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Abstract 21 

The improvement of remote sensing systems, together with the emergence of new model-22 

fitting algorithms based on machine-learning techniques, has allowed the determination of the 23 

partial pressure of carbon dioxide (pCO2,sw) and pH (pHT,sw) in the waters of the Canary Islands. 24 

Among all the fitted models, the most powerful one was the bootstrap aggregation (bagging), 25 

giving a RMSE of 2.0 µatm (R2 > 0.99) for pCO2,sw and RMSE of 0.002 for pHT,is, although the 26 

multilinear regression (MLR), neural network (NN) and categorical boosting (catBoost) also have 27 

a good predictive performance, with RMSE ranging from 5.4 to 10 µatm for 360 < pCO2,sw < 481 28 

µatm and from 0.004 and 0.008 for 7.97 < pHT,is
 < 8.07. Using the most reliable model, it was 29 

determined that there is an interannual trend of 3.51 ± 0.31 µatm yr-1 for pCO2,sw (which surpasses 30 

the rate of increase for atmospheric CO2 of 2.3 µatm yr-1) and an increase in acidity of -0.003 ± 31 

0.001 pH units yr-1. The increase in both, the atmospheric CO2 and the sea surface temperature of 32 

0.2ºC yr-1 observed in the 6-year period, influenced by the unprecedented 2023 marine heat wave, 33 

contribute to this important rate. Considering the Canary Islands between 13º-19ºW and 27º-30ºN, 34 

the region has moved from a slight CO2 source of 0.90 Tg CO2 yr-1 in 2019 to 4.5 Tg CO2 yr-1 in 35 

2024. After 2022, eastern locations that acted as an annual sink of CO2 switched to acting as a 36 

source. 37 

 38 

Key words: pCO2, modelling, carbon dioxide, seawater, machine-learning, Canary basin, 39 

marine heat wave. 40 

 41 

1. Introduction 42 

Anthropogenic emissions of carbon dioxide (CO2) derived from fossil fuels burning, cement 43 

production and changes in land use (Siegenthaler and Sarmiento, 1993; Doney et al., 2009; Le 44 

Quéré et al., 2009; Zeebe, 2012) since the First Industrial Revolution have led to a sharp increase 45 

in this trace gas in the atmosphere. The increase of atmospheric CO2 is mitigated by terrestrial 46 

vegetation and oceanic absorption (Friedlingstein et al., 2025). The North Atlantic Ocean is 47 

reported to be one of the major oceanic sinks of the Northern Hemisphere, taking up 2.6 ± 0.4 Pg 48 

CO2 yr-1 (i.e., 25% of the total anthropogenic CO2 absorbed by all oceans) based on the analysis 49 

of 18-year dataset (Gruber et al., 2002).  50 

In recent years, considerable effort has focused on quantifying oceanic CO₂ uptake and its 51 

implications (e.g., Bange et al., 2024; Gregor et al., 2024). One common approach involves using 52 
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regression models to estimate surface ocean pCO₂ from environmental variables. However, these 53 

models often fall short in capturing the complexity of dynamic regions such as coastal zones and 54 

continental shelves (Sun et al., 2021). These areas exhibit intense physical and biogeochemical 55 

activity, driven by high rates of primary production, carbon burial, organic matter recycling, and 56 

calcium carbonate deposition (Boehme et al., 1998; Gattuso et al., 1998; Borges et al., 2005). 57 

Despite their significance, these regions remain poorly represented in global carbon budgets and 58 

air-sea CO₂ flux estimates (Takahashi et al., 2002). 59 

Pioneering studies by Borges et al. (2005) and Cai et al. (2006) provided the first global 60 

assessments of coastal CO₂ fluxes, emphasizing the spatial heterogeneity and functional diversity 61 

of coastal ecosystems in the global carbon cycle. More recent research confirms that these regions 62 

act as significant CO₂ sinks, with ingassing estimates ranging from 0.54 to 1.47 Pg CO2 yr⁻¹ 63 

(Laruelle et al., 2014; Cao et al., 2020), although newer assessments suggest lower values (Dai et 64 

al., 2022; Regnier et al., 2022; Resplandy et al., 2024; Roobaert et al., 2019). 65 

Large-scale latitudinal patterns indicate that sea surface temperature (SST) is a primary driver 66 

of surface ocean pCO2 (pCO2,sw), often expressed as CO2 fugacity (fCO2,sw). On smaller spatial 67 

scales within latitudinal bands, other factors such as upwelling-driven CO2 supply and biological 68 

uptake of dissolved inorganic carbon (CT) must also be considered (e.g., Laruelle et al., 2014). 69 

The pCO2,sw is regulated by four interconnected processes: thermodynamic forcing, biological 70 

activity, physical mixing, and air-sea CO₂ exchange (Fennel et al., 2008; Ikawa et al., 2013). 71 

Typically, one or two of these processes dominate in a given region of the ocean (Bai et al., 2015). 72 

The thermodynamic component is primarily influenced by the SST and salinity (SSS), which 73 

determine CO₂ solubility in seawater (Weiss, 1970) and affect the dissociation constants of 74 

carbonic acid (e.g., Lueker et al., 2000). Biological influences are often represented by surface 75 

chlorophyll-a concentrations (Chl a) and the diffuse attenuation coefficient of downwelling 76 

irradiance at 490 nm (Kd,490) (Bai et al., 2015; Chen et al., 2019; Lohrenz et al., 2018). Vertical 77 

mixing processes, particularly those enriching surface waters with CO₂ from deeper layers, are 78 

commonly described using mixed layer depth (MLD) (Chen et al., 2019). Additionally, the 79 

continual rise in atmospheric CO2 (pCO2,atm), which drives the air-sea CO₂ gradient, makes it 80 

essential to account for pCO2,atm in long-term assessments. 81 

Satellite remote sensing offers valuable spatiotemporal coverage for estimating surface 82 

pCO2,sw (Chen et al., 2019). In the open ocean, where variability is low, satellite-based estimates 83 

yield RMSEs < 17 µatm. In contrast, coastal regions show much higher errors (> 90 µatm) due 84 

to complex physical and biogeochemical processes (Lohrenz et al., 2018; Sun et al., 2021). 85 
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Basic models rely on empirical regressions such as multilinear, MLR, and non linear 86 

regression, MNR. Shadwick et al. (2010) applied MLR to the Scotian Shelf (R² = 0.81; SE = 13 87 

µatm), while Signorini et al. (2013) achieved RMSEs of 22.4–36.9 µatm across the U.S. East 88 

Coast. Chen et al. (2016) developed a satellite-based model for the West Florida Shelf with RMSE 89 

< 12 µatm. 90 

Machine learning approaches, including neural networks (NN), random forests, and CatBoost, 91 

show improved accuracy. Lefèvre and Taylor (2002) reported NN residuals of 3–11 µatm in the 92 

subpolar gyre. Telszewski et al. (2009) obtained an RMSE of 11.6 µatm in the North Atlantic. 93 

Sun et al. (2021) used CatBoost to achieve an RMSE of 8.25 µatm and R² = 0.946. Gregor et al. 94 

(2024) applied ML with target transformations globally (1982–2022), capturing 15% more CO₂ 95 

fluxes, FCO2, variance than traditional methods. 96 

In coastal areas, Jo et al. (2012) used NN with SST and Chl a in the South China Sea (RMSE 97 

= 6.9 µatm; r = 0.98). Duke et al. (2024) showed nearshore outgassing reduces net flux in the 98 

Northeast Pacific. Roobaert et al. (2024) highlighted seasonal variability driven by open-ocean 99 

and intracoastal exchanges. Wu et al. (2024) used ML products in the Gulf of Mexico, estimating 100 

a CO2 uptake of 1.5 TgC yr⁻¹, though long-term trends remain uncertain. 101 

This study focuses on the coastal region of the Canary Islands basin (27.0–30ºN; 13.0–19ºW) 102 

(Figure 1), located in the oligotrophic waters of the eastern subtropical North Atlantic gyre 103 

(Pelegrí et al., 1996). The area is influenced by the Canary Current (CC) and trade winds, which 104 

drive mesoscale features such as cyclonic and anticyclonic eddies. Despite low surface Chl a 105 

levels, upwelling filaments from the NW African coast, eddies, and dust fertilization can enhance 106 

primary production (Davenport et al., 1999). Marine heatwaves (MHWs) (Hobday et al., 2016; 107 

