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Floods are a major cause of agricultural losses, yet flood damage models for crops are scarce, often lack validation, uncertainty 10 

estimates, and assessments of their performance in new regions. This study introduces CROPDAM-X, a framework for 

developing and evaluating flood damage models for crops, and applies it to rice. We compile and review 20 damage models 

from 12 countries, identifying key gaps and limitations. Using empirical survey data from Thailand and Myanmar, we develop 

a suite of models, including deterministic and probabilistic stage-damage functions, Bayesian regression, and Random Forest, 

based on key flood characteristics like water depth, duration, and plant growth stage. We assess predictive performance through 15 

cross-validation and test how well models trained in one region perform when applied to another. Our results show that model 

performance depends on complexity and context: Random Forest achieves the highest accuracy, while simpler models offer 

ease of use in data-scarce settings. The results also demonstrate the potential errors introduced by transferring models spatially, 

highlighting the need for diverse training data or local calibration. We present the most comprehensive review of flood damage 

models for rice to date and provide practical guidance on model selection and expected errors when transferring models across 20 

regions. 
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1 Introduction 

1.1 Flood damage models for the agricultural sector 

Extreme events have caused estimated losses of USD 3.8 trillion in the agricultural sector over the past three decades (1991-25 

2021). This is equivalent to an average annual loss of about USD 123 billion or 5% of the global agricultural GDP (FAO 2023). 

Agricultural losses affect the livelihoods of people globally – in 2019, about half of the population worldwide (3.83 billion 

people) lived in households with agrifood system-based livelihoods (Davis et al., 2023). In 2023, 29% of the global population 

faced moderate or severe food insecurity, meaning they did not have regular access to adequate food, while 9.1% of the global 

population faced hunger (FAO 2024). Stress to agricultural production is caused by abiotic (non-living environmental) factors 30 
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– such as flooding, drought, and extreme temperatures – and biotic factors such as pests, diseases, and invasive species. Among 

these, flooding is especially damaging, as it affects not only crops but also agricultural assets. 

Crop models are used to predict or explain yield under varying conditions. There are three state-of-the-art approaches to assess 

the impact of extreme climatic events on yield: field experiments, process-based models (relying on biophysical processes), 

and statistical and empirical models (like regression models and machine-learning algorithms) (Hu et al., 2024). Crop models 35 

can integrate biological, physiological, ecological, physical, and economic components (Pasquel et al., 2022). While progress 

has been made in modeling yield reductions from droughts and heat, few process-based crop models account for the effects of 

excessive rainfall (Kim et al., 2024). These models often overestimate yields under wet conditions, because they consider the 

plants’ water requirements but disregard submergence-related damage (Li et al., 2019; Liu et al., 2022). Integrating flood 

damage models into crop models has the potential to improve yield estimations under wet conditions.  40 

Quantifying flood damage is imperative for effective flood risk management and transfer solutions in the agricultural sector. 

Flood damage models, often represented by vulnerability curves estimate asset damage due to submergence based on hazard 

intensity variables (e.g. flood duration and water depth). The choice of the flood damage model can have significant effects on 

impact estimates (Apel et al., 2009; De Moel et al., 2012; Jongman et al., 2012). Flood damage in rural areas is often 

underestimated or overlooked, largely due to their lower exposures and associated losses in comparison to urban settings 45 

(Förster et al., 2008). However, this neglect can have serious consequences as flooding in agricultural regions poses a 

significant threat to global food security.  

Key drivers of yield loss due to flooding include flood duration, seasonality, and velocity (Brémond et al., 2013). Yield loss is 

influenced by both inundation characteristics (water depth, flood duration, flow velocity, water contamination, and sediment 

load) and plant characteristics (crop type, growth stage, plant height, minimum damageable flood depth, and tolerable flood 50 

duration) (Förster et al., 2008; Nguyen et al., 2021; Shrestha et al., 2021). Although yield loss results from complex, nonlinear 

interactions between multiple variables, few machine learning algorithms exist for crop damage modeling (Monteleone et al., 

2023b). Machine Learning methods and Bayesian inferencing have been found suitable for estimating the size of agricultural 

areas damaged by flooding and flood-induced yield loss based on remote sensing data (Nhangumbe et al., 2023; Tapia-Silva 

et al., 2011), complemented by meteorological data (Lazin et al., 2021).  55 

Despite these advancements, the prediction of flood losses from crop models is associated with high uncertainty. For instance, 

state-of-the-art crop models were found to underestimate losses by up to 7-fold (Monteleone et al., 2023a). The high variability 

in damage processes calls for probabilistic models, which are capable of accounting for uncertainty in model parameters, 

structure, and damage process, to inform flood risk management decisions (Sairam et al., 2020). In contrast to deterministic 

models, which predict a single loss estimate, probabilistic models quantify uncertainty in the damage predictions by providing 60 

the likelihood of the whole spectrum of loss values.  

