Measurement report: High contribution of N₂O₅ uptake # 2 to particulate nitrate formation in NO2-limited urban ### 3 areas - 4 Ziyi Lin^{1,2,3}, Chuanyou Ying⁴, Lingling Xu^{1,2*}, Xiaoting Ji^{1,2,3}, Keran Zhang^{1,2}, Feng - 5 Zhang², Gaojie Chen^{1,2,3}, Lingjun Li^{1,2,3}, Chen Yang^{1,2,3}, Yuping Chen^{1,2,3}, Ziying - 6 Chen^{1,2,3}, Jinsheng Chen^{1,2*} ## 8 Affiliations: 7 15 17 - 9 State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese - 10 Academy of Sciences, Xiamen 361021, China - 11 ²Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, - 12 Chinese Academy of Sciences, Xiamen 361021, China - 13 ³University of Chinese Academy of Sciences, Beijing 100049, China - 4Fuzhou Institute of Environmental Science, Fuzhou 350013, China **Norrespondence to: Jinsheng Chen (jschen@iue.ac.cn); Lingling Xu (linglingxu@iue.ac.cn) 18 **Abstract:** Particulate nitrate (pNO₃-) is a major component of fine particle in Chinese urban areas. 19 However, the relative contributions of pNO₃ formation pathways in NO₂-limited urban areas remain 20 poorly quantified, hindering further particulate pollution control. In this study, comprehensive winter 21 field observations were conducted in urban Xiamen, Southeast China. We observed significantly elevated 22 nighttime pNO₃- levels concurrent with increased N₂O₅ concentrations. Quantification using an observation-constrained model revealed that N₂O₅ uptake contributed 51.2% to total pNO₃- formation, $24 \qquad \text{which was comparable to that of the OH} + NO_2 \, reaction. \, The \, N_2O_5 \, uptake \, was \, found \, to \, be \, mainly \, driven$ by nocturnal NO₃ oxidation capacity (modulated by NO₂ and O₃ levels) rather than by heterogeneous reaction conditions. Sensitivity simulations further demonstrated that pNO₃⁻ formation rate was more sensitive to NOx variations than to VOCs variations. Implementing NOx control measures at nighttime 28 was shown to effectively reduce pNO₃⁻ by abating N₂O₅ uptake while simultaneously preventing daytime O₃ increase. Our findings enhance the understanding of pNO₃- formation in NO₂-limited urban areas and 30 provide valuable insights for developing joint PM_{2.5} and O₃ mitigation strategies. 31 25 26 27 29 32 #### 1 Introduction 34 35 Fine particulate matter (PM_{2.5}) contributes to various atmospheric environmental issues, including 36 visibility deterioration, radiative forcing change, and adverse impacts on human health (Seinfeld, 1989; Lelieveld et al., 2015). Among its chemical components, particulate nitrate (pNO₃-) has attracted 37 38 increasing attention due to its rising mass fraction in PM2.5 and its nonlinear responses to emission 39 mitigation strategies (Xie et al., 2022; Zhai et al., 2021; Li et al., 2021; Zhang et al., 2021; Zhou et al., 40 2022; Zong et al., 2022; Wang et al., 2020). The primary formation pathways of pNO₃⁻ include gas-phase 41 oxidation through the reaction of hydroxyl radicals (OH) and nitrogen dioxides (NO₂) (R1-R2), and 42 heterogeneous uptake of dinitrogen pentoxide (N₂O₅) which is produced via NO₂ oxidation by nitrate 43 radicals (NO₃) (R3-R5) (Brown and Stutz, 2012). It is well recognized that the OH + NO₂ reaction 44 dominates in daytime, while N₂O₅ uptake dominates in nighttime. During nocturnal pNO₃- formation, 45 particulate chlorides can induce N₂O₅ heterogeneous uptake to produce ClNO₂, thereby competing with 46 pNO₃-formation. 47 OH (g)+ NO₂ (g)+ M $$\rightarrow$$ HNO₃(g) + M (R1) 48 $$HNO_3(g) + NH_3(g) \rightleftharpoons NH_4NO_3(p)$$ (R2) 49 $$NO_2(g) + O_3(g) \rightarrow NO_3(g)$$ (R3) 50 $$NO_2(g) + NO_3(g) \rightleftharpoons N_2O_5(g)$$ (R4) 51 $$N_2O_5(g) + H_2O/Cl^-(p) \rightarrow (2-\phi)NO_3(p) + \phi CINO_2(g)$$ (R5) 52 Many studies have focused on quantifying the potential formation pathways of pNO₃ in urban areas 53 of China. In major urban agglomerations such as the Beijing-Tianjin-Hebei (BTH) region (Chen et al., 54 2020; Ma et al., 2023; Zhao et al., 2023), Yangtze River Delta (YRD) (Sun et al., 2022; Zhai et al., 2023; 55 Zhang et al., 2023b), and Pearl River Delta (PRD) (Yang et al., 2022; Niu et al., 2022; Cheng et al., 2024), 56 pNO₃ formation was typically dominated by the gas-phase oxidation of OH + NO₂. In contrast, under 57 special conditions such as the COVID-19 pandemic and PM_{2.5} pollution events (Yan et al., 2023; Zhai et 58 al., 2023), N₂O₅ uptake became the main pathway. Previous research has demonstrated that the formation 59 rate of pNO₃ via N₂O₅ uptake is closely related to its precursor NO₂ and O₃, and the N₂O₅ formation can 60 be classified into NO₂-limited and O₃-limited regimes based on the NO₂/O₃ ratio (Ma et al., 2023). The 61 winter NO₂/O₃ ratios in the BTH, YRD, and PRD regions were generally above 1, placing N₂O₅ formation 63 2023b). However, N₂O₅ uptake served as the dominant pathway for pNO₃ formation, typically occurring 64 under NO₂-limited conditions (e.g., reduced emissions during the pandemic) or highly favorable N₂O₅ 65 uptake conditions (e.g., severe particulate pollution episodes). Collectively, these findings indicate that spatial variations in NO2 and O3 levels are likely a key driver of regional differences in the dominant 66 67 formation pathways of pNO₃⁻. The formation of pNO₃⁻ primarily depends on precursors OH, NO₂, and 68 O₃, with OH and O₃ concentrations being influenced by VOCs and NOx emissions. Thus, the different 69 formation pathways of pNO₃ result in complex responses to NOx/VOCs emissions. As for the response 70 of OH + NO₂ to precursors variation, it was relatively well-understood, as most Chinese urban areas are 71 located in VOC-limited regimes for O₃ (Wang et al., 2023b; Wang et al., 2022c; Zhang et al., 2023a; Mao 72 et al., 2022), and ammonia-rich regimes for pNO₃- (Xing et al., 2018; Sun et al., 2022; Fu et al., 2024; 73 Liu et al., 2019). Under these conditions, VOCs reduction suppresses pNO₃ formation by decreasing OH 74 concentrations, whereas NOx reduction enhances pNO₃ formation by weakening the NOx titration effect. 75 Given the regional variations in the NO₂/O₃ ratio across urban areas of China (Ma et al., 2023), the 76 response of N₂O₅ uptake to precursor changes (VOCs, O₃) likely exhibits spatial heterogeneity. A recent 77 study has revealed that under O₃-limited conditions for N₂O₅ formation (Zhang et al., 2023b), NOx 78 emissions had negligible effects, while VOCs reduction decreased the removal of NO₃ by VOCs, thereby 79 enhancing N₂O₅ uptake. However, the response of pNO₃ formation to precursors under NO₂-limited 80 conditions remains unclear. Aside from precursor availability, N₂O₅ uptake is also greatly influenced by 81 heterogeneous reaction conditions like aerosol composition and aerosol surface area (Mcduffie et al., 82 2018b; Mcduffie et al., 2018a; Tham et al., 2018; Yu et al., 2020), which introduces additional uncertainty 83 in determining the contribution of pNO₃⁻ formation pathways and the effectiveness of precursor control 84 strategies. 