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Abstract. To conduct large-sample hydrological studies over large spatial domains, standardized meteorological forcing data 

are often desired. For large-sample studies across Europe, the EStreams dataset and catalogue satisfies this demand. In ES-

treams, the meteorological time series are obtained from the Ensemble Observation (E-OBS) product which is available for all 10 

of Europe. Due to the large spatial extent of this dataset, limitations of data quality have to be expected when the dataset is 

compared to smaller-scale datasets, e.g., national level. In this study, we compare the meteorological time series included for 

3423 catchments in EStreams to nine smaller datasets (mostly CAMELS datasets). We assess how the different meteorological 

data impact the performance of a bucket-type hydrological model. For most catchments, the precipitation amounts derived 

from E-OBS are lower than the ones from the CAMELS datasets, while the temperature and the potential evapotranspiration 15 

values are higher. Model performances tend to be (slightly) lower when the E-OBS data are used than when the CAMELS 

datasets are used for calibration. Exceptions arise when the CAMELS data were derived from global datasets rather than 

national products, as well as when the station density in the E-OBS data is high. This study provides the first assessment of 

the E-OBS data at a continental scale for hydrological applications and shows that, despite some limitations, the dataset offers 

a reasonable basis for large-sample hydrological modelling across Europe. 20 

1 Introduction 

Driven by their enormous value for hydrological modelling studies, large-sample hydrology (LSH) datasets have developed at 

a rapid pace in the past decades, and the development continues to gain momentum: Since 2017, more than a dozen “CAMELS” 

datasets were released or are being developed (Addor et al., 2017; Alvarez-Garreton et al., 2018; Bushra et al., 2025; Chagas 

et al., 2020; Coxon et al., 2020a; Delaigue et al., 2025a; Fowler et al., 2021; Höge et al., 2023; Jimenez et al., 2025; Liu et al., 25 

2025; Loritz et al., 2024; Mangukiya et al., 2025; Nijzink et al., 2025; Teutschbein, 2024a). Other animals entered the LSH 

stage too: Llamas (Helgason and Nijssen, 2024; Klingler et al., 2021a), a goat (cabra in Portuguese; Almagro et al., 2021), 

and a bull (Senent-Aparicio et al., 2024b).  
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In the past years, efforts also went into the creation of more overarching products, i.e., datasets covering not only one country 

or region. The Caravan dataset (Kratzert et al., 2023) combined the streamflow data from thousands of catchments in already 30 

published open source LSH datasets with standardized meteorological time series and catchment attributes from the global 

ERA5-Land reanalysis (Muñoz-Sabater et al., 2021). Caravan is growing further and has become a quasi-global dataset (Färber 

et al., 2024). For Europe, a dynamic standardized dataset and a catalogue that provides detailed guidance for retrieving stream-

flow data from national providers were introduced in EStreams (https://www.estreams.eawag.ch) by do Nascimento et al. 

(2024). 35 

Although these collections of large-sample datasets are valuable resources, the inclusion of an increasing number of catchments 

in one dataset almost always goes hand in hand with difficulties in providing high-quality forcing data, due to the lower 

availability of high-quality data for larger spatial extents. Furthermore, data processing choices (e.g., gap filling, interpolation) 

are more often required at large scales and might introduce added uncertainty in the outcomes (McMillan et al., 2018).  

In an earlier study, Clerc-Schwarzenbach et al. (2024) showed that the standardized meteorological data obtained from ERA5-40 

Land (Muñoz-Sabater et al., 2021) in the Caravan dataset (Kratzert et al., 2023) led to a consistently lower hydrological model 

performance for catchments in the US, Brazil, and Great Britain, than when the meteorological forcing data from the corre-

sponding CAMELS datasets (Addor et al., 2017; Chagas et al., 2020; Coxon et al., 2020a) were used. This demonstrates the 

importance of promoting awareness of the potential data quality losses when it comes to standardized meteorological data.  

Similar to the standardization in Caravan, the meteorological data were also standardized in EStreams (do Nascimento et al., 45 

2024). For EStreams, the data were obtained from the European Ensemble Observation (E-OBS) product (Cornes et al., 2018). 

After the publication of EStreams, questions on the quality of the meteorological forcing data from E-OBS arised in the LSH 

community. Recent studies have evaluated the accuracy of the E-OBS precipitation product against reference datasets and 

meteorological stations in some parts of Europe, including Greece (Mavromatis and Voulanas, 2021), the central Alps, eastern 

Europe and Scandinavia (Bandhauer et al., 2022). These evaluations indicated that the quality of the E-OBS precipitation data, 50 

when compared to data from high-resolution datasets focusing on a smaller area, is higher in regions with a high density of E-

OBS stations, such as in central Europe, while the reanalysis product ERA5 (Hersbach et al., 2020) partly outperformed E-

OBS in regions with a sparse station network (Bandhauer et al., 2022). Yet, evaluations of the E-OBS data for a larger extent, 

and specifically for hydrological modelling, remain unexplored.  

To be able to inform the users of EStreams (and of the E-OBS data in general) about the effects of the standardized meteoro-55 

logical data on hydrological applications, a comparison to the meteorological data contained in different national and regional 

datasets (i.e., CAMELS datasets and similar products) is required.  

