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Abstract. For large-sample hydrological studies over large spatial domains, Jarge-scale meteorological forcing data are often
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desired. For large-sample studies across Europe, the EStreams dataset and catalogue satisfies this demand. In EStreams, the
meteorological time series are obtained from the Ensemble Observation (E-OBS) product which is available for all of Europe.
Due to the large spatial extent of this dataset, limitations and regional variations of data quality have to be expected when the
dataset is compared to smaller-scale datasets, e.g., national level. In this study, we compare the meteorological time series

included for 2682 catchments in EStreams to gight smaller datasets (mostly CAMELS datasets). We assess how the different
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meteorological data impact the performance of a bucket-type hydrological model. For most catchments, the precipitation
amounts derived from E-OBS are lower than the ones from the CAMELS datasets, while the temperature and the potential

evapotranspiration values are higher. Model performances tend to be Jower when the E-OBS data are used than when the
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CAMELS datasets are used for calibration. Exceptions arise when the station density in the E-OBS data is high. This study

provides the first assessment of the E-OBS data at a continental scale for hydrological applications and shows that, despite

some limitations, the dataset offers a reasonable basis for large-sample hydrological modelling across Europe.

1 Introduction

Driven by their enormous value for hydrological modelling studies, large-sample hydrology (LSH) datasets have developed at
arapid pace in the past decades, and the development continues to gain momentum: Since 2017, more than a dozen “CAMELS”
datasets were released or are being developed (Addor et al., 2017; Alvarez-Garreton et al., 2018; Bushra et al., 2025; Chagas
et al., 2020; Coxon et al., 2020a; Delaigue et al., 2025a; Fowler et al., 2021; Hoge et al., 2023; Jimenez et al., 2025; Liu et al.,
2025; Loritz et al., 2024; Mangukiya et al., 2025; Nijzink et al., 2025; Teutschbein, 2024a). Other animals entered the LSH
stage as well: Llamas (Helgason and Nijssen, 2024; Klingler et al., 2021), a goat (cabra in Portuguese; Almagro et al., 2021),
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and a bull (Senent-Aparicio et al., 2024b).
In the past years, efforts also went into the creation of more overarching products, i.e., datasets covering not only one country

or region. The Caravan dataset (Kratzert et al., 2023) combined the streamflow data from thousands of catchments in already
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published open source LSH datasets with meteorological time series and catchment attributes from the global ERAS-Land
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reanalysis (Mufloz-Sabater et al., 2021). Caravan is growing further and has become a quasi-global dataset (Férber et al., 2024).

For Europe, a dynamic dataset and a catalogue that provides detailed guidance for retrieving streamflow data from national
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providers were introduced in EStreams (https://www.estreams.eawag.ch) by do Nascimento et al. (2024).

Although these collections of large-sample datasets are valuable resources, the combination of catchments distributed across

inclusion

different regions and especially across different countries jn one dataset almost always goes hand in hand with difficulties in

an increasing number of catchments

providing high-quality streamflow and forcing data, due to the lower availability of high-quality data for larger spatial extents,

while smaller datasets typically benefit from more thorough quality control. Furthermore, data processing choices (e.g., gap

filling, interpolation) are more often required at large scales and might introduce added uncertainty in the outcomes (McMillan
etal., 2018).

In an earlier study, Clerc-Schwarzenbach et al. (2024) showed that the globally available meteorological data obtained from
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ERAS-Land (Mufioz-Sabater et al., 2021) in the Caravan dataset (Kratzert et al., 2023) led to a consistently lower hydrological

model performance for catchments in the US, Brazil, and Great Britain, compared to when the meteorological forcing data
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from the corresponding CAMELS datasets (Addor et al., 2017; Chagas et al., 2020; Coxon et al., 2020a) were used. This

demonstrates the importance of promoting awareness of potential data quality losses when it comes to Jarge-scale meteorolog-
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ical datasets.