Despite the high prevalence of data-driven (including Machine Learning), probabilistic modeling approaches for the built-up 

sector (Dottori et al., 2016; Schröter et al., 2014; Wagenaar et al., 2018), they do not exist for the agriculture sector. This can 

be attributed to scarcity of agricultural damage survey data in many countries. Only 31 countries submitted hazard-
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disaggregated agricultural losses to the Sendai Framework Monitor, from 2015 to 2021 (FAO 2023, p.19), which highlights a 65 

lack of data for developing damage models for crops. In the absence of local yield damage data, risk modelers rely on 

generalized models or localized models trained on data from other regions (transferred models). They are confronted with the 

question of which flood damage model is the most suited for their case. A popular choice of models is from practice-oriented 

literature including the HAZUS Flood Model, Multi-Coloured Model (MCM), and the damage curves from the Joint Research 

Centre (JRC). The HAZUS Flood Model estimates yield loss from river flooding based on flood duration and time of the year 70 

(FEMA 2020). The MCM presents yield reductions and the financial gain (or loss) resulting from cultivating one more (or 

less) hectare of land for crops in England and Wales, under different drainage conditions (Penning-Rowsell, 2013; Penning-

Rowsell et al., 2005). The JRC report provides continental stage-damage functions (SDFs) – also known as depth-damage 

curves – for crops in Asia and Europe as well as five country-specific SDFs for agriculture (including three SDFs for rice), 

created based on models and maximum damage values from the literature. The JRC report found limited damage models 75 

available for the agriculture and infrastructure/roads sectors (Huizinga et al., 2017).  

1.2 Spatial transferability of flood damage models 

The choice of transferred damage models introduces biases in risk assessment. For instance, a case study in Thailand reported 

an 8-fold increase in estimated losses when applying the damage models from the Philippines in comparison to the ones from 

Myanmar (Budhathoki et al., 2024; applying models by Shrestha et al., 2021, 2016). In addition, most crop damage models 80 

consider the time of the year to incorporate seasonality in damage estimation. However, the usage of "time of the year" as a 

proxy for growth stage hinders the transfer of the model to a region with different climatic conditions and crop planting cycles 

as this approach inherently ties the model’s processes to a specific region, reducing its applicability elsewhere (Brémond et al., 

2013).  

Assessing transferability across regions helps risk modelers balance the cost of collecting localized, detailed damage data 85 

against the benefits of adopting more pragmatic, cost-effective damage modeling approaches. While transferability is a key 

requirement in process-based model development, transferability assessments remain limited (Brémond et al., 2022). 

Agricultural studies have assessed the transferability of linear flood damage models for wheat (Scorzini et al., 2021), piecewise 

linear (ramp) functions for rice (Shrestha et al., 2021), and crop yield prediction models (Priyatikanto et al., 2023; Stiller et al., 

2024). However, most damage models for crops rely on national loss databases or expert knowledge without a transferability 90 

assessment (Brémond et al., 2022).  

1.3 Research contributions and scope 

The objective of this study is twofold: 1. We create an inventory of state-of-the-art flood damage models for the agriculture 

sector from scientific and practice-oriented literature; 2. We conceptualize and implement a four-step methodological 

framework for advancing flood damage models in the agricultural sector. The framework supports flood damage modeling for 95 

crops that integrates machine learning approaches in the model development and validates models across regions.  
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In line with the key recommendations for the development of damage models for crops of a systematic review (Monteleone et 

al., 2023b), the methodological framework (1) uses field observations (collected through household surveys), disaggregated 

by growth stage, which (2) enables the selection of easily measurable predictors instead of crop model-derived predictors, (3) 

involves detailed reporting of the damage models and their parameters, and (4) validation of the damage models, including 100 

cross-region validation.  

The methodological framework is implemented to model flood damages to rice in two countries – Thailand and Myanmar – 

since rice is the primary staple crop for a large share of the global population. Grown and consumed predominantly in Asia, 

which accounted for almost half (45%) of the agricultural losses from natural hazards from 2015 to 2021 (FAO 2023, p.26, 

estimate based on FAO and EM-DAT data), rice crops are at high risk due to disasters. Moreover, a few flood damage models 105 

for rice exist, allowing us to compare the performance of models based on different approaches.  

Figure 1 presents the methodological framework, which includes (1) the creation of a flood damage data and model inventory 

for rice, (2) the development of machine learning and statistical flood damage model for rice, and (3) model validation (out of 

sample 10-fold validation and cross-region validation), and (4) model reporting. We call the framework CROP DAMage 

modeling (CROPDAM-X), where “X” stands for next-generation modeling approaches – such as machine learning and 110 

probabilistic methods – and cross-regional learning.  

In this study, flooding refers to excessive water accumulation in a field that causes unintended submergence of plants – when 

part or all of the shoot (the aboveground portion) is underwater (Kim et al., 2024). Since paddy fields are routinely submerged 

during parts of the growth cycle, this definition differs from that of the Intergovernmental Panel on Climate Change (2022), 

which describes flooding as water overflowing natural boundaries or accumulating in normally dry areas. The study focuses 115 

on the vulnerability of rice plants to submergence. We disregard other causes of water-related yield loss like waterlogging 

(when the soil becomes overly saturated with water), lodging (when heavy rain or strong winds displace the shoots), pests and 

diseases (Kim et al., 2024), saltwater intrusion, and water pollution.  
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2 Methodology 120 

The CROPDAM-X framework (Fig. 1) outlines the steps for developing and validating damage models for the agricultural 

sector.  

