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1 Data  
1.1 Household survey in Northeast Thailand 
This section describes the collection of data needed for the model development. We conducted a 
household survey in the Lower Songkhram River Basin, in Northeast Thailand, from March 11-28, 2023, in 
collaboration with the Stockholm Environment Institute Asia and Nakhon Phanom University. Figure S1 
shows the selected villages on a map and Table S1 gives an overview of the village selection criteria. The 
selected villages have a total population of 2904 households. To achieve a sample with a confidence level 
of 95%, we had to survey at least 352 households, equivalent to 12% of all households, according to 
Yamane’s formula (Yamane, 1967):  

𝑛 =
𝑁

1 +𝑁 ∗ 𝑒! 	= 	
2904

1 + 2904	 ∗ 	0.05! 	= 	352 

where n is the sample size, N is the population size, and e is the level of precision (e.g., a 95% confidence 
level would be p=0.2). We increased the sample size to 20 percent of the total population, which was 584 
households, equivalent to a 96% confidence level. The target of interviewing 20 percent of the households 
per village resulted in village-level confidence levels ranging from 80 to 89 percent. Table S2 presents the 
number of households surveyed per village and the village-level confidence levels. Within each village, 
streets and houses within the selected streets were sampled randomly. If nobody was present in a 
selected house, the household in the neighboring house was interviewed. In participating households, the 
household head, defined as the person familiar with the household finances, was interviewed. The 
minimum age for participation was set at 20 years, the national majority age in Thailand.  

A group of trained surveyors conducted face-to-face interviews and recorded the results in the open-
source data collection software KoboToolbox. The household survey covered data beyond the flood 
damage data that is not used in the present paper. The data collection met the international standards and 
expectations regarding research ethics and integrity established at Nanyang Technological University 
(NTU) and was approved under NTU’s Institutional Review Board (IRB) Protocol IRB-2022-1105.  

Fig. S1: Map of villages in the Lower Songkhram River Basin, in Northeast Thailand, where the household survey was 
conducted. The inset map shows the Songkhram River Basin (in orange), delineated from a Digital Elevation Map 
(Wagenaar et al., n.d.), and the location of the main map (in blue). The base map by ESRI (n.d.), administrative 
boundaries by Royal Thai Survey Department (2022), and rivers and water bodies by GISTA (2018) were used. Sources 
of the village locations and the Ramsar site map are provided in Table S1. 
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Table S1: Criteria and data for the selection of villages for the household survey. Applying selection criteria 1 to 6 (right 
column) led to a list of 13 villages in six subdistricts. Aiming to include two villages per subdistrict (criterium 7), we 
added two villages where SEI had established working relationships with the village heads (criterium 6).  

Data Year Data (data format) Source Selection criteria 

Village 
location 2017 village locations 

(shapefile) 

(Naresuan University 
Geoinformatics Community and 
Sharing (NUGIS), 2014) 

1. Villages that are located within a 
5km radius from Ramsar site. 

Assessment in QGIS: Got intersection 
of Ramsar site (plus 5km in all 
directions) and villages. 

Ramsar site 
shape 2020 Ramsar site boundaries 

(shapefile) 
(Ramsar Site Information Service 
(RSIS), 2020) 

Historical 
flood 
records 

2013 -
2017 

number of flood 
occurrences per village 
(yes/no for each year) 
(table) 

(Thai Department of Disaster 
Prevention and Mitigation, Ministry 
of Interior, 2017) 

2. Villages that experienced flooding 
in at least three years from 2013-
2020. 

Assessment in QGIS: Got intersection 
of flood extent and village points to 
assess if village experienced flooding. 
 

2018 -
2020 

maximum flood extent 
per year and village 
points (shapefiles) 

Flood extent: 

(Geo-Informatics and Space 
Technology Development Agency 
(GISTDA), 2023) 
Village points: 

(Naresuan University 
Geoinformatics Community and 
Sharing (NUGIS), 2014) 

Community 
Forest 
Projects 

2020 
community forest project 
status per village (active, 
expired, none) (table) 

(Royal Forest Department, 
Community Forest Management 
Promotion Section, 2022) 

3. Villages that have a community 
forest that is actively managed (under 
an ongoing project by the Royal Forest 
Department or an expired project, 
which is usually passed on to the 
community afterwards). 

Average 
annual 
village 
household 
income 

2021 
average annual 
household income in THB 
per village (excel) 

Household income: 2021 Basic 
Needs (BMN) Data (Ministry of the 
Interior. Department of Community 
Development (MOI-CDD), 2021) 

Minimum wage: (Thai Ministry of 
Labor. Wage Committee, 2022) 

4. Villages with a mean annual 
household income of less than THB 
200,000 in 2021.1 

2021 village population 
statistics (excel) 

(Bureau of Registration 
Administration Thailand (BORA), 
2021) 

Access to 
subsidiary 
roads 

2014 Roads (shapefile) 
(Naresuan University 
Geoinformatics Community and 
Sharing (NUGIS), 2014) 

5. Villages within 1.5 km from a 
subsidiary road. 

Focus group 
conversation 
subdistricts 

2023 

list of villages and 
subdistricts where SEI 
had conducted focus 
group discussions by 
Feb. 2023 (list) 

List of subdistricts provided by SEI: 
Tha Bo Songkhram, Ban Kha, Si 
Songkhram, Sam Phong, Hat 
Phaeng, Chai Buri 

6. Villages located in one of the six 
subdistricts where the SEI had 
conducted focus group discussions 
and hence had already established 
partnerships with the village heads or 
representatives of community-led 
organizations 

List of 
selected 
villages 

- Not applicable Not applicable 7. At least two villages per selected 
subdistrict should be included.  

 

  

 
1 This income threshold is slightly higher than two minimum wages per household. In 2022, the Wage Committee under 
the Ministry of Labor set a minimum wage per day for the Province of Nakhon Phanom at THB 335. Assuming 247 
working days per year (based on the year 2023) and six days of annual leave (the minimum annual leave after one year 
of employment as per the annual leave policy), the minimum annual income is THB 80,735. For a household with two 
persons with minimum wages, the income would amount to THB 161,470. The international poverty line and the lower 
middle income class poverty line are equivalent to THB 10,658.00 and THB 18,068 per year respectively (WBG 2023). 
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Table S2: Number of households surveyed per village in the Province of Nakhon Phanom, in Thailand, and Confidence 
Interval (CI). The total no. of households per village is based on the 2022 population statistics (Bureau of Registration 
Administration Thailand (BORA), 2021) 

# Village Subdistrict, 
District District 

Total no. of 
households 
in the village 

Target no. of 
households 

No. of 
households 

surveyed 

Difference 
of target 

and 
surveyed 

no. 

CI 

1 Ban Don 
Daeng 

Tha Bo 
Songkhram 

Si Songkhram 

302 60 60 0 88.4% 

2 Ban Tha Bo 
Songkhram 

Tha Bo 
Songkhram 234 47 47 0 87.0% 

3 Ban Tha Bo Tha Bo 
Songkhram 262 52 52 0 87.6% 

4 Ban Dong 
Nong Bua Ban Kha 120 24 24 0 81.7% 

5 Ban Tha 
Kong Ban Kha 96 19 19 0 79.5% 

6 Ban Yang 
Ngoi 

Si 
Songkhram 197 39 38 -1 85.4% 

7 Ban Nong 
Ba Thao 

Si 
Songkhram 310 62 62 0 88.6% 

8 Ban Na 
Nong Wai Sam Phong 231 46 48 +2 87.2% 

9 Ban Khok 
Klang Sam Phong 95 19 19 0 79.5% 

10 Ban Sam 
Phong Sam Phong 165 33 33 0 84.4% 

11 Ban Thai 
Sabai Sam Phong 150 30 32 +2 84.3% 

12 Ban Hat 
Phaeng Hat Phaeng 147 29 30 +1 83.7% 

13 Ban Kam 
Hai Hat Phaeng 192 38 38 0 85.5% 

14 Ban Tan Pak 
Nam Chai Buri 

Tha Uthen 

200 40 41 +1 86.1% 

15 Ban Hat 
Kuan Chai Buri 203 41 41 0 86.0% 

Total 2904 579 584 +5 96.3% 
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1.2 Growth stages of rice plants 
One predictor used in the developed flood damage models is the growth stage of the plants. The duration 
from seeding to harvest is 134 days in the wet season in Myanmar, which is in line with the duration of 135 
days provided by the International Rice Research Institute. In Thailand, the plant growth duration in the wet 
season is 155 days, about 20 days longer than in Myanmar. The indicated plant height at each growth stage 
is in a similar range as in Myanmar, with slightly larger plants in the early growth stages and slightly smaller 
plants in the late growth stages (Fig. S2).  

Fig. S2: Growth stages of rice plants and their durations (adapted from Shrestha et al., 2021). The data used for the 
Myanmar model (light-colored boxes) by Shrestha et al. (2021) is based on data by the International Rice Research 
Institute (IRRI, 2007) and the Bureau of Agricultural Statistics, Department of Agriculture, Philippines. The plant growth 
duration for the Philippines of 135 days is in line with the duration of 134 days for Myanmar, according to the survey by 
Shrestha et al. (n=174). The data for Thailand collected by the authors in a household survey (n=584) indicates the 
mean plant height (n=404) and the duration from seeding to harvest for the wet season (n=472) and the dry season 
(n=127).  
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2 Model development  
This section introduces each flood damage model developed in this study, including the Random Forest 
(RF) model, Bayesian Regression Model (BRM), and stage-damage functions (SDF) in a deterministic and a 
probabilistic version. The description of the developed models builds on previous studies on flood damage 
models for companies which inspired the methodological framework of the present study (Schoppa et al., 
2020; Sieg et al., 2017). We compare the performance of these models with ramp functions found in the 
literature review (Shrestha et al., 2021). 10-fold Cross Validation is conducted as part of the model 
development (Fig. S3). For the 10-fold CV, we created 10 combinations of training and validation sets.  

Fig. S3: Visualization of 10-fold cross validation (Figure adapted from James et al., 2013). The damage dataset was 
randomly split into 10 roughly equally large groups. Each of the ten test sets, also called hold-out sets or validation 
sets (shown in orange), served to test the model’s performance. The remaining data was used to train the model 
(shown in blue). The model fitting and validation was repeated ten times. For each fold, we estimated three 
performance scores, one of which is the mean absolute error (MAE).  

 

2.1 Random Forest 
Machine learning algorithms aim to identify patterns, classify data, or reveal relationships in large data 
sets. Decision tree methods stratify or segment the predictor variables into multiple subsets of the data, 
referred to as “regions.” The ensemble of splitting rules used to divide the predictor space into regions can 
be represented by a tree. Decision tree-based models can combine multiple trees to make more accurate 
predictions (James et al., 2013).  

