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Abstract. For large-sample hydrological studies over large spatial domains, large-scale meteorological forcing data are often 

desired. For large-sample studies across Europe, the EStreams dataset and catalogue satisfies this demand. In EStreams, the 

meteorological time series are obtained from the Ensemble Observation (E-OBS) product which is available for all of Europe. 10 

Due to the large spatial extent of this dataset, limitations and regional variations of data quality have to be expected when the 

dataset is compared to smaller-scale datasets, e.g., national level. In this study, we compare the meteorological time series 

included for 2682 catchments in EStreams to eight smaller datasets (mostly CAMELS datasets). We assess how the different 

meteorological data impact the performance of a bucket-type hydrological model. For most catchments, the precipitation 

amounts derived from E-OBS are lower than the ones from the CAMELS datasets, while the temperature and the potential 15 

evapotranspiration values are higher. Model performances tend to be lower when the E-OBS data are used than when the 

CAMELS datasets are used for calibration. Exceptions arise when the station density in the E-OBS data is high. This study 

provides the first assessment of the E-OBS data at a continental scale for hydrological applications and shows that, despite 

some limitations, the dataset offers a reasonable basis for large-sample hydrological modelling across Europe. 

1 Introduction 20 

Driven by their enormous value for hydrological modelling studies, large-sample hydrology (LSH) datasets have developed at 

a rapid pace in the past decades, and the development continues to gain momentum: Since 2017, more than a dozen “CAMELS” 

datasets were released or are being developed (Addor et al., 2017; Alvarez-Garreton et al., 2018; Bushra et al., 2025; Chagas 

et al., 2020; Coxon et al., 2020a; Delaigue et al., 2025a; Fowler et al., 2021; Höge et al., 2023; Jimenez et al., 2025; Liu et al., 

2025; Loritz et al., 2024; Mangukiya et al., 2025; Nijzink et al., 2025; Teutschbein, 2024a). Other animals entered the LSH 25 

stage as well: Llamas (Helgason and Nijssen, 2024; Klingler et al., 2021), a goat (cabra in Portuguese; Almagro et al., 2021), 

and a bull (Senent-Aparicio et al., 2024b).  

In the past years, efforts also went into the creation of more overarching products, i.e., datasets covering not only one country 

or region. The Caravan dataset (Kratzert et al., 2023) combined the streamflow data from thousands of catchments in already 
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published open source LSH datasets with meteorological time series and catchment attributes from the global ERA5-Land 30 

reanalysis (Muñoz-Sabater et al., 2021). Caravan is growing further and has become a quasi-global dataset (Färber et al., 2024). 

For Europe, a dynamic dataset and a catalogue that provides detailed guidance for retrieving streamflow data from national 

providers were introduced in EStreams (https://www.estreams.eawag.ch) by do Nascimento et al. (2024). 

Although these collections of large-sample datasets are valuable resources, the combination of catchments distributed across 

different regions and especially across different countries in one dataset almost always goes hand in hand with difficulties in 35 

providing high-quality streamflow and forcing data, due to the lower availability of high-quality data for larger spatial extents, 

while smaller datasets typically benefit from more thorough quality control. Furthermore, data processing choices (e.g., gap 

filling, interpolation) are more often required at large scales and might introduce added uncertainty in the outcomes (McMillan 

et al., 2018).  

In an earlier study, Clerc-Schwarzenbach et al. (2024) showed that the globally available meteorological data obtained from 40 

ERA5-Land (Muñoz-Sabater et al., 2021) in the Caravan dataset (Kratzert et al., 2023) led to a consistently lower hydrological 

model performance for catchments in the US, Brazil, and Great Britain, compared to when the meteorological forcing data 

from the corresponding CAMELS datasets (Addor et al., 2017; Chagas et al., 2020; Coxon et al., 2020a) were used. This 

demonstrates the importance of promoting awareness of potential data quality losses when it comes to large-scale meteorolog-

ical datasets.  45 

Similar to the ERA5-Land data in Caravan, the meteorological data were also obtained from a large-scale dataset in EStreams 

(do Nascimento et al., 2024). For EStreams, the data were obtained from the European Ensemble Observation (E-OBS) product 

(Cornes et al., 2018). After the publication of EStreams, questions on the quality of the meteorological forcing data from E-

OBS arose in the LSH community. Recent studies have evaluated the accuracy of the E-OBS precipitation product against 

reference datasets and meteorological stations in some parts of Europe, including Greece (Mavromatis and Voulanas, 2021), 50 

the central Alps, eastern Europe and Scandinavia (Bandhauer et al., 2022). These evaluations indicated that the quality of the 

E-OBS precipitation data, when compared to data from high-resolution datasets focusing on a smaller area, is higher in regions 

with a high density of E-OBS stations, such as in central Europe, while the reanalysis product ERA5 (Hersbach et al., 2020) 

partly outperformed E-OBS in regions with a sparse station network (Bandhauer et al., 2022). Yet, evaluations of the E-OBS 

data over a larger extent, and specifically for hydrological modelling, remain unexplored.  55 

To be able to inform the users of EStreams (and of the E-OBS data in general) about the effects of the harmonized meteoro-

logical data on hydrological applications, a comparison to the meteorological data contained in different national and regional 

datasets (i.e., CAMELS datasets and similar products) is required.  

For this study, we used 2682 catchments from eight European countries and assessed the hydrological efficacy of the meteor-

ological data provided in EStreams (obtained from E-OBS). We did so by comparing the meteorological forcing data from E-60 

OBS to the analogous data contained for the same catchments in national or regional datasets, namely in CAMELS-DK (Liu 

et al., 2025) for Denmark, CAMELS-FR (Delaigue et al., 2025a) for France, CAMELS-DE (Loritz et al., 2024) for Germany, 
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CAMELS-GB (Coxon et al., 2020a) for Great Britain, the BULL Database (Senent-Aparicio et al., 2024b) for Spain, CAM-

ELS-SE (Teutschbein, 2024a) for Sweden, and CAMELS-CH (Höge et al., 2023) for Switzerland. In addition, we also included 

catchments from Czechia, with data from the not yet published CAMELS-CZ dataset (Jenicek et al., 2024). The meteorological 65 

data in the smaller datasets stem from sources that were created specifically for the respective country. 

