 

and T5, the raw model outputs (light pink) show a fair level of correlation with the observations, with gradient values ranging 355 

from 0.97 to 1.1 and R² values between 0.84 and 0.91. This indicates reasonable agreement, but also some discrepancies, 

particularly in capturing the temperature extremes. After bias correction, the gradient and R² values for all four ensemble 

members improve to 1, indicating an almost perfect match between the corrected model outputs and the observed data. 

Figure 8 complements this analysis by displaying violin plots of the distributions of T95 and T5 for the observations (black), 

raw UKCP18-CPM (light pink), and bias-corrected UKCP18-CPM (dark pink). The plots for T95 (left side) and T5 (right side) 360 

clearly show that bias correction not only corrects the central tendencies of the temperature extremes but also adjusts their 

distribution.  

 
Figure 7: The 95th (T95, top row) and 5th (T5, bottom row) percentile values of daily mean temperature for each ensemble 
member, plotted against HadUK-Grid (observations). Raw UKCP18-CPM (light pink) and bias-corrected UKCP18-CPM BC 365 
(dark pink) values are compared for the reference period (December 1990 to November 2000). 
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Figure 8: Violin plots of T95 and T5 values for observations (HadUK-Grid, black), raw UKCP18-CPM (light pink), and bias-
corrected UKCP18-CPM BC (dark pink) for each ensemble member during the reference period (December 1990 to November 
2000). 370 

3.3 Projected changes of bias-corrected UKCP18-CPM 

Figure 9 illustrates the projected percentage changes in hourly precipitation from bias-corrected UKCP18-CPM simulations, 

comparing future periods to baseline data (2030s in Figure 9a and 2070s in Figure 9b). The changes are presented for both 

the annual maximum (AMax) and annual total (AT) precipitation. 

For the 2030s (Figure 9a), the projections show an increase in AMax precipitation across all four ensemble members, with 375 

percentage changes ranging from approximately 19.9% (EM04) to 23.9% (EM08). The changes in AT precipitation are also 

mostly positive but less pronounced, with increases ranging from 3% (EM08) to 9.4% (EM01). This suggests increases can 

be disproportionally higher in the extreme precipitation events than in the annual totals. By the 2070s (Figure 9b), the 

projected increase in AMax precipitation becomes even more pronounced, with percentage changes ranging from 

approximately 25.1% (EM07) to 39.1% (EM04), indicating a substantial intensification of maximum hourly precipitation. In 380 

contrast, the changes in AT precipitation remain variable, with EM01 showing a decrease of 0.4%, confirming it as the driest 

member. EM04 and EM07 indicate wetter conditions, with increases of 8% and 6.1%, respectively, while EM08 shows a 

more moderate increase of 1.9%, representing a balanced response among the ensemble members. 
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Figure 9: Projected percentage changes in hourly precipitation from bias-corrected UKCP18-CPM simulations for the (a) 2030s 385 
and (b) 2070s, compared to the baseline period. 

Figure 10 and Figure 11 illustrate the projected percentage changes in daily mean temperature from bias-corrected UKCP18-

CPM simulations, comparing baseline period data to the future periods of the 2030s (Figure 10) and the 2070s (Figure 11). 

The projections are shown for annual maximum (AMax), annual mean (AMean), and annual minimum (AMin) temperatures. 

For the 2030s (Figure 10), all four ensemble members project increases in AMax temperature, ranging from approximately 390 

2.2 °C (EM01) to 3.2 °C (EM08). The AMean temperature also shows consistent increases across ensemble members, with 
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values ranging from 1.2 °C (EM07) to 1.7 °C (EM08). The AMin temperature changes are also positive, ranging from 1.3 °C 

(EM07) to 2.2 °C (EM01), indicating an overall warming trend in the near future. By the 2070s (Figure 11), the increase in 

AMax becomes more pronounced, with changes ranging from approximately 5 °C (EM01) to 6.5 °C (EM04), suggesting a 

intensification of maximum temperatures. Similarly, the AMean increases range from 3.1 °C (EM07) to 4.5 °C (EM04), and 395 

the AMin changes range from 3.3 °C (EM07) to 4.7 °C (EM04). These results indicate substantial increases across  all 

temperature metrics, i.e.maximum, mean, and minimum,by the 2070s. EM04 shows the highest level of warming in terms of 

AMean temperature, with an increase of 4.5 °C, followed by EM08 at 3.8 °C. In contrast, EM01 and EM07 show more 

moderate increases in AMean temperature, with projected changes of 3.3 °C and 3.1 °C by the 2070s, respectively. 