For this study, we used 3423 catchments from nine European countries to assess the quality of the meteorological data provided 

in EStreams (obtained from E-OBS). We did so by comparing the meteorological forcing data from E-OBS to the analogous 

data contained for the same catchments in national or regional datasets, namely in LamaH-CE (Klingler et al., 2021a) for 60 

Austria, CAMELS-DK (Liu et al., 2025) for Denmark, CAMELS-FR (Delaigue et al., 2025a) for France, CAMELS-DE (Loritz 

et al., 2024) for Germany, CAMELS-GB (Coxon et al., 2020a) for Great Britain, the BULL Database (Senent-Aparicio et al., 
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2024b) for Spain, CAMELS-SE (Teutschbein, 2024a) for Sweden, and CAMELS-CH (Höge et al., 2023) for Switzerland. In 

addition, we also included catchments from Czechia, with data from the not yet published CAMELS-CZ dataset (Jenicek et 

al., 2024).  65 

Except for LamaH-CE (which includes globally available ERA5-Land data), the meteorological data in the smaller datasets 

stem from sources that were created specifically for the respective country. Following the approach of Clerc-Schwarzenbach 

et al. (2024), we did not only compare the meteorological data itself, but also the model performances that were achieved with 

the different meteorological forcings (but same streamflow data) when calibrating the bucket-type HBV (Hydrologiska Byråns 

Vattenbalansavdelning) model (Bergström, 1992, 1995; Seibert and Vis, 2012). This allowed us to assess the overall hydro-70 

logical efficacy of the meteorological forcing data. We hypothesized that (i) the smaller datasets would provide a higher model 

performance than the standardized one; and that (ii) the difference in model performance introduced by the different forcing 

data would be smaller where E-OBS gauge densities are higher. 

2 Data and Methods 

2.1 Subset of catchments 75 

We conducted this study for 3423 catchments that are available in the EStreams dataset and catalogue and in one of the fol-

lowing datasets: LamaH-CE, CAMELS-CZ, CAMELS-DK, CAMELS-FR, CAMELS-DE, CAMELS-GB, BULL, CAMELS-

SE, CAMELS-CH, for simplicity’s sake referred to as the “CAMELS datasets” throughout the remainder of the paper (Table 

1). These catchments fulfilled the following cascade of criteria (with the number of catchments that were still included after 

each step in brackets):  80 

• Located in a country with access to a CAMELS dataset at the time of data preparation, i.e., Austria, Czechia, Den-

mark, France, Germany, Great Britain, Iceland, Spain, Sweden, or Switzerland [12 019] 

• High-quality catchment delineation in EStreams, as described by do Nascimento et al. (2024) [10 434] 

• Catchment area (obtained from EStreams) below 2000 km2 [9115] 

• E-OBS meteorological time series available between October 1990 and September 2015 [8525] 85 

• No redundancy among the catchments (the catchment with the longer streamflow time series was kept) [8367] 

• Availability of at least 90 % of the Epot data between October 1990 and September 2015 [8297] 

• Availability of the catchment in one of the CAMELS datasets [4246] 

• Availability of at least 90 % of the streamflow data (in the CAMELS dataset) between October 1995 and September 

2015 [3614] 90 

• Average streamflow (in the CAMELS dataset) between October 1995 and September 2015 below 10 mm d-1 [3608] 

• Runoff ratio (in the CAMELS dataset) between October 1995 and September 2015 below 1.1 [3563] 

• Runoff ratio (in EStreams) between October 1995 and September 2015 below 1.1 [3423] 
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Note that no catchments were excluded due to a high human influence. While identifying such influences for a large number 

of catchments is possible, it remains a challenging task (Klotz et al., 2025; Senent-Aparicio et al., 2024b). Given these diffi-95 

culties and the fact that such influences will affect model performances with all types of forcing data, we chose not to apply 

this filter. 

 

Table 1: Overview of catchments and data sources used in this study. 

Country 

Number of 

catchments 

included in 

this study 

CAMELS dataset Publication Dataset 

Austria 428 LamaH-CE Klingler et al. (2021a) Klingler et al. (2021b) 

Czechia 297 CAMELS-CZ unpublished unpublished 

Denmark 139 CAMELS-DK Liu et al. (2025) Koch et al. (2025) 

France 515 CAMELS-FR Delaigue et al. (2025a) Delaigue et al. (2025b) 

Germany 1054 CAMELS-DE Loritz et al. (2024) Dolich et al. (2024) 

Great Britain 560 CAMELS-GB Coxon et al. (2020a) Coxon et al. (2020b) 

Spain 245 BULL Senent-Aparicio et al. (2024b) Senent-Aparicio et al., (2024a) 

Sweden 23 CAMELS-SE Teutschbein (2024a) Teutschbein (2024b) 

Switzerland 162 CAMELS-CH Höge et al. (2023) Höge et al. (2025) 

 100 

2.2 Meteorological data 

For the data comparison and the modelling experiments, we investigated and used daily precipitation, Epot, and temperature 

data from the EStreams dataset and from the different CAMELS datasets (Table 1). In EStreams, precipitation and temperature 

data were obtained from the E-OBS ensemble mean product with a spatial resolution of 0.25° in both latitude and longitude 

(do Nascimento et al., 2024). E-OBS provides a pan-European observational dataset of surface climate variables that is derived 105 

by statistical interpolation of in-situ measurements, collected from national data providers (Cornes et al., 2018). Potential 

evapotranspiration (Epot) time series in EStreams were calculated with the Hargreaves formula (Hargreaves and Samani, 1982), 

using the E-OBS temperature data and catchment elevation as input. EStreams is a ready-to-use product derived from E-OBS 

and is likely to be increasingly used by the LSH community for studies on European catchments. Therefore, we used the 

meteorological data of precipitation, Epot, and temperature as provided in EStreams for the evaluation of the E-OBS meteoro-110 

logical data. Note that there is also a version of E-OBS at a resolution of 0.1° available, but not represented in EStreams. 

Similarly, there are different Epot products available from E-OBS, but here, we used the Epot product provided in EStreams. 

