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Abstract. Accurate streamflow forecasting is critical for mitigating the impacts of hydrological extremes and guiding 15 

sustainable water resource management, particularly in poorly gauged tropical catchments. This study presents a hybrid 

forecasting framework that integrates Neural Network Seasonal Autoregressive Integrated Moving Average using exogenous 

variables (NN-SARIMAX) models with nonlinear principal components (NLPCs) derived from CHIRPS precipitation data, 

and large-scale ocean–atmosphere indices (macroclimatic variables, MVs). Four monthly models were developed and tested 

for the Tocaría River basin in the Colombian Orinoquía region: (1) a baseline SARIMA (4,0,4) (0,0,3)₁₂ model; (2) SARIMAX 20 

with exogenous MVs; (3) NN-SARIMAX with NLPCs; and (4) a hybrid NN-SARIMAX combining both MVs and NLPCs. 

The hybrid model achieved the best performance with an R² of 0.78 during the validation period. These results underscore the 

effectiveness of integrating local precipitation variability and large-scale climatic drivers to enhance forecast accuracy under 

data-scarce conditions. The proposed methodology offers a transferable approach for operational forecasting in ungauged or 

sparsely monitored basins, contributing to early warning systems, drought preparedness, and adaptive water governance in 25 

vulnerable tropical regions. 
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1 INTRODUCTION 

Sustainable management of water resources in tropical basins critically depends on the ability to accurately anticipate 

streamflow dynamics amid complex hydroclimatic variability. In regions like the Colombian Orinoquía, the interplay of large-30 

scale ocean–atmosphere phenomena; especially the El Niño–Southern Oscillation (ENSO); introduces pronounced 
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nonstationarity and nonlinearity, challenging traditional time series forecasting methods (Pasquini et al., 2007; Chiew and 

McMahon, 2002; Yap and Musa, 2023). Streamflow integrates precipitation, evapotranspiration, infiltration, and climatic 

anomalies across multiple spatial and temporal scales, yet sparse hydrometeorological monitoring limits the characterization 

of these processes (Tootle et al., 2008; Yao et al., 2020). 35 

Conventional statistical models such as Autoregressive Integrated Moving Average (ARIMA) and its seasonal extension 

(SARIMA) have been widely applied for streamflow prediction due to their capacity to model temporal dependencies and 

seasonality under stationarity assumptions (Valipour, 2015; Sirisha et al., 2022). However, their performance diminishes in 

capturing abrupt, nonlinear fluctuations characteristic of tropical catchments influenced by exogenous climate drivers (Moeeni 

and Bonakdari, 2017). Consequently, hybrid approaches that couple SARIMA with Artificial Neural Networks (ANNs) have 40 

emerged, leveraging ANNs’ nonlinear learning capacity and robustness to data scarcity to improve forecasting skill (Rafael et 

al., 2022; Niu and Feng, 2021; Costa et al., 2023). 

In Colombia, ANN-based models incorporating macroclimatic indices; such as sea surface temperature anomalies and ENSO-

related indices; have demonstrated substantial improvements in streamflow forecasting accuracy for Andean and Pacific basins 

(Mesa et al., 2001; Poveda et al., 2002; Velásquez et al., 2010; Cárdenas et al., 2022). Nevertheless, similar studies remain 45 

scarce for the Orinoquía region, despite its hydrological sensitivity to both Pacific and Atlantic climatic influences (Builes-

Jaramillo et al., 2022). The Tocaría River basin (Orinoquía region), exemplifies this knowledge gap; it is characterized by 

limited hydrometeorological instrumentation and experiences seasonal extremes of drought and flooding that impact local 

agriculture and ecosystems (Corporinoquia and Corpoboyacá, 2015a). 

Building on previous work that successfully employed NLPCA combined with satellite-derived CHIRPS precipitation data to 50 

impute missing monthly streamflow records in the Tocaría basin; demonstrating high accuracy across stations with substantial 

data gaps (Ocampo-Marulanda et al., 2025); this study advances the development of a parsimonious hybrid forecasting 

framework. The proposed model integrates a SARIMA component with feedforward ANNs and incorporates NLPC derived 

from CHIRPS data alongside macroclimatic variables representing large-scale atmospheric–oceanic drivers named NN-

SARIMAX. This nonlinear dimensionality reduction enhances model generalization in low-data contexts, effectively capturing 55 

the concurrent influences of Pacific and Atlantic climate variability. 

The research aims to provide an accurate monthly streamflow forecasting tool tailored to the Tocaría River’s hydrological 

regime, supporting adaptive water resource management in a data-limited and climate-vulnerable tropical basin. By addressing 

key gaps in scientific knowledge and practical decision-making tools, the framework offers scalable potential for application 

in other similarly under-monitored tropical catchments subject to complex climatic forcing. 60 
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2 METHODOLOGY 

This section outlines the methodological framework developed for monthly streamflow forecasting in poorly instrumented 

basins, using the Tocaría River (Colombian Orinoquia) as a case study. The approach integrates seasonal autoregressive 

modeling with exogenous predictors, nonlinear dimensionality reduction, and multivariate correlation analysis. 

As illustrated in Fig 1, the workflow combines three primary data sources—observed streamflow, satellite-derived 65 

precipitation (CHIRPS), and ocean–atmosphere macroclimatic variables (MVs)—through preprocessing, imputation, NLPCA-

based reduction, and statistical evaluation. Four forecasting models were independently constructed and trained, and 

subsequently compared using RMSE, R², Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

residual diagnostics. 