Similar to the ERAS-Land data in Caravan, the meteorological data were also pbtained from a large-scale dataset in EStreams
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(do Nascimento et al., 2024). For EStreams, the data were obtained from the European Ensemble Observation (E-OBS) product
(Cornes et al., 2018). After the publication of EStreams, questions on the quality of the meteorological forcing data from E-

OBS arose in the LSH community. Recent studies have evaluated the accuracy of the E-OBS precipitation product against
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reference datasets and meteorological stations in some parts of Europe, including Greece (Mavromatis and Voulanas, 2021),
the central Alps, eastern Europe and Scandinavia (Bandhauer et al., 2022). These evaluations indicated that the quality of the
E-OBS precipitation data, when compared to data from high-resolution datasets focusing on a smaller area, is higher in regions
with a high density of E-OBS stations, such as in central Europe, while the reanalysis product ERAS (Hersbach et al., 2020)
partly outperformed E-OBS in regions with a sparse station network (Bandhauer et al., 2022). Yet, evaluations of the E-OBS

data pver a larger extent, and specifically for hydrological modelling, remain unexplored.

(osed

for

To be able to inform the users of EStreams (and of the E-OBS data in general) about the effects of the harmonized meteoro-
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logical data on hydrological applications, a comparison to the meteorological data contained in different national and regional

datasets (i.e., CAMELS datasets and similar products) is required.

For this study, we used 2682 catchments from gight European countries and assessed the hydrological efficacy of the meteor- o
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ological data provided in EStreams (obtained from E-OBS). We did so by comparing the meteorological forcing data from E-

OBS to the analogous data contained for the same catchments in national or regional datasets, namely in, CAMELS-DK (Liu

et al., 2025) for Denmark, CAMELS-FR (Delaigue et al., 2025a) for France, CAMELS-DE (Loritz et al., 2024) for Germany,

(Deleted:

quality

(Deleted:

(Deleted:

LamaH-CE

‘ . (Deleted:

(Klingler et al., 2021a)

) (Deleted

: for Austria,

AN NNANAN




100

105

110

115

120

125

CAMELS-GB (Coxon et al., 2020a) for Great Britain, the BULL Database (Senent-Aparicio et al., 2024b) for Spain, CAM-
ELS-SE (Teutschbein, 2024a) for Sweden, and CAMELS-CH (Hége et al., 2023) for Switzerland. In addition, we also included
catchments from Czechia, with data from the not yet published CAMELS-CZ dataset (Jenicek et al., 2024). The meteorological

data in the smaller datasets stem from sources that were created specifically for the respective country,,
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approach, we did not only compare the meteorological data itself, but also the model performances that were achieved with .-

the different meteorological forcings (but same streamflow data) when calibrating the bucket-type HBV (Hydrologiska Byrans
Vattenbalansavdelning) model (Bergstrom, 1992, 1995; Seibert and Vis, 2012). This allowed us to assess the overall hydro-
logical efficacy of the forcing data. ,
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Jhe reasoning behind this approach is that hydrological models are not only useful for simulating streamflow,but can also be

used as diagnostic tools to evaluate the gfficacy of the input data (Beck et al., 2017; Tarek et al., 2020). The rationale is that, *

although hydrological models are inherently imperfect representations of reality, systematic differences in their performance

when driven by different datasets are unlikely to be random. As noted by Linsley (1982, p. 13), “if the data are too poor for
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smaller datasets would provide a higher model performance than the
standardized oneE-OBS data in EStreams; and that (ii) the difference
in model performance introduced by the different forcing data would
be smaller where E-OBS gauge densities are higher.

the use of a good simulation model, they are also inadequate for any other model.” Building on this idea, our study uses the
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we assume that if a model consistently performs better with one dataset than with the other, this difference likely reflects a
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2 Data and Methods
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2.1 Subset of catchments

We conducted this study for 2682 catchments that are available in the EStreams dataset and catalogue and in one of the fol-

lowing datasets: CAMELS-CZ, CAMELS-DK, CAMELS-FR, CAMELS-DE, CAMELS-GB, BULL, CAMELS-SE, CAM-