The CAMELS meteorological data are usually based on in-situ observations, but some datasets also incorporate satellite or 

reanalysis information at several resolutions. When more than one option was available, we chose the data with the highest 

spatial and (original) temporal resolution to represent the CAMELS data for this study (Table 2). While E-OBS was developed 115 
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specifically for Europe, one can still expect a lower data quality than for datasets created for a smaller region (e.g., national 

datasets) due to the lower spatial resolution and interpolation choices used to achieve the larger spatial extent of the dataset. 

 

Table 2: Overview of the data sources for the meteorological data (precipitation P, temperature T, and potential evapotranspiration 

Epot) for the different CAMELS datasets in this study. 120 

Country Variable(s) Source / equation 
Resolu-

tion 
Reference(s) 

Austria 
P, T ERA5-Land 9 km Muñoz-Sabater et al. (2021) 

Epot Thornthwaite * Thornthwaite and Mather (1957) 

Czechia 

P, T 

unpublished data from Czech Hydromete-

orological Institute (M. Jeníček / O. 

Ledvinka, pers. comm.) 

500 m Štěpánek et al. (2011, 2013) 

Epot 
unpublished data based on Oudin equation 

(M. Jeníček / O. Ledvinka, pers. comm.) 
* Oudin et al. (2005) 

Denmark 

P Danish Meteorological Inst. 10 km Scharling (1999b) 

T Danish Meteorological Inst. 20 km Scharling (1999a) 

Epot Makkink 40 km van Kraalingen and Stol (1997) 

France 
P, T SAFRAN by Météo-France 8 km 

Quintana-Seguí et al. (2008); 

Vidal et al. (2010) 

Epot Oudin * Oudin et al. (2005) 

Germany 

P HYRAS by Deutscher Wetterdienst (DWD) 1 km Rauthe et al. (2013) 

T HYRAS by DWD 5 km Razafimaharo et al. (2020) 

Epot Modified Hargreaves * 

Adam et al. (2006); Droogers 

and Allen (2002); Hargreaves 

and Samani (1982) 

Great Brit-

ain 

P CEH-GEAR 1 km 
Keller et al. (2015); Tanguy et 

al. (2016) 

T CHESS-met 1 km Robinson et al. (2017a) 

Epot CHESS-PE (based on Penman-Monteith) 1 km Robinson et al. (2016, 2017b) 

Spain P, T, Epot Spanish Meteorological Agency (AEMET) 0.05 ° Peral García et al. (2017) 

Sweden 

P, T 
PTHBV database by Swedish Meteorologi-

cal and Hydrological Institute (SMHI) 
4 km SMHI (2025) 

Epot 
unpublished data based on Hamon equation 

(C. Teutschbein, pers. comm.) 
* Hamon (1963) 

Switzerland 

P RhiresD by MeteoSwiss 2 km MeteoSwiss (2021b) 

T TabsD by MeteoSwiss 2 km MeteoSwiss (2021a) 

Epot 
Penman–Monteith without interception cor-

rection 
* Viviroli et al. (2007) 

* calculation for each catchment based on its meteorological data 
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2.3 Calculations of the differences in the CAMELS and E-OBS data 

We compared the precipitation, Epot, and temperature data from EStreams (i.e., the E-OBS data) to the corresponding data 

from the different CAMELS datasets (Table 2) for the twenty years between October 1995 and September 2015 to get an 

overview of the differences in the data. For precipitation and Epot, we determined the relative difference in the mean annual 125 

sums. For temperature, we determined the mean absolute difference for the daily data. When comparing the two datasets, we 

used the E-OBS data obtained from EStreams as minuend and the analogous data obtained from the CAMELS datasets as 

subtrahend, i.e., positive differences indicate higher values in the E-OBS data, while negative differences indicate lower values 

in the E-OBS data than the CAMELS data. To calculate relative differences (for precipitation and Epot), we divided by the 

mean annual sum determined from the CAMELS dataset. Thus, for example, a value of -20 % indicates that the mean annual 130 

sum obtained from E-OBS is 80 % of the mean annual sum obtained from the CAMELS dataset, and a value of 40 % indicates 

that the mean annual sum obtained from E-OBS equals 140 % of the mean annual sum obtained from the CAMELS dataset. 

2.4 Modelling experiments 

We defined different combinations of forcing data (“scenarios”) to calibrate the hydrological model (Table 3). This allowed 

us to determine how the forcing data from E-OBS and from CAMELS individually impacted hydrological model performance. 135 

Note that due to the dependency of the E-OBS Epot data on the E-OBS temperature data, model calibration was influenced by 

the E-OBS temperature data even when replacing the temperature data from E-OBS with those from CAMELS (scenario V). 

Analogously to Clerc-Schwarzenbach et al. (2024), we calibrated the HBV model (Bergström, 1992, 1995) in the version 

HBV-light (Seibert and Vis, 2012) with a genetic algorithm (Seibert, 2000). Each catchment was divided into elevation zones 

of 200 m elevation difference, whereby an elevation zone had to account for at least 5 % of the catchment area. For the 140 

determination of the elevation zones, we used the shapefiles provided by EStreams, and the Copernicus DEM (European Space 

Agency and Airbus, 2022).  

We used the five years from October 1990 to September 1995 as the warming-up period for the model, and the twenty years 

from October 1995 to September 2015 as the simulation period for which we optimized daily streamflow simulation in terms 

of the Kling-Gupta efficiency KGE (Gupta et al., 2009). One calibration consisted of a total of 3500 model runs. We conducted 145 

each calibration ten times to account for equifinality. We used equal weights on the ten simulated hydrographs to calculate an 

ensemble mean hydrograph. We determined the model performance (using again the KGE) for each catchment and each sce-

nario by comparing this ensemble mean hydrograph to the observed hydrograph.  

