Detection and characterization of precipitation extremes and geohydrological hazards over
a transboundary Alpine area based on different methods and climate datasets

GENERAL COMMENT

Crespi, Enigl et al. study different rainfall datasets and test their potential for predicting
geohazards. The test is conducted over a comparatively large are in parts of Italy and Austria.
Results include how well the tested datasets and statistical descriptions of rainfall extremes
identify storms and recommendations on how the which dataset should be used.

The strength | see in this study is more on the comparison of the datasets than on the testing
of statistical thresholds to identify storms. Some of the datasets compared in this study are
often used, also in other data-sparser regions of the world, making such a comparison useful.
Which rainfall statistic is most powerful in predicting geohazards is a widely studied topic and
| don’t think the authors do this in much depth in this study. Furthermore, the results and
conclusions are not presented in a very accessible way. | therefore mainly recommend
streamlining and restructuring to frame the research in the right context and make it more
accessible (i.e. higher impact). Nevertheless, | congratulate the authors on the work they’ve
done so far, which | find useful and with practical impacts.

We thank the reviewer for taking the time to read the manuscript and providing useful
comments and suggestions. We need to clarify that the objective of our study is not to
introduce novel statistics for describing triggering precipitation to use for hazard predictions.
Instead, our aim is to systematically evaluate how well, through simple statistics or common
definitions and through different datasets, we can identify precipitation events that are
associated with the occurrence of hazards. Importantly, this assessment is carried out without
imposing any assumptions on the physical or temporal dynamics of the hazard processes
themselves, such as the role of antecedent conditions or specific triggering precipitation
mechanisms.

Based on the reviewer’s comment and the feedback provided by the other reviewer, the main
changes applied to the manuscript are:

- We restructured Data and Methodology sections by moving part of the contents to the
Results. In particular, the comparison among the datasets and the overview of
collected hazard records are now in the new subsection 3.1 (“Precipitation statistics
from meteorological datasets and hazard record overview”).

- Based on the feedback received from the other reviewer, we performed the hit rate
analysis for each hazard category separately (flood and mass movement), although
results are used only for discussion purposes and we kept the hit rate based on the full
hazard database (floods and mass movements together) as main analysis in the
manuscript.

- We updated the hazard dataset by integrating the new version of WLV and GERIQS,
which slightly increased the number of hazard records in our set. We updated all
numbers and results based on the updated version.



- We revised Discussion and Conclusions by shortening them and making key messages
more prominent and better related to the research questions of the study.

Specific comments are addressed below.

| list my main comments below and line-by-line comments further down.

The paper cannot be read very fluently, and one often has to guess the intention of the authors
with certain paragraphs/figures. For example, the methods around L180 on the rainfall
datasets are a mix of methods, results and discussion. Likewise for the hazard catalogues,
where trends are calculated and discussed in the methods (~L250). Also the discussion and
conclusions could be better structured to better convey the key messages by adding
subsections to the 3-page discussion that explicitly address the goals of the paper (testing the
methods for extreme rainfall definition, testing different datasets, implications for
practitioners).

We thoroughly restructured the manuscript to better separate methods, results, and
discussion. Specifically, we moved the rainfall dataset comparison and hazard catalogue
overview to the new subsection 3.1 under Results. In this way, the methodological descriptions
remain clearly distinguished from results and their interpretation.

In addition, we followed reviewer’s suggestion and reorganized Discussion and Conclusions by
explicitly address the main objectives of the study. In particular we split Discussion into four
main paragraphs reflecting the structure of the analysis workflow (4.1 Temporal patterns of
precipitation statistics and hazard records, 4.2 Methodological choices for comparing extreme
precipitation events and hazard records, 4.3 Temporal match between extreme precipitation
events and hazard occurrences, 4.4 Spatial coherence between extreme precipitation
intensities and hazard records) and we shortened the Conclusions by focusing on key messages
only.

