Measurement report: High contribution of N₂O₅ uptake

2 to particulate nitrate formation in NO2-limited urban

3 areas

- 4 Ziyi Lin^{1,2,3}, Chuanyou Ying⁴, Lingling Xu^{1,2*}, Xiaoting Ji^{1,2,3}, Keran Zhang^{1,2}, Feng
- 5 Zhang², Gaojie Chen¹,2,3, Lingjun Li¹,2,3, Chen Yang¹,2,3, Yuping Chen¹,2,3, Ziying
- 6 Chen^{1,2,3}, Jinsheng Chen^{1,2*}

7

1

- 8 Affiliations:
- 9 ¹State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese
- 10 Academy of Sciences, Xiamen 361021, China
- ²Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment,
- 12 Chinese Academy of Sciences, Xiamen 361021, China
- 13 ³University of Chinese Academy of Sciences, Beijing 100049, China
- ⁴Fuzhou Institute of Environmental Science, Fuzhou 350013, China

15

*Correspondence to: Jinsheng Chen (jschen@iue.ac.cn); Lingling Xu (linglingxu@iue.ac.cn)

17

- 18 **Abstract:** Particulate nitrate (pNO₃) is a major component of fine particles in Chinese urban areas.
- 19 However, the relative contributions of pNO₃⁻ formation pathways in urban areas remain poorly quantified,
- 20 particularly under the NO₂-limited regime that governs its formation (as defined by the NO₂/O₃ ratio),
- 21 which hinders effective particulate pollution control. In this study, comprehensive winter field
- 22 observations were conducted in urban Xiamen, Southeast China. We observed significantly elevated
- 23 nighttime pNO₃- levels concurrent with increased N₂O₅ concentrations. Quantification using an
- observation-constrained model revealed that N₂O₅ uptake contributed 51.2% to total pNO₃- formation,
- which was comparable to that of the $OH + NO_2$ reaction. The N_2O_5 uptake was found to be mainly driven
- by nocturnal NO₃ oxidation capacity (modulated by NO₂ and O₃ levels) rather than by heterogeneous
- 27 reaction conditions. Sensitivity simulations further demonstrated that pNO₃- formation rate was more
- sensitive to NOx variations than to VOCs variations. Implementing NOx control measures at nighttime
- was shown to effectively reduce pNO₃⁻ by abating N₂O₅ uptake while simultaneously preventing daytime
- 30 O₃ increase. Our findings enhance the understanding of pNO₃⁻ formation in NO₂-limited urban areas and
- 31 provide valuable insights for developing joint PM_{2.5} and O₃ mitigation strategies.

32

1 Introduction

Fine particulate matter (PM_{2.5}) contributes to various atmospheric environmental issues, including visibility deterioration, radiative forcing change, and adverse impacts on human health (Seinfeld, 1989; Lelieveld et al., 2015). Among its chemical components, particulate nitrate (pNO₃⁻) has attracted increasing attention due to its rising mass fraction in PM_{2.5} and its nonlinear responses to emission mitigation strategies (Xie et al., 2022; Zhai et al., 2021; Li et al., 2021; Zhang et al., 2021; Zhou et al., 2022; Zong et al., 2022; Wang et al., 2020). The primary formation pathways of pNO₃⁻ include gas-phase oxidation through the reaction of hydroxyl radicals (OH) and nitrogen dioxides (NO₂) (R1–R2), and heterogeneous uptake of dinitrogen pentoxide (N₂O₅) which is produced via NO₂ oxidation by nitrate radicals (NO₃) (R3–R5) (Brown and Stutz, 2012). It is well recognized that the OH + NO₂ reaction dominates in daytime, while N₂O₅ uptake dominates in nighttime. During nocturnal pNO₃⁻ formation, particulate chlorides can induce N₂O₅ heterogeneous uptake to produce ClNO₂, thereby competing with pNO₃⁻ formation.

47 OH (g)+ NO₂ (g)+ M
$$\rightarrow$$
 HNO₃(g) + M (R1)

$$48 \qquad \text{HNO}_3(g) + \text{NH}_3(g) \rightleftharpoons \text{NH}_4 \text{NO}_3(p) \tag{R2}$$

49
$$NO_2(g) + O_3(g) \rightarrow NO_3(g)$$
 (R3)

50
$$NO_2(g) + NO_3(g) \rightleftharpoons N_2O_5(g)$$
 (R4)

51
$$N_2O_5(g) + H_2O/Cl^{-}(p) \rightarrow (2-\phi)NO_3(p) + \phi ClNO_2(g)$$
 (R5)

Many studies have focused on quantifying the potential formation pathways of pNO₃⁻ in urban areas of China. In major urban agglomerations such as the Beijing-Tianjin-Hebei (BTH) region (Chen et al., 2020; Ma et al., 2023; Zhao et al., 2023), Yangtze River Delta (YRD) (Sun et al., 2022; Zhai et al., 2023; Zhang et al., 2023b), and Pearl River Delta (PRD) (Yang et al., 2022; Niu et al., 2022; Cheng et al., 2024), pNO₃⁻ formation was typically dominated by the gas-phase oxidation of OH + NO₂. In contrast, under special conditions such as the COVID-19 pandemic and PM_{2.5} pollution events (Yan et al., 2023; Zhai et al., 2023), N₂O₅ uptake became the main pathway. Previous research has demonstrated that the formation rate of pNO₃⁻ via N₂O₅ uptake is closely related to its precursor NO₂ and O₃, and the N₂O₅ formation can be classified into NO₂-limited and O₃-limited regimes based on the NO₂/O₃ ratio (Ma et al., 2023). The winter NO₂/O₃ ratios in the BTH, YRD, and PRD regions were generally above 1, placing N₂O₅ formation

in the O₃-limited or transition regime (Ma et al., 2023; Wen et al., 2018; Li et al., 2021; Zhang et al., 2023b). However, the N₂O₅ uptake served as the dominant pathway for pNO₃ formation, typically under NO₂-limited conditions (e.g., reduced emissions during the pandemic) or under large aerosol surface areas (e.g., severe particulate pollution episodes). Collectively, these findings indicate that spatial variations in NO2 and O3 levels are likely a key driver of regional differences in the dominant formation pathways of pNO₃⁻. The formation of pNO₃⁻ primarily depends on precursors OH, NO₂, and O₃, with OH and O₃ concentrations being influenced by VOCs and NOx emissions. Thus, the different formation pathways of pNO₃⁻ result in complex responses to NOx/VOCs emissions. The response of pNO₃⁻ formation via OH + NO₂ to precursors variation is relatively well-understood, as most Chinese urban areas are located in VOC-limited regimes for O₃ (Wang et al., 2023a; Wang et al., 2022c; Zhang et al., 2023a; Mao et al., 2022), and ammonia-rich regimes for pNO₃- (Xing et al., 2018; Sun et al., 2022; Fu et al., 2024; Liu et al., 2019). Under these conditions, VOCs reduction suppresses pNO₃- formation by decreasing OH concentrations, whereas NOx reduction enhances pNO₃ formation by weakening the NOx titration effect. Given the regional variations in the NO2/O3 ratio across urban areas of China (Ma et al., 2023), the response of pNO₃ formation via N₂O₅ uptake to precursor changes (VOCs, O₃) likely exhibits spatial heterogeneity. A recent study has revealed that under O₃-limited conditions for N₂O₅ formation (Zhang et al., 2023b), reducing NOx emissions had negligible effects, while reducing VOCs decreased the consumption of NO₃ by VOCs, thereby enhancing pNO₃ formation from N₂O₅ uptake. However, the response of pNO₃- formation to precursors under NO₂-limited conditions remains unclear. Aside from precursor availability, N₂O₅ uptake is also greatly influenced by heterogeneous reaction conditions like aerosol composition and aerosol surface area (Mcduffie et al., 2018b; Mcduffie et al., 2018a; Tham et al., 2018; Yu et al., 2020), which introduces additional uncertainty in determining the contribution of pNO₃⁻ formation pathways and the effectiveness of precursor control strategies. The NO₂/O₃ ratios in southeastern China predominantly fell within the NO₂-limited regime for N₂O₅ formation (Ma et al., 2023). Xiamen, as one of the most developed cities in southeastern China, exhibits relatively better air quality with low levels of VOCs and NOx compared to China's megacities (Table S1). This pattern well represents the future urban atmospheric conditions following the implementation of air pollution control measures in China. From December 2022 to February 2023, we conducted comprehensive multi-parameter observations in urban Xiamen, including N2O5 and related chemical constituents. An observation-constrained box model incorporating the heterogeneous reaction parameters

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

was utilized to quantify the rates of different pNO₃⁻ formation pathways. An explainable machine learning (ML) method was applied to identify the driving factors for high pNO₃⁻ formation rate via N₂O₅ uptake. Additionally, multi-scenario simulations were performed to examine the joint responses of pNO₃⁻ and O₃ formation to various NOx and VOCs emissions. These findings enhance our understanding of pNO₃⁻ formation pathways and their environmental implications in NO₂-limited regions, providing valuable insights for developing joint PM_{2.5} and O₃ mitigation strategies.