One example within the family of decision tree methods is a Random Forest, which is an ensemble of tree-
structured classifiers (Breiman, 2001). Supp. Fig. 4 visualizes the creation of Random Forests in a 10-fold 
CV. In a Random Forest, the input training data represents the root node of a single tree and is split 
recursively (branching) into subsamples (the tree nodes). Splitting is based on a threshold value of the 
predictor, leading to a subsample that minimizes heterogeneity in the response variable. The response 
value is obtained from the final subsamples (the leaf nodes). To predict the response variable for a given 
data point, the values of its predictor variables determine which leaf node is used. If the response variable 
is categorical, the model returns the most frequent class in the leaf node's subsample, also referred to as 
the mode (classification tree). For continuous response variables, the response value is the mean value of 
the leaf node's subsample (regression tree). The response variable (relative yield loss in percent) of the 
Random Forest models trained in this study is continuous. In the following, we therefore focus on 
regression trees (Sieg et al., 2017).  

Random Forests use bootstrap sampling, also referred to as bagging, to select the bootstrap sample, 
which serves as the subsample for training a single tree. About one third of the training set is hold out, they 
are called Out-of-Bag (OOB) observations. The OOB sample are used internally to estimate the 
performance of the resulting model and to evaluate the variable importance (Sieg et al., 2017).  

Different algorithms exist to build a single tree, like the Classification And Regression Tree (CART) 
algorithm, THAID, C4.5, and the Conditional Inference Tree (CIT) algorithm (Wei et al., 2015). The CART is 
a commonly used algorithm (Breiman et al., 1984). However, CART algorithms (Breiman et al., 1984) are 
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prone to a variable selection bias, as they tends to favor continuous predictors with more potential splits 
(White and Liu, 1994). The CIT algorithm, developed by Hothorn et al. (2006), overcomes this limitation by 
employing unbiased recursive partitioning based on permutation tests.  

The CART and the CIT algorithms differ in how they select and split variables (splitting criterion) and how 
they define leaf nodes (stop criterion). CART uses an exhaustive search on a random sample of m variables 
to identify the variable with the best split. The best split is the one that maximizes node impurity, measured 
as the mean square error of the response values in the subsample. Splitting in CART ends when a threshold 
of node impurity is met or no further splits are possible. To mitigate overfitting within each tree, OOB 
observations are held out. In contrast, CIT applies hypothesis testing at each node to assess the 
association between predictors and the response. In an RF of CITs such as partykit::cforest(), a random 
subset of predictors is considered at each split2 (the number of predictors is defined by mtry), and the 
variable with the strongest association – determined by the smallest p-value of the hypothesis test – is 
chosen for splitting (Hothorn and Zeileis, 2023). If no significant association is found, splitting stops and 
the node becomes a leaf node (Sieg et al., 2017). Hothorn et al. (2006) demonstrated that the CIT algorithm 
reduces the risk of overfitting by using statistical tests for variable selection and stopping criteria, enabling 
unbiased variable selection even when predictors differ in scale and splitting possibilities.  

Early studies that used regression trees in flood damage modeling used the CART algorithm (Merz et al., 
2013; Schröter et al., 2014), however, recent studies on flood damage modeling for companies recognized 
the value of CITs for datasets with variables that have different scales and splitting possibilities (Sieg et al., 
2017; Sultana et al., 2018). Given that our dataset contains ordinal and continuous variables, we employed 
Random Forest models based on CIT. The Random Forest was created with R (version 4.4.2), a language 
and environment for statistical computing (R Core Team, 2024), using the cforest() function of the 
“partykit” package (version 1.2 – 20) (Hothorn and Zeileis, 2015). We trained an ensemble of 1,000 trees 
(ntree = 1000) and set the number of predictor variables that are randomly selected (or tried to find the best 
split) at each split (mtry) to one-third of the number of predictors, following standard practice (Hastie et al., 
2009). When mtry > 0, a random selection of mtry input variables, is performed in each node (Hothorn and 
Zeileis, 2023). We use quantile regression forests, which provide probabilistic outputs rather than only a 
mean prediction (Meinshausen, 2006). The distribution of predictions of all trees in a Random Forest are 
considered in the calculation of the mean CRPS.  

Fig. S4: Visualization of 10-fold CV and Random Forest (Figure adapted from Sieg et al., 2017) 

 

2.2 Bayesian Regression  
2.2.1 Zero-and-one inflated beta regression  
Bayesian data analysis is a method that derives a logic from data to provide a probability distribution of 
plausible answers to a question. The method uses probability theory to model things happening in the 
world or theoretical concepts like parameters. After defining a statistical model, Bayesian data analysis 

 
2 In a single CIT like partykit::ctree(), all predictors are considered at each node (Hothorn and Zeileis, 2023).  
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processes the data to generate inference. It is a tool to learn about something from the data that is not 
directly observable at first sight (McElreath, 2016).  

We use Bayesian data analysis (for an introduction see Gelman et al., 2013; McElreath, 2016) to generate 
regression models to predict relative yield loss, with a zero-one-inflated-beta distribution and a logit link 
function. The logit link is the default for zero-one-inflated beta models (Bürkner, 2017a). Zero-one-inflated 
models are useful when the data contains many zeros (no loss) and ones (complete loss) that are not 
explained by the primary distribution of the response variable. The zero-one-inflated-beta distribution 
combines the beta distribution with a Bernoulli distribution to adequately model excess zeros and ones in 
the response variable (Ospina and Ferrari, 2010). The combined distribution has the following cumulative 
distribution function:  
𝐵𝐸𝐼𝑁𝐹(𝑦|𝜆, 𝛾, 𝜇, 𝜑) = 𝜆 ∙ 𝐹!"#$%&''((𝑦|𝛾) + (1 − 𝜆) ∙ 𝐹!")*(𝑦|𝜇, 𝜑), (1) 

with y being the response variable (the relative yield loss) and 𝜆 being the zero-one-inflation probability 
(e.g., the probability that the response is 0 or 1). The term 𝐹!"#$%&''((𝑦|𝛾) describes the CDF of the Bernoulli 
distribution with the parameter 𝜆 being the conditional one-inflation probability (the probability that the 
response is 1 rather than 0). The reparameterized beta distribution 𝐹!")*(𝑦|𝜇, 𝜑) is defined by the mean (𝜇) 
and a precision parameter (𝜑) (Ospina and Ferrari, 2010; Schoppa et al., 2020).  

To train Bayesian multilevel models (MLMs), we utilized the brms package (version 2.22.0) in R (version 
4.4.2). Utilizing the probabilistic programming language Stan for Bayesian interference on the backend, the 
brms package enables the fitting of MLM models through an lme4-like formula syntax. MLMs predict the 
response variable y “through the linear combination η of predictors transformed by the inverse link 
function f, assuming a certain distribution D for y” (Bürkner, 2017b). The form of the MLM can be written 
as:  
𝑦~𝐷(𝑓(𝜂(), θ). (2) 

In this formula, D is the ‘family,’ f is the inverse link function, η is the combination of predictors, and i is the 
i-th data point. The parameter θ describes family-specific parameters that are estimated, e.g. the standard 
deviation σ in normal models. A key advantage of Bayesian Markov chain Monte Carlo (MCMC) sampling 
approaches compared to maximum likelihood approaches is that the former treat uncertainty as a 
parameter, instead of assuming that it is part of the error term. Consequently, the Bayesian models allow 
to evaluate uncertainty in the estimates, as they provide a distribution of predictions.  

Table S3 summarizes the parameters that are estimated in the regression model. The mathematical 
derivation of the flood damage model is:  
𝑦(~𝑍𝑂𝐼𝐵(𝜇( , 𝜙( , 𝑧𝑜𝑖( , 𝑐𝑜𝑖(),  (3) 

where 𝑦( ∈ [0,1], relative yield loss for observation i (e.g., one rice field) is modeled as a share that can take 
on the values 0 (no loss) and 1 (complete loss) or values in between (partial loss) and where μ (mu) is the 
mean of the beta distribution, ϕ (phi) is the precision of the beta component, 𝑧𝑜𝑖(  is the probability that the 
relative yield loss is either 0 or 1, and 𝑐𝑜𝑖(  is the conditional probability that 𝑦( = 1 given 𝑦( ∈ {0,1}. The 
probability density function is (Ospina and Ferrari, 2010): 

𝑓(𝑦() = F
𝑧𝑜𝑖( ∙ (1 − 𝑐𝑜𝑖(),																																																				𝑖𝑓	𝑦( = 0																																
𝑧𝑜𝑖( ∙ 	 𝑐𝑜𝑖( ,																																																														𝑖𝑓	𝑦( = 1																																
(1 − 𝑧𝑜𝑖() ∙ 𝐵𝑒𝑡𝑎(𝑦(; 	𝜇( , 𝜙(),																													𝑖𝑓	0 < 𝑦( < 1.																								

 (4) 

 
Table S3: Overview of parameters, their interpretation and used link functions for the zero-one-inflated beta 
distribution (Bürkner, 2017a) 

Parameter Description Interpretation Link 
function Scale 

μ (mu) Mean of the beta distribution A larger mu indicates a higher 
expected relative yield loss.  Logit  µ ∈ (0,1) 

Φ (phi) Precision (controls variance) 

A larger phi means less 
variance, indicating that the 
observations are more tightly 
clustered around the mean. 

Log  

Φ > 0 

zoi 
Captures the probability that the relative yield loss 
is exactly 0 or 1 (zero-one-inflation probability). It is 
the probability that 𝑦! ∈ {0,1}.	 

A higher zoi indicates a greater 
likelihood of observing the 
values zero or one.  

Logit 
zoi	 ∈ (0,1) 
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coi 

Describes the probability that the relative yield loss 
is 1, given that the relative yield loss is either 0 or 1 
(conditional one-inflation probability). It is the 
conditional probability that 𝑦! = 1 given 𝑦! ∈ {0,1}.  

A higher coi suggests that, 
among the zero and one 
observations, ones are more 
prevalent than zeros. 

Logit 

coi	 ∈ (0,1) 

 

In the following, we present the mathematical equations that build the foundation of the model. Each 
submodel uses linear predictors η that are transformed via a link function. Each linear predictor is modeled 
indirectly using a linear combination of predictors (including water depth, duration, and growth stage), and 
then transformed to ensure the result stays in the valid range, which is defined by the link function. For 
each submodel, the model computes a linear predictor η, which in general terms is denoted as  
η = 𝛽+ + 𝛽,𝑥, + 𝛽-𝑥- +	…  (5) 

where 𝛽+ is the intercept (the value of η when all predictors 𝑥,, 𝑥- etc. are zero), the regression coefficients 
𝛽,, 𝛽- etc. (also called slopes or weights) quantify the effect of the independent variables 𝑥,, 𝑥- etc. on the 
linear predictor η, and where 𝑥,, 𝑥- etc. are the independent variables.  