Frölicher and Laufkötter, 2018; Holbrook et al., 2019), increasingly linked to climate change, 108 

have recently intensified in this region. Varela et al. (2024) reported that 2023 was the warmest 109 

year in the Canary Upwelling System (CUS) during the 1982–2023 period, with most months 110 

showing record SSTs—likely affecting CO2 dynamics. 111 

Long-term observations reveal a consistent rise in surface pCO2 in the region. Takahashi et 112 

al. (2009) estimated an increase of 1.8 ± 0.4 µatm yr⁻¹ in the North Atlantic (1972–2006). Bates 113 

et al. (2014) found a rate of 1.92 ± 0.92 µatm yr⁻¹ and a pH decline of –0.0018 ± 0.0002 yr-1 at 114 

ESTOC (1996–2012). More recently, González-Dávila and Santana-Casiano (2023) reported a 115 

pCO2,sw increase of 2.1 ± 0.1 µatm yr-1 and a pHT,21 decline of –0.002 ± 0.0001 yr⁻¹ in the upper 116 

100 m (1995–2023), about 20% higher than rates for 1995–2010. 117 

The aim of this work was to develop and validate an algorithm based on machine learning 118 
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techniques to compute the pCO2,sw,  pHT and FCO2 on the Canary Basin (NE Atlantic) using 119 

satellite-downloaded data of the main variables controlling these parameters and a high-resolution 120 

time series of pCO2,sw observations obtained from voluntary observing ships (VOS) and moored 121 

oceanographic buoys. 122 

2. Material and methods 123 

2.1. Data  124 

2.1.1. In-situ observations 125 

The observational dataset was built from data collected by Surface Ocean Observation 126 

Platforms (SOOPs) installed in Volunteer Observing Ships (VOS) and moored to oceanographic 127 

buoys (Figure 1 and Table S1). Two VOS carry out underway monitoring within their usual 128 

routes: (1) the CanOA-VOS-1 on board the Jona Sophie (formerly Renate P.), a cargo vessel 129 

owned by Reederei Stefan Patjens GmbH & Co. KG and operated in Spain by Nisa Marítima, 130 

which serves the easternmost part of the Canary Islands archipelago between the ports of Tenerife 131 

(S.C. de Tenerife, 28.4867ºN, 16.2284ºW, hereinafter TF), Gran Canaria (Las Palmas de Gran 132 

Canaria, 28.1319ºN, 15.4185ºW; GC) and Lanzarote (Arrecife, 28.9682ºN, 13.5294ºW; LZ) and 133 

passes northeast of LZ on its way to Barcelona (Spain). (2) The CanOA-VOS-2, using the vessel 134 

Benchijigua Express, owned by the company Fred Olsen Express, which serves the westernmost 135 

part of the Canary Archipelago between the ports of Tenerife (Los Cristianos, 28.0486ºN, 136 

16.7163ºW; TF), La Gomera (San Sebastián de La Gomera, 28.0859ºN, 17.1090ºW; GOM) and 137 

La Palma (S.C. de La Palma, 28.6751ºN, 17.7666ºW; LP). The VOS line covered by the Jona 138 

Sophie is part of the Spanish contribution to the Integrated Carbon Observation System (ES-139 

SOOP-CanOA, ICOS-ERIC; https://www.icos-cp.eu/) since 2021 and has been recognized as an 140 

ICOS Class 1 Ocean Station. Moreover, two moored oceanographic buoys provide valuable data 141 

at strategic coastal locations: (1) MORGAN-1 (Gando, Gran Canaria, 27.9296ºN, 15.3646ºW; 142 

González et al., 2024) and (2) ULA-2 (El Hierro, 27.6350ºN, 17.9964ºW).  143 

 Autonomous underway monitoring and data acquisition follows the recommendations 144 

described by Pierrot et al., (2009) to ensure comparable and high-quality data sets. Detailed 145 

description of equipment can be found in Curbelo-Hernández et al. (2021, 2022) and in the 146 

Supplementary Material. The number of observations used in this work are shown in Table S1. 147 

Discrete samples for total alkalinity (AT) and total inorganic carbon (CT) were collected every 148 

three months, covering the different seasons and sites, and analyzed using a VINDTA 3C 149 

(MariandaTM) following the procedure detailed by Mintrop et al., (2000). The VINDTA 3C was 150 

https://doi.org/10.5194/egusphere-2025-3699
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

 

calibrated by titration of Certified Reference Material (CRMs; provided by A. Dickson at Scripps 151 

Institution of Oceanography), with an accuracy of ±1.5 μmol kg-1 for AT and ±1.0 μmol kg-1 for 152 

CT. Differences between measured and discrete pCO2(AT, CT) data (CO2sys.V2.1.xls, set of 153 

carbonic acid constants from Lueker et al., 2000, n=66) were 4 ± 4 µatm and 7 ± 5 µatm for the 154 

GO8050 and ProCV systems, respectively. To account for these differences, the observed data 155 

were corrected with the appropriate factors. 156 

To compare the data, seven locations across the Canary Archipelago were considered (Figure 157 

1). Site A is located along the LP-LG route at 17.5 ± 0.05ºW. Site B is along the LG-TF route at 158 

16.95 ± 0.05 ºW. Site C lies at the intersection of different routes at 14.65 ± 0.05 ºW. Site D is 159 

near the African coast, along the route between LZ and the Iberian Peninsula, at 13.2 ± 0.05 ºW. 160 

Site E corresponds to the ULA-2 buoy near El Hierro. Site F corresponds to the MORGAN-1 161 

(Gando) buoy. Site G marks the location of the ESTOC site. 162 

2.1.2. Satellite data 163 

Satellite data for SST, Chl a, Kd490, MLD were used to develop the pCO2,sw and pHT forecast 164 

models while wind speed was used for fluxes computation. These data were downloaded from 165 

the Copernicus Marine Environmental Monitoring Service (CMEMS) website 166 

(https://marine.copernicus.eu/access-data, last accessed 05/27/2025). They were processed to 167 

determine each variable at the time and location of the observations to be used in the validation 168 

and determination of predictive models (data were averaged daily). The complete daily dataset 169 

was used to model and estimate the surface marine carbonate system (MCS) variables in the 170 

Canary Islands. 171 

2.2. Variable determination and computational methods 172 

The raw data were processed using MATLAB® (version R2019b) and Python (2023, version 173 

3.13.6). For the VOS data, the xCO2,sw from GO8050 system was corrected using the four-174 

standard calibration after filtering out all points near the ports that could bias the CO2 175 

measurements in seawater. To ensure data quality, several filters were applied, using a threshold 176 

of 2.5 L min-1 water flow and 50 mL min-1 for the LICOR© gas flow. 177 

The partial pressure of CO2 in seawater (pCO2,eq) was calculated (Dickson et al., 2007) from 178 

the corrected xCO2 values in dry air. The pCO2,eq data from both VOS lines were corrected to the 179 

intake temperature due to the difference between the termosalinograph/equilibrator temperature 180 

and the SST (Takahashi et al., 1993). All pCO2,sw data for VOS and buoys were processed to 181 

determine the real partial pressure fCO2,sw (Dickson et al., 2007). The discrete seawater samples 182 

analysed for AT with the VINDTA 3C system were used to determine an AT-SSS relationship for 183 

https://doi.org/10.5194/egusphere-2025-3699
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

 

the area (n = 66) that followed the relationship determined in the ESTOC time series (González 184 

Dávila et al., 2010). The normalized AT to a constant salinity NAT= AT/SSS*35 was 2290 ± 3 185 

µmol kg-1, which is statistically significant at the 99% confidence level (p-value < 0.01; r2= 0.96). 186 

This relationship was then used to compute pH (AT(SSS),fCO2,sw) values in the Canary Region 187 

(González Dávila et al., 2010). The data were then averaged daily. 188 

Daily mean atmospheric xCO2,atm were obtained from the atmospheric ship data for the area 189 

and compared with those from the Izaña Atmospheric Research Centre (AEMET, 2024), as the 190 

data could be overestimated due to ship operations. The xCO2,atm maxima at the end of winter 191 

were close in both databases (± 1.5 µatm), while the minima at the end of summer were on average 192 

3 µatm higher in the Izaña atmospheric station than in the 10 m inlet at the ship. To have a longer 193 

series of atmospheric data, Izaña data were used in our study. The atmospheric xCO2,atm was then 194 

used to compute the corresponding pCO2,atm and fCO2,atm (Dickson et al., 2007).  195 