The methodology used in this work is based on the one presented by Clerc-Schwarzenbach et al. (2024). Following their 

approach, we did not only compare the meteorological data itself, but also the model performances that were achieved with 

the different meteorological forcings (but same streamflow data) when calibrating the bucket-type HBV (Hydrologiska Byråns 

Vattenbalansavdelning) model (Bergström, 1992, 1995; Seibert and Vis, 2012). This allowed us to assess the overall hydro-70 

logical efficacy of the forcing data.  

The reasoning behind this approach is that hydrological models are not only useful for simulating streamflow but can also be 

used as diagnostic tools to evaluate the efficacy of the input data (Beck et al., 2017; Tarek et al., 2020). The rationale is that, 

although hydrological models are inherently imperfect representations of reality, systematic differences in their performance 

when driven by different datasets are unlikely to be random. As noted by Linsley (1982, p. 13), “if the data are too poor for 75 

the use of a good simulation model, they are also inadequate for any other model.” Building on this idea, our study uses the 

HBV model as a means to assess the hydrological reliability of different meteorological forcing data across Europe. Therefore, 

we assume that if a model consistently performs better with one dataset than with the other, this difference likely reflects a 

closer alignment of the corresponding meteorological data with the actual processes in the catchment. 

2 Data and Methods 80 

2.1 Subset of catchments 

We conducted this study for 2682 catchments that are available in the EStreams dataset and catalogue and in one of the fol-

lowing datasets: CAMELS-CZ, CAMELS-DK, CAMELS-FR, CAMELS-DE, CAMELS-GB, BULL, CAMELS-SE, CAM-

ELS-CH, for simplicity’s sake referred to as the “CAMELS datasets” throughout the remainder of the paper (Table 1). These 

catchments fulfilled the following cascade of criteria (with the number of catchments still included after each step in brackets, 85 

see also Supporting Information, Figure S1):  

• Located in a country with access to a CAMELS dataset at the time of data preparation, i.e., Austria, Czechia, Den-

mark, France, Germany, Great Britain, Iceland, Spain, Sweden, or Switzerland [12 019] 

• High-quality catchment delineation in EStreams, as described by do Nascimento et al. (2024) [10 434] 

• Catchment area (obtained from EStreams) below 2000 km2 [9115] 90 

• No redundancy among the EStreams catchments (the catchment with the longer streamflow time series was kept) 

[8909] 

• Availability of at least 90 % of the Epot data between October 1990 and September 2015 [8846] 
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• Availability of the catchment in one of the CAMELS datasets [3557] 

• CAMELS forcing data coming from a smaller-scale dataset (catchments from LamaH-CE (Austria) excluded as me-95 

teorological forcings are from ERA5-Land) [3097] 

• Availability of at least 90 % of the streamflow data (in the CAMELS dataset) between October 1995 and September 

2015 [3097] 

• Maximum five lakes upstream (obtained from EStreams) [2841] 

• Normalized upstream capacity of reservoirs, calculated using Eq. 9 from Salwey et al. (2023), and derived from the 100 

EStreams dataset, smaller or equal than 0.2 [2741] 

• Runoff ratio (based on the precipitation data from the CAMELS dataset) between October 1995 and September 2015 

below 1.1 [2741] 

• Runoff ratio (based on the precipitation data in EStreams) between October 1995 and September 2015 below 1.1 

[2682] 105 

 

We excluded catchments with an area of more than 2000 km2 as a bucket-type hydrological model is not the most suitable 

choice for larger catchments. 

Unlike the other national datasets, the LamaH-CE dataset for Austria uses ERA5-Land as its meteorological forcing. As the 

comparison of E-OBS data to globally available data is a different question than the comparison to smaller-scale (national) 110 

products, we excluded the Austrian dataset from the analyses. Moreover, a previous study already highlighted several limita-

tions of ERA5-Land as forcing for hydrological models (Clerc-Schwarzenbach et al., 2024).   

To minimize the inclusion of catchments potentially affected by human regulation (e.g., reservoirs or diversions), we applied 

two attribute-based criteria. The maximal number of lakes was chosen arbitrarily, with the goal of excluding highly regulated 

catchments. The second criterion, the normalized upstream capacity, was calculated following Salwey et al. (2023), and a 115 

threshold of 0.2 was adopted based on their findings. While these filters may exclude some basins that are only weakly influ-

enced by regulation, we preferred a conservative approach. Moreover, we selected these two criteria because the relevant 

information (number of lakes and upstream capacity) is consistently available across Europe in the EStreams dataset, allowing 

for a uniform filtering procedure even where metadata on human influence are not provided in the national CAMELS datasets.  

Following a similar reasoning, we excluded catchments with runoff ratios greater than 1.1, as natural streamflow rarely exceeds 120 

precipitation by such large margins in unregulated basins. Such cases likely reflect data inconsistencies or strong anthropogenic 

influence (e.g., diversions or regulation).  

Finally, to make sure that the streamflow data (obtained from the CAMELS datasets) were reasonable, we checked that the 

average streamflow was not unrealistically high (i.e., not exceeding 10 mm d-1 as this may indicate issues with the data) which 

was the case for all 2682 catchments.  125 
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Table 1: Overview of catchments and data sources used in this study. 

Country 

Number of 

catchments 

included in 

this study 

CAMELS dataset Publication Dataset 

Czechia 244 CAMELS-CZ unpublished unpublished 

Denmark 120 CAMELS-DK Liu et al. (2025) Koch et al. (2025) 

France 496 CAMELS-FR Delaigue et al. (2025a) Delaigue et al. (2025b) 

Germany 986 CAMELS-DE Loritz et al. (2024) Dolich et al. (2024) 

Great Britain 489 CAMELS-GB Coxon et al. (2020a) Coxon et al. (2020b) 

Spain 211 BULL Senent-Aparicio et al. (2024b) Senent-Aparicio et al., (2024a) 

Sweden 3 CAMELS-SE Teutschbein (2024a) Teutschbein (2024b) 

Switzerland 133 CAMELS-CH Höge et al. (2023) Höge et al. (2025) 

 

2.2 Meteorological data 

For the data comparison and the modelling experiments, we investigated and used daily precipitation, Epot, and temperature 130 

data from the EStreams dataset and from the different CAMELS datasets (Table 1). We used the latest released version of 

EStreams (version 1.4), for which precipitation and temperature data were obtained from the E-OBS ensemble mean product 

with a spatial resolution of 0.1° in both latitude and longitude (do Nascimento et al., 2025). E-OBS provides a pan-European 

observational dataset of surface climate variables that is derived by statistical interpolation of in-situ measurements, collected 

from national data providers (Cornes et al., 2018). Potential evapotranspiration (Epot) time series in EStreams were calculated 135 

with the Hargreaves formula (Hargreaves and Samani, 1982), using the E-OBS temperature data and catchment elevation as 

input. Note that there is also a version of E-OBS at a resolution of 0.25° available and originally represented in EStreams. 

