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Abstract. Induction of a surface-ocean DIC (dissolved organic carbon) deficit through alkalinity-based or direct CO2 removal

methods has been recognized as a promising approach to meet the projected need for negative emissions. The difficulty of

directly measuring the counter-factual CO2 flux due to rapid spreading of the DIC-deficient plume has put ocean circulation

models in the center of the Measurement, Reporting and Verification (MRV) challenge. Confidence in the results of such models

is essential for the emerging industry to access carbon credit markets and grow at the required pace, to reach substantial negative5

emissions by 2050, as envisioned by the Intergovernmental Panel on Climate Change (IPCC).

The kinetics and equilibration time of such a DIC deficit have been shown to vary substantially depending on the location

and season of the initial induction point. A major component of this variance is the vertical transport and mixing of the DIC-

deficient plume; however, air-sea CO2 gas exchange and carbonate chemistry are also important.

Currently, it is poorly understood how much the results of DIC-deficit pulse simulations depend on the models chosen.10

To help close this knowledge gap, we investigate two global circulation models, the CESM2/MARBL model (1°) and the

data-assimilative ECCO-Darwin model (1/3°). We perform pulse injection simulations at twelve locations with both models,

matched precisely in terms of injection patch geometry, release year and season. We analyze the differences in CO2 uptake

curves, vertical mixing, gas exchange and carbonate chemistry.

We show that in some locations, such as subtropical regions, substantial differences exist between these two models —15

well beyond the expected intrinsic variation of each model. Furthermore, we demonstrate that the majority of the differences

are attributable to the representation of vertical transport, followed by the effect of wind parameterizations. A small amount

of difference is attributable to carbonate chemistry parameterization. In some locations, there exists good agreement between

the models. In most injection locations, the largest differences between models are found in the first 7 years post alkalinity

injection, followed by slow convergence towards the expected theoretical maximums.20
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1 Introduction

Marine Carbon Dioxide Removal (mCDR) methods (Press, 2022; Oschlies et al., 2023; Renforth and Henderson, 2017) have

recently gained significant attention as a scalable set of approaches to achieve the magnitude of negative emissions called for by

IPCC models to keep global-mean temperatures below 2°C by 2100 (Rogelj et al., 2018; Metz and Intergovernmental Panel on

Climate Change, 2005; Masson-Delmotte et al., 2021; Rickels et al., 2018). These methods work by inducing a pCO2 deficit in25

the surface ocean, which causes excess CO2 uptake by the ocean. The word excess here is used to indicate the excess relative to

a counterfactual scenario without the intervention. The pCO2 deficit can be created in a variety of ways. The removal of CO2

from surface waters (Direct Ocean Removal, DOR) and subsequent storage of CO2 in geological reservoirs or the cultivation

of macroalgae followed by removal or sinking of plant matter both remove dissolved inorganic carbon (DIC) from surface

waters. Alternatively, the dissolution of alkaline materials in surface water or the removal of acidity through electrochemical30

means also lead to a DIC deficit by altering the carbonate equilibrium (Oschlies et al., 2023; Renforth and Henderson, 2017).

In both situations, however, the induction of the pCO2 deficit does not immediately remove CO2 from the atmosphere

(Broecker and Peng, 1982). Instead, this process occurs on the order of years or decades, depending on the speed of gas

exchange and the residence time of surface waters (Jones et al., 2014; Wang et al., 2023; Suselj et al., 2025). Previous work

has shown a complex dependency on the release location as the DIC deficient plume spreads over entire ocean basins on the35

timescale of equilibration, with subduction processes removing the deficit from contact with atmosphere while also transporting

it later into surface waters elsewhere (He and Tyka, 2023; Suselj et al., 2025; Zhou et al., 2024).

The geographical region over which ocean dynamics contribute to the equilibration process is so large that direct experi-

mental measurement of the counterfactual CO2 uptake is extremely difficult in practice (Mace et al., 2021; Subhas et al., 2025)

considering that the dilution of the plume leads to sub-µM changes in surface pCO2 (He and Tyka, 2023), which are very dif-40

ficult to measure (Wanninkhof et al., 2013). Furthermore, the counterfactual values of surface pCO2 are inaccessible to direct

measurement and changes in pCO2 are difficult to attribute if multiple OAE deployments overlap in their alkalinity plumes

He and Tyka (2023). Therefore, the Measurement, Reporting and Verification (MRV) of mCDR efforts will likely lean very

heavily on ocean modelling (Bach et al., 2023; Fennel et al., 2023).

Recently, an extensive map of Ocean Alkalinity Enhancement (OAE) equilibration curves, covering multiple seasons, was45

calculated using the CESM2/MARBL general circulation model (GCM) (Zhou et al., 2024) and strong seasonal and regional

differences were identified. Yankovsky et al. (2025) extended the work to investigate interannual variability, which is inherent

to any given model, and found some regions exhibit substantial variation of uptake rates from year to year, owing to differences

in flow patterns. However, to date, the inherent model uncertainty or confidence relative to other models is largely unknown.

Previous efforts have compared different circulation or Earth System Models (ESMs) and the variance in their predictions50

(Keller et al., 2018), but specifically how their differences influence the OAE equilibration curves has not been explored.

Xie et al. (2025) recently investigated the effect of different horizontal grid resolutions and found comparatively small differ-

ences across different resolutions of the same model, noting that the resolutions spanned 0.1° to 1° and at best only resolved

the mesoscales, but large differences comparing entirely different models to each other. We therefore focus our attention to
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comparing two models side-by-side (the aforementioned CESM2/MARBL GCM and the ECCO-Darwin model) using pulse55

injections of alkalinity. Our goal is to examine not only the extent of the variability but to pinpoint the components of the model

set-ups or parameterizations which make the largest difference to the equilibration curves.

2 Methods

2.1 Ocean models

Using the polygonal subdivision of the ocean introduced in Zhou et al. (2024), we selected 12 locations, spanning the range60

of the four different OAE uptake regimes identified by Zhou et al. (2024). The locations chosen are shown in Fig. S1 and

listed in Table S1. Since the ECCO-Darwin model uses a different grid (LLC270 grid at 1/3° (Zhang et al., 2018)) compared

to the CESM2/MARBLE model (1° spherical-polar grid), we re-projected the polygonal subdivisions (Zhou et al., 2024) onto

the finer, 1/3° LLC270 grid. While the difference in gridding means that the release locations cannot be exactly replicated, the

difference in the release area boundary is very small and not expected to significantly alter the uptake curves. This assumption is65

supported by the observation that the η(t) curves obtained previously vary across the ocean only gradually (Zhou et al., 2024).

In each location, alkalinity was released over the period of one month (in January) at a rate of 5 mol m−2 yr−1 uniformly

across the selected polygon.

We conducted each of the pulsed alkalinity simulations using the standard LLC270 ECCO-Darwin 1/3° model setup for 15

years (Zhang et al., 2018; Carroll et al., 2020, 2022, 2024). For each location, we investigated two pulses, one in 1992 and one in70

1999 in two separate simulations. The latter matches the exact release year used in Zhou et al. (2024) while the former provides

an indication of the interannual variability. The atmospheric concentration of CO2 was set to historical values from the NOAA

Greenhouse Gas Marine Boundary Layer Reference(Andrews et al., 2014). Small differences in pCOatm
2 are not expected to

change the OAE uptake curves, so long as the value is not responsive to induced CO2 uptake (Tyka, 2025). The total volume-

integrated amount of ocean DIC was then computed over the simulation period and the difference to a reference simulation75

was obtained. This was then normalized by the total amount of alkalinity added initially to give η(t) = ∆ΣDIC(t)/∆ΣAlk

as the metric of OAE efficiency (Zhou et al., 2024), where the sums are over the entire ocean volume.

In the same way as described above, we also tested four additional locations (North Pacific, North Hawai‘i, Equatorial

Pacific and Gulf Stream) replicating exactly the experiments of Yankovsky et al. (2025). Here, 5 runs were conducted for

5 years each, with alkalinity addition pulses in January of 2000, 2003, 2006, 2009 and 2012, with the goal of quantifying80

interannual variability.