Field observations were conducted during the winter period from 1 December 2022 to 3 February

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

92

93

94

95

96

97

2 Methods

2.1 Field Observation.

2023, at an urban site (marked by the red star in Figure S1) in Xiamen, which is located in the southeastern coastal region of China. Detailed site information has been described in our previous studies (Yang et al., 2023; Liu et al., 2022). Trace gases (including PAN, HCHO, HONO, VOCs, O₃, NOx, CO, and SO₂), chemical components in PM_{2.5} (including organic carbon and elemental carbon, SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻), PM_{2.5} mass concentration, and meteorological parameters (including ambient temperature (T), relative humidity (RH), atmospheric pressure (P), wind speed (WS), wind direction (WD), and photolysis rates) were continuously measured during the campaign. Detailed information about measurement methods and instruments is summarized in Text S1. In addition, boundary layer height (BLH) data were obtained from the ERA5 dataset (Hersbach et al., 2020). A chemical ionization time-of-flight mass spectrometer equipped with an iodide source (iodide-TOF-CIMS, Aerodyne Research Inc., USA) was deployed to measure N2O5 and ClNO2. A nearly 2-meter long perfluoroalkoxy (PFA) tube with a 1/4-inch inner diameter was used for sampling. The total sampling flow rate was set as 10 standard liters per minute (SLPM), of which only 2SLPM was diverted to the CIMS. A nitrogen (N₂) flow (99.999%, 2.7 SLPM), carrying methyl iodide (CH₃I) vapor released from a heated permeation tube, passed through a soft X-ray source (Tofwerk AG, P-type) to generate reagent ions I'. The I' was combined with the target gas in an ion molecule reaction (IMR) chamber and then detected by the ToF-CIMS. Ambient N₂O₅ and CINO₂ were detected as the I(N₂O₅)⁻ and I(CINO₂)⁻ clusters at 235 and 208 m/z. The detailed calibration procedures of N₂O₅ and ClNO₂ are described in Text S2, following established methods (Wang et al., 2022b; Wang et al., 2022a; Thaler et al., 2011). Briefly, N₂O₅ was generated from the reaction between O₃ and excessive NO₂, while ClNO₂ was

synthesized via the reaction of Cl_2 (6 ppm in N_2) with a moist mixture of $NaNO_2$ and NaCl. The calibration curves for N_2O_5 and $ClNO_2$ at different RH are shown in **Figure S2**, with mean sensitivities of 0.110 ± 0.063 and 0.055 ± 0.018 ncps/ppb, respectively. The instrument background was determined by introducing dry N_2 into the inlet for 20 min. Based on three times the standard deviation (3 σ) of the background signal, the typical 1-minute detection limits for N_2O_5 and $ClNO_2$ were estimated to be 1.3 and 0.61 ppt, respectively.

2.2 Determination of pNO₃- Formation Rate.

The iterative box model developed by Wagner et al. with a simplified mechanism was employed to obtain key parameters of the N_2O_5 uptake process (Wagner et al., 2013), including the loss rate of N_2O_5 (kN_2O_5) and the production yield of $ClNO_2$ ($\phi ClNO_2$, **see in Text S3**). To validate the iterative box model results, these parameters were calculated concurrently based on the classical steady-state approximation method (**Text S4**) (Brown et al., 2003; Chen et al., 2022). The derived parameters of N_2O_5 uptake were adopted for subsequent multiphase box model.

A Framework for 0-D Atmospheric Modeling (F0AM), incorporating the Master Chemical Mechanism (MCM v3.3.1) and heterogeneous mechanisms (**Table S2**), was employed to simulate nitrate formation rates for each day during the study period (Wolfe et al., 2016; Atkinson and Arey, 2003; Jenkin et al., 2015). The heterogeneous parameters derived from the iterative box model were implemented in F0AM. In addition, hourly interval data of trace gases, photochemically active species, meteorological variables, and reanalysis data were also applied to constrain the multiphase chemical box model. Detailed model configurations are provided in **Text S5**. As shown in **Figure S3**, the model performed well in simulating the trends of N_2O_5 and $CINO_2$ with R^2 of 0.88 and 0.49, respectively. However, a systematic underestimation existed in the simulated N_2O_5 and $CINO_2$ concentrations, which likely resulted from the model configuration including overestimated physical removal rates, elevated concentration of intermediate VOC species, or uncertainties in transport processes. Consequently, the simulated pNO₃-formation from N_2O_5 uptake in this study could be regarded as a lower limit. The simulated OH concentrations agreed well with parameterized method suggested by Ehhalt and Rohrer (**Figure S4**, $R^2 = 0.86$) (Ehhalt and Rohrer, 2000). Based on model simulation and precursor observations, we quantified pNO₃-formation rates through both OH + NO₂ and N_2O_5 uptake pathways by model integral.

2.3 Identification of influencing factors for pNO₃ Formation via N₂O₅ Uptake.

Extreme gradient boosting (XGBoost), a machine learning technique, has been widely applied in atmospheric chemistry research (Gui et al., 2020; Wang et al., 2023b; Requia et al., 2020). Here, we built a XGBoost model to reproduce the pNO₃⁻ formation rate via N₂O₅ uptake with selected variables. The model was built using the "xgboost" library (https://github.com/dmlc/xgboost/tree/master) in a python environment. Explanatory variables included meteorological parameters (BLH, T, and RH), nocturnal atmospheric oxidation capacity P(NO₃) calculated by $k_{NO_2+O_3}[NO_2][O_3]$, TVOCs, the logarithm of the ratio of NO₂ to O₃ (log([NO₂]/[O₃]), NO, and heterogeneous uptake parameters (ϕ ClNO₂ and $k_{N_2O_3}$). Only nighttime (18:00 – 06:00 the next day) data were considered to identify key drivers of pNO₃⁻ formation via N₂O₅ uptake. The hyperparameters of the XGBoost model were tuned by grid searching method and the established model was evaluated using R², Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). By incorporating SHAP interpretation, the XGBoost-SHAP method could quantify factor contributions through SHAP values, where absolute SHAP values denote the relative importance. Detailed description and setup of the XGBoost-SHAP method can be found in **Text S6** and our previous study (Lin et al., 2024).

2.4 Emission Scenario Modelling.

Using the aforementioned multiphase chemical box model, we investigated changes in formation rates of pNO₃⁻ (PNO₃⁻) and O₃ (PO₃) under different VOCs and NOx emission scenarios. The base model simulation was performed using mean diurnal values from the winter 2022 observations. A series of emission scenarios were tested by scaling normalized VOCs and NOx concentrations from 0 to 2 times baseline levels to examine their impacts on PNO₃⁻ and PO₃. Prior to each scenario simulation, 3-day spin-up was set to stabilize intermediate species concentrations. Isopleth diagrams of simulated PNO₃⁻ and PO₃ were obtained from the base scenario and 120 emission change scenarios. In addition, response strength (RS) was calculated using eq 2 as an indicator of emission sensitivity.

177
$$PO_3 = k_1[HO_2][NO] + \sum k_{2i}[RO_2][NO]$$
 (1)

Where, k_i is the corresponding chemical reaction rate constants.

$$RS = \frac{X_i - X_{base}}{V_i - V_{base}} \tag{2}$$

Where, X_i and X_{base} are the mean formation rates of dependent variables e.g. PNO_3 , PO_3 in scenario i and base simulations, respectively. V_i and V_{base} are the emission rates for the scenario i and base simulations, respectively. Notably, the emission rates ranged from 0 to 2 times baseline levels, with the base simulation emission rate normalized to 1.