Users should be aware that different resolutions of a forcing dataset can lead to slightly different performances. Similarly, 

there are different Epot products available from E-OBS as derived indices, but here, we used the Epot product provided in 

EStreams. The CAMELS meteorological data are usually based on in-situ observations. When more than one option was 140 

available, we chose the data with the highest spatial and (original) temporal resolution to represent the CAMELS data for this 

study (Table 2). While E-OBS was developed specifically for Europe, one can still expect a lower data quality than for datasets 

created for a smaller region (e.g., national datasets) due to the lower spatial resolution and interpolation choices used to achieve 

the larger spatial extent of the dataset.  

Note that the shapefiles that were used in EStreams and in CAMELS to calculate the areal averages for the meteorological 145 

forcings potentially differed. In addition to the different data sources, this can affect the forcing data. 
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Table 2: Overview of the data sources for the meteorological data (precipitation P, temperature T, and potential evapotranspiration 

Epot) for the different CAMELS datasets in this study. 

Country 
Varia-

ble(s) 
Source / equation Resolution 

Dataset 

type 
Reference(s) 

Czechia 

P, T 

unpublished data from Czech 

Hydrometeorological Institute 

(M. Jeníček / O. Ledvinka, pers. 

comm.) 

500 m 
station-

based 
Štěpánek et al. (2011, 2013) 

Epot 

unpublished data based on 

Oudin equation (M. Jeníček / O. 

Ledvinka, pers. comm.) 

* - Oudin et al. (2005) 

Denmark 

P Danish Meteorological Inst. 10 km 
station-

based 
Scharling (1999b) 

T Danish Meteorological Inst. 20 km 
station-

based 
Scharling (1999a) 

Epot Makkink 40 km - 
van Kraalingen and Stol 

(1997) 

France 
P, T SAFRAN by Météo-France 8 km reanalysis 

Quintana-Seguí et al. (2008); 

Vidal et al. (2010) 

Epot Oudin * - Oudin et al. (2005) 

Germany 

P 

HYRAS by Deutscher Wetter-

dienst (DWD) 
1 km 

station-

based 
Rauthe et al. (2013) 

T HYRAS by DWD 5 km 
station-

based 
Razafimaharo et al. (2020) 

Epot Modified Hargreaves * - 

Adam et al. (2006); 

Droogers and Allen (2002); 

Hargreaves and Samani 

(1982) 

Great 

Britain 

P CEH-GEAR 1 km 
station-

based 

Keller et al. (2015); Tanguy 

et al. (2016) 

T CHESS-met 1 km 
station-

based 
Robinson et al. (2017a) 

Epot 
CHESS-PE (based on Penman-

Monteith) 
1 km - 

Robinson et al. (2016, 

2017b) 

Spain P, T, Epot 
Spanish Meteorological Agency 

(AEMET) 
5 km 

station-

based 
Peral García et al. (2017) 

Sweden 

P, T 

PTHBV database by Swedish 

Meteorological and Hydrologi-

cal Institute (SMHI) 

4 km 
station-

based 
SMHI (2025) 

Epot 

unpublished data based on 

Hamon equation (C. 

Teutschbein, pers. comm.) 

* - Hamon (1963) 
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Country 
Varia-

ble(s) 
Source / equation Resolution 

Dataset 

type 
Reference(s) 

Switzer-

land 

P RhiresD by MeteoSwiss 2 km 
station-

based 
MeteoSwiss (2021b) 

T TabsD by MeteoSwiss 2 km 
station-

based 
MeteoSwiss (2021a) 

Epot 
Penman–Monteith without in-

terception correction 
* - Viviroli et al. (2007) 

* calculation for each catchment based on its meteorological data 150 

2.3 Calculations of the differences in the CAMELS and E-OBS data 

We compared the precipitation, Epot, and temperature data from EStreams (i.e., the E-OBS data) to the corresponding data 

from the different CAMELS datasets (Table 2) for the twenty years between October 1995 and September 2015 to get an 

overview of the differences in the data. For precipitation and Epot, we determined the relative difference in the mean annual 

sums. For temperature, we determined the mean absolute difference for the daily data. When comparing the two datasets, we 155 

used the E-OBS data obtained from EStreams as minuend and the analogous data obtained from the CAMELS datasets as 

subtrahend, i.e., positive differences indicate higher values in the E-OBS data, while negative differences indicate lower values 

in the E-OBS data than the CAMELS data. To calculate relative differences (for precipitation and Epot), we divided by the 

mean annual sum determined from the CAMELS dataset. Thus, for example, a value of -20 % indicates that the mean annual 

sum obtained from E-OBS is 80 % of the mean annual sum obtained from the CAMELS dataset, and a value of 40 % indicates 160 

that the mean annual sum obtained from E-OBS equals 140 % of the mean annual sum obtained from the CAMELS dataset. 

2.4 Modelling experiments 

Following the methodology of Clerc-Schwarzenbach et al. (2024), we defined different combinations of forcing data (“sce-

narios”) to calibrate the hydrological model (Table 3). This allowed us to determine how the forcing data and their individual 

variables impacted hydrological model performance. Since EStreams does not provide daily streamflow data, but where to 165 

find them, we used the observed streamflow data contained in the CAMELS datasets for all modelling experiments. Thus, we 

made sure that the hydrological model performance was not affected by different streamflow data. 

In the first two scenarios, we used the CAMELS forcing data (scenario I) or the E-OBS data obtained from EStreams (scenario 

II). To isolate the impact of the forcing variables, we additionally defined three mixed scenarios. Scenario III used precipitation 

from CAMELS and Epot and temperature from E-OBS. Similarly, scenario IV evaluated the effect of using only Epot from 170 

CAMELS, and consequently if using different Epot formulations would change our results, while scenario V assessed the effect 

of using only temperature from CAMELS.  Note that due to the dependency of the E-OBS Epot data on the E-OBS temperature 

data, model calibration was influenced by the E-OBS temperature data even when replacing the temperature data from E-OBS 

with those from CAMELS (scenario V). 
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Analogously to Clerc-Schwarzenbach et al. (2024), we calibrated the HBV model (Bergström, 1992, 1995) in the version 175 

HBV-light (Seibert and Vis, 2012) with a genetic algorithm (Seibert, 2000). Each catchment was divided into elevation zones 

of 200 m elevation difference, whereby an elevation zone had to account for at least 5 % of the catchment area. For the 

determination of the elevation zones, we used the shapefiles provided by EStreams, and the Copernicus DEM at a resolution 

of 30 m (European Space Agency and Airbus, 2022).  