2.2 CESM2/MARBL

The CESM2/MARBL model configuration used in this study is described in detail in Zhou et al. (2024) and references therein.

Briefly, the CESM2/MARBL simulation is a global forced ocean-ice (FOSI) configuration (Yeager et al., 2022) of the Com-

munity Earth System Model v.2 (CESM2) (Danabasoglu et al., 2020). The ocean component is the Parallel Ocean Program85
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v.2 (POP2) with nominal horizontal resolution of 1° × 1° and biogeochemistry simulated by MARBL (Long et al., 2021). The

model was forced with the Japanese 55-year atmospheric reanalysis dataset (JRA55) (Kobayashi et al., 2015), spun up from

1850 to 2019. All simulations in this study were forced with historical atmospheric CO2. Further properties and features of the

model are summarized in Table 1.

2.3 ECCO-Darwin90

A detailed description of the ECCO-Darwin model setup, observational constraints, optimization methodology, and model-

data evaluation is presented in Carroll et al. (2020, 2022, 2024). The latest ECCO-Darwin solution (v05) used here is based

on ocean circulation and physical tracers (i.e., temperature, salinity, and sea ice) from the Estimating the Circulation and Cli-

mate of the Ocean (ECCO) LLC270 global-ocean and sea-ice data synthesis (Zhang et al., 2018). ECCO-Darwin is based on

a global-ocean and sea-ice configuration of the Massachusetts Institute of Technology general circulation model (MITgcm)95

(Marshall et al., 1997), which has been constrained by the ECCO project using nearly all available ocean observations for the

1992–near-present period and has horizontal grid spacing of 1/3° at the equator and ∼18 km at high latitudes, with 50 vertical

levels. The ECCO circulation estimate is coupled with the MIT Darwin ocean ecosystem model, which in turn drives and

interacts with marine chemistry and ocean carbon variables (Dutkiewicz et al., 2015), providing a data-constrained, property-

conserving estimate of the three-dimensional, time-evolving ocean, sea ice, biogeochemical, and ecological state. An extensive100

global-ocean evaluation of ECCO-Darwin against in-situ data is provided in Carroll et al. (2024).

Table 1 summarizes the main features and parameterizations for both models.

2.4 Overall inter-model differences

In addition to quantifying the empirical differences in OAE-induced CO2 uptake between different ocean circulation mod-105

els, the goal of this paper is to estimate the relative importance of different model aspects to the overall variance. A better

understanding of these sources of discrepancy will inform future model development and potentially inspire new sources of

model-constraining data collection.

The main aspects of the ocean models which conceivably contribute to the CO2 equilibration dynamics are: horizontal

and vertical transport (advection and mixing) of the excess alkalinity plume, the gas transfer velocities (which are a function110

of wind speed), the carbonate chemistry parameterization and any biological processes which can affect DIC or alkalinity

concentration. These aspects are strongly intertwined; for example, changes in horizontal transport will affect plume dispersal

and therefore which gas transfer velocities will be encountered by the space-time evolving trajectory of the plume.

We first compare these aspects in a generic way, comparing the wind forcing and carbonate parameters as function of latitude,

longitude and time. These comparisons help identify overall differences in parameterization and are not specific to any given115

injection location. We then conduct a deeper analysis which compares the influence of each parameter to any given release

location and alkalinity plume.
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Feature CESM2/MARBL ECCO-Darwin

Type Hand-tuned hindcast simulation Data-assimilative hindcast simulation

Optimization Atmospheric and sea ice tuning to help balance the radiative

budget. Langmuir mixing parameterization in conjunction

with the wave model component Estuary mixing parame-

terization. Increased mesoscale eddy diffusivities at depth.

Adjoint methods for physics, Green’s Functions approach

for biogeochemistry. Adjusted: initial conditions, surface-

ocean boundary conditions, and time-invariant, 3-D mixing

coefficients.

Grid Spherical-polar, nominal 1° x 1°. Uniform zonal resolution

of 1.125° and varying meridional resolution (29–72 km)

from 0.27° (equator) to 0.64° (northwestern Pacific Ocean)

Lat-Lon-Cap (LLC), Nominal 0.33° x 0.33° (37 km at the

equator, ∼18 km at high latitudes)

Vertical levels 60 levels (10–250 m) 50 levels (10–456.50 m)

Advection Third-order upwind scheme Third-order upwind (horizontal) and third-order direct-

space-time (vertical)

Vertical

diffusion

K-Profile Parameterization vertical mixing (Large et al.,

1994) with depth-dependent, time-invariant 3-D back-

ground diffusivity.

Gaspar et al. (1990) vertical mixing with time-invariant, 3-

D background diffusivity that is optimized using the adjoint

method.

Horizontal

diffusion

Smagorinsky-like formulation for anisotropic horizontal

viscosity. Gent-McWilliams (GM) isopycnal diffusion for

tracers to represent mesoscale eddy impact. Explicit sub-

mesoscale mixing enabled. GM diffusivity is 3.0x103 m2/s

at surface boundary layer and 0 at bottom.

Gent-McWilliams and Redi (GM-Redi) isopycnal diffusion

for tracers, representing mesoscale eddy impact on large-

scale ocean circulation. The 3-D parameters of GM-Redi

are optimized via the adjoint method.

Atmospheric

wind forcing

3-hourly JRA55 (1958-2018) 6-hourly ERA Interim with adjoint-method-based 14-day

atmospheric corrections.

Ice coverage Sea-ice simulated prognostically using the CICE model,

version 5.1.2 (CICE5, eight vertical layers) (Yeager et al.,

2022).

MITgcm sea ice model, viscous-plastic rheology on a C-

grid, zero-layer thermodynamics, optimized via SST adjust-

ment.

Riverine forc-

ing

JRA55 (1958-2018) Smoothed monthly-mean river discharge climatology

(Fekete et al., 2002).

Air-Sea gas

exchange

k = 0.251u2(Sc/660)−1/2, (Wanninkhof, 2014). k=0.337u2(Sc/660)−1/2, (Wanninkhof, 1992), modified

based on OCMIP results (Dietze and Oschlies, 2005).

Atmospheric

pCO2

Historical (1850–2014) and SSP3-7.0 (2015–2100) atmo-

spheric pCO2 (Eyring et al., 2016)

NOAA MBL (Andrews et al., 2014)

Tracers Alk, DIC + 30 other biogeochem. tracers (Long et al., 2021) Alk, DIC + 29 other biogeochem. tracers (Darwin)

Phytoplankton

model

3 explicit phytoplankton types (diatoms, diazotrophs, small

pico/nano phytoplankton), 1 implicit type (calcifiers), and 1

zooplankton type. Long et al. (2021)

5 phytoplankton types (diatoms, other large eukaryotes,

Synechococcus, low- and high-light adapted Prochlorococ-

cus) and two zooplankton types.

References Zhou et al. (2024), Yeager et al. (2022) Carroll et al. (2020), Zhang et al. (2018), Forget et al. (2015)
Table 1. Side by side comparison of the two biogeochemical models used in this study.
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2.4.1 Carbonate parameters

As a further reference point we also compared both models’ carbonate parameters to a data-based product. Experimental data

for global surface-ocean alkalinity (Alk), DIC and pCO2 were obtained from OceanSODA (Gregor and Gruber, 2021). The120

simulations with CESM2/MARBL and ECCO-Darwin also generated monthly-mean [Alk] and [DIC] fields throughout the

simulation. For analysis and comparison purposes, the data from ECCO-Darwin and OceanSODA were regridded onto the

OceanSODA grid, using nearest neighbor interpolation. For the latitudinal comparison of carbonate parameters (Fig. 6) the

Mediterranean Sea was excluded. Based on values of surface-ocean [Alk] and [DIC], as well as salinity, temperature and con-

centrations of borate, phosphate and silica, the full carbonate system was solved on the surface using PyCO2SYS (Humphreys125

et al., 2020) at monthly intervals, yielding values for [CO2], [HCO−3 ] and [CO2−
3 ]. The quantity ηmax = ∂[DIC]/∂[Alk] was

calculated using the exact equation (for derivation see Supplement and Humphreys et al. (2018))