183184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

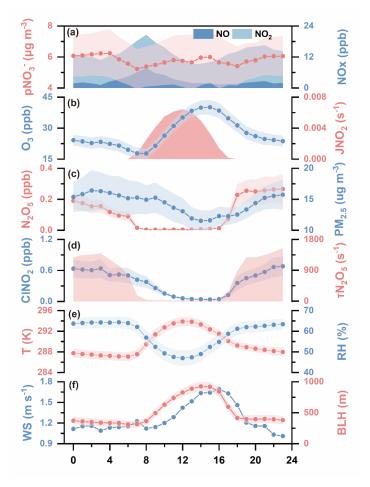
206

207

208

209

180


181

182

3 Results and Discussion

3.1 Overview of Observations.

The mean diurnal patterns of pNO₃-, gaseous pollutants and relevant meteorological parameters are shown in Figure 1. During the entire observation period, mean concentrations of NO₂, O₃, total VOCs, and PM_{2.5} were 10.9 ppb, 27.3 ppb, 18.2 ppb, and 14.3 µg m⁻³, respectively, lower than those observed in most of China's key cities (refer to **Table S1**). Despite the low NOx levels, pNO₃ contributed 29.5% to PM_{2.5} mass concentration, which was higher than proportions reported in Beijing urban area (24.7%) (Ma et al., 2023), Guangdong (24.0%) (Yun et al., 2018), and Nanjing (24%-27%) (Huang et al., 2020). This discrepancy suggests efficient conversion from NO2 to pNO3- in the study area. In addition, the proportion of pNO₃ increased with rising PM_{2.5} concentration (Figure S6), indicating its importance to particulate pollution. This is consistent with the phenomenon widespread in urban areas of China where pNO₃-became dominant in inorganic aerosols despite NOx reduction, underscoring the need for efficient pNO₃⁻ control strategies (Zhai et al., 2021; Zhao et al., 2020; Zhang et al., 2022). The diurnal pattern of pNO₃- exhibited a bimodal characteristic, with peaks occurring at 4:00 and 15:00 LT, respectively. The daytime peak (07:00–17:00) was accompanied by low concentrations of NOx and high levels of O₃ and JNO₂, indicating that active photochemical conditions promoted daytime pNO₃ formation. During the nighttime (18:00–06:00 the next day), pNO₃ concentrations increased together with NO₂, N₂O₅ and ClNO₂ from 18:00 onward and remained elevated until early morning. This nighttime accumulation can be attributed to two factors. First, lower temperature, shallower boundary layer height, and reduced wind speed at night favored the accumulation of pNO₃ and related nitrogencontaining species. Second, higher RH and PM_{2.5} concentrations at night enhanced aerosol water content and surface area, providing favorable conditions for heterogeneous hydrolysis of N₂O₅ to form pNO₃⁻. The mean concentration of N_2O_5 was 0.19 ± 0.26 ppb (peaking at 2.52 ppb), which is relatively higher than values reported for China's megacities (Chen et al., 2020; Wang et al., 2017; Tham et al., 2018; Wang et al., 2022a; Liu et al., 2025; Li et al., 2023). Moreover, the observed elevation in nighttime ClNO₂, primarily produce via the reaction of N_2O_5 with Cl-containing particles, strongly supports the presence of active heterogeneous processes of N_2O_5 . Collectively, these findings imply a likely significant contribution of N_2O_5 uptake to pNO_3 - formation during the nighttime.

Figure 1. Diurnal variations of key parameters during the winter of 2022. The concentrations of pNO₃⁻, NO_x, O₃, N₂O₅, PM_{2.5} and ClNO₂. The levels of the photolysis frequencies of NO₂ (JNO₂), ambient temperature (T), relative humidity (RH), the lifetime of N₂O₅ (τN₂O₅), wind speed (WS) and the boundary layer height (BLH). Shaded areas of pNO₃⁻, O₃, N₂O₅, PM_{2.5}, ClNO₂, T, RH and BLH represent 95% confidence intervals.

3.2 High contribution of N_2O_5 uptake to pNO_3 -formation in NO_2 -limited conditions.

In view of the observed importance of daytime and nighttime pNO_3^- formation, we further employed an observation-constrained model to quantify the potential formation pathways, including the gas-phase reaction of $OH + NO_2$ and heterogeneous N_2O_5 uptake. This model incorporated heterogeneous chemical mechanisms, with key heterogeneous parameters (e.g. kN_2O_5 and $\phi ClNO_2$) obtained through simulation

(See Methods for details). As shown in **Figure S7**, the simulated kN_2O_5 and ϕ ClNO₂ exhibited good agreement with the classical steady-state method ($R^2 = 0.76$ and 0.73, respectively), demonstrating the model's capability to characterize heterogeneous uptake processes and thereby effectively evaluate pNO₃-formation processes.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

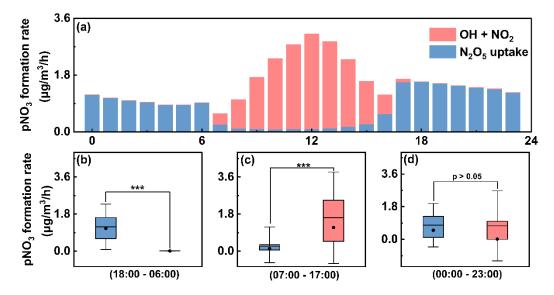
248

249

250

251

252


253

254

As illustrated in Figure 2a, the diurnal pattern of pNO₃- formation rates exhibited a classical characteristic, with daytime dominated by gas-phase oxidation and nighttime dominated by N₂O₅ uptake. Specifically, the daytime OH + NO₂ reaction had a mean pNO₃⁻ formation rate of 1.62 μg m⁻³ h⁻¹, while the nighttime N₂O₅ uptake pathway showed a formation rate of 1.18 µg m⁻³ h⁻¹ (Figure 2b-c). For the whole day, N₂O₅ uptake contributed an average of 51.2% to pNO₃ formation, which was comparable to the contribution of the OH + NO₂ pathway (Figure 2d). To exclude year-specific effects, we further analyzed pNO₃- formation during the winters from 2019 to 2023. The results revealed that the pNO₃formation rates via N_2O_5 uptake $(0.75 - 1.40 \mu g m^{-3} h^{-1})$ were comparable to those from the OH + NO_2 reaction (0.88 – 1.66 μ g m⁻³ h⁻¹; Figure 3a), with the N₂O₅ uptake pathway consistently accounting for approximately half of the total pNO₃- formation in the study area (Figure 3b). Such a high contribution of N₂O₅ uptake to pNO₃⁻ is generally uncommon in urban areas. A study in urban Beijing showed that during non-polluted periods, N₂O₅ uptake contributed only 18.9% to nitrate formation rates (Ma et al., 2023). Similarly, the contributions of N_2O_5 uptake were 10% - 38% and 4% in urban areas of the YRD (Sun et al., 2022; Zhai et al., 2023; Zhang et al., 2023b) and PRD regions (Yang et al., 2022), respectively. Previous studies have found that nocturnal pNO₃⁻ formation via N₂O₅ uptake strongly depends on the ratio of NO₂ to O₃ (Ma et al., 2023). This process is suppressed in the O₃-limited regime (NO₂/O₃ > 2) but enhanced in the NO₂-limited regime (NO₂/O₃ ≤ 1). The COVID-19 lockdown period was a typical example of this ratio dependence (Yan et al., 2023). In regions like Beijing, substantial reductions in NOx emissions caused a shift in nocturnal pNO₃ formation from the O₃-limited to the NO₂-limited regime. This shift resulted in elevated nighttime O₃ levels and a weakened NO titration effect, collectively promoting N₂O₅ formation and subsequent pNO₃⁻ formation. The sensitivity of pNO₃⁻ formation via N₂O₅ uptake to NO₂ and O₃ during the campaign is presented in Figure 3c-d. The observed mean values of NO₂/O₃ (0.40) and the probability distributions of NO₂/O₃ ratios both indicate that N₂O₅ uptake was in the NO₂-limited regime. Based on NO₂ and O₃ observational data during 2015-2021 from the China National Environmental Monitoring Centre (Ma et al., 2023), most key urban regions in China (e.g., the NCP, YRD, and Beijing) were found to lie in the O_3 -limited or transition regimes (1 < $NO_2/O_3 \le 2$),

whereas nocturnal pNO₃⁻ formation in southeastern China was distinctly in NO₂-limited regime. These results confirm that the dominant pNO₃⁻ formation mechanisms in our study area significantly differs from those in most urban areas of China, which might be attributed to the dependence of N₂O₅ uptake on precursor NO₂ and O₃. In addition, the dominance of N₂O₅ uptake in pNO₃⁻ formation also occurred during haze pollution periods (Zhai et al., 2023; Wang et al., 2017), where increased aerosol surface area under high particulate loadings created favorable conditions for N₂O₅ heterogeneous reactions. Therefore, to evaluate the role of precursors, we conducted a comprehensive analysis of the factors driving pNO₃⁻ formation via N₂O₅ uptake.

Figure 2. Simulated rates of key pNO₃⁻ formation pathways obtained from the chemical box model incorporating heterogeneous parameters. Diurnal formation rates of pNO₃⁻ via the OH + NO₂ and N₂O₅ uptake pathways (a) and comparison of the two pathways during the nighttime (b), daytime (c), and the whole day (d). Note that the results in panel (a) represent the mean simulated formation rates over the entire observation period. The box shows the 25th–75th percentiles with whiskers representing the 5th–95th percentiles. The black line and dot inside the box represent the mean and median values, respectively. Statistical significance was determined using pair-sample *t*-tests with *** indicating p < 0.001.