85 The NO₂/O₃ ratios in southeastern China predominantly fell within the NO₂-limited regime for N₂O₅ 86 formation (Ma et al., 2023). Xiamen, as one of the most developed cities in southeastern China, exhibits 87 relatively better air quality with low levels of VOCs and NOx compared to China's megacities (Table 88 S1). This pattern well represents the future urban atmospheric conditions following the implementation 89 of air pollution control measures in China. From December 2022 to February 2023, we conducted 90 comprehensive multi-parameter observations in urban Xiamen, including N_2O_5 and related chemical 91 constituents. An observation-constrained box model incorporating the heterogeneous reaction parameters in the O₃-limited or transition regime (Ma et al., 2023; Wen et al., 2018; Li et al., 2021; Zhang et al., 92 was utilized to quantify the rates of different pNO₃- formation pathways. Explainable machine learning 93 (ML) method was applied to identify the driving factors of high N₂O₅ uptake rate. Additionally, multi-94 scenario simulations were performed to examine the joint responses of pNO₃ and O₃ formation to various 95 NOx and VOCs emissions. These findings enhance our understanding of pNO₃ formation pathways and 96 their environmental implications in NO₂-limited regions, providing valuable insights for developing joint 97 PM_{2.5} and O₃ mitigation strategies. 98 99 2 Methods 100 2.1 Field Observation. 101 Field observations were conducted during the winter period from 1 December 2022 to 3 February 2023, 102 at an urban site (marked by the red star in Figure S1) in Xiamen, which is located in the southeastern 103 coastal region of China. Detailed site information has been described in our previous studies (Yang et al., 104 2023; Liu et al., 2022). Trace gases (including PAN, HCHO, HONO, VOCs, O3, NOx, CO, and SO2), 105 chemical components in PM_{2.5} (including organic carbon and elemental carbon, SO₄²⁻, NO₃-, NH₄+, Cl⁻), 106 PM_{2.5} mass concentration, and meteorological parameters (including ambient temperature (T), relative 107 humidity (RH), atmospheric pressure (P), wind speed (WS), wind direction (WD), and photolysis rates) 108 were continuously measured during the campaign. Detailed information about measurement methods and 109 instruments is summarized in Text S1. A chemical ionization time-of-flight mass spectrometer equipped 110 with an iodide source (iodide-TOF-CIMS, Aerodyne Research Inc., USA) was deployed to measure N2O5 111 and ClNO₂. The instrument configuration and calibration procedures for N₂O₅ and ClNO₂ are described 112 in Text S2, following established methods (Wang et al., 2022b; Wang et al., 2022a; Thaler et al., 2011). 113 Boundary layer height (BLH) data were obtained from the ERA5 dataset (Hersbach et al., 2020). 114 115 2.2 Determination of pNO₃- Formation Rate. 116 The interactive box model developed by Wagner et al. with a simplified mechanism was employed to 117 obtain key parameters of the N₂O₅ uptake process (Wagner et al., 2013), including kN₂O₅ and φClNO₂ 118 (see in Text S3). To validate the interactive box model results, these parameters were calculated 119 concurrently based on the classical steady-state approximation method (Text S4) (Brown et al., 2003; 120 Chen et al., 2022). As shown in Figure S2, the outcomes of the two methods exhibited strong consistency, with logarithmic correlation coefficients (R²) as high as 0.76 and 0.73 for kN₂O₅, φCINO₂, respectively. 121 Considering the larger number of valid data points, the model-derived parameters were adopted for subsequent analysis. A Framework for 0-D Atmospheric Modeling (F0AM), incorporating the Master Chemical Mechanism (MCM v3.3.1) and heterogeneous mechanisms (**Table S2**), was employed to simulate nitrate formation rates for each day during the study period (Wolfe et al., 2016; Atkinson and Arey, 2003; Jenkin et al., 2015). The heterogeneous parameters derived from the interactive box model were implemented in F0AM. In addition, hourly interval data of trace gases, photochemically active species, meteorological variables, and reanalysis data were also applied to constrain the multiphase chemical box model. Detailed model configurations are provided in **Text S5**. As shown in **Figure S3**, the model performed well for N_2O_5 and $CINO_2$ simulations with R^2 of 0.88 and 0.49, respectively. The simulated OH concentrations agreed well with parameterized method suggested by Ehhalt and Rohrer (**Figure S4**, $R^2 = 0.86$) (Ehhalt and Rohrer, 2000). Based on model simulation and precursor observations, we quantified p NO_3 -formation rates through both $OH + NO_2$ and N_2O_5 uptake pathways by model integral. Note that the gasparticle partitioning coefficient was set to 100%, which might lead to in an overestimation of the $OH + NO_2$ pathway contribution. #### 2.3 Identification of influencing factors for N₂O₅ uptake. Extreme gradient boosting (XGBoost), a machine learning technique, has been widely applied in atmospheric chemistry research (Gui et al., 2020; Wang et al., 2023c; Requia et al., 2020). Here, we built a XGBoost model to reproduce the N₂O₅ uptake rate with selected variables. The model was built using the "xgboost" library (https://github.com/dmlc/xgboost/tree/master) in a python environment. Explanatory variables included meteorological parameters (BLH, T, and RH), nocturnal atmospheric oxidation capacity P(NO₃) calculated by k_{NO2+O3}[NO₂][O₃], TVOCs, the logarithm of the ratio of NO₂ to O₃ (log([NO₂]/[O₃]), NO, and heterogeneous uptake parameters (φClNO₂ and kN₂O₅). Only nighttime (18:00 – 06:00 the next day) data were considered to identify key drivers of N₂O₅ uptake. The hyperparameters of the XGBoost model were tuned by grid searching method and the established model was evaluated using R², Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). By incorporating SHAP interpretation, the XGBoost-SHAP method could quantify factor contributions through SHAP values, where absolute SHAP values denote the relative importance. Detailed description and setup of the XGBoost-SHAP method can be found in **Text S6** and our previous study (Lin et al., 152 2024). 153154 #### 2.4 Emission Scenario Modelling. 155 Using the aforementioned multiphase chemical box model, we investigated changes in formation rates 156 of pNO₃ (PNO₃) and O₃ (PO₃) under different VOCs and NOx emission scenarios. The base model 157 simulation was performed using mean diurnal values from the winter 2022 observations. A series of 158 emission scenarios were tested by scaling normalized VOCs and NOx concentrations from 0 to 2 times 159 baseline levels to examine their impacts on PNO₃ and PO₃. Prior to each scenario simulation, 3-day spin-160 up was set to stabilize intermediate species concentrations. Isopleth diagrams of simulated PNO₃- and 161 PO₃ were obtained from the base scenario and 120 emission change scenarios. In addition, response 162 strength (RS) was calculated using eq 2 as an indicator of emission sensitivity. 163 $$PO_3 = k_1[HO_2][NO] + \sum k_{2i}[RO_2][NO]$$ (1) Where, k_i is the corresponding chemical reaction rate constants. $$165 \qquad RS = \frac{X_i - X_{base}}{V_i - V_{base}} \tag{2}$$ Where, X_i and X_{base} are the mean formation rates of dependent variables e.g. PNO₃, PO₃ in scenario i and base simulations, respectively. V_i and V_{base} are the emission rates for the scenario i and base simulations, respectively. Notably, the emission rates ranged from 0 to 2 times baseline levels, with the base simulation emission rate normalized to 1. 170 171 172 173 174 175 176 177 178 179 180 ## 3 Results and Discussion #### 3.1 Overview of Observations. The mean diurnal patterns of pNO₃-, gaseous pollutants and relevant meteorological parameters are shown in **Figure 1**. During the entire observation period, mean concentrations of NO₂, O₃, total VOCs, and PM_{2.5} were 10.9 ppb, 27.3 ppb, 18.2 ppb, and 14.3 μg m⁻³, respectively, lower than those observed in most of China's key cities (refer to **Table S1**). Despite the low NO*x* levels, pNO₃- contributed 29.5% to PM_{2.5} mass concentration, which was higher than proportions reported in Beijing urban area (24.7%) (Ma et al., 2023), Guangdong (24.0%) (Yun et al., 2018), and Nanjing (24%–27%) (Huang et al., 2020). This discrepancy suggests efficient conversion from NO₂ to pNO₃- in the study area. In addition, the proportion of pNO₃- increased with rising PM_{2.5} concentration (**Figure S6**), indicating its importance to https://doi.org/10.5194/egusphere-2025-3697 Preprint. Discussion started: 16 September 2025 © Author(s) 2025. CC BY 4.0 License. 