∂[DIC]
∂[Alk]

=
[HCO−3 ] + 2[CO2−

3 ]
[HCO−3 ] + 4[CO2−

3 ] + [OH−] + [H+]) + [B(OH)−4 ][B(OH)3]/BT

(1)

where BT is the total borate concentration. The carbonate sensitivity ∂[DIC]/∂[CO2] was, likewise, calculated using an exact

equation (for derivation see Supplement):130

∂[DIC]
∂[CO2]

=
[DIC]
[CO2]

− ([HCO−3 ] + 2[CO2−
3 ])

[CO2]
∂[DIC]
∂[Alk]

. (2)

2.5 Ablation of biological model

Another way to compare models is to conduct what is known in the machine learning community as “ablation". Here, parts of

a model are deliberately turned off or changed, and the simulations are repeated to examine their effects on the outcomes. We

take this approach here with the biogeochemical model of ECCO-Darwin, which comprises 31 biogeochemical tracers, which,135

in addition to Alk and DIC, include Oxygen, Nitrate, Nitrite, Ammonia, Phosphate, Iron, Silica, Dissolved Organic Carbon and

multiple phytoplankton functional type tracers among others. These tracers are used to simulate biological activity, nutrient

dynamics and carbonate precipitation and dissolution, in addition to inorganic processes such as gas exchange. Since these

processes can consume or produce CO2, while in principle also being rate-dependent on the state of the carbonate chemistry, it

is conceivable that they influence gas exchange and OAE equilibration.140

We thus created an ablated version of the ECCO-Darwin in which the marine ecosystem component was turned off in

the code, i.e. an ocean without the soft tissue pump or calcifying activity. The only processes that remained active were

the surface gas exchange, the advection of the tracers Alk and DIC, and the calculation of the carbonate system and pH.

Alkalinity injections in eight different locations (plus an unperturbed reference run) were examined in this way, each with one

run conducted with, and one run conducted without biological processes enabled. Note that we did not spin up the system145

anew, or let the system reequilibrate into a new steady state which lacks the soft tissue pump and its associated DIC gradients

before running the simulations. This was done intentionally to avoid changing the background carbonate state of the surface

ocean, which would undoubtedly change the uptake kinetics. Instead, this experiment asks more narrowly: does the simulation
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of biological processes directly influence the CO2 uptake curves on a short timescale (15 years)? The sudden loss of the

biological pump at the beginning of the simulations of course causes a steady departure of DIC from the regular ECCO-150

Darwin trajectory; however those changes are still relatively small over the 15-year model period, such that the background

ocean state still corresponds well to the full ECCO carbonate state.

2.6 Plume-specific intermodel differences

In addition to determining the overall differences and variance in CO2 uptake kinetics between the two models, it would be

valuable to understand which parameterization differences contribute the most to these differences. Two major processes con-155

ceivably affect the CO2 equilibration dynamics: Firstly, the parameterization of gas transfer (i.e., wind speeds, gas-exchange,

carbonate chemistry parameters and biological model) directly affect the equilibration process. Secondly, the trajectory of the

plume determines the surface-ocean dilution (since only alkalinity in contact with the atmosphere contributes to gas exchange)

and the horizontal trajectory, which determines which gas exchange conditions the plume will encounter at the surface.

In theory, one could repeat each set of simulations, while replacing just one aspect at a time, effectively morphing one model160

into the other, step by step, noting which substitutions contribute the most to recapitulating the CO2 uptake curve of the other

model. However, this comes at a high computational price and would be infeasible for expensive, high resolution models.

Instead, we take a different approach, whereby the effective equilibration rate constant is "reconstructed" from its component

terms offline, which include the surface dilution, surface distribution of the plume and the gas-exchange and carbonate param-

eters, as detailed below. In this framework one can then directly examine the sensitivity with respect to any given parameter.165

2.6.1 Effective rate constant of equilibration

Addition of alkalinity to seawater shifts the carbonate equilibrium towards carbonate and away from CO2, thereby reducing its

partial pressure pCO2, increasing its pH and causing additional uptake of CO2 from the atmosphere.

If allowed to fully re-equilibrate with the atmosphere (not accounting for reservoir feedbacks (Tyka, 2025)) the addition of

a small quantity ∆[Alk] will eventually increase the total DIC of the water parcel by ∆[DIC]eq:170

∆[DIC]eq = ∆[Alk]
∂[DIC]
∂[Alk]

∣∣∣∣
pCO2

(3)

where the partial derivative ηmax = ∂[DIC]/∂[Alk] is taken at constant pCO2.

After alkalinity is introduced to the surface ocean, but before full equilibration is complete, there is therefore effectively a

deficit in [DIC] relative to its final equilibrated state, termed [D](t), which varies with time t.

[D](t) = ∆[DIC]eq −∆[DIC](t) (4)175

As time evolves, the ocean absorbs additional CO2 from the atmosphere, which reduces the remaining DIC deficit [D](t)

and the surface pCO2 difference between the perturbed and reference simulation. For the ocean models examined in this paper,
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the CO2 gas exchange parameterization assumes that the flux of CO2 across the air-sea interface, FCO2 , is proportional to the

partial pressure difference:

FCO2 = kα(pCOatm
2 − pCOocn

2 ), (5)180

where α is the solubility of CO2 in seawater (mol m−3 atm−1) and k is the effective gas transfer velocity (m s−1). Typically,

k is parameterized as a function of wind speed squared kw ∝ U2 (Ho et al., 2006; Wanninkhof, 2014) and weighted by the

sea-ice cover fraction αice, where it is assumed that complete sea-ice cover fully suppresses air-sea gas exchange.

k = (1−αice)kw (6)

This leads to the following differential equation describing the equilibration of any induced DIC deficit [D](t) over time185

(Zeebe and Wolf-Gladrow, 2001; Zhou et al., 2024):

d
dt

[D] =−k

β

µ

z0
[D], (7)

where µ is the surface-ocean dilution factor, i.e., the fraction of the DIC deficit in the exchanging surface grid cells of the

model, of depth z0. The factor β = ∂[DIC]
∂[CO2]

accounts for the fact that the effective capacity of the ocean for CO2 is vastly

increased due to the fast carbonate equilibrium with bicarbonate and carbonate ions and depends on the local carbonate system190

state and varies over the global ocean; a typical value is around 10–20 (Zeebe and Wolf-Gladrow, 2001). This coupling (which

is absent for other gases) significantly increases the equilibration time of CO2. Taken together, the overall effective rate constant

for this first order equilibration is r = k
β

µ
z0

.

Since in the simulations examined here the excess alkalinity is not added uniformly but at a single polygon location, the

equilibration process is spatially confined to the extent of the plume. As the plume spreads, the parameters determining the rate195

constant will change, and they potentially change differently in different models.

To create a framework in which to quantify the localized impact of parameter differences on the overall equilibration process,

we make the reasonable assumption that the total deficit equilibration rate d
dt [D] can be expressed as a sum over all the

contributing surface-ocean grid cells:

d
dt

[D] =
∑

ij

−kijµij

βijz0
wij [D], (8)200

where the variables i and j sum over the surface grid and wij weights the contribution of any particular surface-ocean grid

cell to the overall equilibration process, such that that total sum of weights equals one: (
∑

ij wij = 1). Note that the surface-

ocean parameters kij and βij depend on latitude, longitude and time but are independent of the injection plume or its location.
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In contrast, µij and wij are dependent on latitude, longitude and time as well as the spatial distribution of the particular

spreading alkalinity plume. Written as above, one can consider the expression of the overall effective rate constant r as being:205

r = z0

∑

ij

kij

βij
µijwij (9)

Ideally, the weights wij would be based directly on the remaining deficit [D] in each surface cell, calculated by Eq. 3 and 4.