 
Fig. 1: Methodological framework CROPDAM-X for damage model development and validation for the agricultural sector through 
machine learning & model transferability assessments 125 

2.1 Data for the model development 

As a preparatory step before model development, we gathered flood damage data for rice from scientific and grey literature. 

In the next step, we extended the review to non-academic publications and compiled a table of existing flood damage models 

for rice (Table S5). To develop new flood damage models for rice, we combined the three datasets presented in Table 1.  
Table 1: Flood damage datasets for rice used for the model development, including the variables relative yield loss, water depth, 130 
flood duration, and growth stage 

Country Basin Data collection 
period 

Flood events 
covered 

Damage 
cases  

Number of rice 
farming households 
surveyed 

Reference 

Thailand Lower Songkhram 
River Basin  

March 11 – 28, 
2023 

Major flood 
events from 
2013-2023 

c=137 
n=491 rice farming 
households out of 584 
surveyed households  

(Bill-Weilandt et 
al., 2025) 

Myanmar 
Bago River Basin 
(Bago, Thanatpin, and 
Kawa townships) 

October 22 - 
November 3, 2019 

in August 2011, 
July 2018 (and 
dam breach in 
August), and 
August 2019  

c=429 
n=174 with income 
from rice out of 340 
surveyed households  

(Shrestha et al., 
2021) 

Myanmar Bago River Basin 
(Bago township) 

June - July 2016 
and May 2017 

June-July 2016 
and May 2017  c=86 

n=78 with income from 
rice out of 254 
surveyed households  

(Win et al., 
2018) 

 

We used survey-based flood damage data published by Shrestha et al. (2021), including four key variables: relative yield loss, 

water depth, flood duration, and growth stage. This dataset was complemented with additional data from the same basin in 

• Review the literature 
• Create a damage data 

inventory 
• Categorize existing 

damage models 
• Check if spatial 

transferability was 
assessed

• Collect additional data 
(survey in North-East 
Thailand)

• Develop models (linear 
regression, Bayesian 
regression, random 
forest) 

• Select the best Bayesian 
regression model based 
on log predictive density

• Analyze predictor 
importance for 
multivariable models

• Assess the model 
performance, using 
metrics like MAE, MBE, 
and mean CRPS: 
1. Leave-one-out cross 

validation (LOO CV) 
(with 10 folds)

2. Cross-region 
validation (CRV) 
(spatial transfer)

Creation of a flood damage 
data and model inventory

Model 
development

Model 
validation

Model 
reporting

• Select the best models 
in terms of performance 
and simplicity

• Visualize damage 
predictions by the 
selected models 

• Present lookup tables
• Compare resulting 

damage models with 
models from the 
literature
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Myanmar (Win et al., 2018). These were the only publicly available datasets that included all four variables and were suitable 135 

for developing predictive models. 

In addition to the secondary datasets, we conducted a household survey among farmers in Northeast Thailand to collect flood 

damage data concerning rice. The survey data collected in Thailand are comparable to those from Myanmar. We interviewed 

584 households (20% of the 2,904 total) in the Lower Songkhram River Basin in March 2023, exceeding the minimum sample 

size for a 95% confidence level (see Fig. S1 and Tables S1-S2 for details on the data collection).  140 

In the Lower Songkhram River Basin in Northeast Thailand, over 80% of households earn income from rice farming. Located 

in the Mekong Delta near the Lao PDR border, the area often experiences flood-related rice yield losses. On May 15, 2020, it 

was designated Thailand’s 15th Ramsar site for its rich biodiversity and vital ecosystem services. The site includes wetlands, 

the nearly 100 km long Lower Songkhram River, floodplains, and marshlands, surrounded by paddy fields (Ramsar, 2019).  

In the Bago River Basin in Southern Myanmar, 40,00 ha of paddy fields account for about half of the sown area. The 331 km 145 

long Bago River is used for hydropower generation, irrigation, and fishing (Shrestha et al., 2021; Win et al., 2018). Hosting 

over 20,000 migratory waterbirds, the Moeyungyi Wetland Wildlife Sanctuary, located west of the Bago River Basin, between 

the Waw Township and the Bago Township, was declared a Ramsar site in 2004 (Ramsar Site Information Service, 2004). 

Win et al. (2018) interviewed 254 households, and Shrestha et al. (2021) interviewed 340 households in the downstream area 

of the Bago River Basin. The downstream part of the basin is flat (with an elevation below 10 m) in contrast to the hilly 150 

upstream parts (with an elevation of 50-750m) (Shrestha et al., 2021).  