The linear predictor can take values from -∞ to +∞, but it should be constrained. In the next step, a link 
function is applied to transform the linear predictor η to stay within the valid bounds.  

1. μ (mu), zoi, and coi can only take values in the range (0,1), hence, the logit link is used, which – for µ 
as an example parameter – would be denoted as:  
𝑙𝑜𝑔𝑖𝑡(µ) = η = 𝛽+ + 𝛽,𝑥, + 𝛽-𝑥- +	… . (6) 

To simulate and interpret predictions, we are interested in the value of the parameter, here, µ, so we 
convert the formula back using the inverse logit function:  
µ = logit.,(η) = ,

,/"!
  (7) 

2. The parameter Φ (phi) should be positive, therefore, the log link is used, with  
Φ = 𝑒0. (8) 

To interpret or simulate predictions for ϕ, we apply the inverse log function, which is 
𝛷 = exp(𝜂). (9 

2.2.2 Bayesian multivariate regression model 
We fit two types of Bayesian generalized nonlinear multivariate multilevel models: a univariate model (with 
water depth as a predictor) and a multivariate model (with water depth, flood duration, and growth stage 
as predictors). The multivariate regression model is presented in this subsection and the univariable model 
is introduced in the following subsection. To build that model, we estimate the precision of the beta 
component (Φ) and the zero-one-inflation probability based on all available predictors. In contrast, the 
mean of the beta distribution (𝜇) and the conditional one inflation probability are estimated by the most 
influential predictor variables to reduce overfitting and improve predictive performance. The linear 
predictors with link functions are as follows:  

1. Mean of the beta component (𝜇): 
𝑙𝑜𝑔𝑖𝑡(𝜇() = 𝛽+ + 𝛽, ⋅ 𝑤𝑎𝑡𝑒𝑟_𝑑𝑒𝑝𝑡ℎ( + 𝛽- ⋅ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛( + 𝛽1 ⋅ 𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑎𝑔𝑒(  (10) 

2. Precision of the beta component (Φ):  

𝑙𝑜𝑔(𝜙() = 	𝛾+ +	𝛾, ⋅ 𝑤𝑎𝑡𝑒𝑟_𝑑𝑒𝑝𝑡ℎ( +	𝛾- ⋅ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(  (11) 

3. Zero-one-inflation probability (zoi):  
𝑙𝑜𝑔𝑖𝑡(𝑧𝑜𝑖() = 𝛿+ + 𝛿, ⋅ 𝑤𝑎𝑡𝑒𝑟_𝑑𝑒𝑝𝑡ℎ( + 𝛿- ⋅ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛( + 𝛿1 ⋅ 𝑔𝑟𝑜𝑤𝑡ℎ_𝑠𝑡𝑎𝑔𝑒(  (12) 

4. Conditional one inflation probability (coi):  
𝑙𝑜𝑔𝑖𝑡(𝑐𝑜𝑖() = 	𝛼+ +	𝛼, ⋅ 𝑤𝑎𝑡𝑒𝑟_𝑑𝑒𝑝𝑡ℎ( +	𝛼- ⋅ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(  (13) 

The R code to fit the model is as follows:  

 model_brm = brm(bf(loss_ratio ~ water_depth_cm + duration_days + growth_stage, (14) 
              phi ~ water_depth_cm + duration_days, 
              zoi ~ water_depth_cm + duration_days + growth_stage, 
              coi ~ water_depth_cm + duration_days),  
              data = train_data,  
              family = zero_one_inflated_beta("logit"), 
              chains = 2, iter = 2000, warmup = 200, 
              control = list(adapt_delta = 0.95)) 
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In the brms package, population-level parameters are not limited to have normal priors. For the 
population-level parameters, the default is that parameters have an improper flat prior over the reals. We 
used the default priors of the brms package, as no deviations occurred when using the priors and because 
the default priors can be vectorized which results in faster MCMC sampling (Bürkner, 2017b).  

We selected the model (mod3) presented above based on a performance comparison of four multivariate 
regression model specifications (mod1, mod2, mod3, and mod4) with the following Bayesian model 
formulas: 

mod1: bf(loss_ratio ~ water_depth_cm + duration_days + growth_stage, (15) 
 phi ~ water_depth_cm, 
 zoi ~ water_depth_cm, 
 coi ~ water_depth_cm) 
 
mod2:  bf(loss_ratio ~ water_depth_cm + duration_days + growth_stage, (16) 
 phi ~ water_depth_cm + duration_days, 
 zoi ~ water_depth_cm + duration_days, 
 coi ~ water_depth_cm + duration_days) 
 
mod3:  bf(loss_ratio ~ water_depth_cm + duration_days + growth_stage, (17) 
 phi ~ water_depth_cm + duration_days, 
 zoi ~ water_depth_cm + duration_days + growth_stage, 
 coi ~ water_depth_cm + duration_days) 
 
mod4:  bf(loss_ratio ~ water_depth_cm + duration_days + growth_stage, (18) 
 phi ~ water_depth_cm + duration_days + growth_stage, 
 zoi ~ water_depth_cm + duration_days + growth_stage, 
 coi ~ water_depth_cm + duration_days + growth_stage) 
 

In the model comparison, data, family, chains, iterations, warmup, and control were the same across 
models (as presented in formula 13, but with 1000 iterations). The compared model specifications are 
based on different assumptions:  

• mod1 includes only water_depth_cm as a predictor in all submodels for parsimony, assuming that 
water depth is the primary driver of the relative yield loss. 

• mod4 adds duration_days to the phi, zoi, and coi submodels, assuming that duration adds 
explanatory power. 

• mod6 further includes growth_stage in the zoi submodel. 
• mod_all includes all three predictors (water_depth_cm, duration_days, growth_stage) in all 

submodels, representing the most complex specification. 

Table S4 presents the results of the performance comparison. Based on expected log predictive density 
(ELPD) comparisons, mod2 significantly outperforms mod1, and mod3 significantly outperforms mod2, 
indicating that adding complexity to submodels beyond the most influential predictors may reduce 
predictive performance. The difference between mod3 and mod4 is not statistically significant, suggesting 
that fully parameterizing all components does not improve the model significantly. The results support a 
modeling approach in which complexity is allocated to components (like Φ and zoi) where it demonstrably 
improves model fit, while more parsimonious specifications are used for parameters like μ and coi.  

Table S4: Comparison of multiple Bayesian Regression Models, based on the expected log predictive density (ELPD) 
and the standard error of ELPD. The table presents the metrics for two probabilistic stage-damage functions (SDF-
prob) and four multivariate regression models (mod1 to mod4). Based on the comparison, SDF-prob-1 and mod3 were 
selected for the analysis.  

Comparison Compared model Difference 
in ELPD 

Standard Error 
of ELPD 

Better performing 
model 

Does the model 
perform significantly 

better? 

SDF-prob-1 vs SDF-prob-2 SDF-prob-2 -7.9 1.9 SDF (prob) 1 Yes 

mod1 vs SDF-prob-1 SDF-prob-1  -15.7 4.8 mod1 Yes 

mod2 vs mod1 mod1 -16.9 6.3 mod2 Yes 

mod3 vs mod2 mod2 -20.3 6.6 mod3 Yes 

mod4 vs mod3 mod4 -2.4 1.6 mod3 No 
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2.3 Stage-damage functions 
We compare the multivariable models introduced above to univariable stage-damage functions (SDF), which 
predict flood-induced loss based on water depth. The SDF constitute a standard approach in flood loss modeling 
(Merz et al., 2010). We use a deterministic and a probabilistic version of the SDF for the evaluation of the 
performance improvement of multivariable and probabilistic models separately.  

In line with previous studies on flood-induced asset loss (Schoppa et al., 2020; Schröter et al., 2014; Wagenaar et 
al., 2017), we use a square root SDF, which has outperformed linear and polynomial forms previously (Elmer et 
al., 2010). The deterministic SDF is a simple, least square regression, where the relative yield loss is defined as:  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠 = 	𝛼 + 	𝛽k𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑝𝑡ℎ + 𝜀 (19) 

where relative yield loss is the observed loss ratio, a the intercept, b the regression coefficient, and 𝜀 is the 
error. In the model fitting process, values of α and β are identified that lead to the smallest error sum of 
squares (ESS), calculated as:  

𝐸𝑆𝑆 = 	∑ o𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠( −	𝑟𝑒𝑙𝑎𝑡𝚤𝑣𝑒	𝑦𝚤𝑒𝑙𝑑	𝑙𝑜𝑠𝑠2q r-$
(3,  (20) 

where the difference of the observed and modeled relative loss ( 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑦𝑖𝑒𝑙𝑑	𝑙𝑜𝑠𝑠( −
	𝑟𝑒𝑙𝑎𝑡𝚤𝑣𝑒	𝑦𝚤𝑒𝑙𝑑	𝑙𝑜𝑠𝑠2q ) describes the error.  

The probabilistic SDF is a Bayesian regression, where the relative yield loss is defined as:  

𝑙𝑜𝑠𝑠	𝑟𝑎𝑡𝑖𝑜 ∼ 𝐵𝐸𝐼𝑁𝐹(𝜆, 𝛾, 𝜇( , 𝜙) (21) 

𝑙𝑜𝑔𝑖𝑡(𝜇() = 	𝛼 + 	𝛽k{𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑝𝑡ℎ(} (22) 

The relative yield loss is bounded to 0% to 100% and yield loss starts to occur at a water depth of 2 cm. We 
compared the performance of two forms of the Bayesian regression and found that the probabilistic SDF 
(SDF-prob-1) outperformed the probabilistic square root SDF (SDF-prob-2) (Table S4). The models were 
defined as follows, with the same Bayesian regression specifications as used for the BRM model 
comparison:  

SDF-prob-1: bf(loss_ratio ~ water_depth_cm, (23) 
   phi ~ water_depth_cm, 
   zoi ~ water_depth_cm, 
   coi ~ water_depth_cm),  
   
SDF-prob-2: bf(loss_ratio ~ sqrt(water_depth_cm), (24) 
   phi ~ water_depth_cm, 
   zoi ~ water_depth_cm, 
   coi ~ water_depth_cm),  
 

2.4 Ramp functions by Shrestha et al. (2021) 
The models described above were compared with status quo reference functions from the literature. The 
selected reference functions are ramp functions developed for Myanmar by Shrestha et al. (2021) (Fig. S5). 
Separate functions exist for three growth stages and six flood durations, leading to a total of 18 functions. 
Yield loss starts to occur at the minimum damageable flood depth (hmin); it increases linearly up to the 
water depth where the plant is fully underwater (the starting level of complete submergence or SLCS). 
Depending on growth stage and flood duration, the maximum relative yield loss (yield lossmax) varies. The 
ramp functions are based on empirical data for Myanmar (Shrestha et al., 2021).  