However, a conceptual problem with using the deficit for the spatial weighting is that the remaining deficit and its distribution

depend on the gas exchange itself up to that point in time. Therefore, using it to estimate the rate constant does not cleanly

factor the effects of plume trajectory and gas exchange. For example, when estimating the effect of changing the gas-exchange210

parameterization while keeping the plume trajectory constant, representing the trajectory by the deficit from a given simulation

leaks some of the gas exchange behavior from that simulation into the comparison. An additional issue we found with using

the deficit for weighting, is that it numerically unstable when calculating ratios between rate constants from two different

simulations (see below), because the values of [D] can become extremely small. This is because it naturally tends towards zero

as the equilibration proceeds, and can even become slightly negative (due to processes other than equilibration changing [Alk],215

[DIC] and ∂[Alk]/∂[DIC] in the Lagrangian frame of the plume).

A more practical way to assign weights to the alkalinity plume is to set them to the fraction of total excess alkalinity (equi-

librated and unequilibrated) contained in any given location. Unlike the deficit, the excess alkalinity represents an essentially

conservative tracer which maps out the transport of the plume, unaffected by gas exchange. Here, wij captures the horizontal

trajectory of the plume while µij captures the vertical dilution of the plume. The product µijwij is equal to the fraction of the220

total alkalinity currently resident in the surface cell (i, j). The disadvantage is that the spatial alkalinity distribution does not

exactly mirror the distribution of the deficit, such that the weighting should be considered approximate.

2.7 Comparing the rate constant from two different simulations

Using this framework, we wish to gain insight into the relative contributions of the above parameters on the overall gas

exchange rate. In other words, given a particular plume trajectory, how much does the choice of parameter set k or β change225

the rate constant of the overall equilibration process? Conversely, given a particular parameter set, how much does the trajectory

of the plume change the rate of equilibration?

To answer these questions, we define a simple metric which compares the estimated equilibration rate constant r from two

simulations A and B into a single quotient Q.

Q =
rA

rB
(10)230

If log(Q) is greater than 0 then the equilibration is faster in simulation A, else it is faster in simulation B. Note the Q varies

over time, as the parameters and the plume are both time-dependent properties (i.e. Q(t) = rA(t)/rB(t)). This approach is

appealing because it expresses the differences in the equilibration rate constant in a unitless, relative way. As such, however, Q

does not resolve which contributors to rA or rB are responsible for the majority of the differences.

9
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2.7.1 Differences due to the different k and β parameterizations.235

To extract this information we define a set of different metrics where all the terms are set equal except for one parameter,

which is singled out for comparison. That one parameter is taken from model A in the numerator of the quotient Q and from

model B in the denominator of the quotient Q. The ratio of the resulting rate constants then gives a measure of how much the

equilibration rate is influenced by swapping out a particular parameter.

For example, consider the expression:240

Qk =

∑
ij kA

ij
µA

ijwA
ij

βA
ij

∑
ij kB

ij

µA
ijwA

ij

βA
ij

(11)

Here, every variable is taken from simulation A, except for the parameter kij which comes from simulation A in the numer-

ator and from simulation B in the denominator. In other words, the numerator of the quotient Qk is simply the rate constant

estimate for simulation A. The denominator is identical, except that the parameter kij has been swapped out for that from a

different model, namely from B. This metric Qk therefore quantifies the influence the gas transfer velocity parameterization245

with respect to a given plume (here the plume from simulation A). Note that because z0 is a constant and is equal in both

models being compared (zo=10 m) it cancels in these quotients.

The equivalent metric Qβ quantifies the influence of the carbonate system model on the rate constant of a given plume.

Finally, the effect of sea-ice cover alone can be isolated by changing only αice in the expression for k, yielding Qice. The

results for metrics Qβ , Qice and Qk are shown in Figures 9 and 10. We computed them for each of the three plumes from250

CESM2/MARBL (1999 injections) and ECCO-Darwin (for 1999 and 1992 injections). For purposes of this comparison all

parameters fields were regridded onto the CESM2/MARBL grid and the sums were computed over that grid.

2.7.2 Differences due to variations in the plume trajectory.

An orthogonal set of metrics examines not only the choice of gas-exchange parameters but the sensitivity of the exchange

rate to the plume trajectory itself. For example, keeping the plume-independent parameters kij and βij constant across the255

expression for Q, but instead using plume weights from either model run, yields:

Qplume =

∑
ij

kij

βij
µA

ijw
A
ij

∑
ij

kij

βij
µB

ijw
B
ij

. (12)

Qplume gives the ratio of the rate constants between models A and B, solely due to the difference in which the plume is

modelled, pretending the actual gas exchange parameters were the same. For example, if the plume represented by wA
ij is

transported into a region of higher wind speeds, as opposed to the plume represented by wB
ij , then log(Qplume) would be a260

greater than 0. The common values for kij and βij could be taken either model, or an average could be used. In our case, we

opted instead to use experimentally determined values taken from the OceanSODA dataset and regridded to the CESM grid.
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Qplume is sensitive both to differences in horizontal spread and vertical distribution of the plume. A slightly different metric

Qsurf can be defined, which assumes that the vertical distribution is exactly equal in both simulations. Here the µ parameters

are simply set to a constant for both numerator and denominator and thus cancel out:265

Qsurf =

∑
ij

kij

βij
wA

ij
∑

ij
kij

βij
wB

ij

(13)

Conversely, the metric Qdepth isolates the effect of downwelling by assuming that the horizontal spread is uniform in latitude

and longitude, by using the following weighting:

Qdepth =

∑
ij

kij

βij
µA

ij
∑

ij
kij

βij
µB

ij

(14)

This metric focuses of differences in the rate constant due solely to how much alkalinity remains in the surface.270

2.7.3 Distinguishing effects of wind speed vs. effects of carbonate system parameterization

If the simulated plume takes a different trajectory, it will encounter different surface-ocean conditions which can alter the

equilibration speed, as captured by Qsurf . These differences arise either from different wind or different carbonate system

conditions. To disambiguate between the two, the following two metrics can be useful:

Qsurf,k =

∑
ij kijw

A
ij∑

ij kijwB
ij

, (15)275

which is computed just like Qsurf but the β parameter used is simply the spatial average over all βij . Because it becomes a

constant, independent of i and j, it can be taken outside of the sum and consequently cancels out. Likewise

Qsurf,β =

∑
ij

1
βij

wA
ij∑

ij
1

βij
wB

ij

(16)

is computed by using the spatial average over the kij values, effectively eliminating it from the fraction. By smearing out the

value of either variable, any difference in the rate constants can now be attributed solely to the other. As above, values for kij280

and βij are taken from the OceanSODA (Gregor and Gruber, 2021) dataset. The results for metrics Qdepth, Qsurf , Qsurf,k

and Qsurf,β are shown in Figures 11 and 12.

11

https://doi.org/10.5194/egusphere-2025-3713
Preprint. Discussion started: 27 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 1. Comparison of OAE uptake efficiency for CESM2/MARBL and ECCO-Darwin model for 12 selected locations.

3 Results

3.1 Comparison of η(t) curves

Figure 1 shows a comparison of the OAE equilibration curves (η(t)) for 12 different locations, obtained from one-month285

pulse additions of alkalinity in January. For the ECCO-Darwin model, two runs were conducted at each location in 1992

and 1999 to obtain a measure of interannual variability. In many locations, substantial differences between the models are

observed, typically larger in magnitude than the interannual difference between the two ECCO-Darwin model runs. In general,

the ECCO-Darwin model appears to predict faster equilibration than CESM2/MARBL, the only exception being the alkalinity

release in the Kuroshio Current. The largest differences are observed on the west coast of the Sahara, off the coast of Oman290

as well as releases in the North Atlantic Ocean. The most extreme difference is observed at the Oman location in the Indian

Ocean, where the two models disagree up to 50% over the majority of the simulation time, with the discrepancy reducing to
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25% by 15 years. Locations near deep-water formation areas, such as offshore of Iceland and Norway, also give substantially

different results, with CESM2/MARBL having 25% lower uptake compared to ECCO-Darwin.