181 particulate pollution. This is consistent with the phenomenon widespread in urban areas of China where 182 pNO₃-became dominant in inorganic aerosols despite NOx reduction, underscoring the need for efficient 183 pNO₃⁻ control strategies (Zhai et al., 2021; Zhao et al., 2020; Zhang et al., 2022). 184 The diurnal pattern of pNO₃ exhibited a bimodal characteristic, with peaks occurring at 4:00 and 185 16:00 LT, respectively. The daytime peak (07:00–17:00) was accompanied by low concentrations of NOx 186 and high levels of O₃ and JNO₂, indicating that active photochemical conditions promoted daytime pNO₃ 187 formation. During the nighttime (18:00-06:00 the next day), pNO₃ concentrations increased together 188 with NO₂, N₂O₅ and ClNO₂ from 18:00 onward and remained elevated until early morning. This 189 nighttime accumulation can be attributed to two factors. First, lower temperature, shallower boundary 190 layer height, and reduced wind speed at night favored the accumulation of pNO3- and related nitrogen-191 containing species. Second, higher RH and PM_{2.5} concentrations at night enhanced aerosol water content 192 and surface area, providing favorable conditions for heterogeneous hydrolysis of N₂O₅ to form pNO₃. 193 The mean concentration of N_2O_5 was 0.19 ± 0.26 ppb (peaking at 2.52 ppb), which is relatively higher 194 than values reported for China's megacities (Chen et al., 2020; Wang et al., 2017; Tham et al., 2018; 195 Wang et al., 2022a; Liu et al., 2025; Li et al., 2023). Moreover, the observed elevation in nighttime ClNO₂, 196 primarily produce via the reaction of N_2O_5 with Cl-containing particles, strongly supports the presence 197 of active heterogeneous processes of N2O5. Collectively, these findings imply a likely significant 198 contribution of N₂O₅ uptake to pNO₃⁻ formation during the nighttime. **Figure 1.** Diurnal variations of key parameters during the winter of 2022. The concentrations of pNO₃⁻, NOx, O₃, N₂O₅, PM_{2.5} and ClNO₂. The levels of the photolysis frequencies of NO₂ (JNO₂), ambient temperature (T), relative humidity (RH), the lifetime of N₂O₅ (τ N₂O₅), wind speed (WS) and the boundary layer height (BLH). Shaded areas of pNO₃⁻, O₃, N₂O₅, PM_{2.5}, ClNO₂, T, RH and BLH represent 95% confidence intervals. ## 3.2 High contribution of N₂O₅ uptake to pNO₃⁻ formation in NO₂-limited conditions. In view of the observed importance of daytime and nighttime pNO_3^- formation, we further employed an observation-constrained model to quantify the potential formation pathways, including the gas-phase reaction of $OH + NO_2$ and heterogeneous N_2O_5 uptake. This model incorporated heterogeneous chemical mechanisms, with key heterogeneous parameters (e.g. the loss rate of N_2O_5 (kN_2O_5) and the production yield of $CINO_2$ ($\phi CINO_2$)) obtained through simulation (See Methods for details). As shown in **Figure S7**, these simulated parameters exhibited good agreement with classical steady-state methods, demonstrating the model's capability to characterize heterogeneous uptake processes and thereby 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 effectively evaluate pNO₃⁻ formation processes. N_2O_5 uptake pathway showed a formation rate of 1.18 μ g m⁻³ h⁻¹ (Figure 2b-c). For the whole day, N_2O_5 uptake contributed an average of 51.2% to pNO₃⁻ formation, which was comparable to the contribution of the OH + NO₂ pathway (Figure 2d). Notably, the partitioning coefficient for gas-phase oxidation processes was assumed to be 1 in this study, meaning the contribution of OH + NO₂ represented an upper limit and the actual contribution of N₂O₅ uptake should be even greater. To exclude year-specific effects, we further analyzed the contributions of both pathways to pNO₃ formation during winters from 2019 to 2023. The results demonstrated that N₂O₅ uptake pathway consistently accounted for approximately half of pNO₃ formation in the study area (Figure 3a), which was also consistent with the observed high proportion of nighttime pNO₃⁻ throughout the day (Figure 3b). Such a high contribution of N₂O₅ uptake to pNO₃ is generally uncommon in urban areas. A study in urban Beijing showed that during nonpolluted periods, N₂O₅ uptake contributed only 18.9% to nitrate formation rates (Ma et al., 2023). Similarly, the contributions of N_2O_5 uptake were 10%-38% and 4% in urban areas of the YRD (Sun et al., 2022; Zhai et al., 2023; Zhang et al., 2023b) and PRD regions(Yang et al., 2022), respectively. Previous studies have found that nocturnal pNO₃ formation via N₂O₅ uptake strongly depends on the ratio of NO₂ to O₃ (Ma et al., 2023). This process is suppressed in the O₃-limited regime (NO₂/O₃ > 2) but enhanced in the NO₂-limited regime (NO₂/O₃ ≤ 1). The COVID-19 lockdown period was a typical example of this ratio dependence (Yan et al., 2023). In regions like Beijing, substantial reductions in NOx emissions caused a shift in nocturnal pNO₃- formation from the O₃-limited to the NO₂-limited regime. This shift resulted in elevated nighttime O₃ levels and a weakened NO titration effect, collectively promoting N₂O₅ formation and subsequent pNO₃⁻ formation. The sensitivity of N₂O₅ uptake to NO₂ and O₃ during the campaign is presented in Figure 3c-d. The observed mean values of NO₂/O₃ (0.40) and the probability distributions of NO₂/O₃ ratios both indicate that N₂O₅ uptake was in the NO₂-limited regime. Based on NO2 and O3 observational data during 2015-2021 from the China National Environmental Monitoring Centre_(Ma et al., 2023), most key urban regions in China (e.g., the NCP, YRD, and Beijing) were found to lie in the O₃-limited or transition regimes $(1 \le NO_2/O_3 \le 2)$, whereas nocturnal pNO₃-formation in southeastern China was distinctly in NO2-limited regime. These results confirm that the dominant As illustrated in Figure 2a, the diurnal pattern of pNO₃ formation rates exhibited a classical characteristic, with daytime dominated by gas-phase oxidation and nighttime dominated by N_2O_5 uptake. The daytime OH + NO₂ reaction had a mean pNO₃ formation rate of 1.62 µg m⁻³ h⁻¹, while the nighttime pNO_3 formation mechanisms in our study area significantly differs from those in most urban areas of China, which might be attributed to the dependence of N_2O_5 uptake on precursor NO_2 and O_3 . In addition, the dominance of N_2O_5 uptake in pNO_3 formation also occurred during haze pollution periods (Zhai et al., 2023; Wang et al., 2017), where increased aerosol surface area under high particulate loadings created favorable conditions for N_2O_5 heterogeneous reactions. Therefore, to evaluate the role of precursors, we conducted a comprehensive analysis of the factors driving pNO_3 formation via N_2O_5 uptake. **Figure 2.