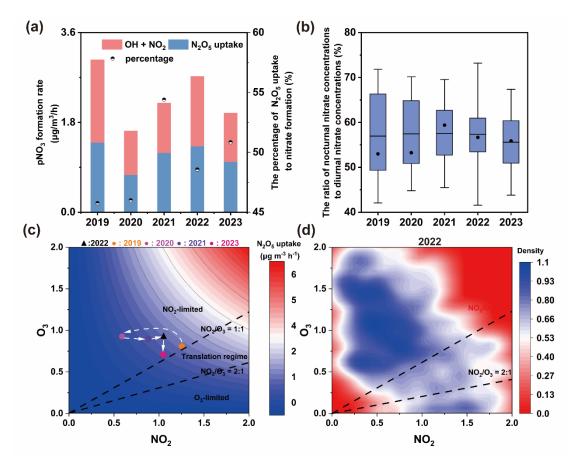


Figure 3. Inter-annual patterns of key pNO₃⁻ formation pathways in urban Xiamen. The average pNO₃⁻ formation rate from OH + NO₂ and N₂O₅ uptake (a), and the average ratio of the sum of nocturnal pNO₃⁻ concentrations to the sum of all-day pNO₃⁻ concentration (b) in different winters from 2019 to 2023 based on the measured pNO₃⁻ in PM_{2.5}. The sensitivity of nocturnal pNO₃⁻ formation via N₂O₅ uptake to NO₂ and O₃ from 2019 to 2023 (c). And probability distribution of observed NO₂/O₃ at nighttime in winter 2022 (d). The observed periods of different winters from 2019 to 2023 are summarized in Table S3. In panel (b), the black line and the solid circle in the boxplot represent the mean and median value, respectively. In panel (c), the black triangle indicates the base case of winter 2022, solid circles in different colors represent the average NO₂ to O₃ ratios in different years, and the predicted average formation rate of N₂O₅ uptake as the normalized emissions (average concentrations of O₃ and NO₂) varied between 0 to 2.

$\textbf{3.3 Driving Factors of pNO}_3^{\text{-}} \textbf{Formation via Nocturnal N}_2\textbf{O}_5 \textbf{Uptake.}$

The N_2O_5 uptake rate is influenced by multiple factors including precursor levels, meteorological parameters, and heterogeneous reaction conditions (Ma et al., 2023; Chen et al., 2020; Chen et al., 2024).

A machine learning method integrating these factors was employed to identify the key drivers of pNO₃ formation via N2O5 uptake. The relative importance of each factor was evaluated by absolute SHAP values (Figure 4a), and their impacts were elucidated by examining the relationships between individual factors and their corresponding SHAP values (Figure 4b-e and Figure S8). Results showed that the nocturnal NO₃ formation rate (P(NO₃)), an integrated indicator of nocturnal atmospheric oxidation capacity (Wang et al., 2021), was the most important factor. The steep slope of the positive correlation between P(NO₃) and SHAP values indicated that P(NO₃) strongly enhances pNO₃⁻ formation via N₂O₅ uptake. P(NO₃) is primarily formed through the reaction between NO₂ and O₃ (P(NO₃) = k_{NO2+O3}[NO₂][O₃]), suggesting that NO₂ and O₃ mainly influenced pNO₃ formation via N₂O₅ by modulating NO₃ radical formation. Notably, the factor logNO₂/O₃ had relatively low importance, indicating concentrations of precursors were more important than NO₂/O₃ ratio in determining pNO₃ formation via N₂O₅ uptake under extremely NO₂-limited condition (mean NO₂/O₃ was 0.40). Furthermore, as shown in Figure S8b, logNO₂/O₃ and its SHAP value show a positive correlation when logNO₂/O₃ is less than 0. This indicates that under NO₂-limited conditions (logNO₂/O₃ < 0, i.e., NO₂/O₃ < 1), pNO₃⁻ formation via N₂O₅ uptake was driven by the elevated NO₂. Compared with P(NO₃), other factors exhibited weaker effects on pNO₃ formation rate via N₂O₅ uptake. φClNO₂ emerged as the second most important factor and showed a negative correlation with SHAP values (Figure 4c), illustrating that CINO₂ formation inhibited pNO₃⁻ formation. This inhibitory effect could be attributed to high concentrations of Cl-containing particles (0.94 \pm 1.11 μ g m⁻³) in the study area. Chloride-containing aerosols promote N2O5 uptake to produce more ClNO2 (as evidenced by the positive correlation between φClNO₂ and chloride ions, Figure S9), while simultaneously reducing pNO₃⁻ formation (R5). Additionally, the nighttime produced ClNO₂ can undergo photolysis in following

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

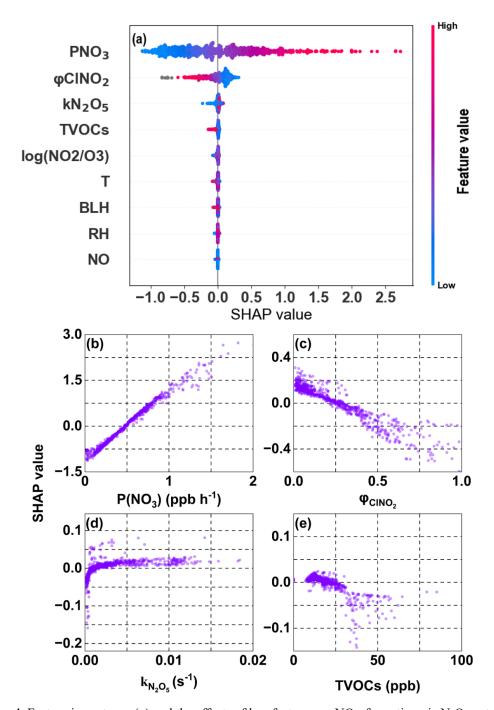
312

313

314

315

316


317

318

uptake. φ CINO₂ emerged as the second most important factor and showed a negative correlation with SHAP values (**Figure 4c**), illustrating that CINO₂ formation inhibited pNO₃⁻ formation. This inhibitory effect could be attributed to high concentrations of Cl-containing particles (0.94 ± 1.11 µg m⁻³) in the study area. Chloride-containing aerosols promote N₂O₅ uptake to produce more CINO₂ (as evidenced by the positive correlation between φ CINO₂ and chloride ions, **Figure S9**), while simultaneously reducing pNO₃⁻ formation (R5). Additionally, the nighttime produced CINO₂ can undergo photolysis in following day to release Cl radicals, which further promote O₃ formation. This indirect effect must be considered when formulating control measures for particulate matter pollution. Interestingly, as shown in **Table S4** (Tham et al., 2016; Wang et al., 2018; Yun et al., 2018; Morgan et al., 2015), although the simulated kN₂O₅ (7.64×10⁻³ ± 6.12×10⁻³ s⁻¹) was higher than values reported in Beijing (8.1×10⁻⁴ – 1.42×10⁻³ s⁻¹), Guangdong (3.78×10⁻³ – 9×10⁻³ s⁻¹), and UK (9.3×10⁻⁵ – 10⁻³ s⁻¹), kN₂O₅ exerted only a weak positive effect on N₂O₅ uptake (**Figure 4d**). The large difference existing in the importance of P(NO₃) and kN₂O₅ indicated that the pNO₃⁻ formation rate via N₂O₅ uptake process was more limited by precursor levels rather than heterogeneous uptake conditions. Similar phenomenon was also found in winter in urban

Beijing and Northern Utah mountain basins (Mcduffie et al., 2019; Chen et al., 2020). The total concentrations of the observed VOCs (TVOCs) showed a weak negative correlation with N₂O₅ uptake (**Figure 4e**). Similar to existing research (Hu et al., 2023), specific VOC species, such as styrene, 2-butene, and isoprene, can readily consume NO₃ radicals (**Figure S10**), thereby inhibiting N₂O₅ formation. However, the loss of N₂O₅ through the reaction between VOCs and NO₃ was relatively limited compared to its direct uptake, as determined by our calculations (Text S4), which supported the SHAP analysis.

Moreover, we found that the effects of φClNO₂, kN₂O₅, and TVOCs on pNO₃⁻¹ formation via N₂O₅ uptake were subject to P(NO₃) levels (**Figure 5a-5c**). Specifically, the negative effect of φClNO₂ and the positive effect of kN₂O₅ on pNO₃⁻¹ formation via N₂O₅ uptake became statistically significant when P(NO₃) exceeded approximately 1.0 ppb h⁻¹ and 0.5 ppb h⁻¹, respectively. The negative correlation slope of TVOCs versus pNO₃⁻¹ formation via N₂O₅ uptake intensified with increasing P(NO₃) levels, indicating that the N₂O₅ removal effect was enhanced through VOC-induced NO₃ depletion. These findings highlight the critical role of precursor NO₂ and O₃ in nocturnal pNO₃⁻¹ formation, demonstrating that these precursors mainly affect this pathway by modulating NO₃ radical formation.

Figure 4. Feature importance (a) and the effects of key factors on pNO₃⁻ formation via N₂O₅ uptake (b-e) obtained by the XGBoost-SHAP method. The relationships between SHAP values and major features: P(NO₃) (b), φClNO₂(c), kN₂O₅(d), and TVOCs (e). Feature importance ranking (a) is determined by mean absolute SHAP values (descending order, top to bottom). Relationships between SHAP values and other factors are shown in **Figure S8**.

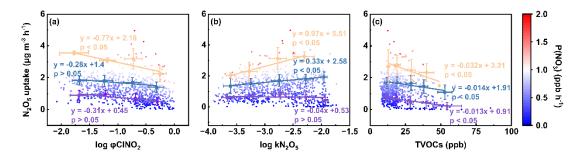


Figure 5. Relationships between pNO₃⁻ formation via N₂O₅ uptake and φ ClNO₂ (a), kN₂O₅ (b), and TVOCs (c) colored by P(NO₃). Linear fit curves in purple, blue and orange represent the fitting results for P(NO₃) in the ranges of 0–0.5 ppb h⁻¹, 0.5–1.0 ppb h⁻¹ and > 1.0 ppb h⁻¹, respectively.