2.2 Model development 

Each of the three selected dataset contains three predictor variables (flood duration, water depth at the flood location, and plant 

growth stage) and a response variable (relative yield loss), describing the share of yield lost from 0 (no yield loss) to 1 (total 

yield loss, Table 2). The considered phenological traits (duration of each plant growth stage and the plant height at each plant 155 

growth stage) are similar in the datasets used to develop the models (see Fig. S2).  
Table 2: Overview of predictor and response variables used for flood damage model fitting 

Model components Variable Scale: range (of values in the combined data set), unit (if applicable) 

Predictors (n=3) 

Flood duration  continuous: 1 – 100 days 

Water depth continuous: 2 – 500 cm 

Growth stage ordinal: (1) "vegetative stage", (2) "reproductive stage", (3) "maturity stage" 

Response (n=1) Relative yield loss 
(or loss ratio) continuous: 0 – 1 

 

In this study, we develop data-driven models – namely regression, Bayesian regression, and Random Forest models – to 

estimate direct physical flood damage to crops, with rice as an example crop. Each model type is presented in Table 3 and 160 

explained in the Supplementary Information.  
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For each model type, we developed one generalized model using the combined dataset and one localized model for each region 

(Myanmar or Thailand). To evaluate model performance against the current standard in the literature, we included the most 

recently published ramp functions based on empirical data from Myanmar (Shrestha et al., 2021), and retrained our models on 

the same dataset to allow direct comparison. 165 
Table 3: Overview of flood damage model types evaluated in this study, with relative yield loss ranging from 0 to 100%. For each 
new model type, we developed a generalized model trained on the combined data and two localized models (one per region). For 
comparison with the ramp function, we also trained the localized Myanmar models with a smaller dataset, limited to the Shrestha 
et al. 2021 data.  

Predictors Modeling approach Equation Origin of model 

water depth  Linear regression  
[deterministic stage-
damage function] 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠	(%) = 	𝛼 + 	𝛽√𝑤𝑑 + 𝜀 if wd > hmin, 
where relative yield loss is the observed yield loss ratio in percent, 
𝛼 is the intercept, 𝛽 is the regression coefficient, wd is the water 
depth, 𝜀 is the error, and hmin is the minimum damageable flood 
depth. hmin = 2cm.  
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠	(%) = 0 if wd < hmin.  
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠	(%) = 1 if wd > hsaturation.  

New 

Univariable Bayesian 
regression [probabilistic 
stage-damage function] 

See Supplementary Information New 

water depth, 
duration, 
growth stage 

Ramp function  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠	(%) = (𝑤𝑑 −	ℎ!"#) ∗ >𝑎 + 𝑏 ∗ 𝐷$%&&'A 
where wd is water depth, hmin is the minimum damageable flood 
depth, Dflood is the flood duration in days, and a and b are constant 
parameters that depend on the growth stage. The following 
conditions apply:  
If	𝑤𝑑 > 𝑆𝐿𝐶𝑆, then	𝑤𝑑 = 𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑝𝑡ℎ	𝑎𝑡	𝑆𝐿𝐶𝑆, 
where SLCS is the starting level of complete submergence of the 
plant. Predicted relative yield loss values are constrained to the 
range 0–100%.  

Shrestha et al. 2021 

Multivariable Bayesian 
regression  

See Supplementary Information New 

Random Forest See Supplementary Information New 

 170 

2.3 Model validation  

We evaluated model performance using 10-fold cross-validation (CV), applying leave-one-out (LOO) CV (Fig. S3), to assess 

predictive accuracy and cross-region validation (CRV) to test model transferability across locations. Leave-nothing-out (LNO) 

models were trained on the full dataset for future application. Table 4 summarizes the calibration and validation strategies for 

each model type. 175 

Performance was assessed using three established metrics: mean absolute error (MAE), mean bias error (MBE), and continuous 

ranked probability score (CRPS). These allow for comparison across deterministic and probabilistic models and align with 

prior flood damage modeling studies (e.g., Schoppa et al., 2020; Gneiting and Katzfuss, 2014). Full definitions and formulas 

are provided in the Supplementary Information. 
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We also assessed predictor importance for the multivariable models. For the Bayesian Regression Model, predictor relevance 180 

was derived from posterior coefficient distributions (see Suppl. Information, Section 2.2).  
Table 4: Overview of performance evaluation approaches. The Table presents the model category (either generalized or localized 
model), the data used to fit the model (calibration), and the data used to assess the performance (validation). It further describes the 
approach used, including Leave-one-(fold)-out (LOO) CV, Leave-nothing-out (LNO) (creation of models trained with all the data 
for use in future risk assessments), and cross-region validation (CRV). Finally, the use case of each model type is mentioned.  185 

Model category  Calibration Validation Approach Use case 

Generalized models 
fit with all the data excluding the 
training data for CV 

Myanmar & 
Thailand LOO CV 

Model evaluation 

Generalized models* fit with all the data  
Myanmar & 
Thailand LNO 

For future use 

Localized models for Myanmar 
fit with the Myanmar data excluding 
the training data for CV Myanmar LOO CV 

Model evaluation 

Localized models for Thailand 
fit with the Thailand data excluding 
the training data for CV Thailand LOO CV 

Model evaluation 

Localized models for 
Myanmar* fit with all the Myanmar data Thailand CRV 

Spatial transferability 
assessment and for 
future use 

Localized models for Thailand* fit with all the Thailand data Myanmar CRV 

Spatial transferability 
assessment and for 
future use 

3 Results and discussion 

3.1 Summary statistics of the damage data used for the model development  

Figure 2 presents the kernel density estimations of the variable distributions for the datasets from Myanmar (n=515) and 

Thailand (n=137). In the Myanmar dataset, flood duration and water depth are more concentrated than in the Thailand dataset. 