** Simulated rates of key pNO₃⁻ formation pathways obtained from the chemical box model incorporating heterogeneous parameters. Diurnal formation rates of pNO₃⁻ via the OH + NO₂ and N₂O₅ uptake pathways (a) and comparison of the two pathways during the nighttime (b), daytime (c), and the whole day (d). Note that the results in panel (a) represent the mean simulated formation rates over the entire observation period. The box shows the 25th–75th percentiles with whiskers representing the 5th–95th percentiles. The black line and dot inside the box represent the mean and median values, respectively. Statistical significance was determined using pair-sample *t*-tests with *** indicating p < 0.001. Figure 3. Inter-annual patterns of key pNO₃⁻ formation pathways in urban Xiamen. The average pNO₃⁻ formation rate from OH + NO₂ and N₂O₅ uptake (a), and the average ratio of the sum of nocturnal pNO₃⁻ concentrations to the sum of all-day pNO₃⁻ concentration (b) in different winters from 2019 to 2023 based on the measured pNO₃⁻ in PM_{2.5}. The sensitivity of nocturnal N₂O₅ uptake to NO₂ and O₃ from 2019 to 2023 (c). And probability distribution of observed NO₂/O₃ at nighttime in winter 2022 (d). The observed periods of different winters from 2019 to 2023 are summarized in **Table S3**. In panel (c), the black triangle indicates the base case of winter 2022, solid circles in different colors represent the average NO₂ to O₃ ratios in different years, and the predicted average formation rate of N₂O₅ uptake as the normalized emissions (average concentrations of O₃ and NO₂) varied between 0 to 2. #### 3.3 Driving Factors of Nocturnal N2O5 Uptake. The N_2O_5 uptake rate is influenced by multiple factors including precursor levels, meteorological parameters, and heterogeneous reaction conditions (Ma et al., 2023; Chen et al., 2020; Chen et al., 2024). A machine learning method integrating these factors was employed to identify the key drivers of N_2O_5 uptake. The relative importance of each factor was evaluated by absolute SHAP values (**Figure 4a**), and 277 278 279 280 281 282283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 their impacts were elucidated by examining the relationships between individual factors and their corresponding SHAP values (Figure 4b-e and Figure S8). Results showed that the nocturnal NO₃ formation rate (P(NO₃)), an integrated indicator of nocturnal atmospheric oxidation capacity (Wang et al., 2021), was the most important factor for N₂O₅ uptake with the highest absolute SHAP value. The steep slope of the positive correlation between P(NO₃) and SHAP values indicated that P(NO₃) strongly enhanced N₂O₅ uptake. P(NO₃) is primarily formed through the reaction between NO₂ and O₃ (P(NO₃) = k_{NO2+O3}[NO2][O3]), suggesting that NO2 and O3 mainly influenced N2O5 uptake by modulating NO3 radical formation. Notably, the factor logNO₂/O₃ had relatively low importance, indicating concentrations of precursors were more important than NO₂/O₃ ratio in determining the N₂O₅ uptake under extremely NO₂-limited condition (mean NO₂/O₃ was 0.40). Furthermore, as shown in Figure S8b, logNO₂/O₃ and its SHAP value shows a positive correlation when logNO₂/O₃ is less than 0. Under NO₂limited conditions (logNO₂/O₃ < 0, NO₂/O₃ < 1), N₂O₅ uptake was driven by the elevated NO₂. Compared with P(NO₃), other factors exhibited weaker effects on N₂O₅ uptake. φClNO₂ emerged as the second most important factor and showed a negative correlation with SHAP values (Figure 4c), illustrating that ClNO₂ formation inhibited pNO₃ formation. This inhibitory effect could be attributed to high concentrations of Cl-containing particles $(0.94 \pm 1.11 \ \mu g \ m^{-3})$ in the study area. Chloride-containing aerosols promote N₂O₅ uptake to produce more ClNO₂ (as evidenced by the positive correlation between φClNO₂ and chloride ions, Figure S9), while simultaneously reducing pNO₃ formation (R5). Additionally, the nighttime produced ClNO2 can undergo photolysis in following day to release Cl radicals, which further promote O₃ formation. This indirect effect must be considered when formulating control measures for particulate matter pollution. Interestingly, as shown in **Table S4** (Tham et al., 2016; Wang et al., 2018; Yun et al., 2018; Morgan et al., 2015), although the simulated kN₂O₅ (7.64×10⁻³ ± 6.12×10^{-3} s⁻¹) was higher than values reported in Beijing $(8.1\times10^{-4}-1.42\times10^{-3}\text{ s}^{-1})$, Guangdong $(3.78\times10^{-3}\text{ s}^{-1})$ $^{3} - 9 \times 10^{-3} \text{ s}^{-1}$), and UK (9.3×10⁻⁵ - 10⁻³ s⁻¹), kN₂O₅ exerted only a weak positive effect on N₂O₅ uptake (Figure 4d). The large difference existing in importance of P(NO₃) and kN₂O₅ indicated that the N₂O₅ uptake process was more limited by precursor levels rather than heterogeneous uptake conditions. Similar phenomenon was also found in winter in urban Beijing and Northern Utah mountain basins (Mcduffie et al., 2019; Chen et al., 2020). This situation is likely due to the favorable N₂O₅ uptake conditions during winter, e.g., low temperature, high aerosol surface area, and elevated aerosol liquid content (Wang et al., 2023a; Mcduffie et al., 2018b; Jia et al., 2020). The total concentrations of the observed VOCs (TVOCs) https://doi.org/10.5194/egusphere-2025-3697 Preprint. Discussion started: 16 September 2025 © Author(s) 2025. CC BY 4.0 License. 306 showed a weak negative correlation with N₂O₅ uptake (Figure 4e), reflecting their indirect inhibition on N_2O_5 formation by consuming NO_3 radicals. Moreover, we found that the effects of $\phi ClNO_2$, kN_2O_5 , and 308 TVOCs on N_2O_5 uptake were subject to $P(NO_3)$ levels (Figure 5a-5c). Specifically, the negative effect of $\phi ClNO_2$ and the positive effect of kN_2O_5 on N_2O_5 uptake became statistically significant when $P(NO_3)$ exceeded approximately 1.0 ppb h⁻¹ and 0.5 ppb h⁻¹, respectively. The negative correlation slope of 310 311 TVOCs versus N₂O₅ uptake intensified with increasing P(NO₃) levels, indicating that the N₂O₅ removal 312 effect was enhanced through VOC-induced NO₃ depletion. These findings highlight the critical role of 313 precursor NO2 and O3 in nocturnal pNO3 formation, demonstrating that these precursors mainly affect 314 this pathway by modulating NO₃ radical formation. 315 307 Figure 4. Feature importance (a) and the effects of key factors on N₂O₅ uptake (b-e) obtained by the XGBoost-SHAP method. The relationships between SHAP values and major features: P(NO₃) (b), φClNO₂(c), kN₂O₅(d), and TVOCs (e). Feature importance ranking (a) is determined by mean absolute SHAP values (descending order, top to bottom). Relationships between SHAP values and other factors are shown in Figure S8. 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 Figure 5. Relationships between N_2O_5 uptake and $\phi ClNO_2$ (a), kN_2O_5 (b), and TVOCs (c) colored by $P(NO_3)$. Linear fit curves in purple, blue and orange represent the fitting results for $P(NO_3)$ in the ranges of 0–0.5 ppb h^{-1} , 0.5–1.0 ppb h^{-1} and > 1.0 ppb h^{-1} , respectively. ## 3.4 Optimal Mitigation Strategies of pNO₃⁻ under High N₂O₅ Uptake. The above results revealed that pNO₃ formation through both the daytime OH + NO₂ reaction and nocturnal heterogeneous N₂O₅ uptake was closely linked to VOCs-NOx-O₃ chemistry (Yang et al., 2022). Using a multiphase box model, we systematically examined the responses of both pNO3- and O3 to varying NOx and VOC emission scenarios. Figure 6a shows pNO₃- formation located in the transition regime of VOCs and NOx. The formation rate of pNO₃ (PNO₃) decreased with the reductions of VOCs and NOx, and this trend became more pronounced under aggressive NOx reduction scenarios (Figure 6c-d). Figure S10a-b reveal that the mean response strength (RS, as defined in Methods) of PNO₃-to NOx was 0.75, higher than that for VOCs (RS = 0.29), suggesting that NOx reduction had a greater potential for pNO₃⁻ mitigation compared to VOCs control. However, NOx and VOCs reductions exerted different impacts on O₃ formation rate (PO₃). In our study area, PO₃ located in the VOC-limited regime (Figure 6b). We found that PO₃ declined with VOCs reduction but increased with NOx reduction until NOx dropped below 20% of the base (Figure 5c-d). Moreover, detailed results distinguishing daytime and nighttime major formation pathways of pNO₃ are presented in Figure 6e-f and Fig. S10c-d. For VOC reduction scenarios, both the OH + NO₂ reaction and N₂O₅ uptake pathways showed declining nitrate formation rates, with comparable RS of 0.11 and 0.18, respectively. This occurs because reduced VOCs concentrations decrease OH radical and O3 concentrations, thereby suppressing pNO3 formation via both pathways. In contrast, NOx reduction yielded more complex behavior. The OH + NO₂ reaction rates remained nearly constant until NOx dropped to 60% of the base. This stability arises because NOx reduction diminishes the NO titration effect on O₃, thereby increasing OH radicals through O₃ photolysis. 