The flux of CO2, FCO2,  was determined using the Eq. 1: 196 

𝐹𝐹𝐹𝐹𝑂𝑂2 = 0.24 𝑘𝑘 𝑆𝑆 ∆𝑝𝑝𝑝𝑝𝑂𝑂2      (1) 197 

where 0.24 is a conversion factor used to express the flux in mmol m-2 d-1, S is the solubility 198 

of CO2 in seawater (Weiss, 1970), ∆pCO2 is pCO2,sw – pCO2,atm and k is the gas transfer rate 199 

determined using the Wanninkhof (2014) parameterisation (Eq. 2) 200 

𝑘𝑘𝑊𝑊𝑊𝑊𝑊𝑊 = 0.251 𝑢𝑢2 (𝑆𝑆𝑆𝑆 650� )−0.5      (2) 201 

where u is the wind speed (m s-1) and Sc is the Schmidt number.  202 

Equation 1 was applied to the daily experimental and modelled data. Daily fluxes were averaged 203 

to provide monthly fluxes but expressed as daily average value for the month (in mmol m-2 d-1). 204 

Each of the physicochemical variables (y), including pCO2,atm and fCO2,atm were fitted to 205 

harmonic functions (Eq. 3, where t is the year fraction for each data). Eq. 4 allows the calculation 206 

of the interannual trend for the de-seasonal data, even if the number of years to obtain an accurate 207 

trend (5-6 years) is low. The use of seasonal detrended data reduces end-effects in relatively short-208 

term data sets. 209 

𝑦𝑦 = 𝑎𝑎 + 𝑐𝑐 ∗ sin(2𝜋𝜋𝜋𝜋) + 𝑑𝑑 ∗ cos(2𝜋𝜋𝜋𝜋) + 𝑒𝑒 ∗ sin(4𝜋𝜋𝜋𝜋) + cos (4𝜋𝜋𝜋𝜋)   (3) 210 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏 ∗ (𝑡𝑡 − 2019) + 𝑐𝑐 ∗ sin(2𝜋𝜋𝜋𝜋) + 𝑑𝑑 ∗ cos(2𝜋𝜋𝜋𝜋) + 𝑒𝑒 ∗ sin(4𝜋𝜋𝜋𝜋) + cos (4𝜋𝜋𝜋𝜋)211 

 (4) 212 

 213 

 214 
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2.3. Models fitting and statistical treatment 215 

The R software was used for the statistical treatment (R Core Team, 2019). Machine learning 216 

methods were used to fit the different models. The original datasets were first divided into two 217 

subsets with a probability (p) of 0.8 and 0.2, called training and validation datasets, respectively. 218 

The first was used to tune the model, while the second was used to validate the results obtained. 219 

The simplest fitted model consisted of a multiple linear regression (MLR), following the 220 

analytical expression of Eq. 5. 221 

𝑝𝑝𝑝𝑝𝑝𝑝2,𝑠𝑠𝑠𝑠 = 𝑝𝑝0 + 𝛼𝛼� 𝑝𝑝𝑝𝑝𝑝𝑝2,𝑎𝑎𝑎𝑎𝑎𝑎(𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇) + 𝛽̂𝛽  𝑆𝑆𝑆𝑆𝑆𝑆(º𝐶𝐶) + 𝛾𝛾� 𝐶𝐶ℎ𝑙𝑙(𝑚𝑚𝑚𝑚 𝑚𝑚−3) + 𝛿𝛿  𝐾𝐾𝑑𝑑,490(𝑚𝑚−1) +222 

 𝜀𝜀̂ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚) +  𝜗𝜗   (5) 223 

where 𝛼𝛼,�  𝛽̂𝛽, 𝛾𝛾�, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀̂ are the estimated coefficients for each predictor and 𝜗𝜗 the residuals. A 224 

similar equation was considered for the pHT,sw dependence. 225 

Three machine learning techniques were used, a neural network (NN, Wang, 2003), 226 

categorical boosting (CatBoost, Prokhorenkova et al., 2018; Dorogush et al., 2018; Qian et al., 227 

2023) and bootstrap aggregation (bagging, Breiman, 1996), which attempt to reduce the variance 228 

of predictions.  229 

In the validation of the models, the main statistical parameters were determined, including the 230 

coefficient of determination (R2), the root mean square error (RMSE; Eq. 6), the mean absolute 231 

error coefficient (MAE; Eq. 7), and the square sum of errors expressed on a daily basis (SSE; Eq. 232 

8). 233 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ �𝑝𝑝𝐶𝐶𝐶𝐶2,𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝2,𝚤𝚤� �2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
       (6)  234 

  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ �𝑝𝑝𝑝𝑝𝑝𝑝2,𝐼𝐼 − 𝑝𝑝𝑝𝑝𝑝𝑝2,𝚤𝚤� �/𝑑𝑑𝑁𝑁
𝑖𝑖=1                                       (7) 235 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ �𝑝𝑝𝑝𝑝𝑝𝑝2,𝐼𝐼 − 𝑝𝑝𝑝𝑝𝑝𝑝2,𝚤𝚤� �
2

/𝑑𝑑𝑁𝑁
𝑖𝑖=1       (8) 236 

where 𝑝𝑝𝑝𝑝𝑝𝑝2,𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑝𝑝2,𝚤𝚤�  are the observed and estimated values of the partial pressure of CO2, 237 

N is the number of data and d is the number of days in the database. 238 

 239 

The Akaike’s information criterion corrected for a finite dataset (AICc) was determined 240 

following Eq. 9. It allows the evaluation of the trade-off between model goodness-of-fit and 241 

complexity (i.e., number of variables involved). A model is considered better if its AICc is the 242 

lowest of all the fitted models. 243 
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 1 

𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 = 2𝑘𝑘 − 2 ln(𝐿𝐿) + 2𝑘𝑘2+2𝑘𝑘
𝑛𝑛−𝑘𝑘−1

      (9) 244 

where k is the number of parameters involved in the model, ln(L) is the log-likelihood for the 245 

predicted model and n is the number of data. 246 

To determine the estimated coefficients in each seasonal model and the different confidence 247 

intervals, the two assumptions required to achieve predictive ability were tested. The normality of 248 

the residuals was determined using the two-Welch Shapiro-Wilk test with a significance level (α) 249 

of 0.05 and quantile-quantile plots. The homogeneity of the residual variance (homoscedasticity) 250 

was demonstrated using a graphical method. If the assumption of normality of the residual was not 251 

met, the bootstrapping method was used to determine the confidence intervals (C.I.) of the linear 252 

relationships. To compare the models, the analysis of covariance (ANCOVA) and the analysis of 253 

variance (ANOVA) were used to detect significant differences at α = 0.05. 254 

3. Results 255 

The observational data made it possible to generate a database from which to model the 256 

behaviour of pCO2,sw and pHT in the Canary Basin. To characterise both the measured and the 257 

satellite-derived parameters used in this study, Table 1 summarises the mean values and their 258 

associated standard deviations for each season and observation system. The SST (Figure 2) 259 

presented its maximum value during the summer (July-September) and its minimum value during 260 

the winter (January-March). The maximum SST were found across the westernmost part of the 261 

archipelago (between La Palma and Tenerife), which was on average ~1ºC higher than that in the 262 

easternmost region (between Gran Canaria and Lanzarote). This seasonal and longitudinal pattern 263 

is also observed for pCO2,sw and pHT (Table 1). The seasonal and annual means of SST calculated 264 

with both in situ and satellite data show an average difference of ~0.15ºC. 265 

3.1.  Variability of the SST data 266 

Figure 2 shows the monthly means of both the observed and the satellite-derived SST at sites 267 

A-F. The SST shows a strong seasonal pattern at these sites, generally reaching its highest value 268 

in September (24.20 ± 0.76ºC in the westernmost part at A and B and 23.70 ± 0.68ºC in the 269 

easternmost part at C and D) and its lowest value in March (19.47 ± 0.24 and 18.97 ± 0.31ºC for 270 

the respective regions). An anomalous maximum of SST was observed in the summer of 2023, 271 

reaching more than 25ºC at sites A-C and more than 24ºC at site D. The data give a seasonal 272 

amplitude of 4 . 5  ± 0.5ºC and 4.2 ± 0.4ºC in the route covered by the CanOA-VOS-2 and the 273 