In all locations, uptake differences are most pronounced in the first 7 years after release, where η(t) can vary up to 50% in295

extreme cases (such as Oman) but generally differs by ≈ 10–20%. After 7 years, the equilibration curves begin to converge

again, as the equilibration proceeds towards the theoretically maximal value of ≈ 0.85, the value of which is determined solely

by the carbonate chemistry equilibria (Renforth, 2012). This suggests that the models have relatively good agreement in terms

of carbonate chemistry, which is expected. However, this convergence is not observed in the North Atlantic Ocean, where the

equilibration differences developed by year 7 do not begin to dissipate. In deep-water formation areas, any differences in the300

initial rate of equilibration have an outsized effect on the progress of the overall equilibration state because equilibration ceases

to make progress once the excess alkalinity has been subducted to depth and is isolated from the mixed layer and atmosphere. In

other areas of the ocean however, alkalinity is not subducted deep enough and can be transported back to surface-ocean waters

on a 5–20 year timescale (Zhou et al., 2024), accounting for the continued equilibration and convergence of the equilibration

curves, despite the initial divergence.305

3.2 Comparison of the interannual variability

As found by a previous study (Yankovsky et al., 2025), interannual variability within a model is generally non-negligible,

making comparison between single runs of different models less statistically meaningful. In order to gain a little insight into

the significance of the inter-model differences, we repeated the ECCO-Darwin runs for two different years (1992 and 1999), see

Fig. 1. We found that some locations, such as the Amazon and Kerguelen, exhibited virtually no variability, while subtropical310

locations such as Hawai‘i and the west-Saharan coast have substantial differences. Consistent with prior work (Yankovsky et al.,

2025), interannual variability itself varies between locations. In general, the interannual differences were significantly smaller

than the inter-model differences. A notable exception was the alkalinity release south of Hawai‘i, where the two runs diverged

considerably; here the CESM2/MARBL run predicts an CO2 uptake curve intermediate between the two ECCO-Darwin runs.

To further investigate the interannual variability and compare to the previous study of Yankovsky et al. (2025) we repeated315

the same runs in four of the same locations and in the same years (2000, 2003, 2006, 2009 and 2012) as in their study, with all

injections occurring in January. The alkalinity injections occurred in the same geographical areas (as far as the different grids

allowed). The results are shown in Figure 2.

First, we note that the amount of interannual variability in ECCO-Darwin and in CESM2/MARBL are correlated, with the

largest amount observed in the Gulf Stream location, although it is larger in magnitude in ECCO-Darwin than in CESM2/MARBL320

for all four cases. Secondly, it is evident that the model differences are considerably larger than interannual variability in all four

cases, validating the results from Figure 1. For all four locations, we found that ECCO-Darwin model resulted in substantially

faster equilibration during the first 5 years compared to CESM2/MARBL, consistent with our results in the other 12 locations

presented earlier. Similar to the earlier experiments, there also appears to be a convergence towards η(t)≈ 0.85 between equili-

bration curves from alkalinity injections of different years, in both models. An interesting case is the injection north of Hawai‘i,325

13

https://doi.org/10.5194/egusphere-2025-3713
Preprint. Discussion started: 27 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 2. Five year runs with pulse injections in January of 2000, 2003, 2006, 2009 and 2012, compared with results from Yankovsky et al.

(2025) for the same locations and years.

which exhibited relatively small interannual variability in ECCO-Darwin as well as CESM2/MARBL. This is in stark contrast

to the injection south of Hawai‘i (Fig. 1d). It is unclear whether the latter is an outlier or whether the interannual variability is

much greater south of Hawai‘i.

3.3 Subduction

The equilibration process is dependent on a balance between the rate of CO2 exchange at the surface ocean and that of subduc-330

tion processes transporting DIC-deficient water parcels from the surface to depth.

Because the excess alkalinity can only contribute to enhanced CO2 uptake in the surface-ocean layer of the model, the

fraction of the excess alkalinity retained in the surface ocean is an excellent proxy for monitoring the subduction process of the

plume (Zhou et al., 2024). The surface-ocean grid cell in both models is 10-m thick, allowing for direct comparison. Figure 3

shows the surface-ocean fraction of excess alkalinity over time for all 12 locations tested.335

We find that in locations where there is generally better agreement between the models in terms of CO2 uptake (Fig. 1),

the agreement in terms of surface-ocean alkalinity (Fig. 3) is also better. Conversely, locations with vastly different subduction

behavior such as Oman, Norway and west Sahara also have markedly different OAE uptake behavior, with lower modelled
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Figure 3. Comparison of the surface fraction of excess alkalinity for CESM2/MARBL and ECCO-Darwin for the 12 tested locations.

surface-ocean alkalinity resulting in much slower CO2 equilibration. This striking correlation suggests that vertical transport is

likely the largest contributor to inter-model differences.340

The most pronounced of these differences in our dataset is found at the Oman location. Here, CESM2/MARBL predicts

rapid subduction with equilibration slowing significantly after the first two years but continuing at a slow pace, due to gradual

remixing of the subducted excess alkalinity. In ECCO-Darwin however, a very different kinetics is observed. Here, subduction

occurs much more gradually and the equilibration curve does not exhibit a double exponential shape with two characteristic

time constants, as was found by Zhou et al. (2024). In the west Sahara location, both models exhibit the steep subduction345

followed by rebound, but unlike in the Oman coast; in ECCO-Darwin the rebound is considerably more dramatic and on

a different timescale. Overall equilibration can proceed further at an earlier stage and surface-ocean alkalinity stays higher

in ECCO-Darwin than in CESM2/MARBL, except in years 2–5. At the Norway coast release location, both models predict

excess alkalinity being lost to depth, due to the nearby deep-water formation region. However, the effect is much stronger in

CESM2/MARBL, where η(t) reaches 0.52 at most, compared with ECCO-Darwin, where it reaches 0.64 (Fig. 1h).350
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Figure 4. Comparison of OAE equilibration curves from near-coast vs. offshore alkalinity additions.

Figure 5. Comparison of surface-ocean excess alkalinity fraction for the same locations as in Fig. 4.

3.4 Coastal locations

To investigate the effect of near-coast ocean dynamics, which could differ substantially between the two models due to their

different horizontal grid resolutions and representation of lateral fluxes, we chose four of the earlier locations and repeated

the comparisons in a nearby polygon further out in the ocean. The results are shown in Figure 4. We found that in all four

cases, the agreement between the two models is considerably greater for offshore locations than for near-shore locations.355

Furthermore, the interannual variation between the ECCO-Darwin runs conducted in year 1999 and 1992 is also reduced in

offshore locations compared to their respective near-shore locations. For all four location, the final values of η(t) at 15 years

agreed within ±0.025, but varied as much as ±0.1 for the equivalent near-shore location. These results are consistent with

the idea that the coastal 3-D ocean dynamics are complex and difficult to capture correctly in coarse-resolution ocean models,

and may differ more between models compared to simulation of open-ocean waters. In particular, one may expect that lower-360

resolution models might perform more poorly in the near-coast regimes, and that only higher-resolution models can hope to

resolve the complex coastal dynamics. Since near-coast dynamics could lead to substantial upwelling or downwelling currents

and intense mixing, such differences would be particularly important for OAE equilibration, since only surface-ocean alkalinity

can contribute to CO2 uptake.
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We strengthen this hypothesis by comparing the surface-ocean alkalinity fraction for the same four location pairs (Fig 5). In365

all four cases, the difference in total excess surface-ocean alkalinity proceeds much more similarly in both models compared

to each respective near-coast location. This confirms that near-coast subduction modelling is of primary importance in order

to predict the equilibration of near-coast releases. Given that near-coast release of alkalinity is likely to be more economically

favorable, this points to a need for greater model certainty in such complex flow regimes. However, the two models we have

compared differ in both resolution and parameterization such that we cannot disambiguate which aspect is responsible for the370

observed differences. Xie et al. (2025) recently reported comparisons between different resolution versions of the same model

and found relatively small differences between simulations at 1° and 0.1° resolution; however, locations closer and further from

the coast were not explicitly compared.

3.5 Carbonate chemistry

The carbonate chemistry model, in particular at the surface ocean, plays an integral role in the modelling of OAE equilibration.375

We therefore compare several key quantities between different models, as well as from the data-based OceanSODA product

(Gregor and Gruber, 2021) in Figure 6.