 

Table 3: Combinations of forcing data (“scenarios”) for the modelling experiments. 150 

Scenario Description Precipitation Epot Temperature 

I CAMELS CAMELS CAMELS CAMELS 

II E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) 
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III E-OBS with CAMELS precipitation CAMELS E-OBS (EStreams) E-OBS (EStreams) 

IV E-OBS with CAMELS Epot E-OBS (EStreams) CAMELS E-OBS (EStreams) 

V E-OBS with CAMELS temperature E-OBS (EStreams) E-OBS (EStreams) CAMELS 

3 Results 

3.1 Comparison of the meteorological data 

The mean annual precipitation sums in the E-OBS data were lower than the mean annual precipitation sums in the CAMELS 

data for 3042 catchments (89 %). For 1506 catchments (44 %), the deviation of the mean annual precipitation sums in E-OBS 

from the ones in CAMELS exceeded -10 %. Conversely, there were only 57 catchments (2 %) for which the mean annual 155 

precipitation sums in E-OBS were overestimated by +10 % or more from the ones in CAMELS. Differences between the two 

data sources were largest for the catchments in Spain and smallest for the catchments in Germany (Fig. 1). 

 

 

Figure 1: Relative difference in the mean annual precipitation (for a 20-year period: 1995-2015) between the E-OBS data obtained 160 
from EStreams and the different CAMELS datasets. Negative values and brown colours indicate less precipitation in E-OBS than 

in CAMELS, positive values and blue colours more precipitation in E-OBS. On the map, the catchments with the largest deviations 

were plotted last to increase their visibility. Note that the number of catchments per histogram differ. This is illustrated by the 

vertical lines indicating 10 % (rounded) of the number of catchments per histogram. The colour scale was cut at ±50 %. The scale 

bar refers to the map centre. The base map was obtained from Natural Earth (naturalearthdata.com). The colour palette used in 165 
this and all other maps are scientific colour palettes from Crameri (2023). 
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The opposite was found for the annual sums of Epot: For 3215 catchments (94 %), the mean annual Epot calculated from the E-

OBS data was higher than for the CAMELS data. For 2012 catchments (59 %), the deviation of the E-OBS Epot sums from the 

CAMELS Epot sums were at least 10 %. Lower Epot sums derived from E-OBS than from CAMELS could only be observed 170 

for catchments in Sweden, on the Danish islands, in the canton of Ticino in Switzerland, and for some catchments in northern 

Spain (Fig. 2). As different equations or data sources were used in the different CAMELS datasets (see Table 2) to obtain the 

Epot data, the order of magnitude of the deviations changed abruptly along the national borders in some cases (e.g., along the 

border between Czechia and Germany or Austria). It is noteworthy that for Epot, there tend to be small differences between the 

two datasets for Spain (while this was not the case for precipitation). 175 

 

 

Figure 2: Relative difference in the mean annual Epot (for a 20-year period: 1995-2015) obtained from EStreams and calculated from 

the E-OBS data compared to the mean annual Epot calculated from the different CAMELS datasets. Negative values and brown 

colours indicate a lower Epot in E-OBS than in the CAMELS datasets, positive values and blue colours a higher Epot. On the map, 180 
the catchments with the largest deviations were plotted last to increase their visibility. 

 

Due to the differences in the precipitation and the Epot data, the aridity indices (Epot/P) calculated from the two data sources 

differed, although they were still highly correlated (Pearson’s correlation coefficient of 0.93) (Fig. 3). Given the lower precip-

itation and higher Epot sums for most catchments, the aridity indices were generally higher when the E-OBS data obtained from 185 

EStreams were used than when the CAMELS data were used. This did not apply for Sweden, as the Epot sums based on E-OBS 

were lower than the ones from CAMELS for this country. The two calculated aridity indices aligned best for Germany and 

worst for Spain, Great Britain, and Czechia. Spatially, the aridity indices derived from both datasets followed the expected 
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pattern, with more arid catchments in southern Europe and north-eastern Germany and more humid catchments in the other 

regions (see Fig. A1 for the CAMELS data and Fig. A2 for the E-OBS data). 190 

 

 

Figure 3: Comparison of the aridity indices (Epot/P) based on the CAMELS and the E-OBS data (for a 20-year period: 1995-2015), 

colour-coded by country. Note the logarithmic axes. 

 195 

Comparison of the temperature data in the two datasets revealed that the average temperature in E-OBS was higher (median 

difference: 0.3° C) for the vast majority of catchments than the average temperature in CAMELS (Fig. A3). There were 537 

catchments (16 %) for which the average temperature was lower in E-OBS than in the CAMELS datasets. Note that in the 

HBV model, temperature has an effect on the snow routine, with higher temperatures resulting in a larger fraction of precipi-

tation falling as rain (and thus faster streamflow generation). However, as the threshold temperature for the differentiation 200 

between rain and snow is adapted during calibration, it is expected that the model can compensate comparably well for biased 

temperature time series. Thus, the main effect of the differences in temperature are actually the differences in Epot which are 

highly affected by the temperature data used as input to the calculations (Fig. 2Figure 2). 