CanOA-VOS-1, respectively. Although no significant differences were found between sections 274 

belonging to the same region (comparison between A and B and between C and D), the mean 275 
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SST value at site D (20.59 ± 0.09ºC) is slightly lower than the mean SST at site C (21.00 ± 0.09ºC). 276 

The analysis of covariance between observational and satellite-derived SST data shows that there 277 

are no significant differences (p < 0.05) between the two types of data. The mean of the daily 278 

residuals was 0.16ºC with a standard error of 0.12ºC in the western part and 0.12ºC with a standard 279 

error of 0.10ºC in the eastern part. 280 

The seasonal cycle was represented at the E site despite the scarcity and temporal gaps of the 281 

data collected by the ULA-2 buoy (Figure 2E). The seasonal amplitude (5.10 ± 0.18ºC) was 282 

calculated for 2021 (the year with the most data availability) with the highest SST obtained in 283 

September (24.70 ± 0.26ºC) and the lowest in March (19.60 ± 0.40ºC). A similar seasonal pattern 284 

was observed at site F based on data collected by MORGAN-1 (Figure 2F), with the highest SST 285 

obtained in September (23.71 ± 0.47ºC) and the lowest in March (19.46 ± 0.52ºC), giving a 286 

seasonal amplitude of 4.22 ± 0.51ºC. 287 

The longitudinal variability of both CanOA-VOS and satellite-derived SST data can be 288 

observed in Figure 2 and in Figure S1. In the western region, the observed SST varies from 20.59 289 

± 0.09ºC in winter to 24.04 ± 0.13ºC in summer and presents an annual average of 22.45 ± 0.11ºC. 290 

The seasonal averages agreed (0.1-0.2ºC) with those calculated from the satellite-derived data, 291 

with the largest differences between both datasets in summer (0.26ºC). Although SST in the 292 

eastern region were lower throughout the year (annual mean 21.02 ± 0.27ºC), related to the 293 

influence of the Northwest African upwelling in the region, similar seasonal variations were 294 

found (from 19.19 ± 0.24ºC in winter to 22.82 ± 0.25ºC in summer). The differences between 295 

observational and satellite data were smaller than in the western region (0.05-0.2ºC). The west-296 

to-east decrease of the SST seemed to remain constant along the longitudinally monitored span 297 

in the Canary archipelago, except for the slight increase related to the wake island effect that 298 

occurred near the southern coast of Tenerife (monitored by the CanOA-VOS-2 line; Figure S1). 299 

3.2. Predictive models of pCO2,sw 300 

3.2.1. Multiple linear regression (MLR) 301 

The first set of models uses the traditional multiple linear regression statistics and aims to 302 

provide a first, simple but useful approximation of the pCO2,sw prediction. Five prediction models 303 

containing a combination of the five variables considered, including pCO2,atm, SST, Chl a, Kd,490 304 

and the MLD, were fitted according to the analytical expression written in Eq. 5. Considering the 305 

strong correlation observed between Chl a and Kd,490 (R2 = 0.96), and, therefore, the non-306 

significance of Kd,490, the model considering this variable is not used for the rest of the work, as 307 

it does not provide any additional information. The coefficients obtained for each of them are 308 
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presented in Table 2. 309 

The Akaike’s information criterion (AICc <2) and the statistical parameters (Table 3) suggest 310 

that the prediction model to be chosen is the one that combines the atmospheric CO2, thermal, 311 

physical and biological components (pCO2,atm+SST+MLD+Chl-a), although the two-variable 312 

model (SST and pCO2) also offered a similar accuracy. 313 

Figure S2 shows the measured vs. predicted variable for training and validation using the 314 

pCO2,atm + SST + MLD + Chl a model. Although many measured and predicted pCO2,sw showed 315 

small differences, there is a large scatter in the predictions, which is reflected in the calculated 316 

statistical parameters (Table 3). In the validation data set (Table S2), the statistical parameters 317 

obtained were like those of the training set (RMSE = 8.2 μatm, MAE = 7.0 μatm day-1, SSE = 318 

16.7 μatm2 day-1, and R2 = 0.802). 319 

3.2.2. Machine learning techniques 320 

Table 3 shows a comparison of the different machine learning based approaches obtained 321 

using observational pCO2,sw data. All models were developed using the same dataset and input 322 

variables. 323 

3.2.2.1 Neuronal network (NN) 324 

The first machine learning method applied to obtain a predictive model of the pCO2,sw consists 325 

of a neural network (NN). The statistical parameters associated with the different fitted models 326 

are given in Table 3. It should be noted that no analytical expression is given, since the knowledge 327 

acquired by the training model is hidden in the synoptic weights of its neurons. Considering the 328 

computed statistics, there is a closeness between the fits obtained for the three-variable model 329 

(SST + MLD + Chl-a) and that including the pCO2,atm data while the two-variable models also 330 

work closely. The plots of measured vs. predicted variable for both the training and validation 331 

datasets, considering the best model, are shown in Fig. S2. Despite the large scatter of the data, 332 

the fitness seems to improve at the upper end. The accuracy indicators of the training vs. validation 333 

datasets were 7.1 vs. 8.4 µatm, 5.0 vs. 5.9 μatm d-1, 16.2 vs. 17.9 µatm2 d-1, and 0.891 vs. 0.862, 334 

in terms of RMSE, MAE, SSE, and R2, respectively. 335 

3.2.2.2 Categorical boosting (CatBoost) regression 336 

The second type of machine learning technique used to predict the pCO2,sw in the waters of 337 

the Canary archipelago is the CatBoost. A total of 500 iterations were used to generate the 338 

prediction model. The results associated with the fit of the different models, including the statistics 339 

used to determine the accuracy, are presented in Table 3. The pCO2,atm + SST + Chl a + MLD model 340 
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was the most accurate due to the lower RMSE, MAE and SSE and the higher R2 compared to the 341 

other models. The performance of the pCO2,atm + SST + Chla + MLD model (Figure S2), used for 342 

the training and validation datasets, showed an R2 above 0.95 with an RSME of only 3.6 µatm. 343 

The training dataset produced the most accurate results, with an MAE of 2.4 µatm day-1 and an 344 

SSE of 3.0 µatm2 day-1. The results of the validation statistics were consistent with those obtained 345 

during the training phase (Table S2). 346 

3.2.2.3 Bootstrap aggregating (bagging) regression 347 

A bagging algorithm was applied to predict the pCO2,sw using 200 bootstrap replicates. The 348 

computed statistics for the training set, combining the different parameters controlling the pCO2,sw 349 

are summarised in Table 3.  350 

From the analysis of the computed statistics, it can be concluded that the model with the best 351 

predictive capacity is the one that considers three or four parameters, since it provides lower 352 

RMSE, MAE and SSE. As in the previously adjusted models, the models that includes SST + 353 

MLD or SST + pCO2,atm also provide a good fit (Table 3). The bagging algorithm appears to be 354 

the best predictive treatment with the highest R2 and the lowest RMSE, MAE and SSE for any 355 

combination of variables, even when only SST variable is considered. The plot of measured vs. 356 

predicted pCO2, sw obtained for both the training and validation sets using a four-variable model is 357 

shown in Figure S2. This model has a low RMSE, MAE, and SSE (2.0 µatm, 1.6 µatm d-1, and 358 

0.8 µatm2 d-1, respectively). In this scenario, the application of the model to the validation set 359 

showed greater data dispersion than the training set (Table S2) due to the lower number of data 360 

(Figure S2). 361 

3.3.  Predictive models for pHT 362 

pHT predictions were made based on the computed pHT(AT(SSS), fCO2) using observations 363 

and satellite data (interpolated to the time and coordinates of the observations) as input variables. 364 

In this case, pCO2,atm was not considered in the predictive model variables to avoid redundancy. 365 

Table 4 shows a comparison of the models employed in the machine learning based approaches. 366 

It is important to note that all models were developed using the same dataset and input variable. 367 

3.3.1. Multiple linear regression (MLR) 368 

The coefficients obtained for each of the four combination models are shown in Table 2, while 369 

the statistical performance is shown in Table 4. As was shown for the pCO2,sw fitting, the model 370 

including SST + Chla + MLD was the best performing for pHT, with R2 of 0.745 and an RMSE 371 

of 0.006. The plot of measured vs. predicted pHT for model training (Figure S3) shows a similar 372 

distribution to that for the validation set of data, where the number of data used for the fitting in 373 
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the validation set was not a limiting factor.  374 