Starting with the basic carbonate system tracers [DIC] and [Alk], we find significant differences between the models across

latitudes. Compared to OceanSODA, CESM2/MARBL has consistently higher values for both parameters across nearly all

latitudes (Fig. 6a,b). ECCO-Darwin exhibits more closely aligned values, although slightly lower than OceanSODA in the380

near-equatorial latitudes. In the Arctic Ocean however, ECCO-Darwin begins to deviate from the experimental data, while

CESM2/MARBL agrees much more closely. However, because [DIC] and [Alk] have compensatory effects on pH and pCO2,

the differences in pCO2 are somewhat smaller, with the models showing better agreement with each other and with Ocean-

SODA, and mean discrepancies on the order of 10–20 ppm. (Fig. 6d). For comparison the sea-surface temperature (Fig. 6c)

exhibits considerably closer agreement between the two models.385

Two important sensitivities are of particular importance for OAE. In the short term, the fact that CO2 is in comparatively fast

equilibrium with bicarbonate ions, vastly increases the capacity of seawater to absorb CO2, but also increases the e-folding time

for air-sea CO2 equilibration. The term ∂[DIC]/∂[CO2] is a key sensitivity which quantifies this effect (Middelburg et al.,

2020; Zeebe and Wolf-Gladrow, 2001). It is therefore an important parameter to compare between model implementations.

Figure 6e shows its mean values across the latitudes, with a larger value leading to slower equilibration. Generally there390

is quite good agreement, with both models slightly overestimating this sensitivity compared to OceanSODA and therefore

overestimating the equilibration e-folding times. The deviation is up to 8–10% for CESM2/MARBL and 2–4% for ECCO-

Darwin, with commensurate deviations expected for the equilibration rate constant.

In the long term, after extensive mixing, the equilibration curves will approach a value given by the sensitivity of the

carbonate system [DIC] to increases in alkalinity, typically written as ∂[DIC]/∂[Alk], since it determines the amount of DIC395

deficit created per unit alkalinity added. The long-term effect on radiative cooling effected by OAE, given the typical lifetime

of CO2 in the atmosphere, occurs on timescales of hundreds of years, by which point alkalinity releases from most locations
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Figure 6. Comparison of surface-ocean carbonate chemistry from CESM2/MARBL model(blue) and ECCO-Darwin (orange), as well as

gridded data calculated from OceanSODA (Gregor and Gruber, 2021) (black/hashed) using PyCO2Sys. The pale colored or hashed area

denote the 5th and 95th percentiles for each of the three datasets. For the computed meridional averages, the marginal seas were excluded

(in particular the Mediterranean, Black, Red, and Baltic seas, the Hudson Bay and the Persian Gulf). Values are time-averaged and plotted

against latitude, the spatial axis with the greatest variance. Panels (a) and (b) show [DIC] and total [Alk]. Panel (c) shows temperature.

Panels (d)–(f) show derived quantities calculated using PyCO2SYS: (d) pCO2, (e) the carbonate sensitivity β = ∂[DIC]/∂[CO2] and (f)

ηmax = ∂[DIC]/∂[Alk]. 18
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Figure 7. Comparison between the gas exchange velocity k for boreal winter (a) and summer (b) of the year 1999 between CESM2/MARBL,

ECCO-Darwin and OceanSODA.

(other than those near deep-water formation areas) will be thoroughly equilibrated. Thus, the end point of the equilibration, i.e.,

the value of ∂[DIC]/∂[Alk] is of long-term importance (Zhou et al., 2024; Renforth, 2012) and it is interesting to compare

this factor between models. Figure 6f shows that both models agree quite closely, with deviations on the order of a few percent.400

This suggests that the long-term CO2 predictions from both models are likely in very good agreement, even if the short-term

equilibration e-folding times may differ in each model. This is consistent with a general understanding that the ocean carbonate

chemistry is well understood and therefore not a major contributor to the final efficacy of OAE. It is also consistent with our

observation that the η(t) curves appear to converge in many locations towards the end of the 15-year period simulated here.

3.6 Wind speed405

Wind speeds play a central role in determining the speed of gas exchange (Meyer et al., 2018), as the gas transfer velocity kw is

typically parameterized as a function of the square of the wind speed (Wanninkhof, 2014). Figure 7 compares the k parameters

calculated for the two models being compared here and OceanSODA. The contribution of sea ice has been included in this

comparison. The values for k agree in general, but the details differ substantially. In the boreal summer for example, in the

subtropical zones around ±18°, ECCO-Darwin has k parameters that are nearly 40% higher than those in CESM2/MARBL.410

This can be partially explained by the different gas exchange parameterizations in the two models, as noted by Xie et al.

(2025). ECCO-Darwin uses the older, but widely adopted parameterization from Wanninkhof (1992) with a higher coefficient

of 0.337, while CESM2/MARBL uses a more recent estimate from Wanninkhof (2014) with a coefficient of 0.251, about 25%

lower. However, the observed differences in k differ in a more complex way than a simple scaling: the k values in ECCO-

Darwin are higher than those from CESM2/MARBL in equatorial regions but lower in polar regions, therefore affecting415

alkalinity releases at different latitudes in different ways as will be shown later.
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Figure 8. Ablation of biological modelling: The runs labelled “ECCO-Darwin NoBio" have been conducted without biological processes —

only the gas-exchange model was enabled.

3.7 Biological processes

As described in the methods, we examined the importance of simulating the soft tissue pump and other biological processes

on the equilibration curve by comparing the results of the regular ECCO-Darwin model with an ablated version in which

computation of these systems was switched off. The results are shown in Figure 8.420

Despite the rather abrupt perturbation to the model, the results show virtually no difference in the equilibration curves with

or without biological processes enabled. Despite the sudden removal of biological activity, which causes a steady change in

surface DIC and Alk, these changes are virtually equal in the perturbed and the reference simulations and thus for the purpose of

calculating the ∆DIC induced by the alkalinity pulse, they appear to cancel. This suggests that OAE impulse response functions

can be simulated relatively accurately without reliance on detailed biological models, provided the background carbonate state425

(vertical DIC and Alk gradients) is accurate to start with. A small difference was observed at the Oman location, however its

root cause could not be determined.

Of course, the quantities of alkalinity added in these simulations are quite small and ocean parameters such as pH and

carbonate saturation are not dramatically changed. In turn, the rate of biological processes is not impacted significantly. For

real-world deployments of OAE this situation may be quite different, and these results here do not apply to the question430

whether large-scale deployments of OAE could affect biological processes, or cause secondary positive or negative CO2 uptake

feedbacks. However, the shape of the OAE efficiency curves is, in principle, independent of the quantity added (Tyka, 2025),

so in that sense the efficiency curves appear to be indeed relatively independent of biological activity. It should be noted that
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29 out of 31 tracers were turned off for this experiment, which reduces the computational load substantially. Given the small

impact of biology relative to the large impact of circulation, and in particular vertical processes and subduction, it is likely435

beneficial to focus computational expenditure on higher resolution models rather than sophistication of biological modelling

for the purpose of calculating accurate OAE impulse response functions.

3.8 Interaction of plume trajectory and surface exchange parameters

Thus far the analysis has focused on the various aspects of the ocean models which conceivably contribute to CO2 equilibration

dynamics, one at a time: overall surface-ocean dilution and parameterization of gas transfer (i.e., wind speeds, carbonate440

chemistry parameters and biological processes. However, for any particular release location, the relative importance of these

parameters is dependent on the particular trajectory the DIC deficient plume takes, for example, which gas transfer velocities

will be encountered by the space-time evolving plume. To disentangle these effects, at least to the extent feasible, we devised

a more specific approach which calculates the relative change in the equilibration rate constant based on changing one aspect

of the plume at a time as described in detail in the methods section. There are two different approaches this analysis takes.445

First, we can investigate the effect of changing parameters sets or individual parameters, given a fixed plume trajectory. This

investigates the parameterization of the gas exchange, separate from the question of how each model predicts the trajectory of

any given plume. As describe in the methods, each parameter can be considered in isolation.

Second, we can investigate the effect of different plume trajectories intersecting a constant set of gas exchange parameters

(k and β). This investigates the importance of the predicted flow pattern of each model, separate from the parameterization450

itself. Again, these effects can further be dissected into contributions from each parameter in turn, by spatially averaging the

other parameters to remove their dependence on the plume trajectory.