We used the five years from October 1990 to September 1995 as the warming-up period for the model, and the twenty years 180 

from October 1995 to September 2015 as the simulation period for which we optimized daily streamflow simulation in terms 

of the Kling-Gupta efficiency KGE (Gupta et al., 2009). One calibration consisted of a total of 3500 model runs. We conducted 

each calibration ten times to account for equifinality. We used equal weights on the ten simulated hydrographs to calculate an 

ensemble mean hydrograph. We determined the model performance (using again the KGE as well as the PBIAS, i.e., the 

percent bias of the simulated streamflow compared to the observed one) for each catchment and each scenario by comparing 185 

this ensemble mean hydrograph to the observed hydrograph.  

 

Table 3: Combinations of forcing data (“scenarios”) for the modelling experiments. 

Scenario Description Precipitation Epot Temperature 

I CAMELS CAMELS CAMELS CAMELS 

II E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) 

III E-OBS with CAMELS precipitation CAMELS E-OBS (EStreams) E-OBS (EStreams) 

IV E-OBS with CAMELS Epot E-OBS (EStreams) CAMELS E-OBS (EStreams) 

V E-OBS with CAMELS temperature E-OBS (EStreams) E-OBS (EStreams) CAMELS 

2.5 Statistical tests 

We used the Spearman rank correlation coefficient (r) and corresponding p-values to assess the relationships between the 190 

model performance differences in terms of the KGE and different catchment attributes. We used the locally-weighted polyno-

mial regression (lowess; Cleveland, 1979) to visually represent the relationships. In addition, we used the Wilcoxon signed-

rank test (Wilcoxon, 1945) on paired median KGE values to evaluate whether the differences in model performance between 

the scenarios were statistically significant. 

3 Results 195 

3.1 Comparison of the meteorological data 

The mean annual precipitation sums in the E-OBS data were lower than the mean annual precipitation sums in the CAMELS 

data for 2362 catchments (88 %). For 758 catchments (28 %), the deviation of the mean annual precipitation sums in E-OBS 

from the ones in CAMELS exceeded -10 %. Conversely, there were only 33 catchments (1 %) for which the mean annual 
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precipitation sums in E-OBS were overestimated by +10 % or more from the ones in CAMELS. Differences between the two 200 

data sources were largest for the catchments in Spain and smallest for the catchments in Germany (Fig. 1). 

 

 

Figure 1: Relative difference in the mean annual precipitation (for a 20-year period: 1995-2015) between the E-OBS data obtained 

from EStreams and the different CAMELS datasets. Negative values and brown colours indicate less precipitation in E-OBS than 205 
in CAMELS, positive values and blue colours more precipitation in E-OBS. On the map, the catchments with the largest deviations 

were plotted last to increase their visibility. Note that there is no separate histogram for the three catchments in Sweden and that 

the number of catchments per histogram differ. This is illustrated by the vertical lines indicating 10 % (rounded) of the number of 

catchments per histogram. The colour scale was cut at ±50 %. The scale bar refers to the map center. The base map was obtained 

from Natural Earth (naturalearthdata.com). The colour palette used in this and all other maps are scientific colour palettes from 210 
Crameri (2023). 

 

The opposite was found for the annual sums of Epot: For 2508 catchments (94 %), the mean annual Epot calculated from the E-

OBS data was higher than for the CAMELS data. For 1353 catchments (50 %), the deviation of the E-OBS Epot sums from the 

CAMELS Epot sums were at least 10 %. Clearly lower Epot sums derived from E-OBS than from CAMELS could only be 215 

observed for catchments in Sweden, on the Danish islands, in southern Switzerland, and for some catchments in northern Spain 

(Fig. 2). As different equations or data sources were used in the different CAMELS datasets (see Table 2) to obtain the Epot 

data, the order of magnitude of the deviations changed abruptly along the national borders in some cases (e.g., along the border 

between Czechia and Germany). It is noteworthy that for Epot, there tend to be small differences between the two datasets for 

Spain (while this was not the case for precipitation). 220 
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Figure 2: Relative difference in the mean annual Epot (for a 20-year period: 1995-2015) obtained from EStreams and calculated from 

the E-OBS data compared to the mean annual Epot calculated from the different CAMELS datasets. Negative values and brown 

colours indicate a lower Epot in E-OBS than in the CAMELS datasets, positive values and blue colours a higher Epot. On the map, 225 
the catchments with the largest deviations were plotted last to increase their visibility. 

 

Due to the differences in the precipitation and the Epot data, the aridity indices (Epot/P) calculated from the two data sources 

differed, although they were still highly correlated (Pearson’s correlation coefficient of 0.94) (Fig. 3). Given the lower precip-

itation and higher Epot sums for most catchments, the aridity indices were generally higher when the E-OBS data obtained from 230 

EStreams were used than when the CAMELS data were used. This did not apply for Sweden, as the Epot sums based on E-OBS 

were lower than the ones from CAMELS for this country. The two calculated aridity indices aligned best for Germany and 

worst for Spain, Great Britain, and Czechia. Spatially, the aridity indices derived from both datasets followed the expected 

pattern, with more arid catchments in southern Europe and north-eastern Germany and more humid catchments in the other 

regions (see Fig. A1 for the CAMELS data and Fig. A2 for the E-OBS data). 235 
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Figure 3: Comparison of the aridity indices (Epot/P) based on the CAMELS and the E-OBS data (for a 20-year period: 1995-2015), 

colour-coded by country. Note the logarithmic axes. 

 240 

Comparison of the temperature data in the two datasets revealed that the average temperature in E-OBS was higher (median 

difference: 0.3° C) for most catchments than the average temperature in CAMELS (see Fig. S2 in the Supporting Information). 

There were 636 catchments (24 %) for which the average temperature was lower in E-OBS than in the CAMELS datasets. 