3.3.2.  Machine learning techniques 375 

The three techniques provide better correlation coefficients than those using MLR (Table 4). 376 

The performance of the NN was lower than that of catboost, while bagging showed the best 377 

performance for all models. The model considering the three variables (SST + Chl-a + MLD) was 378 

the most accurate in predicting pHT in all cases (Table 4) with an R2 as high as 0.99 and an RMSE 379 

as low as 0.002 for the bagging technique. Every combination of satellite data, even when 380 

considering only the SST, gave an R2 greater than 0.95 when Bagging was used. For the catboost 381 

technique, the three variable model was required to achieve an R2 greater than 0.93. We compared 382 

the accuracy indicators for the training and validation datasets for the three variable models (Table 383 

4 and S3, Figure S3) for the pHT range of this study, from 7.97 to 8.07. Applying machine learning 384 

techniques, and in particular for bagging, which always provides the best fit of data, the number 385 

of data in the treatment is a factor that improves determination. The RMSE, MAE and SSE 386 

indicators for the training and validation data sets are always below 0.01 in pH, with values as 387 

low as 0.002 and 0.003, respectively when bagging is used. 388 

3.4. Validation of the results 389 

The best prediction models for each class, considering the different statistical parameters 390 

calculated, were used to reconstruct the monthly means of pCO2,sw and pHT at sites A-D and 391 

compared. The temporal variation of both observed and predicted values is shown in Figure 3. 392 

All models described the seasonal cycle: pCO2,sw reached its maximum and minimum in March 393 

and August-September, respectively, while an opposite behavior was observed for pHT. The 394 

predictions showed slight significant differences (p > 0.05) when compared with the observations. 395 

The linear, neural network and catBoost models did not differ significantly from each other (p < 396 

0.05). When comparing the bagging model with the observational data, no significant differences 397 

were found, confirming that the model that best describes the real data is the boostrap aggregation 398 

model. The agreement between experimental and predicted concentrations in all sections was 399 

better than 1.7 ± 1.8 µatm for pCO2,sw and 0.002 ± 0.001 for pHT. 400 

Statistical differences (p > 0.05) were obtained when the western and eastern sections were 401 

compared by ANCOVA. At sites A and B (Figure 3), pCO2,sw (and pH) varied seasonally between 402 

404 ± 18 µatm (8.045 ± 0.012) and 449 ± 19 µatm (8.004 ± 0.010). Seasonal amplitudes were of 403 

47 ± 8 µatm (0.049 ± 0.005). At C and D (Figure 4) the seasonal ranges were between 390 ± 15 404 

µatm (8.069 ± 0.008) and 440 ± 16 µatm (8.028 ± 0.012), with a seasonal amplitude of 52 ± 7 405 

µatm (0.038 ± 0.006). 406 
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4. Discussion 407 

Three oceanographic variables, SST, Chl-a and MLD, with high satellite resolution for 408 

oceanic surface seawater and the atmospheric CO2 partial pressure were used to model pCO2,sw 409 

and pHT in the Canary archipelago. Salinity was not included in the fitted models because of its 410 

minimal role in pCO2 changes (Sarmiento et al., 2007; Shadwick et al., 2010), and the available 411 

satellite data have been found to be very different from the observed data (Yu, 2020). Despite the 412 

inclusion of Kd,490 in the initial models, it is suggested that the lack of statistical significance is 413 

because it is correlated with Chl a (R2 = 0.96), making it redundant and therefore not significant. 414 

The pCO2,atm was not used in the pHT calculation because it was already considered in the 415 

estimation of pCO2,sw. 416 

4.1 The Canary region in the period 2019-2024. Observational and modelling data. 417 

In the Canary Islands, the highest temperatures (Figure 2) were recorded in late summer 418 

(September), driven by enhanced stratification of the water column and the solar radiation. The 419 

lowest temperatures were measured in winter (February-March) due to the convective mixing 420 

caused by the surface cooling of the water column. This seasonal behaviour is consistent with the 421 

hydrographic conditions described at the ESTOC site, with a seasonal temperature amplitude in 422 

the surface waters between 4 and 6ºC, with a maximum and minimum of 18 and 24ºC, 423 

respectively, recorded before 2023 (González-Dávila et al., 2010; Santana-Casiano et al., 2007; 424 

González-Dávila and Santana-Casiano, 2023). This range is also comparable to the SST observed 425 

in the easternmost region covered by the CanOA VOS-1 (Curbelo-Hernández et al., 2021) during 426 

2019-2020.  427 

The statistically significant differences (p < 0.05) observed between the different sections 428 

distributed to the west and east are related to the distance and proximity to the African continent, 429 

with the easternmost part of the archipelago being the most exposed to the upwelling filaments 430 

(Davenport, 1999), while the westernmost part is protected by the presence of the islands 431 

themselves. This trend is clearly observed in Figure 2 and S1, which show a progressive decrease 432 

in SST in the vicinity of the African continent. The validation of the satellite data showed no 433 

significant differences (p < 0.05), even in areas close to the islands, so that the satellite values could 434 

be used for the fitting of the different models and the subsequent determination of the derived 435 

parameters.  436 

MORGAN-1 data (site F) shows anomalously high SST in the summer of 2023, consistent 437 

with the observation of extreme SST conditions in the CUS in 2023 (Varela et al., 2024). Satellite 438 

data in the coastal location of the buoys also showed anomalously high values in summer, but 439 
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these were on average 0.3ºC lower than those measured by the buoy sensors. In-situ temperatures 440 

from June to October 2023 were more than 1ºC higher than those recorded in the previous years. 441 

These high temperatures in the summer 2023 were not recorded in 2024, showing that the year 442 

2023 should be considered an anomaly in this area.  443 

It is noteworthy that the SST in February-March 2024 remained high. Winter SST increased 444 

in 2024 and was on average 1ºC warmer than in the previous years (average for 2020-2022 was 445 

19.09± 0.20ºC vs average for 2023-2024 of 20.01 ± 0.25ºC). These anomalies strongly influence 446 

the trends observed in both satellite and observational data.  447 

Harmonic fitting of the temperature (Eq. 4) for the period March 2020 to March 2023, despite 448 

the limitation of only three years of data, shows that the warming in seasonal detrended Gando 449 

Bay data was 0.03ºC yr-1 (González et al., 2024). This is comparable to the warming rates found 450 

at the ESTOC site for the October 1995 to March 2023 period (González-Dávila and Santana-451 

Casiano, 2023) and for the 1982–2023 period in the full CUS (Varela et al., 2024).  452 

When considering the full five-year seasonal detrended dataset from Gando Bay (March 2020 453 

to October 2024) the rate of temperature increases shifts to 0.19 ± 0.06ºC yr-1 (0.14 ± 0.06ºC yr-1 454 

from monthly mean satellite data). This increase in SST was also observed at sites A-D (Fig. 2), 455 

where the rate of warming for the six-year period from February 2019 to October 2024 ranges 456 

from 0.29 ± 0.03ºC yr.-1 (sites A-C) to 0.21ºC yr-1 (site D). The mean temperature at the western 457 

station (ULA-2) was ~1ºC higher (22.12 ± 0.16ºC) than at the eastern station F (MORGAN- 1) in 458 

the east of the region (21.13 ± 0.12ºC) related to the influence of the Northwest African upwelling 459 

in the area and the coastal upwelling. The ANCOVA performed in both buoys showed no 460 

significant differences between the in-situ and the satellite-derived SST, with differences of less 461 

than 0.19ºC on average. 462 

The pCO2,sw and pHT were predicted using satellite-derived data. The model with the highest 463 

prediction error in this work was the MLR (RMSE of 4.9 and R2 of 0.904 in pCO2). The neural 464 

network model presented similar results (RMSE of 7.1 µatm and R2 of 0.896). Previous work by 465 

Signorini et al., (2013) applied MLR to the US coasts and presented RMSE ranging from 22.4 to 466 

36.9 µatm, while other works by Ford et al. (2022) and Friedrich and Oschlies (2009) used NN to 467 

predict pCO2,sw in the North and South Atlantic Ocean, respectively, and obtained RMSE > 19 468 