 70 

 
Figure 1: Schematic representation of the methodological workflow for streamflow forecasting under data-scarce conditions. 

2.1 Study area 

The Tocaría River originates at 3,200 m above sea level in the Guevarrica hill and drains a watershed of 2,223 km² on the 

eastern flank of the eastern cordillera. The river extends over 127.5 km with an average longitudinal slope of 5%. The basin is 75 

part of the Cravo Sur system, a tributary to the Meta River within the Orinoco macro-basin (Corporinoquia, 2010; 

Corporinoquia and Corpoboyacá, 2015b) (Fig. 2). 

The basin experiences a monomodal rainfall regime with a distinct wet season from April to November and a dry season from 

December to March. Although 90% of the basin lies within the Andean region, its discharge contributes to the Orinoquía 

domain. Mean annual precipitation is approximately 2,031 mm, with peak streamflows during the wet season and minimum 80 

flows in February (Ruíz-Ochoa et al., 2022; Urrea et al., 2016). 
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Figure 2: Geographic location of the Tocaría River basin and El Playón hydrometric station. Digital elevation model, political 
boundaries, watershed boundaries, and rivers extracted from GEOPORTAL IDEAM: https://archivo.ideam.gov.co/geoportal 85 

2.2 Data 

Three main datasets were used for model development: observed streamflow, satellite-based precipitation, and large-scale 

macroclimatic indices. 

Streamflow data were obtained from the El Playón station, operated by Colombia’s national hydrometeorological institute 

(IDEAM), covering 1983–2019 with approximately 5% missing values. Data were sourced from the DIHME geoportal 90 

(http://dhime.ideam.gov.co). Missing values were imputed using NLPCA, incorporating CHIRPS precipitation data as an 

exogenous input, following the approach by Ocampo-Marulanda et al. (2025). 

Mean monthly discharge averaged 85 m³/s, with strong seasonal variability: February averaged 17 m³/s (dryest month), while 

July peaked at 172 m³/s (Fig. 3). These fluctuations highlight the necessity of modeling strategies that capture both 

hydroclimatic seasonality and interannual variability. 95 
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Figure 3: Monthly streamflow climatology at the El Playón station, Tocaría River. 

 

Macroclimatic variables were retrieved from the National Oceanic and Atmospheric Administration (NOAA, 100 

https://psl.noaa.gov/gcos_wgsp/). Twenty-one indices representing sea surface temperature anomalies, atmospheric pressure, 

and wind patterns were selected based on prior demonstrated correlations with Colombian streamflow regimes (Poveda et al., 

2011; Cerón et al., 2020; Canchala et al., 2020a). Complete descriptions of selected variables are available in Supplementary 

Table S1. 

Precipitation data were sourced from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), which 105 

integrates satellite and in situ observations. CHIRPS provides global coverage at 0.05° spatial resolution from 1981 to present. 

Its performance in Colombia is well documented (Funk et al., 2014; Urrea et al., 2016; Ocampo-Marulanda et al., 2022). In 

this study, CHIRPS data were used to derive nonlinear principal components (NLPC) from 81 time series corresponding to 81 

grid cells located within the Tocaría River basin. 

2.3 Data preprocessing 110 

This subsection details statistical preprocessing applied to streamflow data prior to model development, including variability 

characterization, trend detection, structural change identification, and stationarity assessment. 

2.3.1 Descriptive statistics and trend analysis 

Descriptive statistics calculated included mean (𝜇), maximum, standard deviation (𝜎), and coefficient of variation (CV), 

providing an initial quantification of streamflow magnitude and variability. 115 
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Structural changes were identified via Pettitt’s test (Pettitt, 1979), revealing a significant breakpoint in the time series mean. 

Sen’s slope estimator (Sen, 1968) quantified long-term trends, while the Mann-Kendall test (Mann, 1945) evaluated trend 

significance. 

2.3.2 Stationarity assessment 

Stationarity was assessed through additive time series decomposition into trend, seasonal, and residual components, facilitating 120 

visualization of nonstationary behavior. 

The Phillips–Perron (PP) test evaluated the null hypothesis of a unit root, offering robustness to autocorrelation and 

heteroskedasticity in residuals. Non-rejection of the null indicated nonstationarity, guiding NN-SARIMAX model structure 

selection. 

2.3.3 Autocorrelation and Partial Autocorrelation 125 

Temporal dependencies were examined via autocorrelation function (ACF) and partial autocorrelation function (PACF) 

analyses (Chatfield, 1989). The ACF quantifies linear correlation at lag k, defined as: 

𝑟! =
∑ ($!%$̅)($!"#%$̅$%#
!&' )
∑ ($!%$̅)($%#
!&'

           (1) 

where 𝑥( is the series value at time t, 𝑥̅	is the mean, and n the number of observations. 

PACF measures correlation at lag k controlling for intermediate lags, informing autoregressive and moving average term 130 

selection in NN-SARIMAX models (Box et al., 2015). ACF and PACF plots were examined for seasonality and persistence, 

using 95% confidence intervals to identify significant lags. 