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 The competing effects of NOx reduction and OH enhancement led to an initial plateau in the OH + NO₂ reaction rate before its eventual decline. Differently, the N₂O₅ uptake rate decreased consistently and significantly with NOx abatement, exhibiting a high mean RS value of 0.61. This phenomenon was closely associated with the NO₂-limited regime of N₂O₅ uptake in the study area. As shown in Figure S11, the variation trends of PNO₃, P(O₃), OH + NO₂, and N₂O₅ uptake were consistent across all VOCs/NOx combinations, indicating that the results robustly reflect the response mechanisms to precursor emission changes. As mentioned above, VOC reduction proved effective yet limited in mitigating both pNO₃⁻ and O₃, the effectiveness of NOx reduction exhibited significant regional and temporal variations. In China's megacities, including PRD, YRD, and BTH regions, pNO₃- initially increased and then decreased in response to the reduction of NOx emissions (Li et al., 2021; Zhang et al., 2023b; Yang et al., 2022). Under high-NOx conditions, mild NOx reduction would raise daytime OH and O3 concentrations (Zhang et al., 2023b), rendering OH (rather than NOx) the limiting factor for the OH + NO2 reaction, which consequently enhanced daytime pNO₃ formation. Additionally, as the season most susceptible to PM pollution, wintertime N₂O₅ formation in these regions was in an O₃-limited or transition regime (Ma et al., 2023), wherein the elevated daytime O3 significantly enhanced NO3 radical generation, thereby promoting nocturnal N₂O₅ uptake and subsequent pNO₃ formation. Conversely, in NO₂-limited regions (e.g., southeastern China), NOx reduction showed limited impact on daytime pNO₃ formation via the OH + NO₂ pathway but effectively suppressed nighttime pNO₃- formation via N₂O₅ uptake. This approach concurrently reduced ClNO2 formation from N2O5 heterogeneous processes, consequently diminishing next-day Cl radical generation and its positive feedback on O₃ formation. Considering NOx reduction during the daytime would cause O₃ formation and only a slight reduction in pNO₃-, it is preferable to regulate NOx at night (18:00-06:00 the next day). Our findings demonstrate that in NO₂limited regions, targeted NOx reduction can synergistically decrease both pNO₃ and O₃ concentrations, highlighting the critical need to tailor mitigation strategies for different regions. **Figure 6.** Results of multi-scenario simulations obtained from an observation-constrained box model. Isopleths of simulated PNO₃⁻ (a) and PO₃ (b) with normalized VOCs and NOx. Simulated mean formation rates of pNO₃⁻ and O₃ (c, d), as well as pNO₃⁻ formation rates via N₂O₅ uptake and OH + NO₂ (e, f) with normalized VOCs and NOx. The PNO₃⁻ and PO₃ denote the formation rates of pNO₃⁻ and O₃, respectively. The simulated results are daily mean values, and the black triangle indicates the base case for winter 2022. In addition, the results in panel c-f were obtained by maintaining either NOx or VOCs at the base emission rate while varying the other. ## **Conclusions and Implications** 374375 376 377 378 379 380 381 382383 384 Our observations revealed a bimodal diurnal pattern of pNO3- in winter in urban Xiamen. The co- 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 occurrence of elevated nighttime pNO₃⁻ levels with increased N₂O₅ implied a significant contribution of N₂O₅ uptake to pNO₃ formation. Quantitative model analysis showed that N₂O₅ uptake contributed 51.2% of the total daily pNO_3^- , which was comparable to the $OH + NO_2$ reaction. This high contribution of N_2O_5 uptake is not commonly observed across Chinese cities. Comparative analysis among different cities suggests that this phenomenon is likely associated with NO₂-limited conditions for N₂O₅ uptake in our study area. Machine learning results further demonstrated that N_2O_5 uptake was driven by nocturnal atmospheric oxidation capacity (PNO3) rather than heterogeneous uptake conditions. The underlying mechanism is that the weakened NOx titration effects lead to nighttime O3 accumulation, which promotes NO₃ radical generation and consequently enhances N₂O₅ and pNO₃ formation. The joint response of pNO₃ and O₃ to various NOx and VOCs emission scenarios indicated that pNO₃ was more sensitive to NOx reduction than to VOCs reduction. However, mild NOx reduction showed limited effectiveness in reducing daytime pNO₃ while simultaneously increasing O₃ concentrations. Our findings suggest that NOx reduction is more effective when implemented during nighttime, particularly in regions where N2O5 formation is NO₂-limited. This approach can effectively control pNO₃- formation by suppressing nocturnal NO₃ radical generation and consequently inhibiting N₂O₅ uptake, while simultaneously alleviate O₃ pollution by reducing ClNO₂ formation. With continuous NOx and VOCs emission reductions and renewable energy adoption in China, urban areas are transitioning from NOx-saturated to NOx-limited conditions, potentially increasing the importance of N₂O₅ uptake. In this context, comprehensive assessment of NOx reduction impacts on urban pNO₃ and O₃ pollution, along with the development of region-specific mitigation strategies, becomes critically important. 405 406 #### Data Availability - The dataset for this paper can be accessed at https://doi.org/10.6084/m9.figshare.29670629 (Lin et al., - 408 2025). 409 410 ### Code Availability Data analysis methods are available from the authors upon request. 412 ## 413 Acknowledgements 414 This work was funded by the National Natural Science Foundation of China (U22A20578), the guiding 415 project of seizing the commanding heights of "self-purifying city" (IUE-CERAE-202402), the National 416 Key Research and Development Program (2022YFC3700304), STS Plan Supporting Project of the 417 Chinese Academy of Sciences in Fujian Province (2023T3013), and Xiamen Atmospheric Environment 418 Observation and Research Station of Fujian Province. 419 420 **Author Contribution** 421 Z.L. contributed to the methodology, data curation, software, analysis and writing of the original draft. 422 L.X. and J.C. contributed to the conceptualization, investigation, data curation, reviewing and editing the 423 text, supervision, and funding acquisition. C.Y., X.J., K.Z., F.Z., G.C., L.L., C.Y., Y.C., and Z.C. provided 424 useful advice and revised the manuscript. 425 426 Competing interests 427 The authors declare no competing interests. 428 429 REFERENCES 430 Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical Reviews. 431 103, 4605-4638, https://doi.org/10.1021/cr0206420, 2003. 432 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chemical Society Reviews. 41, 433 6405-6447, https://doi.org/10.1039/c2cs35181a, 2012. 