3.2 Model performances 

3.2.1 Model performances with the CAMELS and the E-OBS forcing data 205 

Overall, high model performances were achieved for most catchments when the CAMELS data (scenario I) were used for 

model calibration (Fig. 4). For 3066 of the 3423 catchments (90 %) the KGE was higher than 0.70, with a median performance 
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of 0.88. Among the nine countries, the median KGE was the highest for the catchments in Sweden (0.92, 100 % of the catch-

ments had a KGE above 0.70), followed by Great Britain (median 0.91, 93 % above 0.70) and France (median 0.90, 94 % 

above 0.70). 210 

Conversely, the model performances were the lowest for catchments in Austria and Spain. The median KGE for Austria was 

0.78; only 69 % of the catchments achieved a KGE above 0.70. The pattern was similar for Spain, with a median KGE of 0.83 

and 78 % of the catchments having a KGE above 0.70. However, there were also other regions in which clusters of catchments 

with low model performances could be observed, such as the karstic area around London and some parts of south-eastern 

Switzerland. 215 

 

 

Figure 4: Model performance (Kling-Gupta efficiency, KGE) achieved for the 20-year period between October 1995 and September 

2015 when the input data from the CAMELS datasets were used for model calibration (scenario I). Note that the lower limit of the 

colour scale was cut at zero. Lower performances were plotted last to improve their visibility. 220 

 

The model performances were also high for most catchments when the E-OBS forcing data (scenario II) were used for model 

calibration (Fig. 5). For 3059 of the catchments (90 %) the KGE was higher than 0.70, which is comparable to the 3066 

catchments that fulfilled this criterion for the CAMELS data (scenario I). Furthermore, the median performance achieved with 

the E-OBS data from EStreams (scenario II) of 0.87 was very similar to the one achieved with the CAMELS data (scenario I) 225 

(0.88). The median performance among all countries was still the highest for the catchments in Sweden (0.91).  

Despite these overall similarities, there were also some notable differences in scenario II (E-OBS data) compared to scenario 

I (CAMELS data). The second-highest median KGE (0.91) was recorded for the catchments in France, where 97 % of the 
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catchments had a KGE above 0.70. After France, Germany followed with a median KGE of 0.88 and 95 % of the catchments 

having a KGE above 0.70. For the catchments in Austria, where the precipitation data were obtained from ERA5-Land, clearly 230 

higher model performances were achieved with the E-OBS data (scenario II) than with the CAMELS data (scenario I). The 

median KGE in scenario II was 0.86 (scenario I: 0.78), and for 90 % of the Austrian catchments, the KGE was above 0.70 

(scenario I: 69 %). However, for the catchments in Spain, the model performances were even lower than in scenario I: The 

median KGE was 0.66 (scenario I: 0.83), and for only 40 % of the catchments, the KGE was above 0.70 (scenario I: 78 %). 

Furthermore, for the catchments in the karstic area around London, the performances were higher with the E-OBS data (sce-235 

nario II) than with the CAMELS data (scenario I). 

 

 

Figure 5: Model performance (Kling-Gupta efficiency, KGE) achieved for the 20-year period between October 1995 and September 

2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II). Note that the lower limit of the 240 
colour scale was cut at zero. Lower performances were plotted last to improve their visibility. 

 

3.2.2 Differences in model performance between scenario II and I  

To more easily assess the differences in model performances between scenario II and I, we looked at the differences in model 

performance directly (Fig. 6). For 61 % of the catchments, model performances were (at least slightly) higher when the CAM-245 

ELS data were used (scenario I), while for the other 39 % of all catchments, the use of E-OBS data resulted in better model 

performances. Not surprisingly, based on the results described above, the strongest regional differences were found for the 
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catchments in Austria, Spain, and Great Britain. When the catchments in Austria were excluded from the analysis (i.e., to only 

compare the E-OBS data with forcing data from smaller-scale datasets) the results were more pronounced: Then, 33 % of the 

catchments performed better with the E-OBS forcing data, while for 67 % of the catchments, model performances were higher 250 

with the CAMELS forcing data. 

For two countries (Austria and France) there were notable improvements in model performance when using the E-OBS da-

taset. In Austria, 353 catchments (82 %) performed better with E-OBS forcing data obtained from EStreams (ΔKGE>0), and 

the negative differences were not more pronounced than -0.15 (i.e., for the catchments with better performances in scenario I 

than in scenario II, the benefit was limited). In France, 331 catchments (62%) had higher performances with the E-OBS data, 255 

but the differences in performance were variable. For Sweden, 16 catchments (72 %) performed better with the E-OBS data, 

but the differences were very small (Fig. 6). For the catchments in Spain, it was the opposite: 220 catchments (92 %) performed 

better with the CAMELS dataset, and for some catchments, the differences were large. Similar trends were observed for the 

catchments in Great Britain (74 %), Germany (72 %), Switzerland (67 %), Czechia (62 %), and Denmark (57 %). 

The results also indicated some interesting intracountry patterns (Fig. 6). In France, the most striking positive differences 260 

occurred for the catchments in the eastern part of the country, while for Great Britain, the CAMELS data resulted in clearly 

higher performances in most regions but not in the area around London. For the catchments in the center of Austria, the 

CAMELS data sometimes led to better model performances than the E-OBS data, while the opposite was the case in most 

other catchments (see above). 

 265 
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Figure 6: Difference in model performance (Kling-Gupta efficiency, KGE) between scenario II and scenario I. Positive values and 

green colours indicate higher performances when the E-OBS data obtained from EStreams were used, negative values and pink 

colours indicate higher performances when the CAMELS data were used. For the model performances, see Figs. 4 and 5. The catch-

ments with the largest differences (in absolute terms) were plotted last to improve their visibility. Note that the colour scale was cut 270 
at ±0.3.  

 

3.2.3 Differences in model performance between scenario II and scenarios III, IV, and V 

Replacing precipitation from E-OBS with data from CAMELS had by far the strongest impact on model performance (scenario 

III, Fig. A4). For most catchments, the performance differences between scenarios II and III closely mirrored the performance 275 

differences between scenarios II and I, indicating that precipitation accounted for a large share of the overall differences in 

performance. For only a few catchments (mostly in Great Britain), was the performance gap between scenarios II and I notably 

larger than between scenarios II and III. The opposite occurred for very few catchments (Fig. A5). 