2.4 Selection of possible correlators  

2.4.1 CHIRPS precipitation as a predictor 

The hydrological relationship between precipitation and streamflow in the Cravo Sur basin has been previously demonstrated 135 

(Ocampo-Marulanda et al., 2025), supporting the use of CHIRPS precipitation data as potential predictors. In this study, 81 

precipitation time series corresponding to CHIRPS grid cells within the Tocaría sub-basin were analyzed. 

To prevent overfitting and reduce dimensionality, NLPCA was applied to extract two principal components capturing dominant 

nonlinear spatiotemporal precipitation patterns. Implemented via an autoencoder with bottleneck architecture, NLPCA 

minimizes reconstruction error between inputs and outputs, capturing nonlinear relationships beyond traditional PCA 140 

capabilities (Scholz et al., 2007; Canchala et al., 2019). Validation of extracted components included reconstruction accuracy 

and latent space visualization, confirming their efficacy in summarizing precipitation variability. 
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2.4.2 Macroclimatic variables as large-scale predictors 

MVs comprising sea surface temperature anomalies, sea-level pressure, and wind indices known to influence Colombian 

hydrology (Canchala et al., 2020a,b; Cerón et al., 2020; Poveda et al., 2001) were evaluated. 145 

Spearman rank correlations between each MV and streamflow were calculated for lags up to 14 months to capture delayed 

effects. Variables exhibiting statistically significant correlations at lags ≥ 6 months were retained, reflecting hydroclimatic 

memory. Only predictors with demonstrated hydrological relevance and minimal intercorrelation were preserved to ensure 

model parsimony and stability. 

2.4.3 Multicollinearity diagnosis and variable selection 150 

To ensure stable and interpretable forecasting models, a two-step assessment of multicollinearity was performed. Initially, 

correlation matrices visualized as heatmaps identified groups of highly correlated predictors that could introduce redundancy 

and overfitting risks (Dormann et al., 2013). Subsequently, the Variance Inflation Factor (VIF) quantified the degree of linear 

dependence among predictors (Katrutska and Strijov, 2017). Predictors with VIF values exceeding the threshold of 10 were 

flagged for potential exclusion. 155 

However, exclusion was not automatic. Variables exhibiting high VIF but demonstrating strong and meaningful correlations 

with streamflow were retained to preserve model interpretability and relevance (Lavery et al., 2017). Conversely, predictors 

with both high VIF and weak correlation with the target variable were removed. This iterative process was coupled with 

evaluation of model performance across different predictor subsets, balancing parsimony, predictive accuracy, and explanatory 

power. The final predictor set thus optimized robustness and transparency in streamflow forecasting. 160 

2.5 Forecasting model: NN-SARIMAX architecture 

The forecasting approach proposed herein is based on a hybrid NN-SARIMAX framework that integrates nonlinear temporal 

dynamics, exogenous climatic forcings, and seasonal variability within a unified predictive architecture. This model synergizes 

the statistical generalization capacity of SARIMA structures with the universal function approximation capabilities of neural 

networks trained on NLPC extracted from high-dimensional hydroclimatic inputs. 165 

The forecasted streamflow vector, denoted as 𝑦)(𝑘) ∈ 𝑅), is modeled as a nonlinear function of multiple lagged sequences: 

Streamflow autoregressive terms: 

 𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦3𝑘 − 𝑛*5          (2) 

Exogenous forcings (e.g., ocean-atmospheric indices): 

	𝑢+(𝑘), 𝑢+(𝑘 − 1),…	, 𝑢+(𝑘 − 𝑛,+), … ;… ; 𝑢-(𝑘), 𝑢-(𝑘 − 1),…	, 𝑢-(𝑘 − 𝑛,-)	 	 	 	 	 (3)	170 

Forecast residuals: 

 𝑒!(𝑘), 𝑒(𝑘 − 1),…	, 𝑒(𝑘 − 𝑛.)]          (4) 
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Seasonal lags of streamflow and residuals: 

𝑦(𝑘 − 𝑠), 𝑦(𝑘 − 2𝑠), … , 𝑦(𝑘 − 𝑛/ ∙ 𝑠),         (5) 

𝑒(𝑘 − 𝑠), 𝑒(𝑘 − 2𝑠), … , 𝑒(𝑘 − 𝑛/ ∙ 𝑠)         (6) 175 

The model’s general transfer function is expressed as Ec(7): 

𝑦(𝑘 + 1) = 𝑓𝑊

⎣
⎢
⎢
⎢
⎢
⎡ 𝑦(𝑘), 𝑦(𝑘 − 1),… , 𝑦3𝑘 − 𝑛*5;
𝑢+(𝑘), 𝑢+(𝑘 − 1),…	, 𝑢+(𝑘 − 𝑛,+); 𝑢-(𝑘), 𝑢-(𝑘 − 1),…	, 𝑢-(𝑘 − 𝑛,-)

𝑒!(𝑘), 𝑒(𝑘 − 1),…	, 𝑒(𝑘 − 𝑛.)]
𝑦(𝑘 − 𝑠), 𝑦(𝑘 − 2𝑠), … , 𝑦(𝑘 − 𝑛/ ∙ 𝑠),
𝑒(𝑘 − 𝑠), 𝑒(𝑘 − 2𝑠), … , 𝑒(𝑘 − 𝑛/ ∙ 𝑠) ⎦

⎥
⎥
⎥
⎥
⎤

    (7) 

Where	𝑛*, 𝑛,-, 𝑛., and 𝑛/ represent the autoregressive, exogenous, residual, and seasonal lag orders, respectively; 𝑠 denotes 

seasonal periodicity; and 𝑓𝑊 is a nonlinear mapping function parameterized by model weights 𝑊. 