ELS-CH, for simplicity’s sake referred to as the “CAMELS datasets” throughout the remainder of the paper (Table 1). These
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Therefore, we hypothesized that (i) the forcing data from the smaller
datasets would provide a higher model performance than the E-OBS
data in EStreams; (ii) the difference in model performance intro-
duced by the different forcing data would be smaller where E-OBS
gauge densities are higher; and that (iii) if a model consistently per-
forms better with one dataset than with another, this improvement
likely reflects a closer alignment of the corresponding meteorologi-
cal data with the actual catchment-scale processes.

catchments fulfilled the following cascade of criteria (with the number of catchments still included after each step in brackets,
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see also Supporting Information, Figure S1):

e Located in a country with access to a CAMELS dataset at the time of data preparation, i.e., Austria, Czechia, Den-
mark, France, Germany, Great Britain, Iceland, Spain, Sweden, or Switzerland [12 019]

e  High-quality catchment delineation in EStreams, as described by do Nascimento et al. (2024) [10 434]

e Catchment area (obtained from EStreams) below 2000 km? [9115]

e No redundancy among the EStreams catchments (the catchment with the longer streamflow time series was kept)
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e Availability of at least 90 % of the Epot data between October 1990 and September 2015 [3846]
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e Availability of the catchment in one of the CAMELS datasets [3557]

e CAMELS forcing data coming from a smaller-scale dataset (catchments from LamaH-CE (Austria) excluded as me-

teorological forcings are from ERA5-Land) [3097]
e Availability of at least 90 % of the streamflow data (in the CAMELS dataset) between October 1995 and September
2015 [3097]

e Maximum five lakes upstream (obtained from EStreams) [2841]
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Deleted: Average streamflow (in the CAMELS dataset) be-
tween October 1995 and September 2015 below 10 mm d' [3608]
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e Normalized upstream capacity of reservoirs, calculated using Eq. 9 from Salwey et al,(2023), and derived from the .

EStreams dataset, smaller or equal than 0.2 [2741]

e Runoffratio (based on the precipitation data from the CAMELS dataset) between October 1995 and September 2015
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below 1.1 [2741]

e Runoff ratio (based on the precipitation data in EStreams) between October 1995 and September 2015 below 1.1
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We excluded catchments with an area of more than 2000 km? as a bucket-type hydrological model is not the most suitable
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Unlike the other pational datasets, the JamaH-CE dataset for Austria uses ERAS5-Land as its meteorological forcing. ,As the

comparison of E-OBS data to globally available data is a different question than the comparison to smaller-scale (national

products, we excluded the Austrian dataset from the analyses. Moreover, g previous study already highlighted several limita-

tions of ERAS5-Land as forcing for hydrological models, (Clerc-Schwarzenbach et al., 2024),

To minimize the inclusion of catchments potentially affected by human regulation (e.g., reservoirs or diversions), we applied
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ERAS5-Land is a reanalysis dataset and derives precipitation from a
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Since our current goal is to compare the performance of
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two attribute-based criteria, The maximal number of lakes was chosen arbitrarily, with the goal of excluding highly regulated
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catchments. The second criterion, the normalized upstream capacity, was calculated following Salwey et al. (2023), and a ' (Deleted:

threshold of 0.2 was adopted based on their findings. While these filters may exclude some basins that are only weakly influ- (Formatted: Font color: Text 1

enced by regulation, we preferred a conservative approach. Moreover, we selected these two criteria because the relevant ‘(Deleted: T
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for a uniform filtering procedure even where metadata on human influence are not provided in the national CAMELS datasets.