µatm and RMSE = 21.68 µatm, respectively. Both models applied in the present study, the 469 

simplest MLR (with low computational time and an expression that can be used directly in other 470 

cases) and the NN, behave adequately compared to those used in the published literature. The 471 

small area considered in our region and the large amount of observational data contribute strongly 472 

to the observed RMSE. In the pHT estimation, RMSE as low as 0.006 and 0.008 were found for 473 
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MLR and NN, respectively, which are within the experimental error in pH determination. 474 

The catBoost empirical algorithm can estimate the pCO2,sw and pHT in the Canary Islands 475 

archipelago with uncertainties of <4 µatm and 0.004 pH units, and R2 > 0.93 for both variables, 476 

showing that the model is tolerant to uncertainties in satellite variables dominated by different 477 

processes and coastal proximity, proving its applicability in the region. However, the bagging 478 

approach exhibited exceptional performance for both pCO2,sw and pHT estimation with 479 

uncertainties of 2.0 µatm and 0.002 pH units for the region and the period 2019-2024. 480 

It is suggested that these considerably favourable results and the comparable errors with 481 

ocean-scale models are because the variables controlling pCO2,sw and pHT in the waters of the 482 

Canary Islands are well characterised by the thermal component (Takahashi et al., 2002: 483 

González-Dávila and Santana-Casiano, 2023). In all cases, the simple model with only SST 484 

showed high correlation coefficients (0.65 < R2 < 0.94) and the computed statistics show that, 485 

although they are not the best fitted models, there is a good fit when using this single variable. The 486 

coefficient estimated in the annual linear regression (10.40 µatm ºC-1, Table 2) showed a certain 487 

deviation from the theoretical rate of change for the area in the period 2019-2024 (16 µatm ºC-1), 488 

related to the biological and physical effects (i.e., primary production, remineralisation, and water 489 

mass mixing) during spring and summer, but in line with values observed in ESTOC (Santana 490 

Casiano et al., 2007)  491 

In all four sites, but also in Gando bay, and according to both the observational data and the 492 

predicted model treatments, the pCO2,sw increased between 2019 and 2024 at a rate of 3.8 ± 0.6 493 

µatm yr-1, considering only this 6-year period. On the other hand, the pHT decreases at a rate of -494 

0.004 ± 0.001 for the same period. Previous results at the ESTOC time series from 1995 to 2023 495 

(González-Dávila and Santana-Casiano, 2023) and for the Gando Bay (site F) from 2020 to 2023 496 

(González et al., 2024) showed an increase in pCO2,sw of 2.1 ± 0.1 μatm yr-1 and a decrease in 497 

pHT of -0.002 ± 0.001 yr-1. Similar rates for pCO2,sw and pHT are observed in all selected sites 498 

when the period March 2019-March 2023 is selected, without considering the whole year 2023 499 

(the same period considered in González et al., 2024).  500 

4.2 Monthly pCO2,sw and pHT,is gridded maps. 501 

The Bagging technique was used to construct gridded monthly maps of pCO2,sw and pHT (at 502 

in situ SST) for the Canary region (13º-19ºW, 27º-30ºN) for the study period and presented in 503 

Figure 4 for the year 2023. Monthly experimental averages are shown alongside the predictions 504 

to show the accuracy of the estimates. The expected seasonal pattern was observed, with higher 505 

pCO2,sw in September and lower in March, with the opposite behaviour for pHT,is. A clear 506 
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longitudinal gradient was observed, with higher pCO2,sw and lower pHT,sw toward the east, mainly 507 

due to the thermal effect. The cooler seawater in the east, together with the influence of rich-508 

nutrient, lower pH Northeast African upwelled seawater (Pelegrí et al., 2005), counteract each 509 

other, increasing the observed values but decreasing the seasonal amplitude.  510 

Several oceanographic features become apparent. Upwelling filaments, characterised by 511 

lower temperature, locally reduce pCO2,sw. The leeward island wake zones show warmer water, 512 

which increases pCO2,sw and decreases pHT. The African coastal upwelling signal is especially 513 

clear during June and September, with lower pCO2,sw and higher pHT  due to enhanced biological 514 

activity that offsets the CO2-rich upwelled waters.  515 

The monthly mean pCO2,sw and pHT,is in the Canary Basin predicted with bagging from 2019 516 

to 2024 is shown in Figure 5 for the whole Canary region. To compute the monthly means, the 517 

daily satellite SST, Chl-a, and MLD and the values for pCO2,atm were used by the Bagging model 518 

to calculate pCO2,sw and pHT,is for the region, and then averaged for the area and for each month. 519 

During these six years, the mean pCO2,sw was 419.7 ± 16 µatm, with a seasonal amplitude of 55 520 

µatm. The harmonic fit (eq. 4) of the predicted data shows an interannual trend of 3.51 ± 0.31 521 

µatm yr-1 for 2019-2024, which is higher than that registered for pCO2,atm (2.3 µatm yr-1).  522 

The pHT (Figure 5) ranged from 8.015 ± 0.049 in February–March to 7.980 ± 0.058 in 523 

September–October, reflecting a 0.04 decrease from winter to summer. High winter values were 524 

the result of lower temperatures and convective mixing in the water column. Low summer values 525 

were attributed to biological activity and stratification (Santana-Casiano et al., 2001; 2007). The 526 

pH decrease was mitigated by the thermal effect, which compensated for 33% of the decrease 527 

(the thermal amplitude should be 0.06 units due to the temperature increase of 4.1ºC). This 528 

process is evident near the African coast (Figure 8), where the injection of deep, cold, CO2-rich 529 

seawater into the surface waters of the African coastal upwelling decreases the SST and pH, 530 

creating a longitudinal gradient in the Canary region.  531 

Figure 5 shows that pHT,is levels in the region declined throughout the study period due to 532 

increased ocean acidity, reaching -0.003 ± 0.001 pH units yr-1, determined for the seasonal-533 

detrended data. The strong influence of the MHW effects, described above in summer 2023 and 534 

in winter 2023 and 2024 on the observed interannual rate of increase in the two variables is 535 

noticeable. The increase in pCO2,atm is also accompanied by an increase in SST of 0.2ºC yr-1 over 536 

the six-year period. This equates to a cumulative temperature increase from 2019 to 2024 of 1.2ºC. 537 

This was a consequence of the anomalous year of 2023, as well as the higher SST in winter 2020 538 

compared to 2019, and the higher SST in winters 2023 and 2024 compared to 2022, when winter 539 
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temperatures have dropped below 18°C and are now at 19°C. This has resulted in an increase in 540 

previous pCO2,sw trends and ocean acidification levels in ESTOC, estimated at 2.1 µatm yr-1 and 541 

-0.002 pH units yr-1 for the period from 1995 to the beginning of 2023  (González-Dávila & 542 

Santana-Casiano, 2023). Using only six years of data could also contribute to these rates of 543 

change. However, winters with SST over 19ºC and summers with SST over 25ºC had never been 544 

recorded at the ESTOC site before 2023.  545 

4.3 Long term model prediction at ESTOC site. 546 

The utility of the bagging predictive model after considering data for the period 2019-2024 547 

was applied to the ESTOC site for the period 2004 to 2024. Previous years were not used as 548 

monthly satellite data has a lower resolution. Satellite data for SST, Chl a, MLD and atmospheric 549 

pCO2 computed from available xCO2 data at Izaña (IZO) station were used 550 

(https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/txt/co2_izo_surface-551 

flask_1_ccgg_event.txt, last access 26/05/2025). Estimated values at 29º10’N and 15º 30’W were 552 

compared with measured data (González-Dávila and Santana Casiano, 2023) updated to 2024 and 553 

plotted in Figure 6. The model was able to describe the ESTOC data with average residuals of 554 

1.3 ± 3.1 µatm and with trends for the study period of 1.9 ± 0.1 µatm yr-1 determined by both 555 

model and seasonal detrended data. It is important to notice that when any of the models without 556 

pCO2,atm was considered, the residuals increased to over 2 µatm, and especially during the earliest 557 

period, 2004 to 2010, when the residuals were close to 4 µatm. When pCO2,atm is not accounted 558 

for in the models for the period 2019-2024, with the presence of the MHW in the year 2023 in 559 

the CUS area, the models give the highest weight of the observed trends to SST changes alone. 560 

Indeed, analysis of satellite-derived sea surface temperature data at the ESTOC station from 2004 561 

to 2024 reveals that SST exhibited minimal variation during 2004–2019 (0.0012 ± 0.002°C yr-1). 562 