In Myanmar, yield loss occurred primarily in the vegetative stage (255 cases), followed by the reproductive stage (88) and the 190 

maturity stage (29). In Thailand, yield loss primarily occurred in the reproductive stage (88 cases), followed by the maturity 

stage (29) and the vegetative stage (20).  
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Fig. 2: Kernel density estimations of the variable distributions for the Myanmar and Thailand datasets, with lines representing the 
quartiles and the dots showing the mean. Continuous variables were scaled to the range [0;1] and integers were assigned to each 195 
growth stage [(1) "vegetative stage", (2) "reproductive stage", (3) "maturity stage"].  

3.2 Model performance 

3.2.1 Performance of the generalized models 

We evaluated four model types: deterministic Stage-Damage Function (SDF), probabilistic SDF, Bayesian Regression Model 

(BRM), and Random Forest (RF) model, using generalized (cross-regional) training data. Model performance was assessed 200 

using Mean Absolute Error (MAE), Mean Bias Error (MBE), and Continuous Ranked Probability Score (CRPS). Figure 3 

summarizes the results. 

Among the generalized models, RF achieved the best performance: 

• MAE: RF had the lowest error (20.3%), followed by BRM (22.3%), probabilistic SDF (24.4%), and deterministic 

SDF (26.3%). 205 

• MBE: All models showed low bias, with RF (0.1%) performing best, followed by BRM (0.2%), deterministic SDF 

(0.4%), and the probabilistic SDF (0.5%).  

• CRPS: RF also achieved the lowest CRPS (12.4%), indicating stronger probabilistic prediction performance than the 

BRM (14.2%) and the probabilistic SDF (15.4%).  

Model complexity improved performance consistently: multivariable models (RF and BRM) outperformed the simpler 210 

univariable SDFs. Moreover, model complexity reduced the range of the MBE observed in the CV. These gains in accuracy 

suggest that incorporating multiple flood characteristics – more precisely, water depth, duration, and growth stage – enhances 

prediction quality.  
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 215 

Fig. 3: Results of performance evaluation and transferability assessment. Results are shown for three performance metrics (rows) 
and four calibration setups (generalized, localized for Myanmar and Thailand, and localized with data by Shrestha et al.) (columns). 
Colors indicate the model types (RF, BRM, probabilistic and deterministic SDF). Boxplots show the 10-fold cross-validation results. 
The thick line is the median; boxes represent the interquartile range (IQR); whiskers extend to 1.5×IQR; and black points are 
outliers. Each box summarizes variability across 10 folds. Shapes indicate the performance of transferred models (CRV). Red solid 220 
lines mark the performance of the benchmark ramp functions in Myanmar and dashed blue lines mark their performance in 
Thailand.  
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3.2.2 Comparison of the new models with the ramp functions from the literature 

To benchmark model performance, we compared the new models against the ramp functions from Shrestha et al. (2021), which 

were developed for rice in Myanmar. When tested on the full dataset (Myanmar + Thailand), the ramp functions yielded an 225 

MAE of 23.3% and an MBE of 5.3%. 

Compared to this baseline: 

• RF and BRM reduced the MAE by 6% and 4%, respectively.  

• All new models showed significantly lower bias, with bias reductions ranging from 4.8 (RF) to 3.5 (deterministic 

SDF) percentage points compared to the ramp functions.  230 

• The deterministic and probabilistic SDF had a slightly higher MAE (+3.5 and +2 percentage points, respectively), 

indicating limitations when excluding duration and growth stage.  

To enable a more direct comparison with the ramp functions, we also trained all models using only the Shrestha et al. (2021) 

dataset. In this restricted setting: 

• The MAE for RF and BRM converged with that of the ramp functions (around 23%).  235 

• Both SDFs performed worse (MAE = 28.4%).  

• All new models exhibited lower bias (MBE of 0.0–1.0%) than the ramp functions (MBE = 3.2%). 

This confirms that while point prediction accuracy can be similar, the new models – especially RF and BRM – offer improved 

calibration and flexibility, particularly for regional or large-scale applications where reducing systematic bias is critical for 

accurate loss estimation. 240 

3.3 Predictor importance in the Random Forest 

We assessed predictor importance in the generalized and localized RF models to understand which variables most strongly 

influence predicted relative yield loss (Fig. 4). Importance values reflect the overall contribution of each predictor (water depth, 

flood duration, and growth stage) to model performance (Hothorn and Zeileis, 2023). Additionally, we also assessed the BRM 

coefficients (Fig. S6).  245 

In the generalized RF model and the localized model for Myanmar, flood duration emerged as the most important predictor, 

followed by water depth. Growth stage contributed the least. In contrast, the localized RF model for Thailand ranked water 

depth highest, with flood duration playing a secondary role. Growth stage showed almost no importance in the Thailand model. 