This hybrid configuration enables simultaneous modeling of high-order dependencies, memory effects, and seasonal 180 

recurrence. Incorporating lagged residuals and seasonal components allows the model to capture patterns not accounted for by 

direct input–output relations, enhancing its capacity to learn both deterministic and stochastic dynamics. 

An open-loop configuration was adopted during training, feeding observed streamflow values back to stabilize learning. For 

validation and operational forecasting, a closed-loop mode recursively propagates forecasted values. Residual sequences were 

standardized during validation and testing to ensure numerical stability.  185 

The structure of the SARIMA model was determined through visual inspection of autocorrelation (ACF) and partial 

autocorrelation (PACF) plots of the monthly streamflow series. The orders (p,d,q) and (P,D,Q) were selected to reflect the 

presence of short-term dependencies and seasonal dynamics. Differencing was not applied, as the series appeared stationary 

in both its level and seasonal pattern. To support this assessment, the Phillips–Perron test was applied to evaluate the presence 

of unit roots and inform the choice of d=0 and D=0. A seasonal period of s=12 was defined based on the observed annual cycle 190 

in streamflow behavior. 

Data were partitioned into 70% training, 15% validation, and 15% testing subsets, preserving temporal ordering to avoid 

information leakage; a blocked temporal split was preferred over random sampling. Alongside Bayesian regularization, early 

stopping was implemented by monitoring validation loss with a patience threshold of 100 epochs, halting training upon 

stagnation in performance. 195 

Model performance was evaluated with complementary metrics reflecting accuracy and parsimony. RMSE quantified average 

prediction error magnitude and R² assessed explained variance. For NN-SARIMAX, model order selection criteria (AIC, BIC) 

balanced goodness-of-fit against model complexity.  
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2.6 Evaluation of the Models 

2.6.1 Forecast Error Degradation Across Prediction Horizons  200 

Forecasting accuracy typically decreases as the prediction horizon extends, a well-documented phenomenon referred to as 

forecast error degradation (Xiang et al., 2024). To assess this behavior, the best-performing NN-SARIMAX model was 

evaluated over multiple lead times using RMSE and R² as performance metrics. Forecasts were produced for 2 to 24 months 

ahead in increments of two months, enabling the quantification of predictive accuracy across short, medium, and long term 

horizons. 205 

To capture the evolution of forecast quality, RMSE and R² values were analyzed in pairs of consecutive horizons. This pairing 

facilitated the visualization of degradation trends through line plots, offering insights into the temporal limits of model 

effectiveness. The resulting performance curves contribute to a clearer understanding of how predictive uncertainty 

accumulates over time, which is critical for operational decision-making in hydrological forecasting. 

2.6.2 Residual Analysis  210 

Residual diagnostics are essential to evaluate model adequacy by verifying whether prediction errors conform to standard 

statistical assumptions. Residuals  𝑒( = 𝑦( − 𝑦)( were computed as the difference between observed and forecasted streamflow 

values, forming a time series subjected to rigorous statistical and graphical analysis. 

Normality was tested using the Jarque–Bera test (Jarque and Bera, 1980), assessing whether residuals follow a Gaussian 

distribution, a prerequisite for valid inference and uncertainty quantification. Autocorrelation was examined through the 215 

Durbin–Watson statistic (Durbin and Watson, 1950), where values near 2 suggest the absence of significant serial dependence, 

thus confirming that temporal structures have been effectively captured. Heteroscedasticity was assessed via the Breusch–

Pagan test (Breusch and Pagan, 1979); significant p-values indicated non-constant residual variance, potentially undermining 

the model's generalizability. 

Complementing these tests, graphical diagnostics were employed to detect patterns indicative of model misspecification. 220 

Histograms with kernel density estimation (Silverman, 1986) visually assessed normality, while residuals versus fitted values 

plots revealed heteroscedastic patterns or structural biases. Quantile–quantile plots (Wilk and Gnanadesikan, 1968) further 

tested alignment between empirical and theoretical residual quantiles. Finally, ACF plots identified lagged dependencies, 

where the absence of significant peaks outside confidence bounds supported the white noise assumption. 

3 RESULTS AND DISCUSSIONS 225 

The experimental results are organized into three subsections: (1) Description of the streamflow data, (2) Determination of the 

pool predictors, and (3) Forecasted streamflow series. Each subsection presents and discusses relevant findings, emphasizing 

the identification of the most suitable forecasting model based on accuracy metrics. A comparative analysis of the four 
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evaluated models highlights their strengths and limitations, guiding the selection of the most effective model for streamflow 

prediction. 230 

Long-range streamflow forecasting is a valuable tool for water resource managers, enabling proactive decision-making and 

strategic planning. However, excessively extending the forecast lead-time tends to degrade model performance, often resulting 

in diminished predictive accuracy. Consequently, this study adopts a lead-time of 24 months to evaluate and compare 

forecasting models. This horizon provides a balance between planning requirements and achievable accuracy for watershed 

management stakeholders. 235 

3.1 Description of the Streamflow Data 

3.1.1 Statistical and Graphical Description  

The streamflow time series at El Playón station exhibits pronounced interannual and seasonal variability, with values ranging 

from 2.5 m³/s to 280 m³/s and a mean of 92.4 m³/s. This amplitude is consistent with the monomodal rainfall regime 

characteristic of the region (Urrea et al., 2019). A standard deviation of 66.4 m³/s and a coefficient of variation of 71.8% 240 

confirm the high dispersion and temporal heterogeneity of the data, which poses a challenge for accurate modeling and 

prediction. 