In contrast, a significant warming trend was evident over the 2019–2024 period, with SST 563 

increasing at a rate of 0.21 ± 0.01°C yr-1, as it was observed in the other selected sites A-F in 564 

Figure 1. Consequently, when the model with SST + Chl a + MLD was applied to earlier periods, 565 

it predicted lower trends. When pCO2,atm was considered in the model fitting, the role played by 566 

SST and by pCO2,atm are included in the pCO2,sw. Therefore, if the SST rate is low, the model 567 

considers the concurrent rise in atmospheric pCO₂, which also influences the surface seawater 568 

pCO₂. 569 

4.4 Air-sea CO2 exchange in the Canary archipelago 570 

The predicted pCO2,sw is highly useful for determining FCO2 with improved spatial and 571 

temporal resolution. Figure 7 shows the FCO2 calculated using the parametrization given by 572 

Wanninkhof (2014) for monthly mean conditions during 2019-2024. The seasonal cycle of FCO2 573 
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is controlled by large seasonal variations in pCO2,sw, which modify ΔpCO2 (since pCO2,atm 574 

exhibits shorter seasonal amplitudes), while the effect of wind speed and solubility is lower on a 575 

seasonal basis (Landschützer et al., 2014). The region acts as a strong CO2 sink during winter and 576 

spring, whereas during the warm season, the system acts as a source. During the warm period 577 

from late May to early September (González-Dávila et al., 2003), when the dominant trade winds 578 

impact the Canary Islands, pCO2,sw surpasses pCO2,atm. This results in increased wind speeds and 579 

reinforces the role of CO2 supersaturation in global flux estimation, favouring the region’s role 580 

of as a CO2 source.  581 

Sites closer to the African continent (C and D) and the coastal waters (F, in the Gando Bay, 582 

also in the eastern part of the Canary Islands) are more likely to act as a CO2 sink (Curbelo et al., 583 

2021) than the westernmost region. This is mainly due to the thermal gradient, with temperatures 584 

over one degree lower than to the west, and higher productivity waters. However, Figure 7B 585 

shows that, due to the increase in SST across the Canary Islands during the study period, all 586 

locations that acted as an annual sink of CO2 switched to acting as a source after 2022. For the 587 

period 2019 to 2024, the Canary region (CR) acted as a slight source of CO2, at a rate of 0.39 ± 588 

0.17 mol m-2 yr-1. Increasing trends in fluxes were observed across all regions, ranging from 0.18 589 

to 0.37 mmol m-2 d-1 yr-1 with an average rate of 0.25 ± 0.02 mmol m-2 d-1 yr-1. When the Canary 590 

region (13-19ºW, 27-30ºN) is considered, with an area of 185,000 km2 (after removing the island 591 

territories), it moves from being a slight source of 0.9 Tg CO2 in 2019 to being a source of 4.5 Tg 592 

CO2 in 2024, with a maximum of 4.8 Tg CO2 in 2023. This was also the year of maximum 593 

temperature in the area (Figure 2), favouring the highest increase in pCO2,sw. 594 

5. Conclusion 595 

This study presents the first predictive model of pCO2,sw and pHT,is for the Canary Islands 596 

basin. It demonstrates the usefulness of satellite data in complementing observation platforms 597 

such as voluntary observing ships and moored buoys. By combining satellite data from the 598 

Copernicus Marine Environmental Monitoring Service with in-situ observations, it was possible 599 

to model the behaviour of pCO2,sw and pHT,is in the waters surrounding the Canary Islands 600 

archipelago and therefore quantify the air-sea CO2 flux. 601 

Four types of models, ranging from classical multivariate statistics to more sophisticated 602 

machine-learning models were fitted to consider the atmospheric pCO2, SST, Chl a, and MLD 603 

variables that control the pCO2,sw and pHT,is in seawater. The multiple linear regression, neural 604 

network, and categorical boosting models produced the highest RMSE values. The estimates 605 

obtained by these three models did not differ significantly, and the computed statistics (e.g., 606 
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RMSE, MAE, and R2) were comparable to those of models adjusted for oceanic waters. The 607 

bagging model demonstrated the best fit, with an RMSE < 2.5 µatm (< 0.7%), 0.002 in pH, an R2 608 

> 0.99, and no significant differences compared to the monthly mean observations. 609 

The application of the bagging technique enabled the characterization of the seasonal and 610 

longitudinal variability of surface seawater pCO2,sw and total scale pH across the entire marine 611 

region of the Canary Islands. The ~1°C longitudinal gradient in SST, driven by the influence of 612 

African coastal upwelling and the offshore transport of upwelling filaments, resulted in 613 

persistently higher pCO2,sw and lower pHT,is values in the westernmost region (between El Hierro 614 

and Tenerife) compared to the easternmost region (between Tenerife and Lanzarote) throughout 615 

the year. In terms of air-sea CO2 exchange, the westernmost area acted as a source throughout the 616 

study period, while the easternmost area acted as a weak sink, changing to source behaviour after 617 

2022. The interannual increase in SST in the Canary region during the study period, including the 618 

anomalous year of 2023 and the warmer winter waters in 2020, 2023, and 2024, is considered the 619 

main factor responsible for the increase in outgassing. The Canary region acted as a source of 620 

0.39 ± 0.17 mol m-2 yr-1 for the period from 2019 to 2024, with an increasing source trend that 621 

emitted 0.9 Tg CO2 in 2019 to 4.5 Tg CO2 in 2024, peaking at 4.8 Tg CO2 in 2023. 622 

The results presented in this study highlight the complexity of modelling the pCO2,sw and pHT 623 

in coastal environments, where physical and biological conditions are more variable than in open 624 

ocean waters. The anomalous behaviour of 2023 was confirmed together with the important 625 

influence of a prolonged MHW event lasting more than a year within a relatively short trend study. 626 

The importance of long-term data series for predicting interannual changes was also highlighted. 627 

Despite the satisfactory model results, much longer work is required to constrain pCO2,sw and pHT,is 628 

in the Canary Islands waters, especially with regards to their interannual trends, but the 629 

combination of long term data set, satellite imagery and machine learning techniques is shown to 630 

provide and excellent description for the ocean-atmosphere CO2 exchange. This requires longer 631 

time series to reduce the effects of MHW events and the warmers summers and winters observed 632 

in recent years. 633 

  634 
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Figure 1. Map of the region of study in the Canary archipelago with the CanOA-VOS’s tracks and the 
location of A-F sites. The location of the G site (ESTOC site) is also shown. 
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Figure 2. Monthly mean of observational SST (black) and satellite-based SST (red) at locations A-F. 
Harmonic fittings (Eq 4) of the data are shown together with the linear fitting for the seasonal detrended data.   
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Figure 3. Monthly means of observational-based and model-predicted pCO2,sw(pCO2,atm, SST, Chl a, MLD) 
and pHT(SST,Chl a,MLD) at the locations A-D (Figure 1). MLR (red) means multilinear regression, NN 
(green) means neural network, CBo (blue) means CatBoost and Bag (purple) means Bagging. Linear fittings 
for the seasonal detrended data are plotted. 
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Figure 4. Gridded maps for pCO2,sw (left) and pHT (right) predicted with Bagging for March (Mar), June 
(Jun), September (Sep) and December (Dec) 2023 using pCO2,atm and satellite conditions of SST, Chl-a, and 
MLD together with observational data (the same colour code was used). Figure produced with Ocean Data 
View (Schlitzer et al., 2021; https://odv.awi.de). 
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Figure 5. Monthly means of  pCO2,sw (µatm) and pHT,is predicted with Bagging for 2019-2024 for the entire 
Canary region (27º-30ºN, 13º-19ºW).  Linear fittings for the seasonal detrended data are also plotted.
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Figure 6. Monthly means of pCO2,sw (µatm) predicted with Bagging considering pCO2,atm, SST, Chl a, MLD 
for the period 2004-2024 at the location of the ESTOC site (G in Figure 1) and measured ESTOC pCO2,sw.    
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Figure 7. (a) Monthly means of FCO2 (mmol m-2d-1) in the Canary archipelagic waters predicted with 
Bagging from 2019 to 2024 and (b) net annual FCO2 (mol m-2yr-1). In both plots, FCO2 was represented at 
locations A-F and for the entire Canary Region (CR). Linear fittings for the seasonal detrended data are also 
plotted. 
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Table 1. Summary of the data used in this study by seasons and observing system. 