Following a similar reasoning, we excluded catchments with runoff ratios greater than 1.1, as natural streamflow rarely exceeds
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precipitation by such large margins in unregulated basins. Such cases likely reflect data inconsistencies or strong anthropogenic

influence (e.g.. diversions or regulation).,

Finally, tp make sure that the streamflow data (obtained from the CAMELS datasets) were reasonable, we checked that the< ,

average streamflow was not unrealistically high (i.e., not exceeding,l0 mm d' as this may indicate issues with the data) which /

was the case for all 2682 catchments. .
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235 Table 1: Overview of catchments and data sources used in this study.

Number of g (Formatted Table
Country 'catchmen.ts CAMELS dataset Publication Dataset " CDeIeted: Austria
included in
. this study L (Deleted: 297
Czechia 244 CAMELS-CZ unpublished unpublished P~ (Field Code Changed
Denmark J20 CAMELS-DK Liu et al. (2025) Koch et al. (2025) g (Deleted: 139
France #96 CAMELS-FR Delaigue et al. (2025a) Delaigue et al. (2025b) . (Field Code Changed
Germany 986 CAMELS-DE Loritz et al. (2024) Dolich et al. (2024) ‘ (Deleted: 515
Great Britain 489 CAMELS-GB Coxon et al. (2020a) Coxon et al. (2020b) . (Field Code Changed
Spain 211 BULL Senent-Aparicio et al. (2024b)  Senent-Aparicio et al., (2024a) . (Deleted: 1054
Sweden 3 CAMELS-SE Teutschbein (2024a) Teutschbein (2024b) ’ (Field Code Changed
Switzerland 433 CAMELS-CH Hoge et al. (2023) Hoge et al. (2025) RN (Deleted: 560

. (Field Code Changed
E‘(Deleted: 245

2.2 Meteorological data % “(Field Code Changed
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For the data comparison and the modelling experiments, we investigated and used daily precipitation, Epot, and temperature

data from the EStreams dataset and from the different CAMELS datasets (Table 1). We used the Jatest released version of (r leted: 162
240 EStreams,(version 1.4). for which precipitation and temperature data were obtained from the E-OBS ensemble mean product ; 5 h (r leted: Table 1

with a spatial resolution of 0,1° in both latitude and longitude (do Nascimento et al., 2025). E-OBS provides a pan-European i (Deleted: In

observational dataset of surface climate variables that is derived by statistical interpolation of in-situ measurements, collected 1 (Deleted: last
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(Field Code Changed
245 input. Note that there is also a version of E-OBS at a resolution of 0.25° available,and originally represented in EStreams. belated

from national data providers (Cornes et al., 2018). Potential evapotranspiration (Epot) time series in EStreams were calculated

with the Hargreaves formula (Hargreaves and Samani, 1982), using the E-OBS temperature data and catchment elevation as
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EStreams is a ready-to-use product derived from E-OBS
and is likely to be increasingly used by the LSH community for stud-
ies on European catchments. Therefore, we used the meteorological
data of precipitation, Epe, and temperature as provided in EStreams
for the evaluation of the E-OBS meteorological data.
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Users should be awarg, that different resolutions of a forcing dataset can lead to slightly different performances. Similarly,

there are different Epo products available from E-OBS as derived indices, but here, we pused the Epot product provided in

EStreams. ,The CAMELS meteorological data are usually based on in-situ observations, When more than one option was _
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250 study (Table 2). While E-OBS was developed specifically for Europe, one can still expect a lower data quality than for datasets i .(Deleted: but not )
created for a smaller region (e.g., national datasets) due to the lower spatial resolution and interpolation choices used to achieve 3 (Deleted: )
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the larger spatial extent of the dataset.
(Deleted: purposefully )
Note that the shapefiles that were used in EStreams and in CAMELS to calculate the areal averages for the meteorological (r e )
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Table 2: Overview of the data sources for the meteorological data (precipitation P, temperature 7, and potential evapotranspiration
E, ) for the different CAMELS datasets in this study.