The effect of replacing the Epot data was quite limited (scenario IV). The higher Epot data based on E-OBS were beneficial for 

a handful of catchments (ΔKGE>0.30 for 21 catchments), but the median difference was 0.00 (Fig. A6). Replacing only the 280 

temperature time series with the CAMELS data (scenario V) had virtually no effect on model performance for most catch-

ments. There were no catchments for which the replacement of the temperature data increased the KGE by more than 0.10 and 

only five catchments for which it decreased the KGE by more than -0.10 (Fig. A7). Note that only the temperature time series 

provided as input data to the HBV model were replaced, and not the data that were used to calculate Epot. 
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3.3 Model performance linked to catchment attributes 285 

3.3.1 Number of E-OBS precipitation stations 

It is well documented that the coverage of precipitation stations used to produce the gridded E-OBS dataset is highly variable 

(Bandhauer et al., 2022; do Nascimento et al., 2024). To assess the impact of this variability, we examined the relationships 

between the number of E-OBS stations within or near each catchment and the model performance for scenario II (i.e., using 

the E-OBS data contained in EStreams for all meteorological variables; see Fig. 5). Here, we present these relationship assess-290 

ments per country (Fig. 7). The number of E-OBS precipitation stations was obtained from the EStreams dataset, defined as 

the count of stations located within a 10 km buffer of the catchment boundary (do Nascimento et al., 2024).  

Model performances for scenario II tended to be higher when more E-OBS stations were located in or around a catchment. 

The performances were generally the lowest for areas with sparse station coverage, such as Spain and Great Britain. However, 

low E-OBS station density did not always result in poor model performance. For catchments in countries like France, Great 295 

Britain, Denmark, and Sweden, KGE values remained mostly above 0.5 despite a comparatively lower station density, sug-

gesting that factors other than station density (such as the spatial variability of the rainfall due to topography or convective 

rainfall) also influence model accuracy. For further insights, we also provide the scatterplots of the differences in model per-

formance between scenarios II and I compared to the number of E-OBS stations per catchment (Fig. A8). 

 300 

 

Figure 7: Scatterplots showing the model performance (Kling-Gupta efficiency, KGE) for scenario II (y-axes) versus the number of 

precipitation stations used to derive the E-OBS precipitation data, per country. Each circle represents one catchment. Note that the 

y-axes were cut at -0.5, in accordance to Fig. 5, and the x-axes differ for the different subplots. 
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 305 

3.3.2 Aridity index 

We also evaluated the model performances for scenarios I and II in relation to the aridity indices derived from the respective 

forcing data (Fig. 8). Despite some atypical cases, the model performances tended to be lower in catchments with higher aridity 

indices (drier catchments). This trend was particularly evident for the catchments in Austria, Czechia, Germany, Spain, and 

Sweden. Although the pattern appeared with both forcing datasets, it was more pronounced for the CAMELS data (scenario 310 

I), especially for the catchments in Austria, Czechia, and Spain. 

 

 

Figure 8: Scatterplots showing the model performance (Kling-Gupta efficiency, KGE) for scenario I and II (y-axes) versus the aridity 

indices derived from the corresponding forcing data (CAMELS for scenario I, E-OBS from EStreams for scenario II), per country. 315 
Note that the y-axes were cut at -0.5, in accordance to Fig. 5. Note that the x-axes differ for the different subplots. 

 

4 Discussion 

4.1 Model performances 

The HBV model is known for its capabilities for simulating streamflow, particularly in humid catchments, where water flow 320 

is related to varying soil saturation and hydrological connectivity (Knapp et al., 2022, 2024). This, in part, seems to explain 

the consistently high model performances achieved using either the CAMELS or the E-OBS data (Figs. 4 and 5) for the wet 
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catchments, such as those in Sweden and Denmark. In contrast, in Spain, which has the most arid catchments, the KGE values 

were the lowest and most variable for both data scenarios, except for Austria under scenario I, where performance was also 

notably low. These findings are reinforced by the observed relationship between model performance and the aridity index, as 325 

shown in Fig. 8. The trend of decreasing performance with increasing aridity further supports the assertion that arid catchments 

pose significant challenges for hydrological modelling. Several other studies have suggested that for dry catchments more 

complex model structures may be needed for streamflow simulation, and even then, they still tend to yield lower model per-

formance (Atkinson et al., 2002; David et al., 2022; Massmann, 2020). 

Yet, the lower model performance for the catchments in Spain may be attributed not only to the inherent complexities of 330 

streamflow generation in arid environments, but also to the higher variability and limited availability of observational hydro-

meteorological data in these regions, which complicates model calibration and validation, as noted in previous studies (do 

Nascimento et al., 2023; Yu et al., 2011). Additionally, previous studies have pointed out that many Spanish catchments, 

including the ones available in the currently used BULL dataset, are highly regulated, with dams and diversions. These heavily 

modified catchments may not be adequately filtered out in studies focused on natural hydrological simulation, thereby further 335 

impairing overall model performance (Klotz et al., 2025; Senent-Aparicio et al., 2024b).  

4.2 Evaluation of the E-OBS data in comparison to the E-OBS station density 

Our findings indicate that the model performance is strongly influenced by the density of stations used to obtain the E-OBS 

data. As a result, the reliability of model outputs varies considerably across regions—an observation that is consistent with 

previous research (Bandhauer et al., 2022; Klotz et al., 2025). This spatial dependency is visually supported by Figure 6 in the 340 

EStreams paper by do Nascimento et al. (2024), which shows the density of E-OBS stations across Europe. Notably, for regions 

with a high density of stations, such as Germany and Austria, the model reached the highest KGE values with E-OBS data, 

underscoring the critical role of data availability and quality in hydrological modelling accuracy. 