Note that in the HBV model, temperature has an effect on the snow routine, with higher temperatures resulting in a larger 

fraction of precipitation falling as rain (and thus faster streamflow generation). However, as the threshold temperature for the 245 

differentiation between rain and snow is adapted during calibration, it is expected that the model can compensate comparably 

well for biased temperature time series. Thus, the main effect of the differences in temperature are the differences in Epot which 

are highly affected by the temperature data used as input to the calculations (Fig. 22Figure 2). 

3.2 Model performances 

3.2.1 Model performances with the CAMELS and the E-OBS forcing data 250 

Overall, high model performances were achieved for most catchments when the CAMELS data (scenario I) were used for 

model calibration (Fig. A3). For 2507 of the 2682 catchments (93 %) the KGE was higher than 0.70, with a median perfor-

mance of 0.89. 

The model performances were also high for most catchments when the E-OBS forcing data (scenario II) were used for model 

calibration (Fig. 4). For 2434 of the catchments (91 %) the KGE was higher than 0.70, which is comparable to the 2507 255 

catchments that fulfilled this criterion for the CAMELS data (scenario I). Furthermore, the median performance achieved with 
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the E-OBS data from EStreams (scenario II) of 0.87 was very similar to the 0.88 achieved with the CAMELS data (scenario 

I). However, over all catchments and according to the Wilcoxon signed rank test, performances were significantly higher for 

scenario I than for scenario II. 

 260 

 

Figure 4: Model performance (Kling-Gupta efficiency, KGE) achieved for the 20-year period between October 1995 and September 

2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II). Note that the lower limit of the 

colour scale was cut at zero. Lower performances were plotted last to improve their visibility. 

 265 

Considering the PBIAS as an additional measure for model performance (Fig. A4 for scenario I and Fig. 5 for scenario II), we 

found a small PBIAS (between –10 % and 10 %) for 2477 catchments for scenario I and 2468 catchments for scenario II (both 

92 %). There were more occurrences of streamflow overestimations (i.e., positive PBIAS) when the CAMELS forcing data 

were used (scenario I) than when the E-OBS data were used: For 176 catchments (7 %), the PBIAS was larger than 10 %, and 

for 26 catchments (1 %), it was larger than 100 %. Meanwhile, a streamflow overestimation of at least 10 % only happened in 270 

31 catchments (1 %) with the E-OBS forcing data (scenario II), but there was a considerable number of catchments for which 

the streamflow was underestimated (181 catchments (7 %) with a PBIAS smaller than –10 %). 
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Figure 5: PBIAS (relative deviation of the simulated streamflow from the observed streamflow) for the 20-year period between 275 
October 1995 and September 2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II). 

Note that the limits of the colour scale were cut at ±50 %. Largest deviations were plotted last to improve their visibility. 

 

3.2.2 Differences in model performance between scenario II and I  

To directly assess the differences in model performances between scenario II and I, we looked at the differences in model 280 

performance (Fig. 6). For 1669 catchments (62 %), model performances were (at least slightly) higher when the CAMELS 

data were used (scenario I), while for the other 38 % of all catchments, the use of E-OBS data resulted in better model perfor-

mances. The strongest regional differences were found for the catchments in Spain and Great Britain.  

For France, there were notable improvements in model performance when using the E-OBS dataset: 316 catchments (64 %) 

had higher performances with the E-OBS data (median ΔKGE=0.01). Note that the French catchments that benefitted most 285 

from the E-OBS forcing data are the catchments for which the PBIAS was strongly positive when the CAMELS forcing data 

were used (scenario I; Fig. A4). For Sweden, all three catchments performed better with the E-OBS data, but the differences 

were very small (median ΔKGE=0.006; Fig. 6). For the catchments in Spain, it was the opposite: 200 catchments (95 %) 

performed better with the CAMELS dataset, reaching a median ΔKGE of -0.10.  Higher KGE for scenario I was also observed 

for the catchments in Great Britain (80 %), Czechia (66 %), Switzerland (65 %), Denmark (61 %) and Germany (59 %). 290 

The results also indicated some interesting intercountry patterns (Fig. 6). In France, the most considerable positive differences 

occurred for the catchments in the eastern, more mountainous part of the country, while for Great Britain, the CAMELS data 

resulted in clearly higher performances in most regions but not in the area around London.  
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 295 

Figure 6: Difference in model performance (Kling-Gupta efficiency, KGE) between scenario II and scenario I. Positive values and 

green colours indicate higher performances when the E-OBS data obtained from EStreams were used, negative values and pink 

colours indicate higher performances when the CAMELS data were used. For the model performances, see Figs. 4 and A4. The 

catchments with the largest differences (in absolute terms) were plotted last to improve their visibility. Note that the colour scale 

was cut at ±0.3.  300 

 

3.2.3 Differences in model performance between scenario II and scenarios III, IV, and V 

Replacing precipitation from E-OBS with data from CAMELS had by far the strongest impact on model performance (scenario 

III, Fig. A5). For most catchments, the performance differences between scenarios II and III closely mirrored the performance 

differences between scenarios II and I, indicating that precipitation accounted for a large share of the overall differences in 305 

performance. For only a few catchments (mostly in Great Britain), the performance gap between scenarios II and I was notably 

larger than between scenarios II and III. The opposite occurred for very few catchments (see Fig. S3 in the Supporting Infor-

mation). 

The effect of replacing the Epot data (scenario IV) was quite limited. The higher Epot data based on E-OBS were beneficial for 

a handful of catchments (ΔKGE>0.30 for 19 catchments), but the median difference was 0.00 (Fig. A6). Replacing only the 310 

temperature time series with the CAMELS data (scenario V) had virtually no effect on model performance for most catch-

ments. There were no catchments for which the replacement of the temperature data increased the KGE by more than 0.10 and 

no catchments for which it decreased the KGE by more than -0.10 (see Fig. S4 in the Supporting Information). Note that only 
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the temperature time series provided as input data to the HBV model were replaced, and not the data that were used to calculate 

Epot. 315 

3.3 Model performance linked to catchment attributes 

We calculated the Spearman rank correlation between model performance and several catchment attributes available in ES-

treams (see Table S1 and Fig. S5 in the Supporting Information). The number of E-OBS precipitation stations and the aridity 

index emerged as particularly interesting variables given their apparent relationships with model performance. 