 400 
Figure 10: Projected changes (°C) in daily mean temperature from bias-corrected UKCP18-CPM simulations for the 2030s, 
compared to the baseline period. 
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Figure 11: Projected changes (°C) in daily mean temperature from bias-corrected UKCP18-CPM simulations for the 2070s, 
compared to the baseline period. 405 

4 Discussion 

This study presents a set of bias-corrected 1 km regional UK Climate Projections 2018 (UKCP18) Convection-Permitting 

Model (CPM), focusing on temperature and precipitation projections for England, UK. By employing standard empirical 

quantile mapping bias correction method for daily mean temperature and diurnal bias correction method (DBC) for hourly 

precipitation, this study was able to effectively reduce systematic biases, resulting in model outputs that align closely with 410 

observational data. This bias-corrected dataset provides a more reliable basis for regional climate change analysis in England 

and demonstrates the value of these methods in improving high-resolution climate projections.  

Before bias correction, the UKCP18-CPM simulations show considerable biases in both precipitation and temperature across 

various temporal scales. Annual precipitation is generally overestimated by 4.6% to 18.3%, with more pronounced wet 

biases during winter (up to 43.5%) and significant spatial variability in summer, where precipitation is overestimated in the 415 

north and underestimated in the south (Figure 2). For temperature, there is a cooler bias across most ensemble members, with 

annual mean biases ranging from -0.87 °C to 0.02 °C (Figure 3). Furthermore, the diurnal cycle of precipitation (Figure 5) 

shows systematic overestimation, with the ensemble mean predicting consistently higher precipitation throughout the day 

compared to observations. After bias correction, substantial improvements are observed in both precipitation and 
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temperature. Monthly precipitation and temperature closely match observed values (Figure 4). The diurnal cycle of 420 

precipitation is also improved, with the corrected ensemble mean accurately capturing both the variability and magnitude of 

observed precipitation across most hours of the day (Figure 5). 

Future changes were also analysed for both precipitation and temperature. In the 2030s, annual maximum precipitation is 

projected to increase across all ensemble members, suggesting a heightened intensity of extreme rainfall events, while the 

annual total precipitation changes are spatially variable. The projected temperature changes are consistent with findings from 425 

the UKCP18-CPM science report (Kendon et al., 2019b), which indicated that mean temperature is expected to increase 

across all regions and seasons. The results from our bias-corrected dataset similarly show increases in annual mean 

temperature, with ensemble member EM04 displaying the largest increase of up to 4.5 °C by the 2070s. By the 2070s, the 

trends for annual max precipitation become even more pronounced, with substantial intensification of maximum 

precipitation, and varying changes in annual totals ranging from slight decreases to moderate increases among different 430 

ensemble members. Notably, our findings regarding increased winter precipitation are also consistent with the UKCP 

Science report, which indicated obvious increases in winter precipitation, particularly due to more frequent wet days. These 

results reinforce the critical importance of considering a broad range of future scenarios to accurately account for potential 

climate impacts, which has been effectively captured using multiple ensemble members in our bias-corrected dataset. 

Due to limitations in computational resources and time, we focused our analysis on four ensemble members: EM01, EM04, 435 

EM07, and EM08. These were selected to represent a diverse range of climate outcomes, from the driest to the wettest 

scenarios, allowing the bias-corrected dataset to effectively capture the range of possible climate responses in England. This 

sub-ensemble was chosen to balance computational efficiency with representativeness while ensuring that the selection 

captures a wide range of precipitation responses. The reduced number of ensemble members may influence the ensemble 

mean and spread compared to using all 12 members. Future studies involving the full ensemble could provide a more 440 

comprehensive assessment of ensemble spread and variability. 

Our findings align well with existing literature, such as Robinson et al. (2023), who calculated the UKCP18-RCM projected 

changes and observed similar results. This supports the robustness of the bias correction methods and demonstrates their 

effectiveness in reducing uncertainties inherent in climate model projections. However, there are limitations to this approach. 

The analysis only covered four ensemble members and 62,488 grid points over 249 catchments in England, which may not 445 

fully capture the spatial and temporal variability across the entire UKCP18-CPM domain. Future studies could address this 

by expanding the bias correction to include more ensemble members and grid points, thereby improving the 

comprehensiveness and reliability of the climate projections. Additionally, the integration of multivariate bias correction 

methods (Cannon, 2018; Faghih et al., 2022) could offer the advantage of preserving inter-variable dependencies, ensuring 

that precipitation and temperature are corrected consistently without disrupting their natural relationship. 450 

This high-resolution dataset offers enhanced reliability, making it suitable for a wide range of climate change impact 

simulations and studies. The dataset's fine spatial and temporal resolution enables its application in various fields, such as 

flood forecasting, agricultural planning, and natural resource management, providing valuable insights for decision-making 
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and long-term adaptation strategies. Future research could extend this analysis to other regions and incorporating additional 

climate models that would provide a broader understanding of the impacts of climate change and help assess the applicability 455 

of these methods in various contexts. This would not only improve the robustness of climate projections but also enhance the 

relevance and utility of bias-corrected datasets in informing climate adaptation strategies. 