Fig. S5: Flood damage model for rice in Myanmar based on ramp functions (Figure adapted from Shrestha et al., 2021)

 



 11 

3 Model validation 
We assess the model performance of each model, using k-fold cross-validation (CV), with k=10. For the 
10-fold CV, we randomly split the observed rice yield loss data into ten folds of roughly the same size. Each 
fold serves as a validation set for a model that is fitted with the remaining observations in the training set 
(James et al., 2013). The model’s overall performance score is the mean of the ten folds. As part of the 
cross-region validation, we assessed the performance of the localized models across regions. In addition, 
we tested the performance of the generalized models in each region as part of the LOO CV.  

Each model’s performance is validated by calculating three performance metrics:  

1. the mean absolute error (MAE), which indicates the accuracy of a predicted value by averaging the 
difference between the observation and the estimate across all observations in the validation set. The MAE 
is the sum of absolute errors, defined as the absolute difference between the observed and estimated 
values, divided by the size of the validation set (n),  

𝑀𝐴𝐸 = ,
$
∑ |𝑜𝑏𝑠 − 𝑝𝑟𝑒𝑑|$
(3, ,  (25) 

2. the mean bias error (MBE), measuring the mean bias in the model’s predictions and evaluates whether 
the model tends to under- or overestimate the observed values. A negative MBE means that the model is 
overpredicting, a positive MBE means that the model is underpredicting, and zero indicates no bias:  

𝑀𝐵𝐸 = ,
$
∑ 𝑜𝑏𝑠 − 𝑝𝑟𝑒𝑑$
(3, , and (26) 

3. the continuous ranked probability score (CRPS), which is a scoring metric to evaluate the performance 
of probabilistic models that provide a distribution of predictions. Hence, the CRPS does not evaluate a 
point estimate, but it evaluates the full distribution of predictions by jointly considering its sharpness (the 
concentration of the predictive distribution) and calibration (the statistical agreement of observations and 
model predictions). The CRPS is a metric that enables a direct comparison of point predictions and 
probabilistic predictions, as it generalizes the MAE (Gneiting and Katzfuss, 2014; Matheson and Winkler, 
1976). The CRPS for a given observation 𝑜𝑏𝑠(  is defined as: 

𝐶𝑅𝑃𝑆((𝐹( , 𝑜𝑏𝑠() = 	∫ (𝐹((𝑥) − 1{𝑜𝑏𝑠( ≤ 𝑥})-𝑑𝑥,4
.4   (27) 

where 𝐹(  is the cumulative density of the predictive distribution fi(x) and 1{obs ≤ x} is the indicator function, 
which is one if obs £ x and zero otherwise. The calculation of the CRPS for predictive distributions 
generated by the probabilistic models, see Jordan et al. (2019) and Krüger et al. (2021). As the relative loss 
is limited to values in the range [0, 1], CRPS values are within the same interval, with lower values indicating 
better model performance. One CRPS is calculated per observation in the validation set. For each fold, 
one mean CRPS is calculated. The overall model performance score is the mean of the mean CRPS. The 
performance scores selected for the model evaluation are aligned with previous assessments of flood 
damage model performance (Schoppa et al., 2020).  

4 Supplementary results 
4.1 Rice damage models in the literature 
Table S5 presents an inventory of the identified flood damage models. 
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Table S5: Overview of flood damage models and data in the literature. The table presents details on the country, methodology, variables, rice variety, equation, model validation and model 
transferability assessment.  

Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Hussain (1995) Bangladesh Expert-based Yield 
reduction (in 
%) 

Indirectly, as 
percentage of 
plant 
submerged (3 
classes)  

Yes (4 
values) 

Yes (6 
classes) 

Turbidity BR3, B11, 
and B14  

Equation was not reported, but lookup tables for three 
plant submergence classes were provided.  

No No (but lookup 
tables for 
Japan, Korea, 
and IR-30 rice 
are shown) 

Determi
nistic 

Intarathaiwong 
and 
Vudhivanich 
(1996) 

Thailand Experimental Yield 
reduction (in 
%) 

Yes (5 values) Yes (4 
values) 

No (1 value: 
45 days after 
planting) 

No RD 23 Ramp functions for different flood durations; equation was 
not reported.  
 

No No (but lookup 
tables for 
Japan, Korea, 
and the 
Philippines are 
shown) 

Determi
nistic 

Dutta et al.  
(2003) 

Japan Empirical Damage (in 
%) 

Yes (3 
classes) 

Yes (8 
values) 

No No Not 
reported 

Polynomial:  

𝐴𝐷(𝑖, 𝑗) = =[𝐷!(𝑖, 𝑗, 𝑘)𝐶𝑅𝑃"(𝑖, 𝑗, 𝑘)𝑚𝑛(𝑘)]
#

$%&

 

and 𝐷! = 𝐶𝑃$𝑌$𝐷𝐶$(𝑖, 𝑗), where 

k = crop type k at any grid (i, j),  
AD = the total agricultural damage to crops, Dm = damage 
to crop per unit area (damage as a share of normal gross 
returns),  
CRPa = total area of cultivation of crop type k, mn = loss 
factor for crop type k depending on the time period in a 
year,  
CPk = estimated cost p. unit weight of crop;  
Yk = normal year yield per unit area, and  
DCk = stage-damage function for crop type k (p. 29-30).   

No No Determi
nistic 

Kotera and 
Nawata (2007) 

Vietnam Experimental Yield loss 
(percentage 
of 
unsubmerge
d plant yield) 

Indirectly, as 
percentage of 
plant 
submerged (2 
classes)  

Yes (3 
values) 

Yes (6 
classes) 

Relative 
threshold 
depth for 
yield loss 
for the 
plant height 
(RTD) per 
growth 
stage; 
starting 
date of 
water 
inflow (10 
values)  

CR203 Weibull function: 𝑌𝐿 = 1 − exp{−𝜌 ∗ 𝐷𝑆𝑈𝐵'}, where 
YL (%) = relative yield loss compared to non-submerged 
plants,  
ρ = sensitivity to yield loss given by a specific growth stage 
and depth of submergence, 
DSUB (days) = duration of effective submergence for yield 
loss, and  
x = a constant accounting for characteristics of yield loss 
increments to DSUB given to the plants with effective 
submergence at the vegetative and the reproductive 
phases. 

Yes (R2 is 
presented 
on p. 52) 

No Determi
nistic 
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Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Mekong River 
Commission 
Secretariat  
(2009) 

Cambodia Expert-based Damage 
(USD/ha) 

Yes No No Rice 
variety; 
Timing of 
the flood 

Early flood 
paddy & 
rainy 
season 
paddy 

Ramp functions for different rice varieties and timings of 
the flood; equation was not reported, but can be 
approximated by:  

𝐷 = T
0																																																𝑖𝑓	𝑤𝑑 < 	1.0
𝑚 ∗ 𝑤𝑑 − 𝑏													𝑖𝑓	1.0 < 𝑤𝑑 < 𝑆𝐿𝐶𝑆
1,																																												𝑖𝑓	𝑤𝑑 > 𝑆𝐿𝐶𝑆

 

where D = damage in USD/ha for a specific rice variety and 
timing of flood, with m = slope and b= intercept.  
 
When timing of flood = June 1, the slope is:  

𝑚 = ^
𝐷!"'

𝑆𝐿𝐶𝑆 −	ℎ!(#
` =

390
3.5 − 1

=
390
2.5

= 156 

where Dmax = the duration-specific maximum damage (in 
USD/ha), SLCS = the starting level of complete 
submergence (in meter), and hmin = minimum damageable 
flood depth (in meter). The intercept b is calculated based 
on y=mx+b and point P(1|0):  
b = y − mx = 0 − 156 ∗ 1 = −156. 

Rice variety Flood 
timing 

Dmax
 (USD/ha) 

SLCS 
(meter) 

hmin 
(meter) m b 

Early flood 
paddy June 1 675 3.5 1.0 270 –270 
Early flood 
paddy July 1 275 3.5 1.0 110 –110 
Early flood 
paddy Aug. 1 25 3.5 1.0 10 –10 
Rainy season 
paddy Sept. 1 390 3.5 1.0 156 –156 
Rainy season 
paddy Oct. 1 195 3.5 1.0 78 –78 
Rainy season 
paddy Nov. 1 195 3.5 1.0 78 –78 

 

No No Determi
nistic 

Mekong River 
Commission 
Secretariat  
(2009) 

Lao PDR Expert-based Damage 
(USD/ha) 

Yes Yes (3 
values) 

No No Not 
reported 

Ramp functions for different flood durations; equation was 
not reported, but can be approximated by:  

𝐷 = T
0																																																𝑖𝑓	𝑤𝑑 < 	0.5
𝑚 ∗ 𝑤𝑑 − 𝑏													𝑖𝑓	0.5 < 𝑤𝑑 < 𝑆𝐿𝐶𝑆
1,																																												𝑖𝑓	𝑤𝑑 > 𝑆𝐿𝐶𝑆

 

where D = damage in USD/ha for a specific water depth 
(wd) in meter, with m = slope and b= intercept.  
 
When duration = 10 days, the slope is:  

𝑚 = ^
𝐷!"'

𝑆𝐿𝐶𝑆 −	ℎ!(#
` =

100
3 − 0.5

=
100
2.5

= 40 

where Dmax = the duration-specific maximum damage (in 
USD/ha), SLCS = the starting level of complete 
submergence (in meter), and hmin = minimum damageable 
flood depth (in meter). The intercept b is calculated based 
on y=mx+b and point P(0.5|0):  
b = y − mx = 0 − 40 ∗ 0.5 = −20. 
 

Duration 
(days) 

Dmax
 (USD/ha) 

SLCS 
(meter) 

hmin 
(meter) 

m b 

10 100 3.0 0.5 40 –20 
15 400 3.0 0.5 160 –80 
>30 670 3.0 0.5 268 –134 

No No Determi
nistic 
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Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Mekong River 
Commission 
Secretariat  
(2009) 

Thailand Expert-based Relative 
damage (in 
%) 

Yes Yes (4 
values) 

No No Not 
reported 

Ramp functions for different flood durations; equation was 
not reported, but can be approximated by:  

𝐿𝑅 = T
0																																																𝑖𝑓	𝑤𝑑 < 	0.5
𝑚 ∗ 𝑤𝑑 − 𝑏													𝑖𝑓	0.5 < 𝑤𝑑 < 𝑆𝐿𝐶𝑆
1,																																												𝑖𝑓	𝑤𝑑 > 𝑆𝐿𝐶𝑆

 

where LR = loss ratio (in %), m = slope and b= intercept.  
 
When duration = 7 days, the slope is:  

𝑚 = ^
𝐿𝑅!"'