3.3.1 Number of E-OBS precipitation stations 320 

To assess the impact of the variable coverage of meteorological stations used to produce the gridded E-OBS dataset, we ex-

amined the relationships between the number of E-OBS stations within or near each catchment and the model performance for 

scenario II (i.e., using the E-OBS data contained in EStreams for all meteorological variables; see Fig. 44). Here, we present 

these relationship assessments per country (Fig. 7). The number of E-OBS precipitation stations was obtained from the ES-

treams dataset, defined as the count of stations located within a 10 km buffer of the catchment boundary (do Nascimento et 325 

al., 2024).  

Model performances for scenario II tended to be higher when more E-OBS stations were located in or around a catchment. 

Except Sweden (for which we only considered three catchments), there was a significant positive correlation (p-value<0.05) 

between the density of stations and the model performances achieved with the E-OBS forcing data for all countries when all 

catchments were considered. To avoid that correlations are only due to a tendency for higher model performances in large 330 

catchments and more stations in large catchments, we also analysed the relationship for only the catchments smaller than 100 

km2. For Spain, the threshold was set to 500 km2 due to the small number of catchments smaller than 100 km2. There were 

still significant positive correlations for most countries, but not for Denmark and France. The correlations even increased for 

Switzerland (r=0.53 to r=0.71) and Great Britain (r=0.32 to r=0.36).   

The performances were generally the lowest for areas with sparse station coverage, such as Spain and Great Britain (Fig. 7). 335 

However, low E-OBS station density did not always result in poor model performance. For catchments in countries like France, 

Great Britain, Denmark, and Sweden, KGE values remained mostly above 0.5 despite a comparatively lower station density, 

suggesting that factors other than station density (such as the spatial variability of the rainfall due to topography or convective 

rainfall) also influence model accuracy. For additional insights, we also provide the scatterplots of the differences in model 

performance between scenarios II and I compared to the number of E-OBS stations per catchment (see Fig. S6 in the Support-340 

ing Information), which further supports this discussion. 
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Figure 7: Scatterplots showing the model performance (Kling-Gupta efficiency, KGE) for scenario II (y-axes) versus the number of 

E-OBS precipitation stations in and around each catchment, per country. Each circle represents one catchment, the size is based on 345 
catchment area. Each subplot contains the Spearman rank correlation (r) and corresponding p-value, and the lowess trend line. The 

r and the p-value are computed for all catchments per country and also for the ones with an area below 100 km2 (500 km2 for Spain). 

Note that the y-axes were cut at -0.5, in accordance to Fig. 4, and the x-axes differ for the different subplots. 

 

3.3.2 Aridity index 350 

We also evaluated the model performances for scenarios I and II in relation to the aridity indices derived from the respective 

forcing data (Fig. 8). Despite some atypical cases (Denmark in scenario I and Great Britain in scenario II), the model perfor-

mances tended to be significantly lower in catchments with higher aridity indices (drier catchments). This trend was particu-

larly evident for the catchments in Czechia, Germany, Spain, and Great Britain. Although the pattern appeared with both 

forcing datasets, it was more pronounced for the CAMELS data (scenario I), especially for the catchments in Czechia, and 355 

Spain (both with r=-0.48). For Switzerland and France, the Spearman rank correlations were non-significant and close to zero 

for both forcing data types.   
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 360 

Figure 8: Scatterplots showing the model performance (Kling-Gupta efficiency, KGE) for scenario I and II (y-axes) versus the aridity 

indices derived from the corresponding forcing data (CAMELS for scenario I, E-OBS from EStreams for scenario II), per country. 

Each subplot contains the Spearman rank correlation (r) and corresponding p-value, and the lowess trend line. Note that the y-axes 

were cut at -0.5, in accordance to Fig. 4. Note that the x-axes differ for the different subplots. 

4 Discussion 365 

4.1 Differences in the meteorological data  

Our results show that the mean annual precipitation sums in E-OBS are systematically lower than those in the CAMELS 

datasets for most catchments (Section 3.1), with the largest differences occurring in Spain, whereas the smallest deviations 

were found in Germany (Fig. 1). This pattern is consistent with the findings of Bandhauer et al. (2022), who showed that E-

OBS tends to underestimate precipitation to smooth spatial contrasts in comparison to a reference dataset, particularly in 370 

mountainous regions and in areas with sparse station coverage. In contrast, where E-OBS is supported by dense observation 

networks, such as in Germany, precipitation contrasts were better represented and the agreement with reference datasets was 

substantially improved (Bandhauer et al., 2022). Taken together, this suggests that the lower precipitation estimates in E-OBS 

relative to CAMELS are largely driven by the combination of coarser grid-resolution and lower underlying station density, 

especially in complex terrain. By contrast, mean temperatures from E-OBS and mean annual Epot were generally higher than 375 

those from the CAMELS forcings (Fig. 2). We do not have a clear explanation for this behaviour, but potential reasonings are 

homogenization procedures, elevation corrections, and interpolation methods used in the different national datasets, which is 

beyond the scope of this study. The difference in Epot is likely driven by the differences in temperature and may be further 

amplified by differences in the Epot formulations and parameterizations used in the different products. The differences between 
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the two forcing sources are the smallest in Germany also for Epot, where there is both higher E-OBS station density, and a 380 

similar equation used for Epot derivation in CAMELS to the one in E-OBS (Table 2).  

4.2 Model performances 

The HBV model is known for its capabilities in simulating streamflow, particularly in humid catchments, where water flow is 

related to varying soil saturation and hydrological connectivity (Knapp et al., 2022, 2024). This, in part, seems to explain the 

consistently high model performances achieved using either the CAMELS or the E-OBS forcing data (Figs. 4 and A3 as well 385 

as Figs. 5 and A4) for the more humid catchments, such as those in Sweden and Denmark. In contrast, in Spain, where the 

most arid catchments are located, the KGE values were the lowest and most variable for both scenarios. These findings are 

reinforced by the observed relationship between model performance and the aridity index shown in Fig. 8. The trend of de-

creasing performance with increasing aridity further supports the assertion that arid catchments pose significant challenges for 

hydrological modelling. Several other studies have suggested that for dry catchments more complex model structures may be 390 

needed for streamflow simulation, and even then, they still tend to yield lower model performance (Atkinson et al., 2002; 

David et al., 2022; Massmann, 2020). 