 
  SST (ºC) SST Satellite 

(ºC) 
Chl-a Satellite 

(mg m-3) 
Kd-490 

Satellite (m-1) 
MLD     

Satellite (m) 
pCO2,sw     
(µatm) 

Bechinjigua  
Express 

(LP-TNF) 

Winter 20.05 ± 0.34 20.03 ± 0.25 0.172 ± 0.041 0.041 ± 0.003 43.6 ± 17.6 402.0 ± 6.6 

Spring 21.39 ± 0.47 21.08 ± 0.37 0.115 ± 0.0217 0.035 ± 0.002 18.4 ± 6.5 419.8 ± 8.3 

Summer 23.40 ± 0.51 23.31 ± 0.56 0.12 ± 0.0214 0.036 ± 0.003 18.5 ± 6.3 440.3 ± 8.1 

Autumn 22.80 ± 0.38 22.61 ± 0.33 0.115 ± 0.0124 0.037 ± 0.002 39.4 ± 11.4 428.8 ± 7.3 

Annual 21.91 ± 0.43 21.76 ± 0.38 0.131 ± 0.024 0.037 ± 0.003 29.9 ± 10.4 422.7 ± 7.6 

Jona Sophie 
(GC-LNZ) 

Winter 19.39 ± 0.53 19.41 ± 0.36 0.172 ± 0.029 0.034 ± 0.002 52.4 ± 13.7 395.1 ± 5.9 

Spring 20.64 ± 0.46 20.44 ± 0.35 0.146 ± 0.024 0.034 ± 0.002 40.8 ± 12.0 408.2 ± 8.6 

Summer 22.87 ± 0.43 22.73 ± 0.39 0.122 ± 0.018 0.036 ± 0.002 41.3 ± 8.9 432.8 ± 6.8 

Autumn 22.09 ± 0.45 21.98 ± 0.37 0.106 ± 0.022 0.034 ± 0.002 32.2 ± 5.6 415.3 ± 5.8 

Annual 21.25 ± 0.47 21.32 ± 0.37 0.136 ± 0.023 0.034 ± 0.002 41.7 ± 10.0 412.8 ± 4.3 

MORGAN-1 
(GC) 

Winter 21.07 ± 0.30 20.99 ± 0.23 0.193 ± 0.045 0.043 ± 0.004 57.0 ± 11.3 393.4 ± 1.9 

Spring 21.49 ± 0.31 20.66 ± 0.25 0.129 ± 0.021 0.039 ± 0.004 25.3 ± 9.4 405.1 ± 2.0 

Summer 21.50 ± 0.34 22.97 ± 0.24 0.11 ± 0.016 0.04 ± 0.004 23.1 ± 5.9 431.7 ± 2.8 

Autumn 21.53 ± 0.66 22.48 ± 0.25 0.126 ± 0.019 0.042 ± 0.004 41.2 ± 10.3 423.4 ± 5.9 

Annual 21.39 ± 0.40 21.78 ± 0.24 0.139 ± 0.025 0.041 ± 0.004 36.7 ± 9.2 413.9 ± 3.2 

ULA-2 
(HI) 

Winter 19.76 ± 0.38 19.73 ± 0.39 0.193 ± 0.033 0.042 ± 0.003 47.7 ± 19.0 385.6 ± 3.3 

Spring 20.52 ± 0.56 20.48 ± 0.52 0.155 ± 0.037 0.037 ± 0.003 24.5 ± 7.9 397.9 ± 5.0 

Summer 21.92 ± 0.38 21.83 ± 0.33 0.159 ± 0.039 0.041 ± 0.006 25.2 ± 8.0 429.3 ± 4.6 

Autumn 23.29 ± 0.33 23.20 ± 0.30 0.171 ± 0.035 0.042 ± 0.004 24.0 ± 6.9 409.4 ± 5.9 

Annual 21.65± 0.36 21.59 ± 0.34 0.174 ± 0.035 0.041 ± 0.004 32.3 ± 11.3 405.6 ± 4.7 
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Table 2. Coefficients parameters computed for the multiple linear regression for pCO2,sw (top) and pHT 
(bottom) applied to the different predictive models according to Eq. (5). 
 

Variables po 

(µatm) 𝛼𝛼�         𝛽̂𝛽  
(µatm ºC-1)               

𝛿𝛿  
(µatm mg-1 m3)        

 
𝜀𝜀̂  

(µatm m-1) 

SST 198.5 - 10.40 - - 

SST + Chl-a 257.0 - 9.54 -10.89 - 

SST + MLD 262.3 - 7.72 - -0.17 

SST + Chl-a + MLD 313.3 - 7.99 -0.31 -0.15 

pCO2 + SST + Chl-a + MLD 141.3 0.19 9.08 -1.79 -0.003 

  
 

 

 

 

 

 

 

 

 
 
 
 
 
  

Variables pHo 
𝛼𝛼�        𝛽̂𝛽  (ºC-1) 𝛿𝛿 (mg-1 m3) 𝜀𝜀̂ (m-1) 

SST 8.225 - -0.009 - - 

SST + Chl-a 8.201 - -0.008 0.069 - 

SST + MLD 8.193 - -0.008 - 0.0002 

SST + Chl-a + MLD 8.185 - -0.007 0.001 0.008 
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Table 3.  Algorithm performance between predicted pCO2,sw (µatm) and measured pCO2,sw (µatm) for each model using 
the training dataset. 
 

 
 
 
 

Algorithm Variables R2 RMSE 
(µatm) 

MAE 
(µatm/day) 

SSE 
(µatm/day) 

MLR 

SST 0.651 11.6 9.1 23.5 

SST + Chl-a 0.689 11.1 8.5 21.6 

SST + MLD 0.710 10.6 8.2 19.9 

SST + Chl-a + MLD 0.738 10.6 8.0 18.5 

 SST + pCO2,atm 0.865 6.7 5.0 15.3 

 pCO2,atm+SST + Chl-a + MLD 0.904 4.9 3.5 10.3 

Neural Network 
(NN)  

SST 0.740 10.4 7.7 25.6 

SST + Chl-a 0.778 9.4 6.7 19.5 

SST + MLD 0.842 8.1 5.7 18.2 

SST + Chl-a + MLD 0.881 7.2 5.0 17.2 

SST + pCO2,atm 0.877 7.8 5.1 17.8 

pCO2,atm+SST + Chl-a + MLD 0.896 7.1 5.0 16.2 

CatBoost 

SST 0.737 10.1 7.4 16.2 

SST + Chl-a 0.848 7.7 5.5 9.3 

SST + MLD 0.877 6.9 5.0 7.5 

SST + Chl-a + MLD 0.935 5.4 3.9 4.7 

SST + pCO2,atm 0.933 4.2 4.0 5.4 

pCO2,atm+SST + Chl-a + MLD 0.956 3.6 2.4 3.0 

Bagging 

SST 0.946 4.7 3.4 3.5 

SST + Chl-a 0.972 3.4 2.3 1.9 

SST + MLD 0.975 3.0 2.1 1.5 

SST + Chl-a + MLD 0.991 2.5 1.6 0.9 

SST + pCO2,atm 0.982 2.6 2.085 1.1 

pCO2,atm+SST + Chl-a + MLD 0.991 2.0 1.6 0.8 
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Table 4. Algorithm performance between predicted and measured pHT for each model using the training dataset. 

 

Algorithm Variables R2  RMSE MAE  SSE  

MLR 

SST 0.678 0.009 0.008 0.056 

SST + Chl-a 0.713 0.009 0.007 0.040 

SST + MLD 0.733 0.009 0.007 0.028 

SST + Chl-a + MLD 0.745 0.006 0.005 0.013 

Neural Network 
(NN)  

SST 0.751 0.009 0.007 0.050 

SST + Chl-a 0.805 0.009 0.006 0.027 

SST + MLD 0.819 0.008 0.005 0.013 

SST + Chl-a + MLD 0.853 0.008 0.009 0.009 

CatBoost 

SST 0.756 0.008 0.008 0.041 

SST + Chl-a 0.866 0.006 0.004 0.006 

SST + MLD 0.898 0.005 0.004 0.009 

SST + Chl-a + MLD 0.934 0.004 0.003 0.002 

Bagging 

SST 0.954 0.004 0.002 0.015 

SST + Chl-a 0.982 0.003 0.002 0.002 

SST + MLD 0.983 0.002 0.002 0.005 

SST + Chl-a + MLD 0.991 0.002 0.001 0.001 
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