3.4 Optimal Mitigation Strategies of pNO₃- under NO₂-limited conditions.

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

The above results revealed that pNO₃⁻ formation through both the daytime OH + NO₂ reaction and nocturnal heterogeneous N₂O₅ uptake was closely linked to VOCs-NOx-O₃ chemistry (Yang et al., 2022). Using a multiphase box model, we systematically examined the responses of both pNO₃⁻ and O₃ to varying NOx and VOC emission scenarios. Figure 6a shows pNO₃ formation located in the transition regime of VOCs and NOx. The formation rate of pNO₃⁻ (PNO₃⁻) decreased with the reductions of VOCs and NOx, and this trend became more pronounced under aggressive NOx reduction scenarios (Figure 6c-d). Figure S11a-b reveal that the mean response strength (RS, as defined in Methods) of PNO₃- to NOx was 0.75, higher than that for VOCs (RS = 0.29), suggesting that NOx reduction had a greater potential for pNO₃ mitigation compared to VOCs control. However, NOx and VOCs reductions exerted different impacts on O₃ formation rate (PO₃). In our study area, PO₃ located in the VOC-limited regime (Figure 6b). We found that PO₃ declined with VOCs reduction but increased with NOx reduction until NOx dropped below 20% of the base (Figure 5c-d). Moreover, detailed results distinguishing daytime and nighttime major formation pathways of pNO₃ are presented in Figure 6e-f and Fig. S11c-d. For VOC reduction scenarios, both the OH + NO₂ reaction and N₂O₅ uptake pathways showed declining nitrate formation rates, with comparable RS of 0.11 and 0.18, respectively. This occurs because reduced VOCs concentrations decrease OH radical and O₃ concentrations, thereby suppressing pNO₃⁻ formation via both pathways. In contrast, NOx reduction yielded more complex behavior. The OH + NO₂ reaction rates remained nearly constant until NOx dropped to 60% of the base. This stability arises because NOx reduction diminishes the NO titration effect on O₃, thereby increasing OH radicals through O₃ photolysis.

The competing effects of NOx reduction and OH enhancement led to an initial plateau in the OH + NO $_2$ reaction rate before its eventual decline. Differently, the N $_2$ O $_5$ uptake rate decreased consistently and significantly with NOx abatement, exhibiting a high mean RS value of 0.61. This phenomenon was closely associated with the NO $_2$ -limited regime of N $_2$ O $_5$ uptake in the study area. As shown in **Figure S12**, the variation trends of PNO $_3$ -, P(O $_3$), OH + NO $_2$, and N $_2$ O $_5$ uptake were consistent across all VOCs/NOx combinations, indicating that the results robustly reflect the response mechanisms to precursor emission changes.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

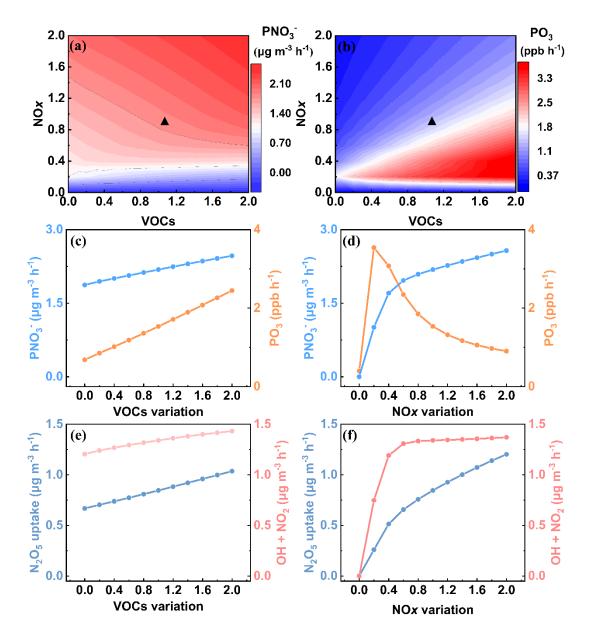
384

385

386

387

388


389

390

391

392

As mentioned above, while VOCs reduction proved effective in mitigating both pNO₃ and O₃, its effectiveness in reducing pNO₃ remained limited compared to NOx reduction. However, the effectiveness of NOx reduction exhibited significant regional and temporal variations. In China's megacities, including PRD, YRD, and BTH regions, pNO₃ initially increased and then decreased in response to the reduction of NOx emissions (Li et al., 2021; Zhang et al., 2023b; Yang et al., 2022). Under high-NOx conditions, mild NOx reduction would raise daytime OH and O₃ concentrations (Zhang et al., 2023b), rendering OH (rather than NOx) the limiting factor for the OH + NO₂ reaction, which consequently enhanced daytime pNO₃-formation. Additionally, as the season most susceptible to PM pollution, wintertime N₂O₅ formation in these regions was in an O₃-limited or transition regime (Ma et al., 2023), wherein the elevated daytime O₃ significantly enhanced NO₃ radical generation, thereby promoting nocturnal N₂O₅ uptake and subsequent pNO₃⁻ formation. Conversely, in NO₂-limited regions (e.g., southeastern China), NOx reduction showed limited impact on daytime pNO₃ formation via the OH + NO₂ pathway but effectively suppressed nighttime pNO₃ formation via N₂O₅ uptake. This approach concurrently reduced ClNO2 formation from N2O5 heterogeneous processes, consequently diminishing next-day Cl radical generation and its positive feedback on O₃ formation. Considering NOx reduction during the daytime would cause O₃ formation and only a slight reduction in pNO₃-, it is preferable to regulate NOx at night (18:00–06:00 the next day). Our findings demonstrate that in regions with a NO₂-limited for pNO₃-formation, targeted NOx reduction can synergistically decrease both pNO₃and O₃ concentrations, highlighting the critical need to tailor mitigation strategies for different regions.

Figure 6. Results of multi-scenario simulations obtained from an observation-constrained box model. Isopleths of simulated PNO₃⁻ (a) and PO₃ (b) with normalized VOCs and NOx. Simulated mean formation rates of pNO₃⁻ and O₃ (c, d), as well as pNO₃⁻ formation rates via N₂O₅ uptake and OH + NO₂ (e, f) with normalized VOCs and NOx. The PNO₃⁻ and PO₃ denote the formation rates of pNO₃⁻ and O₃, respectively. The simulated results are daily mean values, and the black triangle indicates the base case for winter 2022. In addition, the results in panel c-f were obtained by maintaining either NOx or VOCs at the base emission rate while varying the other.

Conclusions and Implications

Our observations revealed a bimodal diurnal pattern of pNO₃- in winter in urban Xiamen. The co-

occurrence of elevated nighttime pNO₃⁻ levels with increased N₂O₅ implied a significant contribution of N₂O₅ uptake to pNO₃⁻ formation. Quantitative model analysis showed that N₂O₅ uptake contributed 51.2% of the total pNO₃, which was comparable to the OH + NO₂ reaction. This high contribution of N₂O₅ uptake to pNO₃⁻ is not commonly observed across Chinese cities. Comparative analysis among different cities suggests that this phenomenon is likely associated with NO2-limited conditions for N2O5 uptake in our study area. Machine learning results further demonstrated that pNO₃⁻ formation via N₂O₅ uptake was driven by nocturnal atmospheric oxidation capacity (PNO₃) rather than heterogeneous uptake conditions. The underlying mechanism is that the weakened NOx titration effects lead to nighttime O₃ accumulation, which promotes NO₃ radical generation and consequently enhances N₂O₅ and pNO₃ formation. The joint response of pNO₃ and O₃ to various NOx and VOCs emission scenarios indicated that pNO₃ was more sensitive to NOx reduction than to VOCs reduction. However, mild NOx reduction showed limited effectiveness in reducing daytime pNO₃ while simultaneously increasing O₃ concentrations. Our findings suggest that NOx reduction is more effective when implemented during nighttime, particularly in regions where N₂O₅ formation is NO₂-limited. This approach can effectively control pNO₃⁻ formation by suppressing nocturnal NO₃ radical generation and consequently inhibiting N₂O₅ uptake, while simultaneously alleviate O₃ pollution by reducing ClNO₂ formation. With continuous NOx and VOCs emission reductions and renewable energy adoption in China, urban areas are transitioning from NOxsaturated to NOx-limited conditions, potentially increasing the importance of the N₂O₅ uptake pathway. In this context, comprehensive assessment of NOx reduction impacts on urban pNO₃⁻ and O₃ pollution, along with the development of region-specific mitigation strategies, becomes critically important.

424

425

426

427

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Data Availability

The dataset for this paper can be accessed at https://doi.org/10.6084/m9.figshare.29670629 (Lin et al.,

2025).

428

429

430

Code Availability

Data analysis methods are available from the authors upon request.