Yet, the lower model performance for the catchments in Spain may be attributed not only to the inherent complexities of 

streamflow generation in arid environments, but also to the higher variability and limited availability of observational hydro-

meteorological data in these regions, which complicates model calibration and validation, as noted in previous studies (do 395 

Nascimento et al., 2023; Yu et al., 2011). Additionally, previous studies have pointed out that many Spanish catchments, 

including the ones available in the currently used BULL dataset, are highly regulated, with dams and diversions (Klotz et al., 

2025; Senent-Aparicio et al., 2024b). Although we purposefully adopted the criteria based on the number of lakes, and nor-

malized upstream capacity area discussed in section 2.1, some of these heavily modified catchments may still not be adequately 

filtered out, thereby further impairing overall model performance.  400 

4.3 Influence of forcing data characteristics on model performance 

Our findings indicate that model performance in scenario II is strongly influenced by the density of stations used to obtain the 

E-OBS data (see section 3.3.1). As a result, the reliability of model outputs varies considerably across regions—an observation 

that is consistent with previous research (Klotz et al., 2025). This spatial dependency is visually supported by Figure 6 in the 

EStreams paper by do Nascimento et al. (2024), which shows the density of E-OBS stations across Europe. Notably, for regions 405 

with a high density of stations, such as Germany, the model achieved the highest KGE values with E-OBS data, underscoring 

the critical role of data availability and quality in hydrological modelling accuracy. Importantly, the significant correlations 

also found on smaller catchments (Fig. 7) confirmed that this relationship is not just an artifact of catchment size. To further 

understand the regional variations in model performance, we also examined how the type and characteristics of the CAMELS 

forcing data varied across countries, extending the comparison to both scenario I and II. This comparison provides insights 410 

into the role of data resolution, origin, and processing methodology in shaping the current model outcomes. 
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Germany presents a particularly consistent case: E-OBS shows high station density over the country (Fig. 6 in do Nascimento 

et al., 2025), likely overlapping with the ground observations used in the national HYRAS dataset (Rauthe et al., 2013; Razaf-

imaharo et al., 2020), which explains the high agreement between the precipitation forcings (Fig. 1) and the similar model 

accuracy obtained with both input datasets (Fig. 6). Minor discrepancies are expected, given HYRAS’s finer spatial resolution 415 

(1 km for precipitation, 5 km for temperature) compared to E-OBS (0.1°). 

In contrast, the national products for Spain, Switzerland, and Great Britain are based on substantially denser station networks 

than E-OBS (Table 2), which likely contributes to their higher model accuracy in scenario I relative to scenario II. As shown 

in Figure 6 by do Nascimento et al. (2025), E-OBS displays sparse station coverage in these countries. At the same time, it is 

worth noting that their respective national datasets—AEMET (5 km), RhiresD/TabsD (2 km), and CEH-GEAR/CHESS (1 420 

km)—offer much finer spatial detail, which likely offer a better local representation of forcing patterns.  

The meteorological data in the CAMELS of Denmark and France stand out for their coarser spatial resolution (10 km and 8 

km) compared to the other CAMELS datasets. In Denmark, this likely reduced the performance advantage of the CAMELS 

forcings, resulting in similar outcomes between scenarios I and II. In France, however, the situation differs: unlike the other 

CAMELS datasets, the SAFRAN product combines reanalysis and station-based data (Quintana-Seguí et al., 2008; Vidal et 425 

al., 2010). The KGE performances in scenario II being slightly better in 64 % of the French basins might suggest that SAF-

RAN’s reanalysis nature, alongside coarser gridded-resolution may explain the marginally lower accuracy relative to the purely 

station-based E-OBS forcing. However, note that the lower precipitation data and higher Epot data in E-OBS compared to 

CAMELS-FR can also just be advantageous for model calibration, e.g., if there are additional outflows from the catchments 

that are not represented in the model structure (see section 4.4 for further discussion).  430 

For Czechia, the CAMELS forcings resulted in clearly better model performances than the E-OBS forcings, consistent with 

its high-resolution station-based dataset, while Sweden, represented by only three catchments, provides insufficient evidence 

for interpretation. 

Overall, these results indicate that differences in model performance seem to be mainly driven by the station density used to 

derive the forcing, spatial resolution, and type of the product (station-based or reanalysis), leading to variability in the data 435 

quality even within the same source. 

4.4 Influence of different Epot data in model performance 

In this work, the differences in model performance across the various sources of forcing data were mainly attributed to the 

differences in precipitation inputs (scenario III), whereas discrepancies in Epot and temperature data hardly affected model 

performance (scenarios IV and V). These findings are consistent with those of Clerc-Schwarzenbach et al. (2024), who com-440 

pared the Caravan and CAMELS datasets. Although their analysis revealed larger differences in Epot than in precipitation data, 

it was still the precipitation inputs that exerted the greatest influence on model performance.  
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In this study, the differences between the Epot data derived from E-OBS and the Epot data derived from the CAMELS datasets 

were much smaller, but still obvious (which makes sense, considering the differences in the temperature data that were gener-

ally used as input to the Epot calculations). This demonstrates once again the large uncertainties that we face when using 445 

different approaches to estimate Epot. Several studies have already identified this issue as a persistent “blind spot” in hydrolog-

ical modelling (Bai et al., 2016; Federer et al., 1996; Hanselmann et al., 2024). Epot calculated with the Hargreaves equation, 

as in EStreams, has been found to be a reliable method in various hydrological modelling applications, including in Central 

Europe (Pimentel et al., 2023), Germany (Loritz et al., 2024) and other regions (Bangi and Soraganvi, 2023; Sperna Weiland 

et al., 2012). Furthermore, as shown in Fig. A6, the differences in Epot data did not affect model performance results strongly, 450 

so it can be expected that the use of a different equation would not notably change the findings of this study. 

While the different Epot data had a very limited effect on model performances in general, the higher Epot data derived from E-

OBS were beneficial for the model performance in some cases, as they likely allowed the model more flexibility to adjust the 

water balance. For example, the low performances with the CAMELS-GB data for the catchments in the karstic area around 

London can (partially) be explained by the inability of the HBV model to simulate groundwater losses (Lane et al., 2019; 455 

Oldham et al., 2023; Seibert et al., 2018). In such catchments, the higher Epot values from E-OBS effectively helped to improve 

the water balance by allowing for more evaporation, thereby compensating for the unmodelled groundwater losses. This is 

supported by the fact that the strong streamflow overestimation in this and other regions (e.g., southeastern France) when the 

CAMELS forcing data were used (Fig. A4) could be avoided when the E-OBS forcing data were used (Fig. 5). However, it is 

important to note that while this adjustment led to improved model performance, such compensatory effects are not desirable 460 

when the objective is to accurately represent internal catchment processes. Achieving realistic process representation should, 

generally, remain a central goal in hydrological modelling (Kirchner, 2006). 