As mentioned earlier, the results for the catchments in Austria are an interesting case, because the simulations with the E-OBS 

data (scenario II) were clearly better than those with the CAMELS data (scenario I). Unlike other CAMELS datasets, which 345 

rely on national meteorological data products, the CAMELS dataset for Austria (LamaH-CE) uses ERA5-Land as its meteor-

ological forcing. Previous studies have already highlighted several limitations of ERA5-Land in simulating streamflow (Clerc-

Schwarzenbach et al., 2024).  

The fundamental differences between E-OBS and ERA5-Land stem from the data assimilation. The gridded product of E-OBS 

is based on a spatial interpolation of ground-based station networks, while ERA5-Land is a reanalysis dataset and derives 350 

precipitation from a model without direct incorporation of gauge data (Muñoz-Sabater et al., 2021). In densely monitored 

regions like Austria, this difference becomes especially relevant. This fundamental discrepancy, alongside the high E-OBS 

station density in Austria, seems to explain the superior performance with E-OBS data for the Austrian catchments. 
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4.3 Effect of different Epot data 

In this work, the differences in model performance across the various sources of forcing data were attributed to the differences 355 

in precipitation inputs (scenario III), whereas discrepancies in Epot and temperature data hardly affected model performances 

(scenarios IV and V). These findings are consistent with those of Clerc-Schwarzenbach et al. (2024), who compared the Car-

avan and CAMELS datasets. Although their analysis reveiled larger differences in Epot than in precipitation data, it was still 

the precipitation inputs that exerted the greatest influence on model performance.  

In this study, the differences between the Epot data derived from E-OBS and the Epot data derived from the CAMELS datasets 360 

were much smaller, but still striking (which makes sense, considering the differences in the temperature data that were gener-

ally used as input to the Epot calculations). This demonstrates once again the large uncertainties that we face when using 

different approaches to estimate Epot. Several studies have already identified this issue as a persistent “blind spot” in hydrolog-

ical modelling (e.g., Bai et al., 2016; Federer et al., 1996; Hanselmann et al., 2024). The Epot calculations for each catchment 

in EStreams with the Hargreaves equation (do Nascimento et al., 2024) thus also affected the resulting Epot data that we used 365 

to represent the E-OBS Epot. However, the Hargreaves equation was found to be reliable, among other regions especially in 

Central Europe (Pimentel et al., 2023) and this choice can therefore be supported. Furthermore, the differences in Epot data did 

not affect model performance results strongly, so it can be expected that the use of a different equation would not change the 

findings of this study. 

While the different Epot data had a very limited effect on model performances in general, the higher Epot data derived from E-370 

OBS were beneficial for the model performance in some cases, as they allowed the model more flexibility to adjust the water 

balance: For example, the low performances with the CAMELS-GB data for the catchments in the karstic area around London 

can (partially) be explained by the inability of the HBV model to simulate groundwater losses (Lane et al., 2019; Oldham et 

al., 2023; Seibert et al., 2018). In such catchments, the higher Epot values from E-OBS effectively helped to improve the water 

balance by allowing for more evaporation, thereby compensating for the unmodelled groundwater losses. However, it is im-375 

portant to note that while this adjustment led to improved model performance, such compensatory effects are not desirable 

when the objective is to accurately represent internal catchment processes. Achieving realistic process representation should, 

generally, remain a central goal in hydrological modelling (Kirchner, 2006). 

4.4 Limitations 

As mentioned with the example of the compensation effects due to higher Epot data, a higher model performance does not 380 

necessarily mean a better representation of the hydrological processes. Still, we used the performance as an indicator for the 

hydrological efficacy of different forcing data. Apart the study by Clerc-Schwarzenbach et al. (2024), on which the methodol-

ogy of this study was based, model performances are often used as an aggregated measure of data quality (Beck et al., 2017; 

Tarek et al., 2020). However, model performance can also be heavily influenced by the chosen model structure, particularly if 
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it does not align well with the physical characteristics of a given catchment. This structural sensitivity means that performance 385 

differences may reflect model limitations as much as data quality (Beven, 2018).  

Another limitation is that we did not exclude any catchments due to human influences. Potentially, this affected model perfor-

mances. However, this is the case then independent from the forcing data used, so we assumed that our conclusions would not 

change if these catchments were excluded. 

Beyond model structure, it is worth noting that here we performed single-basin calibrations. While this allows for localized 390 

optimization, it does not reflect how models are typically regionalized for prediction in ungauged basins. Future research 

should explore how the identified performance patterns translate to a regionalization framework, which would provide more 

practical insights for prediction in data-scarce environments, and therefore, where model calibration is not possible. 

In this study, we evaluated the E-OBS data at a resolution of 0.25°, as these are the data on which EStreams is based on (from 

where we obtained the data for this study). Being included in EStreams, it can be expected that this E-OBS product will 395 

increasingly be used for LSH studies in Europe in the future. However, the E-OBS product with a higher resolution of 0.1° 

may lead to different results. Testing this is out of the scope of this study. 

Finally, all simulations in this study were conducted at a daily time step. For smaller catchments, a finer temporal resolution, 

such as hourly, could provide more meaningful insights. With the increasing availability of temporally high-resolution datasets 

(Coxon et al., 2025; Dolich et al., 2025; Nijzink et al., 2025), future studies may benefit from repeating similar analyses at the 400 

sub-daily timescale. 