5 Conclusions 

In this study, we applied bias correction to the UKCP18 Convection-Permitting Model (CPM) data to produce 1 km high-

resolution precipitation and temperature projections for England, UK. Using quantile mapping (QM) as our bias correction 460 

method, we corrected biases in hourly precipitation and daily temperature data for four ensemble members (EM01, EM04, 

EM07, and EM08) selected to represent the spread of the full ensemble. Our results demonstrate that bias correction 

improved the alignment of UKCP18-CPM simulations with observational datasets, effectively reducing discrepancies (biases) 

and enhancing the model's performance across various metrics. The bias-corrected dataset provides a more reliable 

foundation for assessing future climatic changes and regional impacts across England. The key findings are as follows: 465 

1. Raw UKCP18-CPM simulations showed consistent wet biases for precipitation and cooler biases for temperature. 

For precipitation, the annual average biases ranged from 4.6% (EM07) to 18.3% (EM04), with the largest biases 

occurring in winter (DJF) ranging from 20.4% (EM01) to 43.5% (EM08). For temperature, the annual mean bias 

ranged from -0.87 °C (EM04) to -0.42 °C (EM01), with a slight warm bias of 0.02 °C in EM08. 

2. After bias correction, both precipitation and temperature simulations showed improved alignment with 470 

observational data. Monthly precipitation and temperature biases were substantially reduced, with corrected outputs 

closely following observed monthly patterns. The diurnal cycle of precipitation also showed marked improvement, 

with the corrected ensemble mean accurately capturing both the variability and magnitude of observed precipitation 

across most hours of the day. Furthermore, the 95th percentile (P95) of hourly precipitation and temperature 

extremes (T95) demonstrated near-perfect agreement with observational datasets after correction, with R² values 475 

improving to 0.98 and 1.0, respectively. 

3. Future projections for the 2030s and 2070s show significant increasesin both precipitation and temperature. By the 

2030s, annual maximum precipitation (AMax) is projected to increase by 19.9% (EM04) to 23.9% (EM08), while 

annual total precipitation (AT) shows more moderate increases, ranging from 3% (EM08) to 9.4% (EM01). In terms 

of temperature, annual mean temperature (AMean) increases range from 1.2 °C (EM07) to 1.7 °C (EM08) by the 480 

2030s. By the 2070s, these trends become more pronounced, with AMax precipitation increasing by 25.1% (EM07) 

to 39.1% (EM04), and AMean temperatures projected to rise by 3.1 °C (EM07) to 4.5 °C (EM04). These 

projections indicate a potential for more intense extreme weather events, particularly for precipitation and 

temperature extremes, as the century progresses. 
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Appendix A 485 

Table A1. NRFA ID of the selected 249 catchments 

Catchment ID 

22006 27025 28003 28072 32008 37019 40004 43009 47014 52007 54011 55002 71006 

22009 27026 28008 28074 33018 37020 40009 44001 47018 52009 54012 55013 71008 

23001 27029 28009 28080 33019 37033 40011 44006 48003 52010 54016 55014 72002 

23004 27030 28012 28081 33028 38007 40021 45001 48004 52011 54018 55018 72004 

23008 27034 28018 28082 33031 38014 41001 45003 48005 52015 54019 68001 72007 

23011 27035 28023 28085 33039 38018 41005 45004 48011 52016 54020 68003 72015 

23016 27041 28024 28091 33058 39002 41006 45005 49001 53007 54027 68005 73005 

24001 27042 28026 28093 34002 39005 41009 45009 49002 53008 54029 68020 73009 

24004 27043 28031 28117 34005 39021 41011 45012 49004 53009 54034 69007 73010 

24005 27047 28039 29003 34006 39034 41012 46003 50001 53017 54036 69012 73011 

25001 27049 28040 30001 34007 39042 41013 46005 50002 53018 54038 69015 74001 

25003 27051 28043 30004 34010 39052 41025 46008 50006 53023 54048 69017 74006 

25020 27064 28046 30005 35008 39069 41027 46014 50007 53028 54049 69023 74007 

26008 27071 28048 30011 36006 39087 41028 47001 50008 54001 54052 69027 75003 

27001 27077 28052 30012 36011 39095 41029 47004 50011 54002 54057 69030 75004 

27002 27080 28055 31010 36012 39099 42003 47005 51001 54004 54060 69032 75017 

27003 27084 28056 31023 37008 39105 42017 47008 52004 54005 54063 69043 76007 

27007 27089 28066 32003 37009 39143 43005 47009 52005 54007 54095 71001 76011 

27021 27090 28067 32006 37018 39144 43007 47011 52006 54008 54096 71004 76014 

101002 101005 
           

 

Data availability. The dataset is available at Zenodo (https://zenodo.org/records/16213003).  
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