These differences likely reflect regional and dataset-specific factors. The Myanmar dataset includes flood events across a wider 

range of growth stages and more variability in flood timing, which may explain the greater role of duration. In Thailand, floods 250 

tended to occur during a narrower window in the reproductive stage, reducing the influence of the growth stage as a predictor. 

In addition, Thailand’s landscape includes greater elevation differences, and the dataset captures a wider range of water depths, 

likely increasing the relative importance of water depth in that model. 
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Despite these insights, some expected relationships (shorter floods and lower water depths leading to less severe losses) were 

not consistently observed. This may be due to the limited number of predictor variables collected. Other relevant factors – 255 

such as rice variety, water turbidity, pest or disease pressure, plant health, and floodwater rise rate – were not included in the 

surveys but could influence outcomes. The growth stage variable disregards variability in the plants’ vulnerability to flooding 

within a growth stage – further investigation would be needed to confirm if this can explain the low importance of growth 

stage in the model trained on the Myanmar dataset (which shows variability in growth stages). The skewed nature of the 

Thailand dataset, which overrepresents high-damage events, may also affect predictor importance. 260 

 
Fig. 4: Violin plots indicating the kernel density estimations of the variable distributions for the two locations, with lines representing 
the quartiles and the dots showing the mean. Variables were scaled to the range [0;1].  

3.4 Transferability of flood damage models 

Understanding the performance of flood damage models under transfer is essential for practical risk assessment in data-scarce 265 

contexts. We assessed the performance of generalized models (LOO-CV) and localized models (cross-region validation) in 

Thailand and Myanmar. Figure 3 shows the performance of transferred models (points for validation in Myanmar and triangles 

for validation in Thailand). Tables S6 and S7 report the performance metrics under transfer. The results provide four key 

findings, which are further described below:  

• Local models perform best; transfer reduces accuracy, especially with skewed training data. 270 

• Complex models (RF, BRM) generally transfer better than simple ones (including the baseline ramp functions from 

the literature), but they still lose performance without representative damage data.  

• The direction of bias matters: overprediction may lead to high insurance costs; underprediction may leave risks 

underestimated. 

• Generalized models can work across regions if trained on diverse data that captures relevant damage processes.  275 
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Local models outperform transferred models. In Myanmar, the worst-performing localized model for Myanmar (SDF-det) 

outperforms the best-performing transferred localized model for Thailand (SDF-prob). The same holds for Thailand, where 

the simplest localized model (SDF-det) outperforms the best complex transferred model trained in Myanmar (RF). The 

MAEs of the worst-performing Myanmar-trained model and the best-performing TH-trained model differ by 11.4 

percentage points, which can lead to considerable differences in the loss estimates. This highlights the importance of 280 

assessing model performance and transferability.  

Complex models (RF, BRM) generally transfer better than simple ones, but they still lose performance in the absence of 

representative damage data. The deterministic SDF loses the most predictive accuracy when transferred. The deterministic 

SDFs are unable to capture complex, nonlinear interactions, which makes them less applicable to new contexts with 

different conditions from the data they are trained on. To enable a direct comparison of the new models with the ramp 285 

functions, we also tested the transferability of the new models trained only on the Shrestha et al. (2021) dataset. In this restricted 

setting, all new models except for the deterministic SDF outperformed the Shrestha et al. ramp functions in terms of MAE 

(Fig. 3 and Table S7).  

Model transferability suffers when training data is skewed and does not comprehensively represent local damage 

characteristics. The models trained on Thailand data show poor transferability to Myanmar, with MAEs of 27-29% and over 290 

50% for low-loss events (Fig. S7) – regardless of the model type. Focusing on major flood events, the survey data collected in 

Thailand was skewed toward extreme events, which resulted in a lack of low-loss cases. Even the best ML algorithm cannot 

perform well without data that captures relevant local damage processes. Broader data coverage would improve performance 

in transfer settings like Myanmar but also for predicting yield loss from small floods in Thailand.  

The direction of the bias should be considered in spatial transfers; it differs depending on model type and flood characteristics 295 

(Fig. 3 and Fig. S7). In the present study, the localized Myanmar BRM tends to overestimate yield losses in Thailand, while 

the simple Myanmar models (SDF-det and SDF-prob) tend to underestimate yield losses – the RF has a low bias (Fig. 3). All 

models tend to overpredict losses concerning low-impact events. Models trained in Myanmar and validated in Thailand tend 

to underpredict losses from short floods and shallow water depth. In contrast, models trained in Thailand and validated in 

Myanmar show the reverse trend; they overpredict losses under these conditions (Fig. S7). Overprediction may lead to high 300 

insurance costs, while underprediction may lead to insufficient allocation of disaster response resources.  