434 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the 435 interpretation of atmospheric observations of NO₃ and N₂O₅ -: art. no. 4539, Journal of Geophysical 436 Research-Atmospheres. 108, https://doi.org/10.1029/2003jd003407, 2003. 437 Chen, X., Ma, W., Zheng, F. X., Wang, Z. C., Hua, C. J., Li, Y. R., Wu, J., Li, B. D., Jiang, J. K., Yan, C., 438 Petäjä, T., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Liu, Y. C., Xia, M., and Kulmala, M.: Identifying 439 Driving Factors of Atmospheric N₂O₅ with Machine Learning, Environmental Science & Technology. 440 https://doi.org/10.1021/acs.est.4c00651, 2024. 441 Chen, X. R., Wang, H. C., and Lu, K. D.: Interpretation of NO₃-N₂O₅ observation via steady state in high-442 aerosol air mass: the impact of equilibrium coefficient in ambient conditions, Atmospheric Chemistry and Physics. 22, 3525-3533, https://doi.org/10.5194/acp-22-3525-2022, 2022. 443 444 Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu, Y. H., 445 Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field Determination 446 of Nitrate Formation Pathway in Winter Beijing, Environmental Science & Technology. 54, 9243-9253, 447 https://doi.org/10.1021/acs.est.0c00972, 2020. 448 Cheng, C. L., Yang, S. X., Yuan, B., Pei, C. L., Zhou, Z. H., Mao, L. Y., Liu, S. L., Chen, D. Y., Cheng, 449 X. Y., Li, M., Shao, M., and Zhou, Z.: The significant contribution of nitrate to a severe haze event in the 450 of Guangzhou, China, Science of the Total Environment. 451 https://doi.org/10.1016/j.scitotenv.2023.168582, 2024. - 452 Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar UV, Journal of Geophysical - 453 Research-Atmospheres. 105, 3565-3571, https://doi.org/10.1029/1999jd901070, 2000. - 454 Fu, X. X., Wang, X. M., Liu, T. Y., He, Q. F., Zhang, Z., Zhang, Y. L., Song, W., Dai, Q. W., Chen, S., - 455 and Dong, F. Q.: Secondary inorganic aerosols and aerosol acidity at different PM_{2.5} pollution levels - 456 during winter haze episodes in the Sichuan Basin, China, Science of the Total Environment. 918, - 457 https://doi.org/10.1016/j.scitotenv.2024.170512, 2024. - 458 Gui, K., Che, H. Z., Zeng, Z. L., Wang, Y. Q., Zhai, S. X., Wang, Z. M., Luo, M., Zhang, L., Liao, T. T., - 459 Zhao, H. J., Li, L., Zheng, Y., and Zhang, X. Y.: Construction of a virtual PM_{2.5} observation network in - 460 China based on high-density surface meteorological observations using the Extreme Gradient Boosting - model, Environment International. 141, https://doi.org/10.1016/j.envint.2020.105801, 2020. - 462 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, - 463 C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., - 464 Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., - 465 Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., - 466 Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., - 467 Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Quarterly Journal of the - 468 Royal Meteorological Society. 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020. - 469 Huang, X., Ding, A. J., Wang, Z. L., Ding, K., Gao, J., Chai, F. H., and Fu, C. B.: Amplified transboundary - 470 transport of haze by aerosol-boundary layer interaction in China, Nature Geoscience. 13, 428-+, - 471 https://doi.org/10.1038/s41561-020-0583-4, 2020. - 472 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, - 473 Atmospheric Chemistry and Physics. 15, 11433-11459, https://doi.org/10.5194/acp-15-11433-2015, - 474 2015. - 475 Jia, S. G., Chen, W. H., Zhang, Q., Krishnan, P., Mao, J. Y., Zhong, B. Q., Huang, M. J., Fan, Q., Zhang, - 476 J. P., Chang, M., Yang, L. M., and Wang, X. M.: A quantitative analysis of the driving factors affecting - 477 seasonal variation of aerosol pH in Guangzhou, China, Science of the Total Environment. 725, - 478 https://doi.org/10.1016/j.scitotenv.2020.138228, 2020. - 479 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air - 480 pollution sources to premature mortality on a global scale, Nature. 525, 367-+, - 481 https://doi.org/10.1038/nature15371, 2015. - 482 Li, F. B., Huang, D. D., Nie, W., Tham, Y. J., Lou, S. R., Li, Y. Y., Tian, L. H., Liu, Y. L., Zhou, M., Wang, - 483 H. C., Qiao, L. P., Wang, H. L., Wang, Z., Huang, C., and Li, Y. J.: Observation of nitrogen oxide- - 484 influenced chlorine chemistry and source analysis of Cl2 in the Yangtze River Delta, China, Atmospheric - 485 Environment. 306, https://doi.org/10.1016/j.atmosenv.2023.119829, 2023. - 486 Li, M. M., Zhang, Z. H., Yao, Q., Wang, T. J., Xie, M., Li, S., Zhuang, B. L., and Han, Y.: Nonlinear - 487 responses of particulate nitrate to NOx emission controls in the megalopolises of China, Atmospheric - 488 Chemistry and Physics. 21, 15135-15152, https://doi.org/10.5194/acp-21-15135-2021, 2021. - 489 Lin, Z., Xu, L., Yang, C., Chen, G., Ji, X., Li, L., Zhang, K., Hong, Y., Li, M., Fan, X., Hu, B., Zhang, F., - 490 and Chen, J.: Trends of peroxyacetyl nitrate and its impact on ozone over 2018–2022 in urban atmosphere, - 491 npj Climate and Atmospheric Science. 7, 192, https://doi.org/10.1038/s41612-024-00746-7, 2024. - 492 Lin, Ziyi (2025). Data availability about the measurement report titled "Measurement report: High - 493 contribution of N₂O₅ uptake to particulate nitrate formation in NO₂-limited urban areas". figshare. - 494 Dataset. https://doi.org/10.6084/m9.figshare.29670629.v1 - 495 Liu, M. X., Huang, X., Song, Y., Tang, J., Cao, J. J., Zhang, X. Y., Zhang, Q., Wang, S. X., Xu, T. T., - 496 Kang, L., Cai, X. H., Zhang, H. S., Yang, F. M., Wang, H. B., Yu, J. Z., Lau, A. K. H., He, L. Y., Huang, - 497 X. F., Duan, L., Ding, A. J., Xue, L. K., Gao, J., Liu, B., and Zhu, T.: Ammonia emission control in China - 498 would mitigate haze pollution and nitrogen deposition, but worsen acid rain, Proceedings of the National - 499 Academy of Sciences of the United States of America. 116, 7760-7765, - 500 <u>https://doi.org/10.1073/pnas.1814880116</u>, 2019. - 501 Liu, T. T., Hong, Y. W., Li, M. R., Xu, L. L., Chen, J. S., Bian, Y. H., Yang, C., Dan, Y. B., Zhang, Y. N., - 502 Xue, L. K., Zhao, M., Huang, Z., and Wang, H.: Atmospheric oxidation capacity and ozone pollution - 503 mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an - 504 observation-based model, Atmospheric Chemistry and Physics. 22, 2173-2190, - 505 https://doi.org/10.5194/acp-22-2173-2022, 2022. - 506 Liu, Y., Wang, Y., Ma, P., Ma, Y., Pan, Y., Ma, W., Li, S., Liu, P., Liao, Z., Liu, Z., Chu, B., Ma, Q., Quan, - 507 J., and He, H.: Formation of Nitrate in the Residual Layer of Beijing: Pathways Evaluation and - 508 Contributions to the Ground Level, Environmental Science & Technology. 59, 9699-9708, - 509 <u>https://doi.org/10.1021/acs.est.5c02981</u>, 2025. - 510 Ma, P. K., Quan, J. N., Dou, Y. J., Pan, Y. B., Liao, Z. H., Cheng, Z. G., Jia, X. C., Wang, Q. Q., Zhan, J. - 511 L., Ma, W., Zheng, F. X., Wang, Y. Z., Zhang, Y. S., Hua, C. J., Yan, C., Kulmala, M., Liu, Y. A., Huang, - 512 X., Yuan, B., Brown, S. S., and Liu, Y. C.: Regime-Dependence of Nocturnal Nitrate Formation via N2O5 - 513 Hydrolysis and Its Implication for Mitigating Nitrate Pollution, Geophysical Research Letters. 50, - 514 https://doi.org/10.1029/2023gl106183, 2023. - 515 Mao, J. Y., Yan, F. H., Zheng, L. M., You, Y. C., Wang, W. W., Jia, S. G., Liao, W. H., Wang, X. M., and - 516 Chen, W. H.: Ozone control strategies for local formation- and regional transport-dominant scenarios in - 517 a manufacturing city in southern China, Science of the Total Environment. 