While | think the detection thresholds calculated from “areal mean”, local p99” and “anomaly”
| think generally are meaningful statistics to use. But | don’t see much reasoning on why
exactly these were chosen and there are not many references either in this part. Given that
rainfall thresholds for geohazards has been a research topic for a long time, | miss the novelty
compared to other studies or even just the justification for using exactly these statistics, while
so many other statistics could be computed too (antecedent rainfall, multi-day cum. rainfall,
).

It is important to clarify that the goal of our study is not to develop novel statistical methods
for characterizing triggering precipitation for hazard prediction. Rather, our objective is to
systematically evaluate how effectively simple statistics or widely used definitions for extreme
characterization, applied across different datasets, can identify precipitation events associated
with hazard occurrences. Crucially, this evaluation is performed without making any



assumptions about the physical or temporal dynamics of the hazard processes themselves,
including the influence of antecedent conditions or specific precipitation-triggering
mechanisms.

We chose these three statistics to measure the extremality in different features of rainfall:
spatial extent (areal mean), local intensity (local p99) and magnitude, i.e., the combination of
spatial extent and level of above-normal intensity (anomaly). We better specified the aim of
the study in the Introduction:

“In this framework, the study aims to i) evaluate how metrics for precipitation intensity, not a-
priori tailored to a specific hazardous process, enable to capture extreme events with
triggering potential for geohydrological hazards over complex topography; ii) assess the
suitability of precipitation datasets of different types and spatial resolution to describe
extremes; iii) investigate the optimal combinations of metrics and datasets for characterizing
extreme precipitation events and their spatio-temporal relation with hazard records. To
answer these questions, three metrics measuring different aspects of rainfall extremes are
calculated from 1-day precipitation fields of four meteorological datasets over a
transboundary Alpine area between Italy and Austria and used to identify precipitation events
over 2003-2020. Subsequently, they are compared with a harmonized archive of
geohydrological hazard records to quantify the spatio-temporal match between identified
events and observed records.”

We also provided a motivation for the choice of the three metrics in the Methodology section:
“The metrics adopted for event detection are chosen to consider three different aspects of
extreme conditions, i.e., the spatial extent of intensities, the local intensity peak, and the
combination of anomalies and their spatial extent.”

The dataset comparison is conducted by comparing the hit rate, eg in Table 2, at an artificially
set threshold of top 5% rainfall events. However, from my experience it is more common and
interesting to compare the predictive power of these datasets to separate hazardous from
non-hazardous dates at a range of thresholds. For landslide early-warning, it is almost
standard to report receiver operating characteristics. You will easily find references on this
and the statistics can be calculated from the data you have with the eg the scikit learn library
in python (eg ROC-curve).

We initially computed receiver operating characteristic (ROC) metrics as part of our analysis.
However, our case differs from the standard ROC application. Because our study focuses
exclusively on the top 5% most extreme events—identified by applying the respective
methodological approaches to each dataset—the vast majority of days within the study period
(2003-2020) are classified as non-events. This leads to a large number of “misses,” which
biases the ROC curve and limits its interpretability in our context.

A more meaningful ROC-based evaluation would require considering all days in the period
together with the full set of reported hazards, which would result in a dataset-independent



analysis. Such an approach, however, is beyond the scope of this study. Importantly, our
objective is not to develop or evaluate an early warning system, but to assess the ability of
three different statistics to identify extreme days that led to hazards when applied across
different datasets.

Specific comments:

L17: can you say more about the three definitions? Abstract readers will want to know the
temporal scales of your analysis.

We added the temporal scale, i.e., we specified that we used 1-day precipitation totals in our
study, and we explicitly reported the extreme aspect measured by each metric instead of listing
metric names.

L21-24: Please specify in the abstract which data products you are testing. Now it only
becomes clear that ERA5-Land is bad. But what is good? What do you mean by «high-
resolution observation»?