0.05°

Varia- Dataset
Country ana Source / equation Resolution —:l - Reference(s) (l‘ leted.
ble(s) type
unpublished data from Czech
Hydrometeorological Institute station- e,
P, T 500 = St k etal. (2011, 2013
’ (M. Jeni¢ek / O. Ledvinka, pers. m based epinek et al. (2011, )
Czechia comm.)
unpublished data based on
Epot Oudin equation (M. Jeni¢ek / O. * - Oudin et al. (2005)
Ledvinka, pers. comm.)
P Danish Meteorological Inst. 10 km % Scharling (1999b)
ascd
station-
Denmark T Danish Meteorological Inst. 20 km ﬁ Scharling (1999a)
. van Kraalingen and Stol
Epot Makkink 40 km - (1997)
s n . Quintana-Segui et al. (2008);
France P, T SAFRAN by Météo-France 8 km reanalysis Vidal et al. (2010)
Epot Oudin * - Oudin et al. (2005)
HYRAS by Deutscher Wetter- station-
P dienst (DWD) 1 km based Rauthe et al. (2013)
station-
T HYRAS by DWD 5km Tf,lig Razafimaharo et al. (2020)
Germany —
Adam et al. (2006);
Epot Modified Hargreaves * - Droogers and Allen (2002);
P - Hargreaves and Samani
(1982)
station- Keller et al. (2015); Tanguy
P EH-GEAR 1 ki
CEH-G m based etal. (2016)
t station-
Crea r CHESS-met I km staton Robinson et al. (2017a)
Britain based
£ CHESS-PE (based on Penman- | km ) Robinson et al. (2016,
et Monteith) - 2017b)
. Spanish Meteorological Agency station- , —
Spain P, T, Epot (AEMET) S km based Peral Garcia et al. (2017) Cr
PTHBYV database by Swedish ati
P, T Meteorological and Hydrologi- 4 km ﬁ SMHI (2025)
cal Institute (SMHI) DASEE
Sweden -
unpublished data based on
Epot Hamon equation (C. * - Hamon (1963)

Teutschbein, pers. comm.)
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In the first two scenarios, we used $he CAMELS, forcing data (scenario I) or the E-OBS data obtained from EStreams (scenario /
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and temperature

1), To isolate the jmpact of the forcing variables, we additionally defined three mixed scenarios. Scenario III used precipitation (Deleted: together with the reaming E-OBS forcings.
. . . . - Deleted: replaci
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CAMELS, and consequently if using different £yo formulations would change ougresults, while scenario V assessed the effect

of wsing only femperature from CAMELS, Note that due to the dependency of the E-OBS Epot data on the E-OBS temperature ‘
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Varia- . . Dataset —

Country ble(s) Source / equation Resolugion —u . Reference(s) (l‘ - )

. . tation- .

P RhiresD by MeteoSwiss 2 km ﬁ MeteoSwiss (2021b)

Switzer- . tation- .

witzer T TabsD by MeteoSwiss 2 km Staton MeteoSwiss (2021a)

land based

P —Monteith without in- .

Epot enman f)n e w . out 1 * - Viviroli et al. (2007)

terception correction

* calculation for each catchment based on its meteorological data

2.3 Calculations of the differences in the CAMELS and E-OBS data (Deleted: Table 2 )

We compared the precipitation, Epo, and temperature data from EStreams (i.e., the E-OBS data) to the corresponding data []?y eleted: The methodology used in this work is based on the used }

from the different CAMELS datasets (Table 2) for the twenty years between October 1995 and September 2015 to get an .~ (r leted: Clerc-Schwarzenbach et al. (2024) )

overview of the differences in the data. For precipitation and Epe, we determined the relative difference in the mean annual (Deleted: . )

sums. For temperature, we determined the mean absolute difference for the daily data. When comparing the two datasets, we (Deleted: w )

used the E-OBS data obtained from EStreams as minuend and the analogous data obtained from the CAMELS datasets as %Deleted: r %