813, - 518 <u>https://doi.org/10.1016/j.scitotenv.2021.151883</u>, 2022. - 519 McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., - 520 Goldberger, L., Lee, B., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: - 521 On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter - 522 formation during wintertime pollution events in Northern Utah, Atmospheric Chemistry and Physics. 19, - 523 9287-9308, https://doi.org/10.5194/acp-19-9287-2019, 2019. - 524 McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Hilfiker, F. L., Lee, B. H., Jaeglé, L., Guo, H. Y., Weber, R. - 525 J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., - 526 Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K., - 527 Roberts, J. M., Thornton, J. A., and Brown, S. S.: ClNO₂ Yields From Aircraft Measurements During the - 528 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, Journal of - 529 Geophysical Research-Atmospheres. 123, 12994-13015, https://doi.org/10.1029/2018jd029358, 2018a. - 530 McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., - 531 Jaeglé, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, - 532 P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., - 533 Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous - 534 N₂O₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical - 535 Evaluation of Current Parameterizations, Journal of Geophysical Research-Atmospheres. 123, 4345- - 536 4372, https://doi.org/10.1002/2018jd028336, 2018b. - 537 Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., - 538 Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical - 539 composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe, Atmospheric - 540 Chemistry and Physics. 15, 973-990, https://doi.org/10.5194/acp-15-973-2015, 2015. - 541 Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast Nocturnal - 542 Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime - 543 Photochemistry, Journal of Geophysical Research-Atmospheres. 127, - 544 <u>https://doi.org/10.1029/2022jd036716</u>, 2022. - 545 Requia, W. J., Di, Q., Silvern, R., Kelly, J. T., Koutrakis, P., Mickley, L. J., Sulprizio, M. P., Amini, H., - 546 Shi, L. H., and Schwartz, J.: An Ensemble Learning Approach for Estimating High Spatiotemporal - 547 Resolution of Ground-Level Ozone in the Contiguous United States, Environmental Science & - 548 Technology. 54, 11037-11047, https://doi.org/10.1021/acs.est.0c01791, 2020. - 549 Seinfeld, J. H.: URBAN AIR-POLLUTION STATE OF THE SCIENCE, Science. 243, 745-752, - 550 https://doi.org/10.1126/science.243.4892.745, 1989. - 551 Sun, J. J., Qin, M. M., Xie, X. D., Fu, W. X., Qin, Y., Sheng, L., Li, L., Li, J. Y., Sulaymon, I. D., Jiang, - 552 L., Huang, L., Yu, X. N., and Hu, J. L.: Seasonal modeling analysis of nitrate formation pathways in - 553 Yangtze River Delta region, China, Atmospheric Chemistry and Physics. 22, 12629-12646, - 554 <u>https://doi.org/10.5194/acp-22-12629-2022</u>, 2022. - 555 Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per Trillion - 556 Mixing Ratios by Thermal Dissociation Cavity Ring-Down Spectroscopy, Analytical Chemistry. 83, - 557 2761-2766, https://doi.org/10.1021/ac200055z, 2011. - 558 Tham, Y. J., Wang, Z., Li, Q. Y., Wang, W. H., Wang, X. F., Lu, K. D., Ma, N., Yan, C., Kecorius, S., - 559 Wiedensohler, A., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production - 560 yield of ClNO₂ in polluted northern China: roles of aerosol water content and chemical composition, - 561 Atmospheric Chemistry and Physics. 18, 13155-13171, https://doi.org/10.5194/acp-18-13155-2018, - 562 2018. - 563 Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn, - B., Li, X., Kecorius, S., Gröss, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant - 565 concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on - ozone production in a polluted region of northern China, Atmospheric Chemistry and Physics. 16, 14959- - 567 14977, https://doi.org/10.5194/acp-16-14959-2016, 2016. - 568 Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, - 569 A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., - 570 Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from - ambient wintertime measurements, Journal of Geophysical Research-Atmospheres. 118, 9331-9350, - 572 https://doi.org/10.1002/jgrd.50653, 2013. - Wang, H. C., Lu, K. D., Chen, S. Y., Li, X., Zeng, L. M., Hu, M., and Zhang, Y. H.: Characterizing nitrate - 574 radical budget trends in Beijing during 2013-2019, Science of the Total Environment. 795, - 575 <u>https://doi.org/10.1016/j.scitotenv.2021.148869</u>, 2021. - 576 Wang, H. C., Wang, H. L., Lu, X., Lu, K. D., Zhang, L., Tham, Y. J., Shi, Z. B., Aikin, K., Fan, S. J., - 577 Brown, S. S., and Zhang, Y. H.: Increased night-time oxidation over China despite widespread decrease - 578 across the globe, Nature Geoscience. 16, 217-+, https://doi.org/10.1038/s41561-022-01122-x, 2023a. - 579 Wang, H. C., Peng, C., Wang, X., Lou, S. R., Lu, K. D., Gan, G. C., Jia, X. H., Chen, X. R., Chen, J., - Wang, H. L., Fan, S. J., Wang, X. M., and Tang, M. J.: N2O5 uptake onto saline mineral dust: a potential - 581 missing source of tropospheric ClNO2 in inland China, Atmospheric Chemistry and Physics. 22, 1845- - 582 1859, https://doi.org/10.5194/acp-22-1845-2022, 2022a. - 583 Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S. - 584 R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.: - 585 Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing, Atmospheric Chemistry and - 586 Physics. 18, 9705-9721, https://doi.org/10.5194/acp-18-9705-2018, 2018. - 587 Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J., - 588 Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang, Y. H.: High - 589 N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway, - 590 Environmental Science & Technology Letters. 4, 416-420, https://doi.org/10.1021/acs.estlett.7b00341, - 591 2017. - 592 Wang, H. C., Yuan, B., Zheng, E., Zhang, X. X., Wang, J., Lu, K. D., Ye, C. S., Yang, L., Huang, S., Hu, - 593 W. W., Yang, S. X., Peng, Y. W., Qi, J. P., Wang, S. H., He, X. J., Chen, Y. B., Li, T. G., Wang, W. J., - 594 Huangfu, Y. B., Li, X. B., Cai, M. F., Wang, X. M., and Shao, M.: Formation and impacts of nitryl chloride - 595 in Pearl River Delta, Atmospheric Chemistry and Physics. 22, 14837-14858, https://doi.org/10.5194/acp- - 596 <u>22-14837-2022</u>, 2022b. - 597 Wang, W. J., Li, X., Cheng, Y. F., Parrish, D. D., Ni, R. J., Tan, Z. F., Liu, Y., Lu, S. H., Wu, Y. S., Chen, - 598 S. Y., Lu, K. D., Hu, M., Zeng, L. M., Shao, M., Huang, C., Tian, X. D., Leung, K. M., Chen, L. F., Fan, - 599 M., Zhang, Q., Rohrer, F., Wahner, A., Pöschl, U., Su, H., and Zhang, Y. H.: Ozone pollution mitigation - 600 strategy informed by long-term trends of atmospheric oxidation capacity, Nature Geoscience. 16, 1080- - 601 1081, https://doi.org/10.1038/s41561-023-01334-9, 2023b. - 602 Wang, Y. H., Gao, W. K., Wang, S., Song, T., Gong, Z. Y., Ji, D. S., Wang, L. L., Liu, Z. R., Tang, G. Q., - Huo, Y. F., Tian, S. L., Li, J. Y., Li, M. G., Yang, Y., Chu, B. W., Petäjä, T., Kerminen, V. M., He, H., Hao, - 604 J. M., Kulmala, M., Wang, Y. S., and Zhang, Y. H.: Contrasting trends of PM_{2.5} and surface-ozone - 605 concentrations in China from 2013 to 2017, National Science Review. 7, 1331-1339, - 606 <u>https://doi.org/10.1093/nsr/nwaa032</u>, 2020. - 607 Wang, Y. R., Yang, X. Y., Wu, K., Mei, H., De Smedt, I., Wang, S. G., Fan, J., Lyu, S., and He, C.: Long- - 608 term trends of ozone and precursors from 2013 to 2020 in a megacity (Chengdu), China: Evidence of - 609 changing emissions and chemistry, Atmospheric Research. 