Figure 13 illustrates an example of alkalinity release near Alaska where three different plume trajectories are overlaid over

the gas exchange parameter k. One can clearly see how equilibration will speed up if the plume intersects the high wind speed

regions in the North Pacific and avoids the sea-ice covered regions north of the Bering Strait. Likewise, changes in the k455

parameter would only influence the equilibration if the changes occur along the actual DIC- deficient plume trajectory.

3.8.1 Comparing different parameters sets against a fixed plume trajectory

Figures 9 and 10 show the changes in the equilibration rate-constant with respect to changing the β, sea-ice coverage and k

parameterization against a set of fixed plume trajectories. This analysis explicitly excludes differences in the model-dependent

circulation flow and focuses on the sensitivity of the equilibration rates with respect to different gas-exchange parameters460

themselves.

The influence of the carbonate system (specifically β) is relatively modest, ±10% at most, especially once the plumes

have spread widely. However, early, when the plume is more localized, the difference can be significant in some locations,

with changes on the order of up to ± 35% in year 1–2. This is consistent with earlier observations that the carbonate system

description is very similar in the different models. Probing this difference plume-by-plume however shows that in some cases465
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Figure 9. High-latitude locations: relative difference in the equilibration rate constant for a given plume (taken from CESM2/MARBL

1999 (blue), ECCO-Darwin 1999 (orange), or ECCO-Darwin 1992 (green)) for locations a-f, if a given gas-exchange parameter (panel

columns i-iii, β, ice coverage and k (which includes the effect of ice), is changed from the CESM2/MARBL parameter set to the ECCO-

Darwin parameter set. Values above 0% indicate equilibration is faster in the ECCO-Darwin gas-exchange parameters set compared to the

CESM2/MARBL parameter set.
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Figure 10. Near-equatorial locations: relative difference in the equilibration rate constant for a given plume (taken from CESM2/MARBL

1999 (blue), ECCO-Darwin 1999 (orange), or ECCO-Darwin 1992 (green)) for locations a-f, if a given gas-exchange parameter (panel

columns i-iii, β, ice coverage and k (which includes the effect of ice), is changed from the CESM2/MARBL parameter set to the ECCO-

Darwin parameter set. Values above 0% indicate equilibration is faster in the ECCO-Darwin gas-exchange parameters set compared to the

CESM2/MARBL parameter set.
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differences in carbonate parameterization can nevertheless affect the resultant CO2 equilibration behavior. In particular on

the east coast of North America the carbonate parameterization of ECCO-Darwin predicts a 60% faster equilibration than in

CESM2/MARBL in the first year (Figure 9 a,i). Similar but smaller deviations seen in the northern locations such as Alaska,

Iceland and Norway. This discrepancy is much smaller for the more equatorial locations (less than 10%) but in the same

direction. These observations are consistent with the earlier comparison of β across latitudes (see Fig. 6 e), where β in ECCO-470

Darwin is consistently smaller than in CESM2/MARBL, resulting in faster equilibration.

The influence of the sea-ice parameterization is evident for all high-latitude locations (Figure 10, a–f, ii), as any part of

the plume which is covered by sea ice is excluded from gas exchange; in particular Norway, followed by Alaska and Iceland,

exhibit the highest sensitivities, with strong seasonal variation. However, the difference in ice coverage between models appears

to be seasonally compensating, such that the 12-month moving average is generally close to 0%. In the Norway release location475

however, there appears to be a net bias, where the ECCO-Darwin ice parameterization appears to predict faster equilibration,

i.e., lesser sea-ice coverage for the northbound part of the plume. As expected, for more-equatorial release locations, ice

coverage has no influence (Figure 10, a–f, ii), except for the Gulf of Mexico, where towards the end of the trajectory the

alkalinity reaches the North Atlantic Ocean.

Finally, the wind parameterizations appear to play the largest role in determining equilibration rates (in general, second only480

to vertical transport, see Figure 11). Interestingly, in high-latitude locations the equilibration appears to be consistently slower

in ECCO-Darwin, while for near-equatorial locations it appears to be somewhat faster. This is consistent with the general

observation that kw values from ECCO-Darwin exceed those from CESM2/MARBL in the tropics, but are generally lower

than those from CESM2/MARBL towards the poles (see Figure 7), a pattern especially pronounced in the boreal winter. The

most extreme difference is found in the Norway release location, followed by the Alaska location, where considerably slower485

winds are encountered in the ECCO-Darwin 1999 run, compared to CESM2/MARBL. The high sensitivity to sea-ice and

wind parameters means that such northern locations are among the more difficult to predict correctly. However, using satellite

observational data, sea-ice coverage is relatively easy to monitor and wind speed information is moderately easy to obtain from

reanalysis products, such that in a real MRV scenario these parameters could be constrained from observation in near real time,

in a post-diction simulation.490

3.8.2 Comparing different plume trajectories against fixed parameter sets

Figures 11 and 12 show the change in the rate constant in the ECCO-Darwin runs (1999 and 1992), relative to CESM2/MARBL,

when the alkalinity plume from either model run is applied to a constant set of k and carbonate parameters. The latter were taken

from the OceanSODA dataset. Values above 0% indicate faster equilibration in ECCO-Darwin compared to CESM2/MARBL.

These results probe specifically the sensitivity of CO2 equilibration on the trajectory of the alkalinity plume, rather than the495

parameters themselves.

The first column examines the effects of the resident surface alkalinity, Qdepth, similar to Figure 3. We find that the effects

of vertical transport have by far the largest effect on the equilibration rate constant, especially during the first 4–5 years of

the equilibration process. ECCO-Darwin generally yields a higher proportion of alkalinity remaining in the surface layer and
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Figure 11. High-latitude release locations: Changes in equilibration rate constant caused by differences in plume dispersion. Gas exchange

parameters were set to values from OceanSODA while alkalinity plumes were taken from the CESM2 and ECCO runs, respectively. Plotted

values give the relative difference caused by the ECCO plume trajectory relative to the CESM2 trajectory (values larger than 0% mean that

the ECCO-Darwin plume causes faster equilibration). a) Only vertical dispersion. b) Only horizontal plume dispersion. c) Horizontal plume

dispersion, only with respect to wind and sea-ice cover. d) Horizontal plume dispersion, only with respect to carbonate buffer.
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Figure 12. Near-equatorial release locations: Changes in equilibration rate constant caused by differences in plume dispersion. Gas exchange

parameters were set to values from OceanSODA while alkalinity plumes were taken from the CESM2 and ECCO runs, respectively. Plotted

values give the relative difference caused by the ECCO plume trajectory relative to the CESM2 trajectory (values larger than 0% mean that

the ECCO-Darwin plume causes faster equilibration). a) Only vertical dispersion. b) Only horizontal plume dispersion. c) Horizontal plume

dispersion, only with respect to wind and sea-ice cover. d) Horizontal plume dispersion, only with respect to carbonate buffer.
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therefore faster equilibration. In several places, such as Norway, Gulf Stream, Oman and West Sahara, however, the difference500

in vertical distribution persists up to 15 years post release and beyond. Sustained equilibration rate differences up to 100% are

observed in some places and likely explain the bulk of the differences in the observed η(t) curves of Figure 1.

In some cases, such as Hawai‘i, there appear to be a large interannual difference in surface alkalinity from 1992 to 1999,

with the resulting η(t) taking on complex shapes (Fig 3d). For most of the remaining locations, however, there appears to be

relatively good agreement between the two ECCO-Darwin years examined, with moderate differences observed in Iceland,505

Norway, Alaska and Western Sahara.

The second columns of Figure 11 and 12 consider only the horizontal distribution of the plume, while keeping the surface al-

kalinity fraction equal, i.e. Qsurf . For the more equatorial locations (Fig. 12) only relatively small differences remain (±15%),

once the vertical alkalinity distributions are factored out, which quickly decay towards zero. In the set of high-latitude loca-

tions (Fig. 11) however, we observe several locations which exhibit a very significant influence of horizontal plume dispersal510

on the equilibration rate that the plume encounters, in particular Norway and Alaska, with the effect increasing in time as the

difference in the plumes increases.