5 Conclusions 

In this study, we compared the meteorological time series for 3423 European catchments in the EStreams dataset with time 

series from nine smaller-scale datasets (mostly CAMELS datasets). Moreover, we evaluated how the different meteorological 

forcing data influence the performance of a bucket-type hydrological model.  405 

Our results showed that, for the majority of catchments (89 %), annual precipitation values obtained from the E-OBS dataset 

were lower than those from the corresponding CAMELS datasets. The opposite was true for the annual sums of Epot and the 

average temperature (higher values in E-OBS than in CAMELS). These discrepancies led to consistently higher aridity indices 

computed with the E-OBS data in comparison to the CAMELS data for most catchments, although the spatial pattern remained 

similar. Such systematic differences highlight important inconsistencies across the two data sources that can affect the out-410 

comes of hydrological synthesis studies across large areas. 

Despite these differences, model calibration using either set of forcing data achieved model performances above a KGE of 

0.70 in more than 87 % of the catchments. However, performances were generally slightly lower when using E-OBS data than 

when using CAMELS data: For approximately 60 % of catchments, the model performance was higher when using CAMELS 

forcing data. Notably, exceptions occured in cases where the CAMELS data were derived from global rather than national 415 
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products (ERA5-Land dataset in Austria). This aligns with our first hypothesis that smaller-scale, nationally curated datasets 

would lead to higher model performances than the standardized dataset.  

Furthermore, our findings confirmed our second hypothesis that model performances using E-OBS forcing data would be 

lower in regions with a lower E-OBS station density. This highlights the critical role of station coverage on hydrological model 

performance, an issue that becomes even more pronounced in mountainous regions, where steep climatic gradients in precip-420 

itation and temperature make dense and spatially representative data essential for reliable simulations, as well as in regions 

where convective rainfall is relevant.  

Overall, this study presents the first assessment of the meteorological data from E-OBS across a continental domain and offers 

valuable insights for future large-sample hydrology studies. 

6 Data availability 425 

Except for CAMELS-CZ and the Epot data for CAMELS-SE, all the CAMELS data used are available from their respective 

repositories (see Table 1). The Epot data for Sweden were provided by Claudia Teutschbein and the CAMELS-CZ data by 

Michal Jeníček and Ondřej Ledvinka. These unpublished data are available upon reasonable request. The current version 1.2 

of the EStreams dataset is available at a Zenodo repository (https://doi.org/10.5281/zenodo.14778580). The files containing 

the model performances used in this study are stored at a GitHub repository (https://github.com/thiagovmdon/EOBS-quality). 430 
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12 Appendix 

 

Figure A1: Aridity index (Epot/P) calculated from the CAMELS data (for a 20-year period: 1995-2015). Note that the colour scale 

was cut at two. 685 
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Figure A2: Aridity index (Epot/P) calculated from the E-OBS data obtained from EStreams (for a 20-year period: 1995-2015). Note 

that the colour scale was cut at two. 
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Figure A3: Difference in mean annual temperature for each catchment when calculated from the E-OBS and the CAMELS datasets 

for the 20-year period 1995-2015. Positive values and red colours indicate higher temperatures in the E-OBS data obtained from 

EStreams, negative values and blue colours indicate lower temperatures in the E-OBS data. Note that the colour scale was cut at ±3 

°C.  695 
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Figure A4: Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario 

II) and when the precipitation data from E-OBS were replaced with those from CAMELS (scenario III). Positive values and green 

colours indicate higher model performances with the precipitation data from E-OBS, negative values and pink colours indicate 700 
higher model performances with the precipitation data from CAMELS. Note that the colour scale was cut at a difference in KGE of 

±0.3. The catchments with the largest differences in model performance were plotted last to increase their visibility. 
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Figure A5: Differences in model performance between scenario II and I (positive values indicate higher performances with the E-

OBS data obtained from EStreams, negative values indicate higher performances with the CAMELS data, see Fig. 6) compared to 705 
differences in model performance between scenarios II and III (positive values indicate higher performances with the E-OBS data, 

negative values indicate higher performances when the precipitation data were replaced with those from CAMELS, see Fig. A4). 

One catchment (in Great Britain) plotted outside the axis limits (11.1 / 5.5). Pearson’s correlation coefficient was 0.86. 
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 710 

Figure A6: Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario 

II) and when the Epot data from E-OBS were replaced with those from CAMELS (scenario IV). Positive values and green colours 

indicate higher model performances with the Epot data from E-OBS, negative values and pink colours indicate higher model perfor-

mances with the Epot data from CAMELS. Note that the colour scale was cut at a difference in KGE of ±0.3. The catchments with 

the largest differences in model performance were plotted last to increase their visibility. 715 
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Figure A7: Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario 

II) and when the temperature data from E-OBS were replaced with those from CAMELS (scenario V). Positive values and green 

colours indicate higher model performances with the T data from E-OBS, negative values and pink colours indicate higher model 720 
performances with the T data from CAMELS. Note that the colour scale was cut at a difference in KGE of ±0.3. The catchments 

with the largest differences in model performance were plotted last to increase their visibility. 
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 725 

Figure A8: Scatterplots showing the difference in model performance (Kling-Gupta efficiency, KGE) between scenario II (E-OBS 

data obtained from EStreams) and scenario I (CAMELS data) (y-axis) versus the number of precipitation stations used to derive 

the E-OBS precipitation data per country. Each circle represents one catchment. Positive values indicate higher performances  when 

the E-OBS data were used, negative values indicate higher performances when the CAMELS data were used. Note that the y-axes 

were cut at ±0.3, in accordance to Fig. 6. Note that the x-axes differ for the different subplots. 730 
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