Trend detection tests were also applied. A visual inspection suggested a potential breakpoint in January 2019; however, the 

Pettitt test yielded a p-value of 1.99, indicating that this change is not statistically significant. Likewise, Sen’s slope and the 

Mann-Kendall test indicate a slight upward trend in discharge, but without statistical significance (p = 0.3445), suggesting the 245 

absence of a persistent monotonic trend (see Table 1 and Fig. 4). 
 

Table 1: Basic statistics and trend characterization for El Playón station flow rates. 

Mean Min Max 
Standard 

deviation 

Coefficient of 

variation 
Break poin 

Pettitt 

(p-value) 
Sen slope 

Mann-Kendall 

(p-value) 

92.4 2.5 280 66.4 71.8 Jan/2019 1.99 0.0188 0.3445 
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 250 
Figure 4: Temporal behavior of streamflow at the Tocaría River. 

 

These characteristics highlight the complexity of the time series and justify the need for rigorous preprocessing, including 

stationarity and autocorrelation analysis. 

3.1.2 Stationarity Analysis  255 

Stationarity was assessed through both graphical decomposition and formal statistical testing. The decomposition revealed a 

marked seasonal component and residuals without systematic trend or variance shifts, supporting weak stationarity 

assumptions component lacking any systematic trend, indicating time-invariance in mean and variance (Figure 5). 
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Figure 5: Decomposition of El Playón streamflow time series into trend, seasonality, and residual components. 260 

 

The Phillips-Perron test further confirmed stationarity, yielding a test statistic of -6.5005 and a p-value < 0.0001, allowing 

rejection of the null hypothesis of a unit root. These results justify modeling without differencing and the selection of d = 0 in 

the SARIMA model. 

3.1.3 Autocorrelation and Partial Autocorrelation Structure 265 

The ACF displays significant periodic peaks at regular intervals, indicative of strong seasonal periodicity and persistent 

temporal dependencies beyond short lags (Fig. 6). This cyclicality aligns with hydrological patterns driven by seasonal 

precipitation and runoff dynamics, underscoring the appropriateness of seasonal forecasting models such as SARIMA. 
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 270 
Figure 6: Autocorrelation of the time series of El Playón streamflow for 100 months of lags.  

 

The PACF shows a prominent spike at lag 1 followed by rapid decay to values within the confidence bounds (Fig. 7), consistent 

with an autoregressive process of order 1 (AR(1)) though the selected SARIMA model incorporates higher-order dynamics to 

capture the longer memory and seasonal structure identified in the ACF. The lack of significant PACF values at higher lags 275 

indicates limited benefit from additional autoregressive terms. 

 

 
Figure 7: Partial autocorrelation function of El Playón streamflow series over 25 monthly lags. 
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 280 

Based on combined ACF and PACF analysis, a SARIMA (4,0,4)(0,0,3)₁₂ model was selected. This model configuration 

incorporates the identified seasonal periodicity (season length s = 12), confirms stationarity (d = 0), and captures short-term 

autoregressive and moving average dynamics. Residual diagnostics validated the model’s adequacy, demonstrating no 

significant autocorrelation. 

3.2. Determination of the Pool Predictors  285 

3.2.1 Selection of precipitation NLPCs as exogenous variables 

The 81 CHIRPS precipitation time series for the Tocaría River basin were reduced to two nonlinear principal components 

(NLPC1 and NLPC2) using NLPCA. NLPC1 explains 92.5% of the total variance (eigenvalue = 25.6), and NLPC2 accounts 

for 7.4% (eigenvalue = 2.1), preserving the dominant spatiotemporal patterns of the original dataset retaining over 99% of the 

total variance and the key spatiotemporal signatures of basin-wide precipitation. 290 

Spearman correlation analysis revealed moderate positive correlations between the NLPCs and the streamflow observed at the 

El Playón station, with coefficients of 0.50 for NLPC1 and 0.34 for NLPC2. These results support the predictive utility of the 

NLPCs as exogenous variables, consistent with findings by Ocampo-Marulanda et al. (2025), who used CHIRPS-derived 

precipitation components to reconstruct streamflow time series in the Cravo Sur basin under data-scarce conditions. These 

components were subsequently included as covariates in the streamflow forecasting model, enabling a more parsimonious yet 295 

informative representation of the basin’s precipitation dynamics 

Incorporating NLPCs as exogenous predictors offers a compact yet informative representation of precipitation, reducing 

dimensionality without sacrificing critical hydrometeorological signals. 

3.2.2 Selection of Macroclimatic Variables as Exogenous Variables 

The influence of 21 MVs on the streamflow variability of the Tocaría River was assessed using a lagged Spearman correlation 300 

analysis, considering time lags from 0 to 14 months. This asynchronous framework allowed for identification of delayed 

relationships between climate anomalies and hydrological responses, which are crucial for predictive modeling.	This lagged 

correlation framework enables detection of delayed hydroclimatic teleconnections, which are essential for long-lead 

streamflow forecasting. 