Deleted: approach

subtrahend, i.e., positive differences indicate higher values in the E-OBS data, while negative differences indicate lower values (Delete 4w )

in the E-OBS data than the CAMELS data. To calculate relative differences (for precipitation and Epot), we divided by the :(Deleted: Table 3 )

mean annual sum determined from the CAMELS dataset. Thus, for example, a value of -20 % indicates that the mean annual ’ (Deleted: from E-OBS and from CAMELS )

sum obtained from E-OBS is 80 % of the mean annual sum obtained from the CAMELS dataset, and a value of 40 % indicates '(Deleted: different )

that the mean annual sum obtained from E-OBS equals 140 % of the mean annual sum obtained from the CAMELS dataset. i (Deleted: individually D)

| Deleted: available from their respecitive CAMELS dataset in each

. . ; [ofthe model experiments ]

2.4  Modelling experiments (Delete d: cither )

Fo c-Schwarzenbach et al. (2024), we defined tions of forcing data (“sc (Deleted: ¢ )

narios”) to calibrate the hydrological model (Table 3). This allowed us to determine how the forcing data and their individual ;; / %Deleted: he %

1 Deleted:

variables, impacted hydrological model performance. Since EStreams does not provide daily streamflow data, but where to - -

(" leted: influence of specfici )

find them, we used the observed streamflow data contained in the CAMELS datasets for all modelling experiments, Thus, we (,. leted: individually )

made sure that the hydrological model performance was not affected by different streamflow data. (Deleted: calibrated )

data, model calibration was influenced by the E-OBS temperature data even when replacing the temperature data from E-OBS = .~ (Deleted: only )

with those from CAMELS (scenario V). CDeIeted: taking )
(Deleted: replacing only the temperature in E-OBS )
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Analogously to Clerc-Schwarzenbach et al. (2024), we calibrated the HBV model (Bergstrém, 1992, 1995) in the version
HBV-light (Seibert and Vis, 2012) with a genetic algorithm (Seibert, 2000). Each catchment was divided into elevation zones
of 200 m elevation difference, whereby an elevation zone had to account for at least 5 % of the catchment area. For the
determination of the elevation zones, we used the shapefiles provided by EStreams, and the Copernicus DEM at a resolution
of 30 m (European Space Agency and Airbus, 2022).

We used the five years from October 1990 to September 1995 as the warming-up period for the model, and the twenty years
from October 1995 to September 2015 as the simulation period for which we optimized daily streamflow simulation in terms
of the Kling-Gupta efficiency KGE (Gupta et al., 2009). One calibration consisted of a total of 3500 model runs. We conducted
each calibration ten times to account for equifinality. We used equal weights on the ten simulated hydrographs to calculate an

ensemble mean hydrograph. We determined the model performance (using again the KGE as well as the PBIAS, i.e., the

percent bias of the simulated streamflow compared to the observed one) for each catchment and each scenario by comparing

this ensemble mean hydrograph to the observed hydrograph.

Table 3: Combinations of forcing data (“scenarios”) for the modelling experiments.

Scenario Description Precipitation Epot Temperature
1 CAMELS CAMELS CAMELS CAMELS
11 E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) E-OBS (EStreams) ( Deleted:
111 E-OBS with CAMELS precipitation CAMELS E-OBS (EStreams) E-OBS (EStreams) (D eleted: Here, w
v E-OBS with CAMELS Epot E-OBS (EStreams) CAMELS E-OBS (EStreams) (Deleted: also
\'% E-OBS with CAMELS temperature E-OBS (EStreams) E-OBS (EStreams) CAMELS (,. leted:

2.5 Statistical fests

7 (Deleted: potential
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3.1  Comparison of the meteorological data

The mean annual precipitation sums in the E-OBS data were lower than the mean annual precipitation sums in the CAMELS

data for 2362 catchments (88 %). For 758 catchments (28, %), the deviation of the mean annual precipitation sums in E-OBS
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precipitation sums in E-OBS were overestimated by +10 % or more from the ones in CAMELS. Differences between the two

data sources were largest for the catchments in Spain and smallest for the catchments in Germany (Fig. 1).