4.5 Limitations 

As mentioned with the example of the compensation effects due to higher Epot data, a higher model performance does not 

necessarily mean a better representation of the hydrological processes. Still, we used the performance as an indicator for the 465 

hydrological efficacy of different forcing data. Although model performances are often used as an aggregated measure of data 

quality (Beck et al., 2017; Clerc-Schwarzenbach et al., 2024; Tarek et al., 2020), model performance can also be heavily 

influenced by the chosen model structure, particularly if it does not align well with the physical characteristics of a given  

catchment. This structural sensitivity means that performance differences may reflect model limitations as much as data quality 

(Beven, 2018).  470 

Beyond model structure, it is worth noting that here we performed single-basin calibrations. While this allows for localized 

optimization, it does not reflect how models are typically regionalized for prediction in ungauged basins. Future research 

should explore how the identified performance patterns translate to a regionalization framework, which would provide more 

practical insights for prediction in data-scarce environments, and therefore, where model calibration is not possible. 
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Finally, all simulations in this study were conducted at a daily time step. For smaller catchments, a finer temporal resolution, 475 

such as hourly, could provide more meaningful insights. With the increasing availability of temporally high-resolution datasets 

(Coxon et al., 2025; Dolich et al., 2025; Nijzink et al., 2025), future studies may benefit from repeating similar analyses at the 

sub-daily timescale. 

5 Conclusions 

In this study, we compared the meteorological time series for 2682 European catchments in the EStreams dataset with time 480 

series from eight smaller-scale datasets (mostly CAMELS datasets). Moreover, we evaluated how the different types of mete-

orological forcing data influence the performance of a bucket-type hydrological model.  

Our results showed that for most catchments, mean annual precipitation values obtained from the E-OBS dataset were lower 

than those from the corresponding CAMELS datasets. The opposite was true for the average temperature and thus the annual 

sums of Epot (higher values in E-OBS than in CAMELS). These discrepancies led to consistently higher aridity indices com-485 

puted with the E-OBS data in comparison to the CAMELS data for most catchments, although the spatial pattern remained 

similar. Such systematic differences highlight important inconsistencies across the two data sources that can affect the out-

comes of hydrological synthesis studies across large areas. 

Despite these differences, model calibration using either set of forcing data achieved good model performances for most catch-

ments (KGE of at least 0.70 in more than 90 % of the catchments). However, performances were generally slightly lower when 490 

using E-OBS data than when using CAMELS data: For approximately 60 % of the catchments, the model performance was 

higher when using CAMELS forcing data. Considering the national curation and higher resolution of the CAMELS datasets, 

this makes sense. 

Our findings indicate that cross-country differences in model performance are primarily driven by variations in station density, 

spatial resolution, and the inclusion of reanalysis components, rather than by substantial inconsistencies in data quality between 495 

E-OBS and national products. We observed that model performances using E-OBS forcing data were lower in regions with a 

lower E-OBS station density. This highlights the critical role of station coverage on hydrological model performance, an issue 

that becomes even more pronounced in mountainous regions, where steep climatic gradients in precipitation and temperature 

make dense and spatially representative data essential for reliable simulations, as well as in arid regions and regions where 

convective rainfall is relevant.  500 

Overall, while local or national datasets often yield the best model performances, our results suggest that the meteorological 

forcing data from E-OBS that is included in EStreams represents a valuable and harmonized alternative for pan-European 

studies. The advantage of E-OBS lies in its observational basis, consistent methodology, and coverage across all of Europe, 

making it especially useful when national datasets are unavailable or inconsistent. As such, E-OBS and EStreams provide a 

practical foundation for expanding large-sample hydrology beyond national boundaries while maintaining sufficient data qual-505 

ity for robust model applications. 
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6 Data availability 

Except for CAMELS-CZ and the Epot data for CAMELS-SE, all the CAMELS data used are available from their respective 

repositories (see Table 1). The Epot data for Sweden were provided by Claudia Teutschbein and the CAMELS-CZ data by 510 

Michal Jeníček and Ondřej Ledvinka. These unpublished data are available upon reasonable request. The current version 1.4 

of the EStreams dataset is available at a Zenodo repository (https://doi.org/10.5281/zenodo.17598150). The files containing 

the model performances used in this study are stored at a GitHub repository (https://github.com/thiagovmdon/EOBS-quality). 

7 Code availability 
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(https://github.com/thiagovmdon/EOBS-quality).  
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12 Appendix 

 

 

Figure A1: Aridity index (Epot/P) calculated from the CAMELS data (for a 20-year period: 1995-2015). Note that the colour scale 780 
was cut at a value of two. 
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Figure A2: Aridity index (Epot/P) calculated from the E-OBS data obtained from EStreams (for a 20-year period: 1995-2015). Note 785 
that the colour scale was cut at a value of two. 
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 790 

Figure A3: Model performance (Kling-Gupta efficiency, KGE) achieved for the 20-year period between October 1995 and Septem-

ber 2015 when the input data from the CAMELS datasets were used for model calibration (scenario I). Note that the lower limit of 

the colour scale was cut at zero. Lower performances were plotted last to improve their visibility. 

 

  795 



33 

 

 

Figure A4: PBIAS (relative deviation of the simulated streamflow from the observed streamflow) for the 20-year period between 

October 1995 and September 2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II). 

Note that the limits of the colour scale were cut at ±50 %. Largest deviations were plotted last to improve their visibility. 
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Figure A5: Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario 805 
II) and when the precipitation data from E-OBS were replaced with those from CAMELS (scenario III). Positive values and green 

colours indicate higher model performances with the precipitation data from E-OBS, negative values and pink colours indicate 

higher model performances with the precipitation data from CAMELS. Note that the colour scale was cut at a difference in KGE of 

±0.3. The catchments with the largest differences in model performance were plotted last to increase their visibility. 
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Figure A6: Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario 

II) and when the Epot data from E-OBS were replaced with those from CAMELS (scenario IV). Positive values and green colours 

indicate higher model performances with the Epot data from E-OBS, negative values and pink colours indicate higher model perfor-815 
mances with the Epot data from CAMELS. Note that the colour scale was cut at a difference in KGE of ±0.3. The catchments with 

the largest differences in model performance were plotted last to increase their visibility. 

 