We have updated the abstract to specify which data products are being tested. It now clearly
indicates not only that ERA5-Land performs poorly, but also which datasets (INCA and
secondarily SPARTACUS-TST) show better performance.

L79-80: also, the cited papers all seem hydro/flood related but not landslides

We revised the Introduction by citing more studies linking precipitation and geohydrological
hazards, covering both floods and mass movements (e.q., Peruccacci et al., 2017, Steger et al.,
2023; Vaz et al., 2018; Aradjo et al., 2022; Banfi and De Michele 2024). We also revised the
previous paragraph about extreme definition by reporting more hazard-related studies for
both floods and mass movements (e.qg., Barton et al., 2022; Meyer et al., 2022).

L113: a short intro to this section and the reasoning on how you chose the datasets would be
helpful here. Also, a table with key facts about the different datasets would be very helpful
We added an introductory paragraph in Section 2.2.1 and added a summary table with the
main dataset features in the Supplementary Material (Table S1):

“Four climate datasets covering the study area are selected to assess their ability to detect and
characterise extreme precipitation events over the transboundary region. The selection aims
to evaluate precipitation fields from different types of products i.e., observation-based grids
against reanalyses, and across different spatial resolutions. Two regional products are
considered as km-scale datasets, one based purely on the interpolation of in situ observations
and one incorporating multiple sources including observations and weather radar fields. The
state-of-the-art European reanalysis CERRA-Land at 5.5 km and the global reanalysis ERA5-
Land at 9 km are chosen to account for two widely used large-scale products and to evaluate
to what extent their precipitation fields are comparable with those resolved by regional
datasets. Each dataset is described in detail in the following, while key facts of each product



are summarized in Table S1. To enable the comparison, all analyses were based on the
congruent period 2003 to 2020, while each product was used in its native spatial resolution.”

L181-196: These paragraphs are a mix of methods, results and discussion. Furthermore, | miss
the link to your study. Could you say why showing these monthly means is important for your
study on extremes?

The monthly means were intended to provide a preliminary description of the dataset features,
which in turn might be reflected also in the representation of extremes, e.g., spatial patterns,
resolved scales, and seasonality. However, we recognized that showing a different statistic is
more appropriate given the objectives of our study. We have restructured the relevant
paragraphs and displayed the monthly 99t percentile both in Figure 2 and Figure 3 of the
revised manuscript (we reported them below). The previous version of Figure 2 displaying the
monthly means is now in the Supplementary Material (Figure S2) and used to support this
preliminary dataset comparison.
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Figure 2: Monthly 99 percentile of daily precipitation calculated over all days in 2003-2020 and all grid points in the study
area for the four gridded datasets considered.
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Figure 3: a) Winter half year (October to March) and b) summer half year (April to September) 99 percentile of daily
precipitation totals over 2003-2020 in the study area based on SPARTACUS-TST, INCA, CERRA-Land and ERAS-Land.
Each dataset is shown in its native spatial resolution.

L201: Please specify how you define “gravitational mass movement” as this is a very broad
term. Does it include rock glaciers? deep-seated landslides or only shallow? Debris flows?
Rockfall?

Gravitational mass movements comprise the following process types: shallow landslides,
debris avalanches, debris and mud flows, and rotational and translational slides. Rockfall
events are not included in the analysis. The detailed list of hazard processes considered is
reported at the beginning of Section 2.2.2.

L250: these lines again seem like results to me. Unless they were taken from other studies,
but then a citation should be enough.

These considerations are based on the preliminary assessment we performed on collected
hazards from the different catalogues and their distribution over the analysed period. To make
it clear that they are results of our analyses, we moved this part to the Results section in the
subsection 3.1, together with the comparison of precipitation fields from different datasets.



L283-287: Do you have evidence from other studies to support these assumptions?

Based also on the comments received from the other reviewer, we revised this part of the
methodology. We kept only the assumption related to the use of 1-day precipitation fields and
removed the other points in this list as they are not essential for the interpretation of our
results and might be misleading.