𝑆𝐿𝐶𝑆 −	ℎ!(#
` =

40
1.5 − 0.5

=
40
1
= 40 

where LRmax = the duration-specific maximum loss ratio, 
SLCS = the starting level of complete submergence (in 
meter), and hmin = minimum damageable flood depth (in 
meter). The intercept b is calculated based on y=mx+b and 
point P(0.5|0): b = y − mx = 0 − 40 ∗ 0.5 = −20. 
 

Duration 
(days) 

Dmax 
(USD/ha) 

SLCS 
(meter) 

hmin 
(meter) 

m b 

7 40 1.5 0.5 40 –20 
9 65 1.5 0.5 65 –32.5 
11 85 1.5 0.5 85 –42.5 
13 100 1.5 0.5 100 –50 

No No Determi
nistic 

Ganji et al.  
(2012) 

Iran Experimental Loss rate (L) 
= “ratio of the 
number of 
damaged 
stems to 
total stems” 

Yes (up to 
0.45m) 

No Yes (4 
classes) 

Velocity, 
shear 
stress, 
Froude 
number, 
Reynolds 
number 
[separate 
models] 

Not 
reported 

Linear function, logarithmic function, quadratic function 
for different growth stages;  

𝐿 = 𝑎 ∗ 𝑙𝑛(𝑅𝑒) + 𝑏, where 

L = crop loss magnitude in percent and  
a and b = regression coefficients determined by experiment 
for different growth stages (given in Table 3, on p. 418).  

Yes  
(R2 is 
presented 
on p. 417) 

No Determi
nistic 

Chau et al.  
(2015) 

Vietnam Empirical Total damage 
(in VDN 
billion in 
2010 prices) 
and 
susceptibility 

Yes (4 
classes) 

No Indirectly (3 
scenarios) 

No  Winter-
spring rice, 
summer-
autumn rice 
(only 
considered 
in cost-
benefit-
analysis) 

The damage function by Messner et al. (2007) was used:  

𝐷𝑎𝑚𝑎𝑔𝑒)*)"+ ===𝐷(,-

!

-%&

#

(%&

 

= ∑ ∑ 𝑣𝑎𝑙𝑢𝑒(,- ×!
-%&

#
(%& 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦(,-  where  

i = category of crops (with n crop types);  
j = inundation depth (with m inundation classes);  
Dij = damage for crop i at inundation depth j;  
valueij = yield per ha for crop i (based on previous year) * 
inundated area (at depth j) * crop sale price;  
susceptibilityi,j = f(Eij, Fk) measured as percentage of crop 
yield (e.g. for rice) in flood year compared to crop yield in 
previous year (based on historical yield statistics; average 
yield loss per district and per inundation level was 
calculated);  
Fk = inundation characteristics of flood class k (return 
periods k= 1:10-, 1:20-, 1:100-year flood);  
Eij = timing of the crop rotation (for rice) (p. 1754). 

No No Determi
nistic 
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Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Kwak et al.  
(2015) 

Bangladesh Empirical 
expert-based 

damage ratio 
(in %) = the 
area of rice 
damage / 
total area of 
rice fields 

Yes Yes (2 
classes) 

No Minimum 
damageabl
e flood 
depth 
threshold 
at 0.3m 

Single-
cropped 
rain-fed 
Aman rice 

Piecewise linear functions; equation was not reported, but 
can be approximated by:  

𝐿𝑅 = T
0																																																𝑖𝑓	𝑤𝑑 < 	0.3
𝑚 ∗ 𝑤𝑑 − 𝑏													𝑖𝑓	0.3 < 𝑤𝑑 < 𝑆𝐿𝐶𝑆
1,																																												𝑖𝑓	𝑤𝑑 > 𝑆𝐿𝐶𝑆

 

where LR = loss ratio (in %), m = slope and b= intercept.  
 
When duration = 8 days, the slope is:  

𝑚 = ^
𝐿𝑅!"' − 𝐿𝑅!(#
𝑆𝐿𝐶𝑆 −	ℎ!(#

` =
60 − 15
1.05 − 0.3

=
45
0.75

= 60 

where LRmax and LRmin = the duration-specific maximum and 
minimum loss ratios, SLCS = the starting level of complete 
submergence, and hmin = minimum damageable flood 
depth. The intercept b is calculated based on y=mx+b and 
point P(0.3|15):  
b = y − mx = 15 − 60 ∗ 0.3 = −3. 
 
When duration = 16 days, the slope is:  
𝑚 = &../01

&.../..3
= 41

..4
≈ 107.4 and the intercept is 

b = y − mx = 25 − 107.4 ∗ 0.3 = −7.14. 

No No Determi
nistic 

Samantaray et 
al. (2015) 

India Experimental Damage (%) Yes (3 
classes) 

Yes (6 
classes) 

No Rice variety Normal, 
shallow, 
medium 
deep, and 
deep water 
rice 

Equation was not reported, but lookup tables for four rice 
varieties were provided.  

No No Determi
nistic 

Shrestha  
(2016) 

Philippines Empirical 
expert-based 

Yield loss (Yl) Yes Yes (5 
classes) 

Yes (4 
classes) 

No Not 
reported 

Piecewise linear functions; equation was not reported, but 
can be approximated for each growth stage by:  

𝐿𝑅 = z

0																																													𝑖𝑓	𝑤𝑑 < 	ℎ!(#
𝑚& ∗ 𝑤𝑑 − 𝑏&														𝑖𝑓	ℎ!(# < 𝑤𝑑 < 𝑥&
𝑚0 ∗ 𝑤𝑑 − 𝑏0												𝑖𝑓	𝑥& < 𝑤𝑑 < 𝑆𝐿𝐶𝑆
1,																																														𝑖𝑓	𝑤𝑑 > 𝑆𝐿𝐶𝑆

 

where LR = loss ratio (in %), hmin = minimum damageable 
water depth, x1 = water depth at partial submergence, and 
SLCS = starting level of complete submergence. The line 
connecting P1(hmin|LR at hmin) and P2(x1|LR at x1) is defined by 
y=m1x+b1. The line connecting P2(x1|LR at x1) and 
P3( SLCS|LR at SLCS) is defined by y=m2x+b2. The values are 
provided in the suppl. data.  

Yes No Determi
nistic 

Huizinga et al. 
(2017) 

India Not reported Normalized 
damage 
factor 

Yes No Yes (2 
classes) 

No Not 
reported 

Piecewise linear functions; equation was not reported, but 
data needed to recreate the functions is provided in the 
suppl. data.  

No No Determi
nistic 
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Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Nguyen et al. 
(2017) 

Vietnam Empirical  Damage ratio 
(y) 

Yes No No 
(functions 
are for the 
harvesting 
period) 

hmax 

(defined as 
the water 
depth at 
which the 
damage 
ratio 
becomes 1) 

Winter rice 
(used in 
Central 
Vietnam) 

Quadratic function: 𝑦 = 𝑎𝑥0 + (1 − 𝑎)𝑥, with  
(0 ≤ 𝑎 ≤ 1) and calibrated parameters: a=1, hmax=3.1;  
Exponential function: 𝑦 = &

"/&
	 (𝑎' − 1), with (𝑎 > 1) and 

calibrated parameters: a=431, hmax=2.5; and 
S-shape function: 𝑦	 = 	 &

"/&
	(𝑎ˣ	 − 	1), with (𝑎 > 0, 𝑏 > 1) 

and calibrated parameters: a=431, b=5.8,  
where y is the damage ratio, x=h/hmax, h = water depth, hmax 
= water depth at which the damage ratio becomes 1, and a 
and b are constants. a, b, and hmax were calibrated using 
the SCE-UA method.  

Yes (with 
district-
level 
damage 
data from 
five 
districts in 
the Thach 
Han River 
Basin, 
Quang Tri 
Province) 

No  Determi
nistic 

Win et al. 
(2018) 

Myanmar Empirical Agricultural 
damage rate 
(ADR) 

Yes Yes (3 
values) 

Yes (3 
classes) 

Investment 
into a 
farmer’s 
field (Kyats/ 
hectare) 

Deep-water 
rice variety 

𝐴𝐷𝑅 = 567(89+)97"+	;"!"6<	="+9<	(?@")A/C<8)"7<)
567(89+)97"+	67*AA	(#8*!<	($@")A/C<8)"7<)

  
 
“ADR was reformed by lognormal transformations […] to 
normalize its distribution.” The resulting ADR model is 
ln(𝐴𝐷𝑅) = 0.000007	I + 0.66	FH + 0.012FD + 0d& −
0.05d0 − 0.471d3 − 1.91,  
where ADR = agricultural damage rate, I = investments into 
a farmer’s field (Kyats/ hectare), FD = flood duration (days), 
FH = flood height (meter), and d∗ are Boolean dummy 
variables (0 or 1) for the growth stage.  

Yes (p. 
698) 

No Determi
nistic 

Federal 
Emergency 
Management 
Agency (FEMA) 
(2020) 

United 
States of 
America 

Empirical Loss (L) in 
USD 

No Yes (3 
values) 

No Calendar 
date of 
flood 

Not 
reported 

𝐿 = 𝐴(𝑝𝑌. − 𝐻) ∗ 𝐷(𝑡) ∗ 𝑅(𝑡), 
where L = loss (USD), A = cultivated area (acres), P = price 
(USD/bushel), Y_0 = normal annual yield (bushels / acre), H 
I = harvest cost (USD / acre), D(t) = crop loss at day t of the 
year (% of maximum net revenue), and R(t) = the crop loss 
modifier for flood duration (percent of maximum potential 
loss).  

No No Determi
nistic 

Hendrawan 
and Komori 
(2021) 

Indonesia Modeling 
based on 
remote-
sensing data 

Yield change 
(Y) 

Yes Yes No Velocity Monsoon 
rice crop 

Three separate equations to predict y, the yield change 
(in %), were developed through multiple regressions:  
1) x = max. water depth (in m):  y = 0.52 + 0.29 ⋅ ln(x)  
2) x = max. velocity (in m/s): y = 3.4 + 0.95 ⋅ ln(x)  
3) x = max. duration (in days): y = 2 + 0.97 ⋅ ln(x) 
No model that integrates all predictors was presented.  

Yes No Determi
nistic 

Nguyen et al. 
(2021) 

Vietnam 
(trained on 
secondary 
data) 

Synthetic 
(using 
secondary 
data) 

Damage ratio 
(y) 

Yes (4 
classes) 

Yes (9 
classes) 

Yes (3 
classes) 

No NA2 and 
NA6 
(summer-
autumn 
rice) 

Synthetic lookup tables were developed based on global 
secondary global damage data from the literature and 
plant height of rice variety planted in Vietnam.  