=

1

(T
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30
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Kigure 1: Relative difference in the mean 1 precipitation (for a 20-year period: 1995-2015) between the E-OBS data obtained /

from EStreams and the different CAMELS datasets. Negative values and brown colours indicate less precipitation in E-OBS than
in CAMELS, positive values and blue colours more precipitation in E-OBS. On the map, the catchments with the largest deviations
were plotted last to increase their visibility. Note that there is no separate histogram for the three catchments in Sweden and that
the number of catchments per histogram differ. This is illustrated by the vertical lines indicating 10 % (rounded) of the number of
catchments per histogram. The colour scale was cut at £50 %. The scale bar refers to the map center. The base map was obtained

from Natural Earth (naturalearthdata.com). The colour palette used in this and all other maps are scientific colour palettes from
Crameri (2023).

The opposite was found for the annual sums of Epor: For 2508 catchments (94 %), the mean annual Epo calculated from the E-

OBS data was higher than for the CAMELS data. For 1353 catchments (50,%), the deviation of the E-OBS Ejo sums from the

CAMELS Epot sums were at least 10 %. Clearly lower Epot sums derived from E-OBS than from CAMELS could only be

observed for catchments in Sweden, on the Danish islands, ingouthern Switzerland, and for some catchments in northern Spain

(Fig. 2). As different equations or data sources were used in the different CAMELS datasets (see Table 2) to obtain the Epot
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data, the order of magnitude of the deviations changed abruptly along the national borders in some cases (e.g., along the border

between Czechia and Germanyy). It is noteworthy that for Epe, there tend to be small differences between the two datasets for
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JFigure 2: Relative difference in the mean 1 E,o¢ (for a 20-year period: 1995-2015) obtained from EStreams and calculated from

the E-OBS data compared to the mean annual E,, calculated from the different CAMELS datasets. Negative values and brown
colours indicate a lower Ej, in E-OBS than in the CAMELS datasets, positive values and blue colours a higher E,o. On the map,
the catchments with the largest deviations were plotted last to increase their visibility.

Due to the differences in the precipitation and the Epo data, the aridity indices (Epo/P) calculated from the two data sources
differed, although they were still highly correlated (Pearson’s correlation coefficient of 0.94) (Fig. 3). Given the lower precip-

itation and higher Epot sums for most catchments, the aridity indices were generally higher when the E-OBS data obtained from ‘

EStreams were used than when the CAMELS data were used. This did not apply for Sweden, as the Epot sums based on E-OBS
were lower than the ones from CAMELS for this country. The two calculated aridity indices aligned best for Germany and
worst for Spain, Great Britain, and Czechia. Spatially, the aridity indices derived from both datasets followed the expected
pattern, with more arid catchments in southern Europe and north-eastern Germany and more humid catchments in the other

regions (see Fig. Al for the CAMELS data and Fig. A2 for the E-OBS data).
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Figure 3: Comparison of the aridity indices (Ep./P) based on the CAMELS and the E-OBS data (for a 20-year period: 1995-2015),

445  colour-coded by country. Note the logarithmic axes.

Comparison of the temperature data in the two datasets revealed that the average temperature in E-OBS was higher (median
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450 Note that in the HBV model, temperature has an effect on the snow routine, with higher temperatures resulting in a larger
fraction of precipitation falling as rain (and thus faster streamflow generation). However, as the threshold temperature for the

differentiation between rain and snow is adapted during calibration, it is expected that the model can compensate comparably

well for biased temperature time series. Thus, the main effect of the differences in temperature are the differences in Epot which
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colours i
catchments with the largest differences (in absolute terms) were plotted last to improve their visibility. Note that the colour scale
was cut at +£0.3.