Statistical significance was evaluated using two-tailed tests with confidence levels between 90% and 99%. Figure 8 displays 305 

the lagged correlations between the MVs and the streamflow at the El Playón station. Several variables demonstrated 

statistically significant correlations across multiple lags, exhibiting a quasi-periodic structure that reflects the hydroclimatic 

seasonality modulated by the Intertropical Convergence Zo ne (ITCZ). 
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 310 
Figure 8: Lagged Spearman correlations between MVs and streamflow at El Playón station. 

 

Key Pacific-related indices—namely NINO12 (ρ = 0.75) and NINO3 (ρ = 0.60)—emerged as the strongest predictors, 

underscoring the robust influence of ENSO-related sea surface temperature (SST) anomalies on the Tocaría River streamflow. 

These findings are consistent with previous studies across Colombia (e.g., Canchala, 2020c; Cadavid and Salazar, 2008; 315 

Poveda et al., 2002), which reported comparable lagged correlations between ENSO indices and regional streamflow, often 

with cyclic behavior. 

In addition, Atlantic-related variables such as AMM (ρ = 0.32) and TSA (ρ = 0.25) showed statistically significant, albeit 

weaker, correlations. These results corroborate the relevance of Atlantic SST variability in eastern Colombia. The Llanos low-

level jet and moisture transport from the tropical Atlantic—modulated by indices such as AMM and TSA—have been 320 

highlighted as key controls of precipitation and streamflow in the Orinoquía region (Labat et al., 2012; Nieto et al., 2008; 

Builes et al., 2022; Correa et al., 2024). 

The set of significantly correlated predictors spans both Pacific and Atlantic basins: NINO3, NINO4, NINO12, NINO34, PDO, 

TNI, NP, QBO (Pacific-related), and AMO, NTA, TNA, NAO, AMM, TSA (Atlantic-related). This reinforces the complexity 

of the climate–hydrology interactions in the Tocaría River basin and emphasizes the need to account for both direct and lagged 325 

macroclimatic signals in predictive modeling. 

3.2.3 Assessing Multicollinearity and Variable Selection for Improved Time Series Forecasting 

To ensure model robustness and avoid overfitting, multicollinearity among predictors was quantified using the VIF. Table 2 

presents the VIF values for all candidate variables. While most variables showed acceptable levels (VIF < 10), certain 

https://doi.org/10.5194/egusphere-2025-3694
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

predictors; especially those related to ENSO; exhibited extreme multicollinearity. NINO3, NINO4, NINO12, and NINO34 had 330 

VIFs ranging from 2,492 to 81,825. TNA and TSA presented infinite VIFs, indicating perfect collinearity with other variables 

most likely due to structural redundancy among Atlantic SST indices, as confirmed by the correlation heatmap. 

 
Table 2: Variance Inflation Factor Analysis for predictor variables. 

Variable VIF Variable VIF 

NAO 2 NTA 16 

NINO3 38,899 QBO 1 

NINO4 29,126 AMO 8 

NINO12 2,492 NP 17,705 

NINO34 81,825 AMM 8 

PDO 2 TSA inf 

TNA inf PNLPCA_PC1 4 

TNI 4 PNLPCA_PC2 4 

 335 

These results, along with the correlation heatmap (Fig. 9), confirm substantial interdependence among ENSO indices, 

suggesting that including multiple related predictors may lead to instability and redundancy. For example, NINO3, NINO4, 

and NINO34 are highly correlated, and thus only one may be sufficient to represent ENSO dynamics. Likewise, high 

correlation between TNA and TNI implies redundancy. 

 340 
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Figure 9: Correlation heatmap of predictor variables. 

 

To address this, various combinations of variables were tested through an iterative model refinement process, prioritizing 

predictors with strong individual relationships to streamflow and minimal mutual collinearity. This selection strategy balances 345 

predictive power with model parsimony, mitigating multicollinearity-induced variance inflation and enhancing 

generalizability. Model performance was evaluated using RMSE and R² to balance predictive accuracy and parsimony. 

Ultimately, the optimal subset of exogenous predictors was determined to be: 

PNLPCA_PC1, PNLPCA_PC2, NINO4, NINO12, NP, AMO, TNA, AMM, and TSA. 

This final configuration minimized multicollinearity, preserved critical information from both precipitation and climate 350 

variability, and improved the interpretability and reliability of the streamflow forecasting model. 
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The final pool of predictors; comprising key macroclimatic indices and the first two NLPCs; provided the input for the 

forecasting models evaluated in the subsequent section. The next subsection presents the performance comparison of candidate 

models and the resulting streamflow forecasts. 

3.3 Forecasted Streamflow Series  355 

The forecasting performance of the four models was evaluated using R², RMSE, AIC, and BIC. All models were trained and 

validated on independent datasets to ensure generalization. Table 3 summarizes the results. All configurations yielded adequate 

performance in forecasting monthly streamflow up to 24 months in advance. As expected, R² values decreased and RMSE 

increased from training to validation. Training R² ranged from 0.85 to 0.91, while validation R² dropped to 0.71–0.78. RMSE 

increased from 26.8–32.7 in training to 41.5–49.9 in validation. 360 

The model combining ocean-atmospheric indices with nonlinear components showed the smallest degradation between 

training and validation, indicating higher robustness. In contrast, the baseline and the model using only nonlinear components 

yielded lower predictive skill, though both maintained acceptable performance (validation R² of 0.72 and 0.71, respectively), 

which is notable given the hydroclimatic variability of the basin. 