Generalized models perform well across regions if trained on sufficient data. They outperformed transferred models on all 

three performance metrics (MAE, MBE, Mean CRPS). The generalized models perform better in Thailand than in Myanmar, 

likely because the Thailand dataset contains fewer low-loss cases for which the model predictions are less accurate. For floods 

resulting in smaller losses, all generalized models tend to overpredict the loss (Fig. S7).  305 

Limitations in the spatial transfer analysis were the difference in sample size of the datasets for each region and a small number 

of regions considered (n=2). The transferred models show a considerable error, which could result from uncertainty in the 

historical data, a limited total sample size (n=652), a skewed Thailand dataset (towards high losses), and the lack of variables 

that capture potentially critical damage processes in the model.  
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3.5 Reporting of flood damage models for rice  310 

To support practical application of our damage models in agricultural flood risk assessments, we present the outputs (Fig. 6b-

e) and lookup tables (Tables S8-S11) for the generalized models: the deterministic and probabilistic stage-damage functions 

(SDF-det and SDF-prob), the Bayesian Regression Model (BRM), and the Random Forest (RF) model. Lookup tables for the 

models developed in this study are provided in the Supplementary Information.  

We also include a review of existing flood damage models for rice, expanding on the compilation by Shrestha et al. (2021) by 315 

incorporating both peer-reviewed and grey literature. The models are categorized by predictor variables, region of application, 

and modeling approach. This inventory – selected models of which are shown in Fig. 6a – provides context for the development 

of more flexible, multivariable, and probabilistic approaches presented in this study. 

3.5.1 Inventory of existing flood damage models for rice 

We created an inventory of flood damage models for rice, comprising 20 models from 12 countries. Figure 5 presents a 320 

structured overview of flood damage models for rice in the inventory (categories adapted from Gerl et al. (2016)). Half of the 

models are based on empirical data, 20% rely on experimental data with potted rice, and another 20% are based on expert 

knowledge. Model validation was reported for 40% of all models, and model transferability was only tested for a single model, 

the ramp functions by Shrestha et al. (2021). Less than half of the models incorporate growth stage as a predictor. Two-thirds 

of the models incorporate flood duration as a predictor, primarily as a categorized variable (60% of all models) and rarely as 325 

a continuous variable (15% of all models). No model offers probabilistic outputs or formal uncertainty analysis. This highlights 

the need for more data-driven, multivariable, and transferable models.  

Fig. 6a presents a selection of damage models from the inventory. The majority are deterministic stage-damage functions that 

relate percentage yield loss to water depth using simplified threshold or ramp functions, often for different duration classes. A 

summary of the models in the inventory is provided in Table S5. The inventory of flood damage models, including an overview 330 

of the model characteristics, the damage datasets, and lookup tables, is publicly available (Bill-Weilandt et al., 2025). Lookup 

tables for the generalized models developed in this study are presented in the inventory and Tables S8-S11. The generalized 

and localized models are available for use in flood damage assessments in rice-cultivating regions (see Data Availability 

Statement).  
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 335 
Fig. 5: Characteristics of flood damage models for rice in the inventory. The Figure shows model characteristics, including the 
methodology to build the model, the model concept (deterministic or probabilistic), and whether model validation and model 
transferability assessment were reported in the publication. The four columns on the right indicate the inclusion and format of three 
commonly used predictors (water depth, duration, and growth stage) and the damage format. When a publication presented multiple 
model variations with the same variables for one country, the model was counted once.  340 

3.5.2 Stage-damage functions (SDF-det and SDF-prob) 

Figures 6b and 6c show predictions from the deterministic and probabilistic versions of the stage-damage function (SDF). Both 

models are univariable and rely on water depth as the sole predictor. The SDFs predict a smooth, gradual increase in relative 

yield loss with increasing water depth. The deterministic SDF shows a steeper increase of relative yield loss at lower water 

depth and reaches complete loss at 3.15 m. In contrast, the probabilistic SDF shows a steeper increase at higher water depths, 345 

predicting complete loss at 1.40 m (median), while reaching complete loss at 2.03 m is also plausible based on the 25th 

percentile.  

While less accurate (higher MAE and MBE) and flexible than multivariable models, the SDFs are simple to apply and useful 

in data-scarce contexts. Lookup tables for the SDFs are provided in Tables S8 and S9. 
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3.5.3 Bayesian Regression Model (BRM) 350 

Figure 6d shows predictions from the BRM, a multivariable, probabilistic model using water depth and flood duration as 

predictors, disaggregated by growth stage. The model estimates encompass not only expected median yield loss (line) but also 

the uncertainty around predictions (25th – 75th percentile ribbon). 

The BRM indicates that young rice plants are more vulnerable to flooding than more mature ones. As plants grow taller and 

reach advanced growth stages, yield loss increases more gradually with increasing water depth, and complete loss occurs at 355 

greater water depth.  

• Vegetative stage: Complete loss occurs at relatively shallow water depths – a four-day flood at 1.4 m depth or a 27-

day flood at 1.0 m.  

• Reproductive stage: Higher tolerance is observed, with complete loss reached after a four-day flood at 1.72 m or a 

27-day flood at 1.49 m.  360 

• Maturity stage: This is the most resilient stage, where complete loss occurs only at water depths exceeding 2 m - after 

a four-day flood at 2.18 m or a 27-day flood at 2.00 m.  