Yes No  Determi
nistic 

Shrestha 
(2021) 

Myanmar Empirical Yield loss (%) Yes Yes (6 
classes) 

Yes (3 
classes) 

minimum 
damageabl
e flood 
depth 
(h_min), 
starting 
level of 
complete 
submergen
ce (SLCS) 

Rainfed 
rice, with 
max. plant 
height of 
130 cm 

Yield Loss (%) = (h_flood − h_min) × (a + b × D_flood) 
if h_flood > SLCS, h_flood = flood depth at SLCS 
if Yield Loss < 0, Yield Loss = 0% 
if Yield Loss > 100, Yield Loss = 100% 

Yes Yes Determi
nistic 

Khairul (2022) Bangladesh Empirical Percent rice 
yield damage 
(PRD) (in %) 

Yes (5 values) Yes (3 
classes) 

No (only 
maturity 
stage) 

No Boro rice PRDi = 100 ∗ RRYi/MEY, where RRYi is the reduced rice yield 
due to flood and MEYi is the maximum expected normal 
rice yield.  

Yes No Determi
nistic 
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Reference Country Methodology Response 
variable Water depth Duration Growth 

stage Others Rice variety Equation Model 
validation 

Transferability 
assessment 

Model 
type 

Linear: y = a + b*x; Logistic: y = a/(1 + be−cx); Natural 
Logarithm: y = a + b*ln(x); Polynomial (3rd order): y = ax3 + 
bx2 + cx + d; Power: y = a*xb (p. 8). Parameters are provided 
in Table 4 (p. 10). The polynominal regression model 
performed best for 1-3 day-floods. The logistic model 
performed best for 4-7 and >7 day-floods (p. 10). 

Model 
developed in 
this study  

Thailand, 
Myanmar 

Empirical Relative yield 
loss (in %) 

Yes No No No Myanmar: 
Shrestha et 
al. 2021 & 
Win et al. 
2018; 
Thailand: 
RD6 (56%) & 
White 
Jasmine 105 
(38%) 

Linear regression [Deterministic stage-damage function] 
(see Table 4) 

Yes Yes Determi
nistic 

Model 
developed in 
this study 

Thailand, 
Myanmar 

Empirical Relative yield 
loss (in %) 

Yes No No No Univariable Bayesian regression [Probabilistic stage-
damage function] (see Table 4 and Suppl. Information 
Section 2.3)  

Yes Yes Probabili
stic 

Model 
developed in 
this study 

Thailand, 
Myanmar 

Empirical Relative yield 
loss (in %) 

Yes Yes Yes No Multivariable Bayesian regression (see Table 4 and Suppl. 
Information Section 2.2)   

Yes Yes Probabili
stic 

Model 
developed in 
this study 

Thailand, 
Myanmar 

Empirical Relative yield 
loss (in %) 

Yes Yes Yes No Random Forest (see Table 4 and Suppl. Information 
Section 2.1)  

Yes Yes Probabili
stic 
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4.2 Performance scores 
Table S6 provides the performance scores (MAE, MBE, and Mean CRPS) obtained from the conducted 
model performance and transferability assessments. It covers the models developed by the authors –
deterministic and probabilistic SDF, multivariate BRM and RF model – as generalized and localized 
models. The approaches used encompass Leave-one-out Cross Validation (LOO-CV), Leaven-nothing out 
(LNO), and cross-region validation (CRV). The performance comparison of the ramp function from the 
literature and the models trained with the dataset by Shrestha et al. (2021) is presented in Table S7. The 
model performance for floods with different characteristics is shown in Fig. S7.  

 
4.3 Variable importance: Multivariable Bayesian Regression Model coefficients 
The coefficients of the multivariable Bayesian regression (mod3 presented above) shown in Fig. S6 reveal 
submodel- and region-specific effects. In the generalized model, water depth and duration both have 
positive coefficients. In the localized model for Myanmar, water depth and duration have also positive 
coefficients. In contrast, the Thailand model has a positive water depth coefficient and a negative duration 
coefficient. These results suggest that while water depth is a consistent predictor across contexts, the role 
of duration varies between regions. Growth stage was found to be an important attribute for loss 
explanation in the literature. However, in all our model definitions, growth stage has the least coefficients 
and has a non-zero linear dependence only to zero-and-one inflation. 

Fig. S6: Multivariable Bayesian Regression Model coefficients. The Figure presents posterior mean estimates and 50% 
credible intervals for all parameters across four submodels – μ, ϕ, zoi, and coi – for the generalized model and two 
localized models (Myanmar and Thailand).  
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Table S6: Results of the performance evaluation and spatial transferability assessment for flood damage models created in this study. The mean across ten folds is shown for LOO-CV.  

Model type Model name in R Model category Calibration Validation Approach MAE MBE Mean 
CRPS 

RF model_rf_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar LOO-CV 0.218 -0.005 0.180 
BRM model_brm_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar LOO-CV 0.223 0.010 0.135 
SDF (prob) model_sdf_prob_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar LOO-CV 0.253 -0.011 0.155 
SDF (det) model_sdf_det_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar LOO-CV 0.268 -0.018 - 
RF model_rf_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar & Thailand LOO-CV 0.203 -0.001 0.124 
BRM model_brm_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar & Thailand LOO-CV 0.223 0.002 0.142 
SDF (prob) model_sdf_prob_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar & Thailand LOO-CV 0.244 0.005 0.154 
SDF (det) model_sdf_det_generalized_CV Generalized model fit with all the data excluding the training data for CV Myanmar & Thailand LOO-CV 0.263 0.004 - 

RF model_rf_generalized_CV Generalized model fit with all the data excluding the training data for CV Thailand LOO-CV 0.144 0.015 0.106 
BRM model_brm_generalized_CV Generalized model fit with all the data excluding the training data for CV Thailand LOO-CV 0.166 -0.003 0.114 
SDF (prob) model_sdf_prob_generalized_CV Generalized model fit with all the data excluding the training data for CV Thailand LOO-CV 0.186 0.052 0.128 
SDF (det) model_sdf_det_generalized_CV Generalized model fit with all the data excluding the training data for CV Thailand LOO-CV 0.185 0.066 - 
RF model_rf_generalized Generalized model fit with all the data - LNO - - - 
BRM model_brm_generalized Generalized model fit with all the data - LNO - - - 
SDF (prob) model_sdf_prob_generalized Generalized model fit with all the data - LNO - - - 
SDF (det) model_sdf_det_generalized Generalized model fit with all the data - LNO - - - 
RF model_rf_trained_MM_CV Localized model for Myanmar fit with the Myanmar data excluding the training data for CV Myanmar LOO-CV 0.220 0.002 0.179 
BRM model_brm_trained_MM_CV Localized model for Myanmar fit with the Myanmar data excluding the training data for CV Myanmar LOO-CV 0.209 0.002 0.130 
SDF (prob) model_sdf_prob_trained_MM_CV Localized model for Myanmar fit with the Myanmar data excluding the training data for CV Myanmar LOO-CV 0.253 0.000 0.156 
SDF (det) model_sdf_det_trained_MM_CV Localized model for Myanmar fit with the Myanmar data excluding the training data for CV Myanmar LOO-CV 0.256 -0.004 - 
RF model_rf_trained_MM Localized model for Myanmar fit with all the Myanmar data Thailand CRV 0.192 -0.009 0.146 
BRM model_brm_trained_MM Localized model for Myanmar fit with all the Myanmar data Thailand CRV 0.196 -0.074 0.172 
SDF (prob) model_sdf_prob_trained_MM Localized model for Myanmar fit with all the Myanmar data Thailand CRV 0.200 0.054 0.150 
SDF (det) model_sdf_det_trained_MM Localized model for Myanmar fit with all the Myanmar data Thailand CRV 0.262 0.059 - 
RF model_rf_trained_TH_CV Localized model for Thailand fit with the Thailand data excluding the training data for CV Thailand LOO-CV 0.148 0.002 0.117 
BRM model_brm_trained_TH_CV Localized model for Thailand fit with the Thailand data excluding the training data for CV Thailand LOO-CV 0.156 0.012 0.103 
SDF (prob) model_sdf_prob_trained_TH_CV Localized model for Thailand fit with the Thailand data excluding the training data for CV Thailand LOO-CV 0.155 0.020 0.101 
SDF (det) model_sdf_det_trained_TH_CV Localized model for Thailand fit with the Thailand data excluding the training data for CV Thailand LOO-CV 0.178 0.015 - 

RF model_rf_trained_TH Localized model for Thailand fit with all the Thailand data Myanmar CRV 0.281 -0.034 0.247 
BRM model_brm_trained_TH Localized model for Thailand fit with all the Thailand data Myanmar CRV 0.288 -0.024 0.193 
SDF (prob) model_sdf_prob_trained_TH Localized model for Thailand fit with all the Thailand data Myanmar CRV 0.272 -0.045 0.187 
SDF (det) model_sdf_det_trained_TH Localized model for Thailand fit with all the Thailand data Myanmar CRV 0.285 -0.100 - 
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Table S7: Results of the performance evaluation and spatial transferability assessment for the ramp functions by Shrestha et al. 2021 and for flood damage models developed in this study re-
trained with the dataset published by Shrestha et al. 2021. The mean across ten folds is shown for LOO-CV.  

Model type Model name in R Model category Calibration Validation Approach MAE MBE Mean 
CRPS 

Ramp function model_ramp_trained_MM Localized model for Myanmar 
Model from the literature (Shrestha et al., 
2021) Myanmar & Thailand - 0.233 0.053 - 

Ramp function model_ramp_trained_MM Localized model for Myanmar 
Model from the literature (Shrestha et al., 
2021) 

Myanmar (Shrestha et al. 2021 
data) - 0.235 0.032 - 

Ramp function model_ramp_trained_MM Localized model for Myanmar 
Model from the literature (Shrestha et al., 
2021) Myanmar (all the data) - 0.227 0.054 - 

Ramp function model_ramp_trained_MM Localized model for Myanmar 
Model from the literature (Shrestha et al., 
2021) Thailand CRV 0.257 0.049 - 

RF model_rf_trained_MM_Shrestha Localized model for Myanmar (Shrestha) fit with the Myanmar (Shrestha) data Thailand CRV 0.198 0.070 0.154 
BRM model_brm_trained_MM_Shrestha Localized model for Myanmar (Shrestha) fit with the Myanmar (Shrestha) data Thailand CRV 0.199 -0.057 0.175 
SDF (prob) model_sdf_prob_trained_MM_Shrestha Localized model for Myanmar (Shrestha) fit with the Myanmar (Shrestha) data Thailand CRV 0.211 0.108 0.149 
SDF (det) model_sdf_det_trained_MM_Shrestha Localized model for Myanmar (Shrestha) fit with the Myanmar (Shrestha) data Thailand CRV 0.291 0.046 - 

RF model_rf_trained_MM_Shrestha Localized model for Myanmar (Shrestha) 
fit with the Myanmar (Shrestha) data 
excluding the training data for CV Myanmar (Shrestha) LOO-CV 0.238 -0.005 0.199 

BRM model_brm_trained_MM_Shrestha Localized model for Myanmar (Shrestha) 
fit with the Myanmar (Shrestha) data 
excluding the training data for CV Myanmar (Shrestha) LOO-CV 0.232 -0.010 0.151 

SDF (prob) model_sdf_prob_trained_MM_Shrestha Localized model for Myanmar (Shrestha) 
fit with the Myanmar (Shrestha) data 
excluding the training data for CV Myanmar (Shrestha) LOO-CV 0.284 0.004 0.178 

SDF (det) model_sdf_det_trained_MM_Shrestha Localized model for Myanmar (Shrestha) 
fit with the Myanmar (Shrestha) data 
excluding the training data for CV Myanmar (Shrestha) LOO-CV 0.284 0.000 - 
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Fig. S7: Model performance for flood events with specific characteristics. Data was partitioned into groups based on relative 
yield loss (low, medium, high, complete), water depth (shallow, medium, deep), duration (short, medium, long), and growth 
stage (vegetative, reproductive, maturity). Relative yield loss groups were created as equal-sized partitions, while water depth 
and duration are categorized based on the 25th and 75th percentiles.  
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4.4 Model reporting: Lookup tables for generalized flood damage models for rice 
In this section, we provide lookup tables for the generalized models developed in this study, including the 
deterministic SDF (Table S8), probabilistic SDF (Table S9), BRM (Table S10), and RF model (Table S11).  