3.2.3  Differences in model performance between scenario II and scenarios III, IV, and V

Replacing precipitation from E-OBS with data from CAMELS had by far the strongest impact on model performance (scenario

111, Fig. AS). For most catchments, the performance differences between scenarios II and III closely mirrored the performance
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3.3 Model performance linked to catchment attributes

We calculated the Spearman rank correlationbetween model performance and several catchment attributes available in ES-
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4.4  Influence of different Ep, data in model performance

In this work, the differences in model performance across the various sources of forcing data were mainly attributed to the
differences in precipitation inputs (scenario IIT), whereas discrepancies in Epot and temperature data hardly affected model

performance, (scenarios IV and V). These findings are consistent with those of Clerc-Schwarzenbach et al. (2024), who com-
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pared the Caravan and CAMELS datasets. Although their analysis yevealed larger differences in Epor than in precipitation data,

it was still the precipitation inputs that exerted the greatest influence on model performance.
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CAMELS forcing data were used (Fig. A4) could be avoided when the E-OBS forcing data were used (Fig. 5). However, it is
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when the objective is to accurately represent internal catchment processes. Achieving realistic process representation should,
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4.5  Limitations

As mentioned with the example of the compensation effects due to higher Epor data, a higher model performance does not
necessarily mean a better representation of the hydrological processes. Still, we used the performance as an indicator for the

hydrological efficacy of different forcing data. Although model performances are often used as an aggregated measure of data
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catchment. This structural sensitivity means that performance differences may reflect model limitations as much as data quality
(Beven, 2018).
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Finally, all simulations in this study were conducted at a daily time step. For smaller catchments, a finer temporal resolution,
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Overall, while local or national,datasets often yield the best model performances, our results suggest that the meteorological

forcing data from E-OBS that is included in EStreams represents a valuable and harmonized alternative for pan-European

studies. The advantage of E-OBS lies in its observational basis, consistent methodology, and coverage across all of Europe,
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making it especially useful when national datasets are unavailable or inconsistent. As such, E-OBS and EStreams provide a

practical foundation for expanding large-sample hydrology beyond national boundaries while maintaining sufficient data qual-

ity for robust model applications.

21

" Deleted: E-0BS

P A N




305

1310

1315

1320

1325

6  Data availability

Except for CAMELS-CZ and the Epot data for CAMELS-SE, all the CAMELS data used are available from their respective
repositories (see Table 1). The Epo data for Sweden were provided by Claudia Teutschbein and the CAMELS-CZ data by

meteorological data from E-OBS across a continental domain and
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offers valuable insights for future large-sample hydrology studies.

(" leted: Table 1

Michal Jeni¢ek and Ondfej Ledvinka. These unpublished data are available upon reasonable request. The current version 1.4,

of the EStreams dataset is available at a Zenodo repository (https://doi.org/10.5281/zenodo.17598150). The files containing
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the model performances used in this study are stored at a GitHub repository (https:/github.com/thiagovmdon/EOBS-quality).
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Figure Al: Aridity index (Ep./P) calculated from the CAMELS data (for a 20-year period: 1995-2015). Note that the colour scale
was cut at a value of two.
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that the colour scale was cut at a value of two.
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the colour scale was cut at zero. Lower performances were plotted last to improve their visibility.

34



all, n=2682 CH,n=133

PBIAS [%]
250

500 km

Figure A4: PBIAS (relative deviation of the simulated streamflow from the observed streamflow) for the 20-vear period between
October 1995 and September 2015 when the E-OBS data obtained from EStreams were used for model calibration (scenario II).

Note that the limits of the colour scale were cut at +50 %. Largest deviations were plotted last to improve their visibili
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Figure A5; Difference in model performance when all meteorological input data were obtained from E-OBS (i.e., EStreams, scenario

1I) and when the precipitation data from E-OBS were replaced with those from CAMELS (scenario III). Positive values and green
colours indicate higher model performances with the precipitation data from E-OBS, negative values and pink colours indicate
higher model perfor with the precipitation data from CAMELS. Note that the colour scale was cut at a difference in KGE of
+0.3. The catchments with the largest differences in model performance were plotted last to increase their visibility.
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