These findings highlight the combined influence of water depth, duration, and growth stage on yield loss, and indicate that 

even short-duration floods can lead to total yield loss in the vegetative stage. Reasons for the low loss in the maturity stage 

include the plant height and the possibility of early harvest to mitigate yield losses. By providing a distribution of possible 365 

predictions, probabilistic models like the BRM make uncertainty in the loss estimates visible and capture unlikely extreme 

events. Lookup tables for the BRM are provided in Table S10.  

3.5.4 Random Forest model (RF) 

Figure 6e shows predictions from the RF model, a non-parametric ensemble method that captures complex nonlinear 

relationships and interactions between predictors. 370 

• The RF predicts stepwise increases of the relative yield loss with rising water depth, shown by flat segments followed 

by sharp increases of the damage curve, reflecting the tree-based model structure; it partitions the predictor space into 

discrete regions rather than fitting continuous functions.  

• Across all growth stages, yield loss tends to plateau at a similar water depth (~2 m). In contrast to the BRM (where 

all curves plateau at complete loss), the RF curves for shorter flood durations plateau at lower relative yield loss.  375 

• The maximum relative yield loss increases with longer durations and decreases with advanced growth stages; it is the 

highest in the vegetative stage (95 %), followed by the reproductive stage (94 %), and lowest in the maturity stage 

(88 %).  

• The maximum relative yield loss slightly increases with growth stage, and slightly decreases with later growth stages, 

indicating that more mature plants are more resilient.  380 
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• Greater variability in the predictions is observed at water depths above 2 m, as indicated by the wider interquartile 

range.  

While the RF model achieved the highest predictive accuracy overall (lowest MAE), it is more difficult to interpret and 

communicate than SDF and BRM models. Lookup tables for the RF model are provided in Table S11.  

3.5.5 Summary and practical application 385 

Each model provides distinct advantages depending on the intended application: 

• SDF-det and SDF-prob are simple, interpretable, and suitable for settings with limited data. 

• BRM offers transparency, probabilistic outputs, and robust performance, making it appropriate for informed policy 

planning. 

• RF provides high predictive accuracy and captures complex nonlinear effects, best suited for data-rich applications. 390 

The accompanying lookup tables enable rapid, non-technical application of these models for insurance pricing, disaster risk 

assessment, and climate adaptation planning. Users may select a model based on available inputs, intended use, and the 

required level of interpretability.   
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Fig. 6: Flood damage models for rice. The Figure presents predictions by selected models from the literature (panel a, see Table S5) 395 
and from the generalized models developed in this study, including the deterministic and probabilistic SDF (panels b-c) and two 
probabilistic, multivariable models: Bayesian Regression Model (panel d) and Random Forest (panel e). Solid lines represent the 
median prediction of the BRM and the mean prediction from the ensemble of trees in the RF; shaded ribbons show the interquartile 
range (25th to 75th percentile).  
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4 Conclusion 400 

Flooding is a leading cause of agricultural loss in rice-growing regions globally, and climate change is expected to increase 

both the frequency and severity of flood events. Yet existing flood damage models for rice remain limited in flexibility, 

generalizability, and probabilistic prediction capability. We introduced the CROPDAM-X framework for developing and 

validating flood damage models for crops. In this study, we applied the framework to build and evaluate a suite of flood 

damage models for rice. We provide several models – specifically, higher-performing Random Forest and Bayesian Regression 405 

Models for data-rich contexts and simpler, deterministic and probabilistic stage-damage functions for data-scarce contexts. 

The models can be integrated into tools such as AGRIDE-c to assess the economic impacts on farmers under various risk 

reduction strategies (Molinari et al., 2019).  

Our findings highlight that the generalized RF model performs best, with an MAE of 20%, an MBE of 0.1%, and a CRPS of 

12%, followed by the generalized multivariate BRM. The results indicate that each model provides unique strengths depending 410 

on the use case: Exceling in predictive power and modeling complex nonlinear relationships, RF models are best suited to 

data-rich applications. BRM are easier to interpret than RF models, tend to provide stronger probabilistic outputs on smaller 

datasets (as shown by the localized model validation), and solid performance, making them appropriate for evidence-based 

flood risk management policymaking. The simple stage-damage functions with water depth as the only predictor are easy to 

interpret and ideal for contexts where data availability is limited.  415 

This study also provides a systematic investigation of transferability of rice damage models across regions. We find limited 

transferability of localized models across regions, especially when data is skewed. RF models show the most consistent 

performance, making them the most reliable for cross-regional applications, especially when aiming for a low bias in large-

scale assessments. In contrast, BRM and deterministic SDF exhibit higher bias and error, highlighting the challenges of 

transferring them. The direction of bias matters: Overprediction may lead to over-preparedness and underprediction may leave 420 

risks underestimated.  

Expanding datasets to include more variables and a broader spectrum of flood characteristics is essential to cover important 

damage processes, which could improve performance, transferability, and answer open questions regarding the variable 

importance in the RF models. Future research could apply CROPDAM-X to other crops and regions. A global inventory of 

available flood damage data categorized by crop and country would be necessary to scale up crop-specific, multi-variable 425 

models developed and validated using the CROPDAM-X framework.  
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