431

432

433

Acknowledgements

This work was funded by the National Natural Science Foundation of China (U22A20578), the guiding

- 434 project of seizing the commanding heights of "self-purifying city" (IUE-CERAE-202402), the National
- Key Research and Development Program (2022YFC3700304), STS Plan Supporting Project of the
- 436 Chinese Academy of Sciences in Fujian Province (2023T3013), and Xiamen Atmospheric Environment
- 437 Observation and Research Station of Fujian Province.

438

439 Author Contribution

- 440 Z.L. contributed to the methodology, data curation, software, analysis and writing of the original draft.
- 441 L.X. and J.C. contributed to the conceptualization, investigation, data curation, reviewing and editing the
- 442 text, supervision, and funding acquisition. C.Y., X.J., K.Z., F.Z., G.C., L.L., C.Y., Y.C., and Z.C. provided
- useful advice and revised the manuscript.

444

445

Competing interests

The authors declare no competing interests.

447

448

References

- 449 Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical Reviews.
- 450 103, 4605-4638, https://doi.org/10.1021/cr0206420, 2003.
- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chemical Society Reviews. 41,
- 452 6405-6447, https://doi.org/10.1039/c2cs35181a, 2012.
- 453 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the
- interpretation of atmospheric observations of NO₃ and N₂O₅: art. no. 4539, Journal of Geophysical
- 455 Research-Atmospheres. 108, https://doi.org/10.1029/2003jd003407, 2003.
- 456 Chen, X., Ma, W., Zheng, F. X., Wang, Z. C., Hua, C. J., Li, Y. R., Wu, J., Li, B. D., Jiang, J. K., Yan, C.,
- 457 Petäjä, T., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Liu, Y. C., Xia, M., and Kulmala, M.: Identifying
- 458 Driving Factors of Atmospheric N₂O₅ with Machine Learning, Environmental Science & Technology.
- 459 https://doi.org/10.1021/acs.est.4c00651, 2024.
- 460 Chen, X. R., Wang, H. C., and Lu, K. D.: Interpretation of NO₃-N₂O₅ observation via steady state in high-
- 461 aerosol air mass: the impact of equilibrium coefficient in ambient conditions, Atmospheric Chemistry
- and Physics. 22, 3525-3533, https://doi.org/10.5194/acp-22-3525-2022, 2022.
- 463 Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu, Y. H.,
- 464 Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field Determination
- of Nitrate Formation Pathway in Winter Beijing, Environmental Science & Technology. 54, 9243-9253,
- 466 <u>https://doi.org/10.1021/acs.est.0c00972</u>, 2020.
- 467 Cheng, C. L., Yang, S. X., Yuan, B., Pei, C. L., Zhou, Z. H., Mao, L. Y., Liu, S. L., Chen, D. Y., Cheng,
- 468 X. Y., Li, M., Shao, M., and Zhou, Z.: The significant contribution of nitrate to a severe haze event in the
- 469 winter of Guangzhou, China, Science of the Total Environment. 909,
- 470 <u>https://doi.org/10.1016/j.scitotenv.2023.168582</u>, 2024.

- 471 Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar UV, Journal of Geophysical
- 472 Research-Atmospheres. 105, 3565-3571, https://doi.org/10.1029/1999jd901070, 2000.
- 473 Fu, X. X., Wang, X. M., Liu, T. Y., He, Q. F., Zhang, Z., Zhang, Y. L., Song, W., Dai, Q. W., Chen, S.,
- and Dong, F. Q.: Secondary inorganic aerosols and aerosol acidity at different PM_{2.5} pollution levels
- during winter haze episodes in the Sichuan Basin, China, Science of the Total Environment. 918,
- 476 <u>https://doi.org/10.1016/j.scitotenv.2024.170512</u>, 2024.
- 477 Gui, K., Che, H. Z., Zeng, Z. L., Wang, Y. Q., Zhai, S. X., Wang, Z. M., Luo, M., Zhang, L., Liao, T. T.,
- Zhao, H. J., Li, L., Zheng, Y., and Zhang, X. Y.: Construction of a virtual PM_{2.5} observation network in
- 479 China based on high-density surface meteorological observations using the Extreme Gradient Boosting
- 480 model, Environment International. 141, https://doi.org/10.1016/j.envint.2020.105801, 2020.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey,
- 482 C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
- Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
- 484 Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,
- Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I.,
- Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Quarterly Journal of the
- 487 Royal Meteorological Society. 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.
- 488 Hu, H., Wang, H., Lu, K., Wang, J., Zheng, Z., Xu, X., Zhai, T., Chen, X., Lu, X., Fu, W., Li, X., Zeng,
- 489 L., Hu, M., Zhang, Y., and Fan, S.: Variation and trend of nitrate radical reactivity towards volatile organic
- 490 compounds in Beijing, China, Atmos. Chem. Phys., 23, 8211-8223, https://doi.org/10.5194/acp-23-8211-
- 491 2023, 2023.
- Huang, X., Ding, A. J., Wang, Z. L., Ding, K., Gao, J., Chai, F. H., and Fu, C. B.: Amplified transboundary
- transport of haze by aerosol-boundary layer interaction in China, Nature Geoscience. 13, 428-+,
- 494 <u>https://doi.org/10.1038/s41561-020-0583-4</u>, 2020.
- 495 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene,
- 496 Atmospheric Chemistry and Physics. 15, 11433-11459, https://doi.org/10.5194/acp-15-11433-2015,
- 497 2015.
- 498 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
- 499 pollution sources to premature mortality on a global scale, Nature. 525, 367-+
- 500 https://doi.org/10.1038/nature15371, 2015.
- 501 Li, F. B., Huang, D. D., Nie, W., Tham, Y. J., Lou, S. R., Li, Y. Y., Tian, L. H., Liu, Y. L., Zhou, M., Wang,
- 502 H. C., Qiao, L. P., Wang, H. L., Wang, Z., Huang, C., and Li, Y. J.: Observation of nitrogen oxide-
- influenced chlorine chemistry and source analysis of Cl₂ in the Yangtze River Delta, China, Atmospheric
- 504 Environment. 306, https://doi.org/10.1016/j.atmosenv.2023.119829, 2023.
- Li, M. M., Zhang, Z. H., Yao, Q., Wang, T. J., Xie, M., Li, S., Zhuang, B. L., and Han, Y.: Nonlinear
- responses of particulate nitrate to NOx emission controls in the megalopolises of China, Atmospheric
- 507 Chemistry and Physics. 21, 15135-15152, https://doi.org/10.5194/acp-21-15135-2021, 2021.
- 508 Lin, Z., Xu, L., Yang, C., Chen, G., Ji, X., Li, L., Zhang, K., Hong, Y., Li, M., Fan, X., Hu, B., Zhang, F.,
- and Chen, J.: Trends of peroxyacetyl nitrate and its impact on ozone over 2018–2022 in urban atmosphere,
- 510 npj Climate and Atmospheric Science. 7, 192, https://doi.org/10.1038/s41612-024-00746-7, 2024.
- 511 Liu, M. X., Huang, X., Song, Y., Tang, J., Cao, J. J., Zhang, X. Y., Zhang, Q., Wang, S. X., Xu, T. T.,
- 512 Kang, L., Cai, X. H., Zhang, H. S., Yang, F. M., Wang, H. B., Yu, J. Z., Lau, A. K. H., He, L. Y., Huang,
- X. F., Duan, L., Ding, A. J., Xue, L. K., Gao, J., Liu, B., and Zhu, T.: Ammonia emission control in China
- 514 would mitigate haze pollution and nitrogen deposition, but worsen acid rain, Proceedings of the National