The best results were obtained with the combined model, which achieved the highest R² (0.91 training, 0.78 validation) and 365 

the lowest RMSE (26.8 and 41.5). No other model exceeded 0.87 in training or 0.73 in validation. All other models reported 

training RMSE above 29.0 and validation RMSE above 44.4. The combined configuration consistently showed lower errors. 

In terms of model complexity, AIC was identical (3103) for the three simpler configurations, while slightly higher (3110) in 

the combined model. BIC increased more noticeably in the combined case (3173), reflecting its additional structural 

complexity. 370 

Although the inclusion of nonlinear components alone did not significantly enhance the baseline, their integration with ocean-

atmospheric variables resulted in a marked improvement in accuracy and consistency across datasets. 

 
Table 3: Forecast performance metrics for the four streamflow forecasting models. 

Model Exogenous variables 

(inputs) 

Training Validation AIC BIC 

R2 RMSE R2 RMSE 

SARIMA (4,0,4) (0,0,3)12 None 0.86  30.2 0.72  49.9  3103  3122  

NNSARIMAX-MV MV  0.87  29.0 0.73  44.4 3103  3129  

NNSARIMAX-NLPC NLPC 0.85  32.7  0.71  49.7 3103  3129  

NNSARIMAX-MVNL MV and NLPC 0.91  26.8 0.78  41.5  3110  3173 

 375 
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These results are consistent with previous findings, Table 4, in the literature. Reported R² values for monthly streamflow 

prediction range from moderate (~0.65) to near-perfect (~0.99), depending on lead time, predictor variables, and catchment 

complexity. 

For instance, Hosseinzadeh et al. (2023) reported R² = 0.92 using a multivariate SARIMAX model with temperature and 

precipitation as exogenous inputs in the Colorado River Basin. Cheng et al. (2020) achieved R² = 0.95 using an LSTM model, 380 

although this performance was limited to one-month-ahead forecasts and dropped significantly (R² < 0.20) at longer lead times. 

Several hybrid or AI-based approaches have yielded high predictive accuracy (R² ≈ 0.99), such as those reported by Fathian 

(2019), Moeeni et al. (2017), and Dariane (2024). However, these results often stem from short-term horizons, multi-source 

calibration, or highly tuned model configurations prone to overfitting. Ghorbani (2016) obtained R² between 0.77 and 0.84 

using ANN and SVM models, while Gómez (2010) reported a more moderate R² ≈ 0.64 for the Bogotá River basin. 385 

In comparison, the performance of our models; particularly the NN-SARIMAX-MVNL; stands competitively within this 

broader context. Despite relying on a single hydrometric station and forecasting beyond the one-month horizon, our approach 

demonstrates robust skill in capturing the high temporal variability and structural complexity of streamflow in the Tocaría 

River Basin. 

 390 
Table 4: Validation R² of selected monthly streamflow forecasting models from literature. 

Best model Description Validation References 

R2 

SARIMAX 

 

24-month forecasts with temperature and precipitation 0.92 Hosseinzadeh,  

et al., 2023 

LSTM One-month-ahead forecasts 0.95 Cheng et al., 2020 

MARS1-SETAR Hybrid nonlinear time series and AI modeling 0.99 Fathian, et al 2019 

SARIMA-ANFIS SARIMA combined with neuro-fuzzy and ANN systems 0.94 Moeeni, 2017 

Multistep data-

driven 

Neural-fuzzy hybrid with input selection 0.97 Dariane, 2017 

Hybrid model SARIMA combined with nonlinear ANN 0.72 Moeeni, 2016 

ELM Extreme Learning Machine approach 0.82 Yassen et al., 2016 

RBF MLP, RBF, and SVM models for river flow prediction 0.87 Ghorbani, 2016 

PMC 20 NCO Neuro-fuzzy vs neural networks for Bogotá River 0.65 Gomez, 2012 
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3.3.1 Statistical Evaluation of the Best Model for Streamflow Forecasting 

Figure 10 shows the streamflow prediction results for the El Playón station using the NN-SARIMAX-MVNL model, which 

integrates exogenous variables including MV’s and NLPCs derived from local precipitation data. The figure includes three 395 

key elements: observed streamflow, model predictions for the training period, forecasts for the validation period, and test 

period. 

The observed streamflow series reveals pronounced seasonality, characterized by recurrent peaks and troughs consistent with 

the hydroclimatic regime of the basin. During the training phase, the model reproduces the seasonal dynamics and intra-annual 

variability with high accuracy, showing minimal deviations. In the validation period, although some differences appear; 400 

particularly underestimations of extreme highs or delays in response; the general flow patterns, including the timing and 

intensity of seasonal peaks, are well preserved. These results highlight the model’s capacity to capture both historical and 

prospective streamflow behaviors based on relevant exogenous predictors. 

 

 405 
 
Figure 10: Observed and predicted streamflow for training and validation using the NN-SARIMAX-MVNL model. 