278, - 610 https://doi.org/10.1016/j.atmosres.2022.106309, 2022c. - 611 Wang, Y. T., Zhao, Y., Liu, Y. M., Jiang, Y. Q., Zheng, B., Xing, J., Liu, Y., Wang, S., and Nielsen, C. P.: - 612 Sustained emission reductions have restrained the ozone pollution over China, Nature Geoscience. 16, - 613 967-+, https://doi.org/10.1038/s41561-023-01284-2, 2023c. - 614 Wen, L., Xue, L. K., Wang, X. F., Xu, C. H., Chen, T. S., Yang, L. X., Wang, T., Zhang, Q. Z., and Wang, - 615 W. X.: Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, - 616 formation mechanisms and implications for control policy, Atmospheric Chemistry and Physics. 18, - 617 11261-11275, https://doi.org/10.5194/acp-18-11261-2018, 2018. - 618 Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D - 619 Atmospheric Modeling (F0AM) v3.1, Geoscientific Model Development. 9, 3309-3319, - 620 https://doi.org/10.5194/gmd-9-3309-2016, 2016. - 621 Xie, X. D., Hu, J. L., Qin, M. M., Guo, S., Hu, M., Wang, H. L., Lou, S. R., Li, J. Y., Sun, J. J., Li, X., - 622 Sheng, L., Zhu, J. L., Chen, G. Y., Yin, J. J., Fu, W. X., Huang, C., and Zhang, Y. H.: Modeling particulate - 623 nitrate in China: Current findings and future directions, Environment International. 166, - 624 <u>https://doi.org/10.1016/j.envint.2022.107369</u>, 2022. - 625 Xing, J., Ding, D., Wang, S. X., Zhao, B., Jang, C., Wu, W. J., Zhang, F. F., Zhu, Y., and Hao, J. M.: - 626 Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and - 627 NH3 for reducing air pollution in the Beijing-Tianjin-Hebei region, China, Atmospheric Chemistry and - 628 Physics. 18, 7799-7814, https://doi.org/10.5194/acp-18-7799-2018, 2018. - 629 Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H. C., Guo, Y. S., Ma, W., Zhan, J. L., Hua, C. J., Li, Y. Y., - 630 Deng, C. J., Li, Y. R., Zheng, F. X., Chen, X., Li, Q. Y., Zhang, G., Mahajan, A. S., Cuevas, C. A., Huang, - D. D., Wang, Z., Sun, Y. L., Saiz-Lopez, A., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Donahue, N. - 632 M., Jiang, J. K., Liu, Y. C., Ding, A. J., and Kulmala, M.: Increasing contribution of nighttime nitrogen - 633 chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns, Nature - 634 Geoscience. 16, 975-+, https://doi.org/10.1038/s41561-023-01285-1, 2023. - 635 Yang, C., Dong, H. S., Chen, Y. P., Xu, L. L., Chen, G. J., Fan, X. L., Wang, Y. H., Tham, Y. J., Lin, Z. - 636 Y., Li, M. R., Hong, Y. W., and Chen, J. S.: New Insights on the Formation of Nucleation Mode Particles - 637 in a Coastal City Based on a Machine Learning Approach, Environmental Science & Technology. 58, - 638 1187-1198, https://doi.org/10.1021/acs.est.3c07042, 2023. - 639 Yang, S. X., Yuan, B., Peng, Y. W., Huang, S., Chen, W., Hu, W. W., Pei, C. L., Zhou, J., Parrish, D. D., - 640 Wang, W. J., He, X. J., Cheng, C. L., Li, X. B., Yang, X. Y., Song, Y., Wang, H. C., Qi, J. P., Wang, B. L., - 641 Wang, C., Wang, C. M., Wang, Z. L., Li, T. G., Zheng, E., Wang, S. H., Wu, C. H., Cai, M. F., Ye, C. S., - 642 Song, W., Cheng, P., Chen, D. H., Wang, X. M., Zhang, Z. Y., Wang, X. M., Zheng, J. Y., and Shao, M.: - The formation and mitigation of nitrate pollution: comparison between urban and suburban environments, - 644 Atmospheric Chemistry and Physics. 22, 4539-4556, https://doi.org/10.5194/acp-22-4539-2022, 2022. - 645 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P. G., Li, H. Y., Shan, - 646 Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y. B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y. - 647 H., and Wang, T.: Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: - 648 improving model representation of uptake parameters, Atmospheric Chemistry and Physics. 20, 4367- - 649 4378, https://doi.org/10.5194/acp-20-4367-2020, 2020. - 650 Yun, H., Wang, W. H., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D. L., and Zhou, Y.: - Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in - 652 southern China, Atmospheric Chemistry and Physics. 18, 17515-17527, https://doi.org/10.5194/acp-18- - 653 <u>17515-2018</u>, 2018. - 654 Zhai, S. X., Jacob, D. J., Wang, X., Liu, Z. R., Wen, T. X., Shah, V., Li, K., Moch, J. M., Bates, K. H., - 655 Song, S. J., Shen, L., Zhang, Y. Z., Luo, G., Yu, F. Q., Sun, Y. L., Wang, L. T., Qi, M. Y., Tao, J., Gui, K., - 656 Xu, H. H., Zhang, Q., Zhao, T. L., Wang, Y. S., Lee, H. C., Choi, H., and Liao, H.: Control of particulate - 657 nitrate air pollution in China, Nature Geoscience. 14, 389-+, https://doi.org/10.1038/s41561-021-00726- - 658 <u>z</u>, 2021. - 659 Zhai, T. Y., Lu, K. D., Wang, H. C., Lou, S. R., Chen, X. R., Hu, R. Z., and Zhang, Y. H.: Elucidate the - 660 formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River - Delta summer 2019, Atmospheric Chemistry and Physics. 23, 2379-2391, https://doi.org/10.5194/acp- - 662 <u>23-2379-2023</u>, 2023. - 663 Zhang, R., Han, Y. H., Shi, A. J., Sun, X. S., Yan, X., Huang, Y. H., and Wang, Y.: Characteristics of - 664 ambient ammonia and its effects on particulate ammonium in winter of urban Beijing, China, - Environmental Science and Pollution Research. 28, 62828-62838, https://doi.org/10.1007/s11356-021- - 666 14108-w, 2021. - 667 Zhang, X., Ma, Q., Chu, W. H., Ning, M., Liu, X. Q., Xiao, F. J., Cai, N. N., Wu, Z. J., and Yan, G.: - 668 Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the - 669 Yangtze River Delta region, China, Science of the Total Environment. 892, - 670 <u>https://doi.org/10.1016/j.scitotenv.2023.164703</u>, 2023a. - 671 Zhang, Y., Lei, R., Cui, S., Wang, H., Chen, M., and Ge, X.: Spatiotemporal trends and impact factors of https://doi.org/10.5194/egusphere-2025-3697 Preprint. Discussion started: 16 September 2025 © Author(s) 2025. CC BY 4.0 License. - 672 PM_{2.5} and O₃ pollution in major cities in China during 2015-2020, Chinese Science Bulletin. 67, 2029- - 673 2042, 2022. - 674 Zhang, Y. N., Wang, H. L., Huang, L. B., Qiao, L. P., Zhou, M., Mu, J. S., Wu, C., Zhu, Y. J., Shen, H. - Q., Huang, C., Wang, G. H., Wang, T., Wang, W. X., and Xue, L. K.: Double-Edged Role of VOCs - 676 Reduction in Nitrate Formation: Insights from Observations during the China International Import Expo - 677 2018, Environmental Science & Technology. 57, 15979-15989, https://doi.org/10.1021/acs.est.3c04629, - 678 2023b. - Zhao, S. P., Yin, D. Y., Yu, Y., Kang, S. C., Qin, D. H., and Dong, L. X.: PM_{2.5} and O₃ pollution during - 680 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts, - 681 Environmental Pollution. 264, https://doi.org/10.1016/j.envpol.2020.114694, 2020. - 682 Zhao, X. X., Zhao, X. J., Liu, P. F., Chen, D., Zhang, C. L., Xue, C. Y., Liu, J. F., Xu, J., and Mu, Y. J.: - Transport Pathways of Nitrate Formed from Nocturnal N2O5 Hydrolysis Aloft to the Ground Level in - 684 Winter North China Plain, Environmental Science & Technology. - 685 <u>https://doi.org/10.1021/acs.est.3c00086</u>, 2023. - 686 Zhou, M., Nie, W., Qiao, L. P., Huang, D. D., Zhu, S. H., Lou, S. R., Wang, H. L., Wang, Q., Tao, S. K., - 687 Sun, P., Liu, Y. W., Xu, Z., An, J. Y., Yan, R. S., Su, H., Huang, C., Ding, A. J., and Chen, C. H.: Elevated - 688 Formation of Particulate Nitrate From N₂O₅ Hydrolysis in the Yangtze River Delta Region From 2011 to - 689 2019, Geophysical Research Letters. 49, https://doi.org/10.1029/2021gl097393, 2022. - 690 Zong, Z., Tian, C. G., Sun, Z. Y., Tan, Y., Shi, Y. J., Liu, X. H., Li, J., Fang, Y. T., Chen, Y. J., Ma, Y. H., - 691 Gao, H. W., Zhang, G., and Wang, T.: Long-Term Evolution of Particulate Nitrate Pollution in North - 692 China: Isotopic Evidence From 10 Offshore Cruises in the Bohai Sea From 2014 to 2019, Journal of - Geophysical Research-Atmospheres. 127, https://doi.org/10.1029/2022jd036567, 2022.