 
Table S8: Lookup table for the 
deterministic stage-damage function  

Water 
depth 

range (cm) 

Water 
depth 

midpoint 
(cm) 

Relative 
yield loss 

2–9 5.5 32.2 
10–19 14.5 38.8 
20–29 24.5 43.87 
30–39 34.5 47.96 
40–49 44.5 51.47 
50–59 54.5 54.61 
60–69 64.5 57.47 
70–79 74.5 60.11 
80–89 84.5 62.57 
90–99 94.5 64.9 

100–109 104.5 67.1 
110–119 114.5 69.2 
120–129 124.5 71.21 
130–139 134.5 73.14 
140–149 144.5 75 
150–159 154.5 76.8 
160–169 164.5 78.53 
170–179 174.5 80.22 
180–189 184.5 81.86 
190–199 194.5 83.45 
200–209 204.5 85.01 
210–219 214.5 86.52 
220–229 224.5 88 
230–239 234.5 89.45 
240–249 244.5 90.87 
250–259 254.5 92.26 
260–269 264.5 93.62 
270–279 274.5 94.96 
280–289 284.5 96.27 
290–299 294.5 97.56 
300–309 304.5 98.83 

>300  100 

Table S9: Lookup table for the probabilistic stage-damage function  

Water 
depth 

range (cm) 

Water 
depth 

midpoint 
(cm) 

Relative 
yield loss 
(median) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

2–9 5.5 27.32 17.59 39.5 
10–19 14.5 29.29 19.15 42.01 
20–29 24.5 29.98 20.06 42.32 
30–39 34.5 31.61 20.89 44.5 
40–49 44.5 34.19 22.68 46.38 
50–59 54.5 38.19 26.1 50.55 
60–69 64.5 42.34 30.16 54.96 
70–79 74.5 46.96 34.7 60.32 
80–89 84.5 53.04 40.97 68.37 
90–99 94.5 59.35 46.67 79.67 

100–109 104.5 65.96 53.39 82.98 
110–119 114.5 73.1 59.38 86.55 
120–129 124.5 77.46 63.68 88.73 
130–139 134.5 87.19 71.01 93.59 
140–149 144.5 100 79.85 100 
150–159 154.5 100 82.31 100 
160–169 164.5 100 84.68 100 
170–179 174.5 100 86.29 100 
180–189 184.5 100 89.79 100 
190–199 194.5 100 93.83 100 

>200  100 100 100 
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Table S10: Lookup table for the Bayesian Regression Model (BRM)  

Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 
(median) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Vegetative stage 

4 2–19 10.5 29.67 9.83 53.39 
4 20–39 29.5 28.81 7.84 51.82 
4 40–59 49.5 29.02 4.91 53.82 
4 60–79 69.5 27.68 0 51.87 
4 80–99 89.5 33.01 0 60.48 
4 100–119 109.5 45.3 10.36 91.73 
4 120–139 129.5 61.54 25.9 100 
4 140–159 149.5 100 45.91 100 
4 160–179 169.5 100 62.22 100 
4 >180  100 100 100 
8 2–19 10.5 31.26 10.28 54.28 
8 20–39 29.5 31.3 9.47 54.33 
8 40–59 49.5 31.54 5.85 55.85 
8 60–79 69.5 34.8 6.26 60.78 
8 80–99 89.5 41.01 11.24 73.47 
8 100–119 109.5 57.96 26.06 100 
8 120–139 129.5 100 41.48 100 
8 140–159 149.5 100 55.85 100 
8 160–179 169.5 100 71.34 100 
8 >180  100 100 100 

12 2–19 10.5 32.33 11.59 55.03 
12 20–39 29.5 32.55 11.26 56.7 
12 40–59 49.5 35.64 11.47 61.06 
12 60–79 69.5 42.26 15.39 69.93 
12 80–99 89.5 53.47 24.38 100 
12 100–119 109.5 70.87 37.89 100 
12 120–139 129.5 100 49.99 100 
12 140–159 149.5 100 61.24 100 
12 160–179 169.5 100 81.44 100 
12 >170  100 100 100 
16 2–19 10.5 35.51 13.94 57.53 
16 20–39 29.5 36.61 14.46 60.62 
16 40–59 49.5 40.36 16.72 65.58 
16 60–79 69.5 50.86 25.07 83.85 
16 80–99 89.5 63.46 34.39 100 
16 100–119 109.5 86.11 44.95 100 
16 120–139 129.5 100 56.86 100 
16 140–159 149.5 100 70.19 100 
16 >170  100 100 100 
20 2–19 10.5 36.63 16.04 59.31 
20 20–39 29.5 40.88 19.9 65.08 
20 40–59 49.5 47.34 23.51 75.39 
20 60–79 69.5 57 31.99 100 
20 80–99 89.5 72.78 42.62 100 
20 100–119 109.5 100 50.25 100 
20 120–139 129.5 100 58.18 100 
20 140–159 149.5 100 72.35 100 
20 >160  100 100 100 
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Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 
(median) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Reproductive stage 

4 2–19 10.5 39.91 18.32 61.69 
4 20–39 29.5 40.33 18.72 61.11 
4 40–59 49.5 42.47 20.23 62.88 
4 60–79 69.5 41.59 18.61 62.31 
4 80–99 89.5 44.98 21.75 66.67 
4 100–119 109.5 51.89 28.35 74.96 
4 120–139 129.5 58.74 35.07 92.84 
4 140–159 149.5 70.13 44.23 100 
4 160–179 169.5 85.72 51.24 100 
4 180–199 189.5 100 60.22 100 
4 >220  100 100 100 
8 2–19 10.5 41.15 20.18 62.82 
8 20–39 29.5 42.04 21.51 63.98 
8 40–59 49.5 44.67 22.53 64.67 
8 60–79 69.5 46.2 23.03 66.36 
8 80–99 89.5 50.98 28.56 73.12 
8 100–119 109.5 55.82 34.21 81.66 
8 120–139 129.5 63.34 41.18 100 
8 140–159 149.5 78.63 51.51 100 
8 160–179 169.5 100 56.06 100 
8 180–199 189.5 100 65.54 100 
8 >220  100 100 100 

12 2–19 10.5 43.59 22.4 65.16 
12 20–39 29.5 43.27 23.04 63.54 
12 40–59 49.5 46.86 26.13 67.66 
12 60–79 69.5 49.71 28.26 70.71 
12 80–99 89.5 54.54 34.47 77.82 
12 100–119 109.5 62.21 42.28 94.48 
12 120–139 129.5 71.85 47.85 100 
12 140–159 149.5 82.62 53.7 100 
12 160–179 169.5 100 60.3 100 
12 180–199 189.5 100 67.71 100 
12 >220  100 100 100 
16 2–19 10.5 46.56 26.08 65.98 
16 20–39 29.5 47 25.87 67.86 
16 40–59 49.5 49.75 28.95 69.27 
16 60–79 69.5 53.03 33.61 73.22 
16 80–99 89.5 59.07 38.58 84.14 
16 100–119 109.5 65.92 44.71 100 
16 120–139 129.5 73.53 50.75 100 
16 140–159 149.5 84.1 56.52 100 
16 160–179 169.5 100 61.75 100 
16 180–199 189.5 100 70.25 100 
16 >210  100 100 100 
20 2–19 10.5 47.97 26.17 68.48 
20 20–39 29.5 50.28 29.64 70.72 
20 40–59 49.5 54.77 34.64 73.87 
20 60–79 69.5 57.19 37.48 78.3 
20 80–99 89.5 62.98 43.1 88.31 
20 100–119 109.5 68.06 48.13 100 
20 120–139 129.5 79.14 54.44 100 
20 140–159 149.5 90 59.46 100 
20 160–179 169.5 100 63.46 100 
20 180–199 189.5 100 74.33 100 
20 >210  100 100 100 
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Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 
(median) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Maturity stage 

4 2–19 10.5 36.3 17.72 59.15 
4 20–39 29.5 38.87 19.38 60.51 
4 40–59 49.5 39.35 20.52 59.78 
4 60–79 69.5 41.42 23.83 61.23 
4 80–99 89.5 43.9 25.84 63.44 
4 100–119 109.5 48.45 28.21 68.1 
4 120–139 129.5 50.78 31.83 72.42 
4 140–159 149.5 57.27 37.66 81.77 
4 160–179 169.5 63.46 43.03 100 
4 180–199 189.5 70.61 47.09 100 
4 >280  100 100 100 
8 2–19 10.5 38.83 20.32 60.17 
8 20–39 29.5 39.45 21.83 60.91 
8 40–59 49.5 41.89 22.91 62.05 
8 60–79 69.5 44.67 26.12 63.55 
8 80–99 89.5 45.85 27.68 66.01 
8 100–119 109.5 50.53 32.51 70.22 
8 120–139 129.5 55.38 36.72 77.97 
8 140–159 149.5 59.95 40.74 88.3 
8 160–179 169.5 66.14 44.5 100 
8 180–199 189.5 71.32 49.52 100 
8 >270  100 100 100 