 

To evaluate the model’s temporal generalization capability, streamflow forecasts were generated for horizons up to 24 months 

(Fig. 11). The RMSE remained below 11 m³/s for the first four months, which is low relative to the standard deviation of the 410 

observed series (σ ≈ 66 m³/s). Between months 5 and 8, RMSE increased to approximately 30–50 m³/s and then stabilized. 

The R² metric remained above 0.90 up to month 7, then gradually declined, reaching 0.83 by month 10 and remaining above 

0.75 throughout the entire 24-month forecast horizon. 
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These results confirm the robustness of the NN-SARIMAX-MVNL model for medium- and long-term forecasting, maintaining 

a favorable balance between accuracy and lead time. The performance is suitable for practical decision-making applications 415 

in water resource planning, including drought early warning and integrated watershed management in the Tocaría River basin. 

 

 
Figure 11: Forecast error degradation across prediction horizons based on RMSE and R² metrics. 

 420 

A residual analysis was performed to assess the adequacy of the model and detect any remaining structure in the errors. 

Residuals were computed as the difference between observed and predicted streamflows. The residual series is generally 

centered around zero, with sporadic peaks reaching +150 m³/s and troughs of −100 m³/s, primarily associated with abrupt 

hydrological events. 

Several statistical diagnostics were applied to evaluate the residual distribution. The Jarque–Bera test yielded a statistic of 13.2 425 

(p = 0.0014), suggesting a moderate deviation from normality. The Q–Q plot reveals mild departures from the theoretical 

normal line, particularly in the upper quantiles, indicating that extreme residuals are somewhat asymmetrically distributed 

(Fig. 12). Overall, while the residuals are not perfectly normal, their distribution remains reasonably close to symmetry for 

most values. 

The Durbin–Watson statistic of 1.72 indicates an absence of significant autocorrelation, which is corroborated by the ACF 430 

plot, where no substantial lags exceed the confidence bounds. This implies that the model has adequately captured the temporal 

dependencies in the streamflow series, and that residuals are largely uncorrelated. 

The Breusch–Pagan test returned a statistic of 19.05 (p = 0.0396), suggesting the presence of heteroscedasticity. This is further 

supported by the residuals vs. fitted values plot, where residual variance appears non-constant, particularly for low to mid-

range predicted values. Clustering and trends in residuals are visible in the initial portion of the fitted value range, consistent 435 

with heteroscedastic behavior. These findings indicate that while the model performs well overall, its variance may vary across 

the prediction space, particularly during high variability periods. 
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 440 
Figure 12: Graphical analysis of normality (Q-Q-Plot of residuals), heteroscedasticity (scatter plot, Residuals vs Fitted values), and 
ACF of residuals. 

 

In summary, the statistical analysis supports the conclusion that the NN-SARIMAX-MVNL model provides reliable 

streamflow forecasts under average and low-flow conditions. However, its ability to accurately predict high-magnitude peak 445 

flows remains limited, likely due to complex hydrometeorological drivers not fully captured by the selected predictors. Despite 

this, the model demonstrates strong potential for operational use in drought risk assessment and water resource management, 

particularly for forecasting low-flow events in the Tocaría River basin.  

4 CONCLUSIONS 

This study conducted a rigorous comparative assessment of four monthly streamflow forecasting models for a data-scarce 450 

basin, all based on the SARIMA framework. These models were incrementally enhanced through the integration of exogenous 

predictors and ANNs to improve predictive skill. All configurations demonstrated satisfactory performance, as reflected in 

high R² and low RMSE across both calibration and validation phases. However, the baseline SARIMA (4,0,4)(0,0,3)₁₂ model, 

while capable of capturing seasonal and autoregressive patterns, showed limited forecasting ability when compared to models 

incorporating external predictors. 455 

Among the configurations tested, the SARIMAX models with MVs, and the combination of MVs with NLPCs; substantially 

outperformed the baseline. The NN-SARIMAX-MVNL model, which merges both large-scale climate signals and localized 

precipitation variability, achieved the highest forecasting accuracy and stability, consistently yielding the lowest RMSE and 

highest R² in both training and out-of-sample testing. 

The selection of exogenous predictors was grounded in hydroclimatic relevance. The MVs included indices such as NINO4, 460 

NINO12, NP, AMO, TNA, AMM, and TSA, which collectively capture dominant modes of Pacific and Atlantic ocean–

atmosphere variability affecting the Tocaría River basin. At the local scale, precipitation data derived from the CHIRPS dataset 
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were incorporated via NLPCA, allowing the model to account for spatially distributed and nonlinear hydrometeorological 

influences. 

The NN-SARIMAX-MVNL model demonstrated strong predictive performance at extended lead times of up to 24 months, 465 

highlighting its applicability for anticipatory water resource management and hydroclimatic risk mitigation in data-limited 

settings. Residual diagnostics confirmed its reliability in forecasting both low; and average-flow regimes; an essential feature 

for drought preparedness and long-term planning in the basin. 

In summary, this work underscores the value of integrating large-scale climate teleconnections with locally resolved 

precipitation dynamics to enhance streamflow predictability under conditions of data scarcity. The hybrid modeling framework 470 

proposed herein offers a scalable and transferable approach for streamflow forecasting in other poorly instrumented basins, 

with implications for strengthening adaptive watershed governance in the context of climate variability and change. 
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