- 515 Academy of Sciences of the United States of America. 116, 7760-7765,
- 516 https://doi.org/10.1073/pnas.1814880116, 2019.
- 517 Liu, T. T., Hong, Y. W., Li, M. R., Xu, L. L., Chen, J. S., Bian, Y. H., Yang, C., Dan, Y. B., Zhang, Y. N.,
- Xue, L. K., Zhao, M., Huang, Z., and Wang, H.: Atmospheric oxidation capacity and ozone pollution
- mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an
- 520 observation-based model, Atmospheric Chemistry and Physics. 22, 2173-2190,
- 521 https://doi.org/10.5194/acp-22-2173-2022, 2022.
- 522 Liu, Y., Wang, Y., Ma, P., Ma, Y., Pan, Y., Ma, W., Li, S., Liu, P., Liao, Z., Liu, Z., Chu, B., Ma, Q., Quan,
- 523 J., and He, H.: Formation of Nitrate in the Residual Layer of Beijing: Pathways Evaluation and
- 524 Contributions to the Ground Level, Environmental Science & Technology. 59, 9699-9708,
- 525 https://doi.org/10.1021/acs.est.5c02981, 2025.
- 526 Ma, P. K., Quan, J. N., Dou, Y. J., Pan, Y. B., Liao, Z. H., Cheng, Z. G., Jia, X. C., Wang, Q. Q., Zhan, J.
- L., Ma, W., Zheng, F. X., Wang, Y. Z., Zhang, Y. S., Hua, C. J., Yan, C., Kulmala, M., Liu, Y. A., Huang,
- 528 X., Yuan, B., Brown, S. S., and Liu, Y. C.: Regime-Dependence of Nocturnal Nitrate Formation via N₂O₅
- 529 Hydrolysis and Its Implication for Mitigating Nitrate Pollution, Geophysical Research Letters. 50,
- 530 <u>https://doi.org/10.1029/2023gl106183</u>, 2023.
- 531 Mao, J. Y., Yan, F. H., Zheng, L. M., You, Y. C., Wang, W. W., Jia, S. G., Liao, W. H., Wang, X. M., and
- 532 Chen, W. H.: Ozone control strategies for local formation- and regional transport-dominant scenarios in
- 533 a manufacturing city in southern China, Science of the Total Environment. 813,
- 534 https://doi.org/10.1016/j.scitotenv.2021.151883, 2022.
- McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M.,
- Goldberger, L., Lee, B., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.:
- 537 On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter
- formation during wintertime pollution events in Northern Utah, Atmospheric Chemistry and Physics. 19,
- 539 9287-9308, https://doi.org/10.5194/acp-19-9287-2019, 2019.
- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Hilfiker, F. L., Lee, B. H., Jaeglé, L., Guo, H. Y., Weber, R.
- J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E.,
- Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K.,
- Roberts, J. M., Thornton, J. A., and Brown, S. S.: ClNO₂ Yields From Aircraft Measurements During the
- 544 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, Journal of
- 545 Geophysical Research-Atmospheres. 123, 12994-13015, https://doi.org/10.1029/2018jd029358, 2018a.
- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V.,
- Jaeglé, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost,
- P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C.,
- Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous
- N₂O₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical
- 551 Evaluation of Current Parameterizations, Journal of Geophysical Research-Atmospheres. 123, 4345-
- 552 4372, https://doi.org/10.1002/2018jd028336, 2018b.
- Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J.,
- Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical
- 555 composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe, Atmospheric
- 556 Chemistry and Physics. 15, 973-990, https://doi.org/10.5194/acp-15-973-2015, 2015.
- Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast Nocturnal
- 558 Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime

- 559 Photochemistry, Journal of Geophysical Research-Atmospheres. 127,
- 560 https://doi.org/10.1029/2022jd036716, 2022.
- Requia, W. J., Di, Q., Silvern, R., Kelly, J. T., Koutrakis, P., Mickley, L. J., Sulprizio, M. P., Amini, H.,
- 562 Shi, L. H., and Schwartz, J.: An Ensemble Learning Approach for Estimating High Spatiotemporal
- 563 Resolution of Ground-Level Ozone in the Contiguous United States, Environmental Science &
- Technology. 54, 11037-11047, https://doi.org/10.1021/acs.est.0c01791, 2020.
- 565 Seinfeld, J. H.: URBAN AIR-POLLUTION STATE OF THE SCIENCE, Science. 243, 745-752,
- 566 <u>https://doi.org/10.1126/science.243.4892.745</u>, 1989.
- 567 Sun, J. J., Qin, M. M., Xie, X. D., Fu, W. X., Qin, Y., Sheng, L., Li, L., Li, J. Y., Sulaymon, I. D., Jiang,
- 568 L., Huang, L., Yu, X. N., and Hu, J. L.: Seasonal modeling analysis of nitrate formation pathways in
- 569 Yangtze River Delta region, China, Atmospheric Chemistry and Physics. 22, 12629-12646,
- 570 https://doi.org/10.5194/acp-22-12629-2022, 2022.
- 571 Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per Trillion
- 572 Mixing Ratios by Thermal Dissociation Cavity Ring-Down Spectroscopy, Analytical Chemistry. 83,
- 573 2761-2766, https://doi.org/10.1021/ac200055z, 2011.
- 574 Tham, Y. J., Wang, Z., Li, Q. Y., Wang, W. H., Wang, X. F., Lu, K. D., Ma, N., Yan, C., Kecorius, S.,
- Wiedensohler, A., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production
- 576 yield of ClNO₂ in polluted northern China: roles of aerosol water content and chemical composition,
- 577 Atmospheric Chemistry and Physics. 18, 13155-13171, https://doi.org/10.5194/acp-18-13155-2018,
- 578 2018.
- 579 Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn,
- 580 B., Li, X., Kecorius, S., Gröss, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant
- 581 concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on
- ozone production in a polluted region of northern China, Atmospheric Chemistry and Physics. 16, 14959-
- 583 14977, https://doi.org/10.5194/acp-16-14959-2016, 2016.
- Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook,
- A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C.,
- Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from
- ambient wintertime measurements, Journal of Geophysical Research-Atmospheres. 118, 9331-9350,
- 588 <u>https://doi.org/10.1002/jgrd.50653</u>, 2013.
- Wang, H. C., Lu, K. D., Chen, S. Y., Li, X., Zeng, L. M., Hu, M., and Zhang, Y. H.: Characterizing nitrate
- 590 radical budget trends in Beijing during 2013-2019, Science of the Total Environment. 795,
- 591 https://doi.org/10.1016/j.scitotenv.2021.148869, 2021.
- 592 Wang, H. C., Peng, C., Wang, X., Lou, S. R., Lu, K. D., Gan, G. C., Jia, X. H., Chen, X. R., Chen, J.,
- Wang, H. L., Fan, S. J., Wang, X. M., and Tang, M. J.: N₂O₅ uptake onto saline mineral dust: a potential
- 594 missing source of tropospheric ClNO₂ in inland China, Atmospheric Chemistry and Physics. 22, 1845-
- 595 1859, https://doi.org/10.5194/acp-22-1845-2022, 2022a.
- 596 Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S.
- 897 R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.:
- 598 Efficient N₂O₅uptake and NO₃ oxidation in the outflow of urban Beijing, Atmospheric Chemistry and
- 599 Physics. 18, 9705-9721, https://doi.org/10.5194/acp-18-9705-2018, 2018.
- 600 Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J.,
- 601 Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang, Y. H.: High
- 602 N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway,

- Environmental Science & Technology Letters. 4, 416-420, https://doi.org/10.1021/acs.estlett.7b00341,
- 604 2017.
- 605 Wang, H. C., Yuan, B., Zheng, E., Zhang, X. X., Wang, J., Lu, K. D., Ye, C. S., Yang, L., Huang, S., Hu,
- 606 W. W., Yang, S. X., Peng, Y. W., Qi, J. P., Wang, S. H., He, X. J., Chen, Y. B., Li, T. G., Wang, W. J.,
- 607 Huangfu, Y. B., Li, X. B., Cai, M. F., Wang, X. M., and Shao, M.: Formation and impacts of nitryl chloride
- in Pearl River Delta, Atmospheric Chemistry and Physics. 22, 14837-14858, https://doi.org/10.5194/acp-
- 609 22-14837-2022, 2022b.
- 610 Wang, W. J., Li, X., Cheng, Y. F., Parrish, D. D., Ni, R. J., Tan, Z. F., Liu, Y., Lu, S. H., Wu, Y. S., Chen,
- 611 S. Y., Lu, K. D., Hu, M., Zeng, L. M., Shao, M., Huang, C., Tian, X. D., Leung, K. M., Chen, L. F., Fan,
- 612 M., Zhang, Q., Rohrer, F., Wahner, A., Pöschl, U., Su, H., and Zhang, Y. H.: Ozone pollution mitigation
- strategy informed by long-term trends of atmospheric oxidation capacity, Nature Geoscience. 16, 1080-
- 614 1081, https://doi.org/10.1038/s41561-023-01334-9, 2023a.
- 615 Wang, Y. H., Gao, W. K., Wang, S., Song, T., Gong, Z. Y., Ji, D. S., Wang, L. L., Liu, Z. R., Tang, G. Q.,
- 616 Huo, Y. F., Tian, S. L., Li, J. Y., Li, M. G., Yang, Y., Chu, B. W., Petäjä, T., Kerminen, V. M., He, H., Hao,
- J. M., Kulmala, M., Wang, Y. S., and Zhang, Y. H.: Contrasting trends of PM_{2.5} and surface-ozone
- 618 concentrations in China from 2013 to 2017, National Science Review. 7, 1331-1339,
- 619 https://doi.org/10.1093/nsr/nwaa032, 2020.
- 620 Wang, Y. R., Yang, X. Y., Wu, K., Mei, H., De Smedt, I., Wang, S. G., Fan, J., Lyu, S., and He, C.: Long-
- term trends of ozone and precursors from 2013 to 2020 in a megacity (Chengdu), China: Evidence of
- 622 changing emissions and chemistry, Atmospheric Research. 278,
- 623 https://doi.org/10.1016/j.atmosres.2022.106309, 2022c.
- Wang, Y. T., Zhao, Y., Liu, Y. M., Jiang, Y. Q., Zheng, B., Xing, J., Liu, Y., Wang, S., and Nielsen, C. P.:
- Sustained emission reductions have restrained the ozone pollution over China, Nature Geoscience. 16,
- 626 967-+, https://doi.org/10.1038/s41561-023-01284-2, 2023b.
- 627 Wen, L., Xue, L. K., Wang, X. F., Xu, C. H., Chen, T. S., Yang, L. X., Wang, T., Zhang, Q. Z., and Wang,
- 628 W. X.: Summertime fine particulate nitrate pollution in the North China Plain: increasing trends,
- formation mechanisms and implications for control policy, Atmospheric Chemistry and Physics. 18,
- 630 11261-11275, https://doi.org/10.5194/acp-18-11261-2018, 2018.
- Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D
- 632 Atmospheric Modeling (F0AM) v3.1, Geoscientific Model Development. 9, 3309-3319,
- 633 <u>https://doi.org/10.5194/gmd-9-3309-2016</u>, 2016.
- 634 Xie, X. D., Hu, J. L., Qin, M. M., Guo, S., Hu, M., Wang, H. L., Lou, S. R., Li, J. Y., Sun, J. J., Li, X.,
- 635 Sheng, L., Zhu, J. L., Chen, G. Y., Yin, J. J., Fu, W. X., Huang, C., and Zhang, Y. H.: Modeling particulate
- 636 nitrate in China: Current findings and future directions, Environment International. 166,
- 637 <u>https://doi.org/10.1016/j.envint.2022.107369</u>, 2022.
- 638 Xing, J., Ding, D., Wang, S. X., Zhao, B., Jang, C., Wu, W. J., Zhang, F. F., Zhu, Y., and Hao, J. M.:
- Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and
- 640 NH₃ for reducing air pollution in the Beijing-Tianjin-Hebei region, China, Atmospheric Chemistry and
- Physics. 18, 7799-7814, https://doi.org/10.5194/acp-18-7799-2018, 2018.
- 642 Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H. C., Guo, Y. S., Ma, W., Zhan, J. L., Hua, C. J., Li, Y. Y.,
- 643 Deng, C. J., Li, Y. R., Zheng, F. X., Chen, X., Li, Q. Y., Zhang, G., Mahajan, A. S., Cuevas, C. A., Huang,
- D. D., Wang, Z., Sun, Y. L., Saiz-Lopez, A., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Donahue, N.
- 645 M., Jiang, J. K., Liu, Y. C., Ding, A. J., and Kulmala, M.: Increasing contribution of nighttime nitrogen
- 646 chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns, Nature