In both these cases, there is also significant interannual variation in the horizontal dispersion case (columns 2–4), which

was not as evident when looking at the vertical dispersion case (column 1). In the case of the Norway release location, the

ECCO-Darwin 1999 trajectory appears to lead to a reduction of equilibration rate relative to CESM2/MARBL by up to 50% at515

its extreme, while the 1992 trajectory lead to an increase in the equilibration rate of up to 50%.

What causes such large sensitivities on plume trajectories? In extreme northern (and to a lesser degree extreme southern)

latitudes, the equilibration parameters k and β go through very significant changes with latitude (see Figures 6 and 7). In

addition, the sea-ice cover boundary is very near. Therefore, the precise trajectory a plume takes can have a very significant

effect on equilibration kinetics for release locations near such transition zones. On the contrary, releases for which the plume520

generally remains equatorial, where the equilibration parameters are more uniform, do not exhibit such sensitivities.

Figure 13 shows an example of such a situation. Three different plume extents are displayed over a background shading of

the k parameter. One can see intuitively how, depending on the extent to which the plume traverses the Bering straight into

sea-ice covered regions, or its southwards trajectory into or out of high-wind regions of the central North Pacific, the overall

equilibration rate constant can vary dramatically.525

The effects of the horizontal distribution can also be analyzed separately with respect to the plume encountering different

wind/sea ice (column 3, Qsurf,k) and carbonate conditions (column 4, Qsurf,β). In the near-equatorial locations, differences

in plume-encountered wind shear appear to make the majority of the contributions, with carbonate chemistry differences only

evident in the Japan and Oman release locations. The carbonate system parameter β is almost constant between the latitudes

-30◦ S and 30◦ N (Fig. 6. Unsurprisingly, for releases that are closer to the equator (Amazon, Hawai‘i, Western Sahara, Gulf of530

Mexico, Oman), changes in plume dispersion don’t change the effective β very much and correspondingly, Qsurf,β is close to

1.0. In high-latitude locations, the contributions are more equally shared (as both parameters go through significant latitudinal

changes), with slightly more sensitivity attributable to wind. For all parameters, seasonal variations are evident.
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Figure 13. Three different plume outlines overlaid on the k parameter in greyscale from OceanSODA(Gregor and Gruber, 2021) after a) 12

b) 36 and c) 72 month after alkalinity release near Alaska.

Overall, the difference in plume trajectory that appears to have the greatest effect on the overall equilibration is the vertical

alkalinity distribution (Qdepth). This sensitivity to vertical transport is not surprising because excess alkalinity can only drive535

ocean CO2 uptake while it is resident in the surface-ocean layer. Additionally however, it is likely that the data-driven param-

eterization of vertical transport is the least well constrained and thus the model-differences in vertical transport may also be

larger than horizontal differences.
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4 Limitations and Conclusions

Due to the complexity of the variables at play, the sheer number of different ocean models that have been developed and the540

lack of direct measurements of CO2 equilibration at basin scale, this work cannot possibly give a comprehensive conclusion

to the question of how accurate ocean models are at predicting OAE-based CO2 uptake. This paper is therefore intended as

a first preliminary exploration of the possible effects of different model parameterizations and hopes to serve as a starting

point for further research; many aspects and interesting questions have not yet been explored due to limitations in available

computing and analysis resources. All alkalinity releases were conducted in January, so further work remains to quantify how545

these discovered differences translate to other release months at various global locations. This is important, since previous work

has revealed considerable seasonal differences in uptake curves (Zhou et al., 2024; Suselj et al., 2025), plume trajectories, and

background air-sea equilibration timescales (Jones et al., 2014). Interannual variance was also only addressed minimally for

most locations, with only a small amount of insight gained for a selected few locations. The most significant limitation is of

course the fact that we were only able to compare two models; a large-scale OAE inter-model comparison is sorely needed to550

gain more insights into the model variance.

While the two models used here have somewhat different resolution (1° vs 1/3°) we are unable to disambiguate whether the

differences in plume trajectories arise from differences in forcing parameterization or the resolution itself. However, resolution

differences within the same model framework were recently studied by Xie et al. (2025) and relatively small differences were

found, suggesting that the strong differences observed in the present study arise from differences in the forcing and parame-555

terization, rather than the explicit grid resolution. However, there is the caveat that resolution hierarchies in other models may

exhibit more profound differences owing to grid resolution, depending on scale-dependent parameterization choices employed

as resolution changes. Further, Xie et al. (2025) only investigated resolution differences down to 0.1°, which may not be fine

enough to reveal the effect of complex coastal-ocean flows. Coastal areas are regions of intense submesoscale dynamics, known

to create higher vertical velocities, thus more research will be necessary to establish the importance of submesoscale-resolving560

simulation on OAE efficiency calculations.

We have compared OAE-based CO2 uptake curves for two different resolution models, the 1.0° CESM2/MARBL based

model used by Zhou et al. (2024) and the ECCO-Darwin 1/3° model, based on 12 pulse-release experiments conducted in both

models in the month of January at matched locations. The ECCO-Darwin-based experiment was also repeated in year 1992

and 1999. We find that significant and complex differences in the equilibration trajectories are evident in almost all locations.565

In general the ECCO-Darwin model predicts faster equilibration timescales than CESM2/MARBL. The most significant devi-

ations occur in the near-term (years 1–7) with a degree of convergence towards DIC/Alk≈0.85 observed in many but not all

locations. Near-coast locations were found to have greater disagreements than offshore locations.

We further examined the root causes of these differences, including primary differences in the gas-exchange parameterization

itself (wind speeds, sea-ice cover, carbonate parameters) and secondary differences in the flow field predicted by the various570

models. Overall, the largest contributor was found to be the vertical transport and mixing of surface alkalinity, consistent

with results from Suselj et al. (2025). The second-largest contributor was the wind parameterization. More minor changes
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arise from differences in the carbonate system parameters, which were found to be more aligned between models. Horizontal

plume trajectories also were found to play a role, however this varied considerably from location to location, with some of

the high-latitude locations being quite sensitive to different plume trajectories, while equatorial locations were not. The role of575

biological activity was assessed, and its effect on the shape of the equilibration curves was found to be almost negligible.

Given the variations observed, even when only examining two models, much more experimental data will be needed to con-

strain simulations and narrow the variance observed in OAE uptake predictions. In particular, it appears that vertical transport

is not sufficiently constrained, especially in near-coastal areas, where the dynamics and three-dimensional flows may be quite

complex. Higher-resolution models or coarser models with unstructured fine-scale grids in the coastal zone (Ward et al., 2020)580

should in principle give more realistic flow patterns and vertical mixing predictions towards the coast. Thus, it would be use-

ful for future work to examine whether high-resolution models give closer mutual agreement compared to coarser-resolution

models, especially across the coastal and nearshore zone (Anderson et al., 2025). It may be, however, that more high-resolution

experimental data, especially for deeper parts of the ocean, will be needed to verify and constrain simulations. Besides dif-

ferences in model resolution and parameterization, we note that the inter-model differences described in this paper may also585

arise from the use of physical and biogeochemical data assimilation in ECCO-Darwin, which could lead to more-accurate rep-

resentation of the physical-biogeochemical ocean state. Notably, CESM2/MARBL is known to exhibit several biases in ocean

physics, in particular mixed layer depth, which will impact OAE equilibration timescales (Griffies et al., 2009; Danabasoglu

et al., 2014).

On the other hand, since the behavior of small water parcels close to the original injection site is inherently chaotic, there590

may exist inherent limits to the reliability any simulation can achieve even in the limit of realistically modelled physics, when

the precise motion and forcings at the time of release can never be measured to a sufficiently fine degree. Here, only direct

experimental tracking of the spreading plume can help fill the knowledge gap. Once sufficiently dispersed, effects of local

chaos are reduced and a more averaged, and more aggregate behavior could be expected, amenable to ocean models. In that

sense, the ultimate MRV approach will likely require a close interplay between experimental near-field measurements and595

far-field simulations.
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