L363: should be “quantile” instead of “percentile”
We corrected that.

Table 3: I’'m having troubles understanding this table. | think it shows into which quantiles the
330 events fall. So each row should add up to 100%, which it doesn’t, probably due to
rounding. What are “intersected hazards”? | couldn’t find a definition in the text and | don’t
get why this number differs among datasets.

For each one of the 330 events, we classified the corresponding 1-day precipitation field into
classes based on the quantile ranges of daily precipitation on that date over the domain. The
quantile classes are thus relative to the spatial precipitation field of the extreme event. Then
for each hazard recorded within the 5-day window of the precipitation event we extracted the
precipitation class corresponding with the hazard location. By repeating this analysis over all
330 events, we got the total number of hazard records located in each class and we converted
it into a percentage based on the total number of hazard records within all 330 events (last
column in Table 3). The fact that the rows did not add up to 100% was a matter of rounding,
we reported them with one decimal place in the revised version of the Table (see below). Please
note that numbers in Table 3 have been updated based on the updated hazard dataset and
the revised method for class assignment.

In the previous version we searched for the maximum precipitation class over the four nearest
cells to the hazard record, which corresponds to a different searching radius depending on the
resolution of the precipitation product and might penalize the 1-km datasets. We rerun the
analysis for all datasets by assigning to the hazard record the maximum precipitation class in
a radius of 10 km. The 10-km radius, which is consistent with the coarsest grid of ERA5-Land
and the effective resolution expected for the high-resolution datasets, allows for a more robust
search as it implies a different number of surrounding cells defined by the grid spacing of each
product. The results show more clearly that a higher portion of hazard records (more than 60
%) fall in the highest precipitation class for the events detected and described by the 1-km
products, especially for INCA.

Quantile range
[0-0.1) | [0.1-0.3) | [0.3-0.5) | [0.5-0.7) [ [0.7-0.9) | [0.9-1] | Total
SPARTACUS-TST 0.1% 3.8% 5.8% 8.4% 19.5% 62.4% | 2,364
Areal mean INCA 0.3% 2.6% 4.2% 8.5% 17.6% 66.7% | 2,390
CERRA-Land 0.3% 3.1% 6.1% 12.3% 23.5% 54.7% | 2,286
ERA5-Land 2.3% 5.9% 11.2% 23.5% 21.8% 35.3% | 2,239
SPARTACUS-TST 0.2% 3.1% 4.7% 8.4% 18.1% 65.5% | 2,521
Local p99 INCA 0.6% 2.1% 4.0% 7.2% 15.5% 70.5% | 2,692
CERRA-Land 1.7% 2.7% 5.3% 10.9% 31.7% 47.6% | 2,688




ERA5-Land 1.8% 6.7% 12.8% 22.4% 23.3% 32.9% | 2,325
SPARTACUS-TST 0.2% 2.8% 5.3% 7.4% 18.9% 65.4% | 2,462
Anomaly INCA 0.7% 2.1% 3.8% 8.0% 16.4% 69.1% | 2,460
CERRA-Land 1.7% 3.1% 6.1% 12.9% 25.1% 51.0% | 2,381
ERA5-Land 2.1% 6.0% 11.1% 24.2% 21.3% 35.4% | 2,176

Table 3: Distribution over different precipitation classes of hazards recorded in a 5-day window of the top 330 (5 %) events
identified for each dataset-method combination. Precipitation classes are defined as quantile ranges of the gridded precipitation
values over the study area. Values are reported as percentage of the total hazard records included in the 5-day windows of the
top 5 % precipitation events (in the last column). For each method, the dataset reporting the highest total number of hazards
included in the top 5 % precipitation events is in bold.

L695: can you provide an example for an application requiring “accurate description of precip
fields”?

We added some examples in the text (hydrological modelling, early warning systems for floods
and water-resource-related applications).