- Geoscience. 16, 975-+, https://doi.org/10.1038/s41561-023-01285-1, 2023.
- 648 Yang, C., Dong, H. S., Chen, Y. P., Xu, L. L., Chen, G. J., Fan, X. L., Wang, Y. H., Tham, Y. J., Lin, Z.
- Y., Li, M. R., Hong, Y. W., and Chen, J. S.: New Insights on the Formation of Nucleation Mode Particles
- 650 in a Coastal City Based on a Machine Learning Approach, Environmental Science & Technology. 58,
- 651 1187-1198, https://doi.org/10.1021/acs.est.3c07042, 2023.
- 652 Yang, S. X., Yuan, B., Peng, Y. W., Huang, S., Chen, W., Hu, W. W., Pei, C. L., Zhou, J., Parrish, D. D.,
- 653 Wang, W. J., He, X. J., Cheng, C. L., Li, X. B., Yang, X. Y., Song, Y., Wang, H. C., Qi, J. P., Wang, B. L.,
- 654 Wang, C., Wang, C. M., Wang, Z. L., Li, T. G., Zheng, E., Wang, S. H., Wu, C. H., Cai, M. F., Ye, C. S.,
- Song, W., Cheng, P., Chen, D. H., Wang, X. M., Zhang, Z. Y., Wang, X. M., Zheng, J. Y., and Shao, M.:
- The formation and mitigation of nitrate pollution: comparison between urban and suburban environments,
- 657 Atmospheric Chemistry and Physics. 22, 4539-4556, https://doi.org/10.5194/acp-22-4539-2022, 2022.
- 658 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P. G., Li, H. Y., Shan,
- 659 Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y. B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y.
- H., and Wang, T.: Heterogeneous N₂O₅ reactions on atmospheric aerosols at four Chinese sites:
- improving model representation of uptake parameters, Atmospheric Chemistry and Physics. 20, 4367-
- 4378, https://doi.org/10.5194/acp-20-4367-2020, 2020.
- 663 Yun, H., Wang, W. H., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D. L., and Zhou, Y.:
- Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in
- southern China, Atmospheric Chemistry and Physics. 18, 17515-17527, https://doi.org/10.5194/acp-18-
- 666 17515-2018, 2018.
- 667 Zhai, S. X., Jacob, D. J., Wang, X., Liu, Z. R., Wen, T. X., Shah, V., Li, K., Moch, J. M., Bates, K. H.,
- 668 Song, S. J., Shen, L., Zhang, Y. Z., Luo, G., Yu, F. Q., Sun, Y. L., Wang, L. T., Qi, M. Y., Tao, J., Gui, K.,
- Xu, H. H., Zhang, Q., Zhao, T. L., Wang, Y. S., Lee, H. C., Choi, H., and Liao, H.: Control of particulate
- nitrate air pollution in China, Nature Geoscience. 14, 389-+, https://doi.org/10.1038/s41561-021-00726-
- 671 z, 2021.
- Zhai, T. Y., Lu, K. D., Wang, H. C., Lou, S. R., Chen, X. R., Hu, R. Z., and Zhang, Y. H.: Elucidate the
- 673 formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River
- Delta summer 2019, Atmospheric Chemistry and Physics. 23, 2379-2391, https://doi.org/10.5194/acp-
- 675 <u>23-2379-2023</u>, 2023.
- Zhang, R., Han, Y. H., Shi, A. J., Sun, X. S., Yan, X., Huang, Y. H., and Wang, Y.: Characteristics of
- ambient ammonia and its effects on particulate ammonium in winter of urban Beijing, China,
- Environmental Science and Pollution Research. 28, 62828-62838, https://doi.org/10.1007/s11356-021-
- 679 <u>14108-w</u>, 2021.
- 680 Zhang, X., Ma, Q., Chu, W. H., Ning, M., Liu, X. Q., Xiao, F. J., Cai, N. N., Wu, Z. J., and Yan, G.:
- Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the
- 682 Yangtze River Delta region, China, Science of the Total Environment. 892,
- 683 https://doi.org/10.1016/j.scitotenv.2023.164703, 2023a.
- Zhang, Y., Lei, R., Cui, S., Wang, H., Chen, M., and Ge, X.: Spatiotemporal trends and impact factors of
- PM_{2.5} and O₃ pollution in major cities in China during 2015-2020, Chinese Science Bulletin. 67, 2029-
- 686 2042, 2022.
- 687 Zhang, Y. N., Wang, H. L., Huang, L. B., Qiao, L. P., Zhou, M., Mu, J. S., Wu, C., Zhu, Y. J., Shen, H.
- Q., Huang, C., Wang, G. H., Wang, T., Wang, W. X., and Xue, L. K.: Double-Edged Role of VOCs
- Reduction in Nitrate Formation: Insights from Observations during the China International Import Expo
- 690 2018, Environmental Science & Technology. 57, 15979-15989, https://doi.org/10.1021/acs.est.3c04629,

691 2023b.

- Zhao, S. P., Yin, D. Y., Yu, Y., Kang, S. C., Qin, D. H., and Dong, L. X.: PM_{2.5} and O₃ pollution during
- 693 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts,
- 694 Environmental Pollution. 264, https://doi.org/10.1016/j.envpol.2020.114694, 2020.
- 695 Zhao, X. X., Zhao, X. J., Liu, P. F., Chen, D., Zhang, C. L., Xue, C. Y., Liu, J. F., Xu, J., and Mu, Y. J.:
- 696 Transport Pathways of Nitrate Formed from Nocturnal N₂O₅ Hydrolysis Aloft to the Ground Level in
- 697 Winter North China Plain, Environmental Science & Technology.
- 698 <u>https://doi.org/10.1021/acs.est.3c00086</u>, 2023.
- 699 Zhou, M., Nie, W., Qiao, L. P., Huang, D. D., Zhu, S. H., Lou, S. R., Wang, H. L., Wang, Q., Tao, S. K.,
- 700 Sun, P., Liu, Y. W., Xu, Z., An, J. Y., Yan, R. S., Su, H., Huang, C., Ding, A. J., and Chen, C. H.: Elevated
- Formation of Particulate Nitrate From N₂O₅ Hydrolysis in the Yangtze River Delta Region From 2011 to
- 702 2019, Geophysical Research Letters. 49, https://doi.org/10.1029/2021gl097393, 2022.
- 703 Zong, Z., Tian, C. G., Sun, Z. Y., Tan, Y., Shi, Y. J., Liu, X. H., Li, J., Fang, Y. T., Chen, Y. J., Ma, Y. H.,
- Gao, H. W., Zhang, G., and Wang, T.: Long-Term Evolution of Particulate Nitrate Pollution in North
- 705 China: Isotopic Evidence From 10 Offshore Cruises in the Bohai Sea From 2014 to 2019, Journal of
- Geophysical Research-Atmospheres. 127, https://doi.org/10.1029/2022jd036567, 2022.