12 2–19 10.5 40.42 21.93 61.65 
12 20–39 29.5 43 24.14 62.52 
12 40–59 49.5 44.63 25.81 63.21 
12 60–79 69.5 46.71 28.6 66.28 
12 80–99 89.5 49.92 30.99 68.58 
12 100–119 109.5 54.14 35.85 74.89 
12 120–139 129.5 57.3 38.35 79.49 
12 140–159 149.5 62.9 43.49 96.61 
12 160–179 169.5 68.67 48.5 100 
12 180–199 189.5 75.02 51.75 100 
12 >270  100 100 100 
16 2–19 10.5 43.23 24.54 63.21 
16 20–39 29.5 44.35 25.78 63.62 
16 40–59 49.5 47.47 28.55 66.67 
16 60–79 69.5 48.9 30.37 67.63 
16 80–99 89.5 52.41 34.94 70.47 
16 100–119 109.5 56.36 38.2 76.22 
16 120–139 129.5 60.5 42.13 83.42 
16 140–159 149.5 64.32 46.4 100 
16 160–179 169.5 69.2 48.78 100 
16 180–199 189.5 77.93 54.13 100 
16 >270  100 100 100 
20 2–19 10.5 45.17 25.59 64.72 
20 20–39 29.5 46.29 27.09 65.18 
20 40–59 49.5 48.3 30.53 67.23 
20 60–79 69.5 51.41 34.03 70.06 
20 80–99 89.5 55.08 37.99 73.54 
20 100–119 109.5 57.84 40.89 77.4 
20 120–139 129.5 61.79 44.49 84.18 
20 140–159 149.5 65.81 47.78 100 
20 160–179 169.5 71.88 53.06 100 
20 180–199 189.5 80.31 57.07 100 
20 >270  100 100 100 
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Table S11: Lookup table for the Random Forest (RF) model (trained on Myanmar & Thailand data) 

Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 

(mean) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Vegetative stage 

4 2–19 10.5 44.53 35.5 51.05 
4 20–39 29.5 40.73 34.43 44.99 
4 40–59 49.5 40.1 33.87 44.38 
4 60–79 69.5 41.16 34.83 44.38 
4 80–99 89.5 42.38 36.48 44.99 
4 100–119 109.5 52.94 42.14 61.82 
4 120–139 129.5 53.41 42.86 60 
4 140–159 149.5 63.22 47.07 75.17 
4 160–179 169.5 79.41 61.75 94.67 
4 180–199 189.5 80.6 61.75 98.33 
4 >200  81.01 61.75 98.58 
8 2–19 10.5 47.45 37.44 53.03 
8 20–39 29.5 43.67 36.54 48.48 
8 40–59 49.5 42.93 36.48 47.07 
8 60–79 69.5 43.48 36.54 47.32 
8 80–99 89.5 44.31 37.24 48.48 
8 100–119 109.5 52.38 41.07 60.09 
8 120–139 129.5 52.72 41.07 59.62 
8 140–159 149.5 62.47 46.13 75.13 
8 160–179 169.5 78.8 58.37 94.67 
8 180–199 189.5 79.99 58.37 98.33 
8 >200  80.41 58.37 98.58 

12 2–19 10.5 59.05 48.96 68.02 
12 20–39 29.5 55.57 44.99 64.98 
12 40–59 49.5 55.33 44.52 64.94 
12 60–79 69.5 55.89 44.99 64.94 
12 80–99 89.5 56.8 45.27 65.59 
12 100–119 109.5 64.91 59.24 70.06 
12 120–139 129.5 65.52 59.24 70.31 
12 140–159 149.5 72.04 61.75 82.9 
12 160–179 169.5 85.96 71.89 98.11 
12 180–199 189.5 87.61 72.78 98.58 
12 >200  88.14 72.78 98.67 
16 2–19 10.5 68.26 62.81 74.77 
16 20–39 29.5 66 61.95 73.72 
16 40–59 49.5 66.22 61.95 73.72 
16 60–79 69.5 67.04 61.98 73.99 
16 80–99 89.5 67.91 62.15 74.77 
16 100–119 109.5 72.41 65.85 80.19 
16 120–139 129.5 73.37 66.28 82.74 
16 140–159 149.5 75.94 67.97 83.42 
16 160–179 169.5 89.53 85.18 98.33 
16 180–199 189.5 91.69 89.35 98.67 
16 >200  92.29 93.72 98.67 
20 2–19 10.5 75.34 67.69 83.52 
20 20–39 29.5 73.22 66.4 83.52 
20 40–59 49.5 73.42 66.41 83.52 
20 60–79 69.5 75.43 68.02 84.29 
20 80–99 89.5 76.81 71.89 84.96 
20 100–119 109.5 83.18 79.9 87.37 
20 120–139 129.5 83.54 80.75 88.75 
20 140–159 149.5 81.84 75.26 86.67 
20 160–179 169.5 92.58 89.62 98.4 
20 180–199 189.5 94.76 94.69 98.67 
20 >200  95.47 97.86 98.72 
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Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 

(mean) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Reproductive stage 

4 2–19 10.5 45.99 35.55 55.04 
4 20–39 29.5 41.9 32.08 51.29 
4 40–59 49.5 41.07 31.98 48.93 
4 60–79 69.5 41.5 33.51 48.4 
4 80–99 89.5 42.22 35.25 48.93 
4 100–119 109.5 57.85 49.45 65.27 
4 120–139 129.5 56.78 49.72 62.04 
4 140–159 149.5 66.84 56.88 73.89 
4 160–179 169.5 79.37 66.52 92.78 
4 180–199 189.5 81.88 66.76 95.4 
4 >200  82.57 66.76 96.98 
8 2–19 10.5 51.28 40.22 57.63 
8 20–39 29.5 47.28 38.83 55.33 
8 40–59 49.5 46.35 38.31 53.72 
8 60–79 69.5 46.43 38.38 53.26 
8 80–99 89.5 46.87 39.11 53.46 
8 100–119 109.5 58.94 54.52 64.73 
8 120–139 129.5 57.66 53.72 61.31 
8 140–159 149.5 66.79 56.92 73.89 
8 160–179 169.5 79.15 63.36 92.78 
8 180–199 189.5 81.66 63.97 95.4 
8 >200  82.36 63.97 96.98 

12 2–19 10.5 59.29 52.49 67.78 
12 20–39 29.5 55.63 48.35 63.48 
12 40–59 49.5 55.19 46.96 63.35 
12 60–79 69.5 55.27 45.87 63.35 
12 80–99 89.5 55.7 46.85 63.48 
12 100–119 109.5 64.78 59.14 70.1 
12 120–139 129.5 64.25 59.14 69.12 
12 140–159 149.5 71.47 62.05 75.69 
12 160–179 169.5 83.28 73.89 92.78 
12 180–199 189.5 86.66 73.89 95.9 
12 >200  87.61 73.89 98.46 
16 2–19 10.5 68.67 63.46 73.94 
16 20–39 29.5 66.22 61.98 73.66 
16 40–59 49.5 66.26 61.55 73.66 
16 60–79 69.5 66.56 61.71 73.89 
16 80–99 89.5 66.99 61.85 73.89 
16 100–119 109.5 72.92 68.87 77.87 
16 120–139 129.5 72.72 68.38 77.93 
16 140–159 149.5 74.38 69.76 77.93 
16 160–179 169.5 85.93 78.86 93.73 
16 180–199 189.5 90.8 89.12 97.22 
16 >200  92.03 92.26 98.69 
20 2–19 10.5 72.14 65.14 79.44 
20 20–39 29.5 69.83 63.63 79.44 
20 40–59 49.5 69.87 63.46 79.44 
20 60–79 69.5 71.05 63.71 80.23 
20 80–99 89.5 71.66 64.16 80.49 
20 100–119 109.5 79.07 75.25 82.81 
20 120–139 129.5 80.06 75.83 84.14 
20 140–159 149.5 75.58 71.3 80.23 
20 160–179 169.5 87.31 82.21 93.34 
20 180–199 189.5 92.95 91.75 97.51 
20 >200  94.39 93.73 98.76 
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Duration 
(days) 

Water depth 
range (cm) 

Water depth 
midpoint 

(cm) 

Relative 
yield loss 

(mean) 

Relative 
yield loss 

(q25) 

Relative 
yield loss 

(q75) 

Maturity stage 

4 2–19 10.5 39.63 30.69 47.92 
4 20–39 29.5 36.61 29.87 40.48 
4 40–59 49.5 36.2 29.66 39.57 
4 60–79 69.5 37.64 31.2 41.43 
4 80–99 89.5 38.85 32.5 42.92 
4 100–119 109.5 46.2 38.36 52.23 
4 120–139 129.5 46.12 39 52.2 
4 140–159 149.5 55.1 40.97 60 
4 160–179 169.5 69 44.6 92.78 
4 180–199 189.5 70.39 44.6 94.67 
4 >200  70.73 44.6 95.36 
8 2–19 10.5 41.56 33.04 49.86 
8 20–39 29.5 38.52 31.2 43.33 
8 40–59 49.5 38.01 30.77 41.14 
8 60–79 69.5 39.02 31.7 42.14 
8 80–99 89.5 40.12 34.42 44.71 
8 100–119 109.5 47.87 40.8 55.55 
8 120–139 129.5 47.78 41.12 55.6 
8 140–159 149.5 56.12 42.92 59.32 
8 160–179 169.5 69.4 45.11 92.78 
8 180–199 189.5 70.79 45.11 94.67 
8 >200  71.13 45.11 95.36 

12 2–19 10.5 56.63 44.1 71.08 
12 20–39 29.5 53.73 40.48 67.48 
12 40–59 49.5 53.61 40.48 67.39 
12 60–79 69.5 54 40.48 67.65 
12 80–99 89.5 54.89 42.02 69.16 
12 100–119 109.5 61.64 52.89 71.41 
12 120–139 129.5 61.95 54.25 71.37 
12 140–159 149.5 67.87 56.12 75.13 
12 160–179 169.5 78.95 61.38 92.78 
12 180–199 189.5 80.92 61.38 95.9 
12 >200  81.44 61.38 98.69 
16 2–19 10.5 64.18 56.12 73.28 
16 20–39 29.5 62.32 56.12 73.17 
16 40–59 49.5 62.47 56.12 73.17 
16 60–79 69.5 62.81 56.12 73.28 
16 80–99 89.5 63.48 56.12 73.28 
16 100–119 109.5 67.4 57.28 74.2 
16 120–139 129.5 67.28 57.78 74.2 
16 140–159 149.5 71.24 61.51 76.01 
16 160–179 169.5 83.06 72.82 93.76 
16 180–199 189.5 85.92 75.55 97.64 
16 >200  86.57 75.55 98.8 
20 2–19 10.5 66.61 56.12 75.2 
20 20–39 29.5 64.89 56.12 74.87 
20 40–59 49.5 64.99 56.12 74.87 
20 60–79 69.5 65.87 56.12 76.2 
20 80–99 89.5 66.64 56.12 76.55 
20 100–119 109.5 71.11 58.38 80.07 
20 120–139 129.5 71.56 60.68 80.76 
20 140–159 149.5 72.35 64.74 81.28 
20 160–179 169.5 84.44 79.71 93.34 
20 180–199 189.5 87.73 82.19 98.08 
20 >200  88.44 82.19 99 
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