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Abstract. Permafrost is a defining feature of the Arctic and sub-Arctic environments. The extent of the permafrost region

accounts for about a quarter of the Northern Hemisphere’s terrestrial surface. While most research on permafrost has focused

on the summer season—when the active layer is thawed and carbon emissions peak—the late shoulder season, marking the

transition  season  between  summer  and  winter  and  ending  by  surface  freeze-back  at  the  large  scale,  has  received  less

attention. Yet, about 14% of the annual mean methane emissions from the permafrost occur during the refreezing period of

the active layer. Understanding the seasonality, interannual variability and long-term trends of the surface freeze-back is

therefore  crucial  to  better  constrain  the  high-latitude  atmospheric  carbon  budget  and  improve  Earth  System  Model

projections. In this study, we analyze the evolution of surface freeze-back onset from 1950 to 2020 using the ERA5-Land

reanalysis (0.1° spatial resolution) over a large region of Siberia encompassing the four main permafrost types. We find that

surface freeze-back onset has been delayed by five days on average over that  70-yr period. Through spatial regression

modeling, we show that, while several climatic and geographic factors influence freeze-back timing, the driving factor at the

large scale (~kilometers) is the date when the 2-meter air temperature first falls below 0°C, followed by the snow cover

depth.  These  findings complement  previous  research  that  focused  on the small  scale  (~meters),  which emphasized  the

importance of the vegetation type and the snow cover characteristics at these spatial scales. Our results provide new insights

into changes during the late shoulder season in one of the world’s fastest-warming regions and identify key variables to

monitor for improving sub-seasonal forecasts that could become relevant to infrastructure upgrade and logistics planning in

permafrost-affected areas. 

1 Introduction

The region of permafrost—ground that remains at or below 0°C for at least two consecutive years—covers about one quarter

of the land surface in the Northern Hemisphere (Zhang et al.,  2000; Cohen et al.,  2020; Obu, 2021).  Permafrost  stores

approximately twice as much carbon as is currently present in the atmosphere, i.e., an estimated 1400-1600 GtC (Canadell et

al.,  2021).  In  the  Arctic  region,  where  air  temperatures  have  been  rising  two  to  four  times  the  global  average—a
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phenomenon known as Arctic amplification (Pithan and Mauritsen, 2014; Overland et al., 2014; Rantanen et al., 2022)—

significant increases in permafrost temperatures have been recorded in the upper 30 m over the past three to four decades

(Gulev et al., 2021). Moreover, under current emission scenarios, the extent of near-surface (3-4 m) permafrost is expected

to decline by 24-69% relative to the 1986-2005 average value (Pörtner et al., 2019) and could even decline by 90% for high-

end emission scenarios (Guo et al., 2023). It is also estimated that the annual mean frozen volume in the top 2 m of soil

could shrink by 10-40% per degree of global warming (Caretta et al., 2022).

As permafrost warms and eventually thaws, it exposes previously frozen organic carbon to microbial decomposition, which

in turn releases carbon in the form of carbon dioxide (CO2) or methane (CH4) depending on whether local conditions are

aerobic or anaerobic (Schuur et al., 2008). The emission of these two potent greenhouse gases induces a positive radiative

forcing on the Earth’s energy balance that eventually leads to more surface warming and further permafrost thaw—a self-

reinforcing process known as the permafrost-carbon feedback (Schaefer et al., 2014; Schuur et al., 2018). While the positive

permafrost-carbon feedback has been identified as key element in a potential tipping point involving the permafrost, there is

currently no evidence of an acceleration of permafrost thaw at the large-scale and the relationship between permafrost area

and global mean temperature remains close to linear (Nitzbon et al., 2024).

At the seasonal scale, permafrost carbon emissions peak during the summer when soil temperatures are highest, although

microbial decomposition—and the resulting release of CO2 and CH4—can continue even under cold conditions (Elberling

and Brandt, 2003; Miner et al., 2022). The late shoulder season (the period starting after plant senescence and ending by

surface freeze-back; Fig. 1) deserves particular attention for two reasons. First, its end determines the refreezing of the active

layer which accounts for a non-negligible 14% of the annual mean CH4 emissions (Rößger et al., 2022). Second, it coincides

with the seasonal peak of Arctic amplification, as air and ground temperatures have been observed to rise most rapidly from

late summer to early winter (Huang, 2017; Rantanen et al., 2022). As a result, accurately identifying the onset of surface

freeze-back—and  how it  evolves  in  a  warming climate—is  key  to  understanding  the seasonality  of  permafrost  carbon

emissions in present and future conditions.

With the many observed shifts in Arctic climate indicators, it is reasonable to hypothesize that the onset of the surface

freeze-back  has  also  undergone  significant  changes.  However,  fine-scale  observations  in  permafrost-covered  regions—

typically  collected  at  meter-scale  resolution (e.g.,  Siewert  et  al.,  2021)—lack the spatial  coverage  needed to determine

whether local changes also occur at broader spatial scales, on the order of kilometers. Moreover, long-term and temporally

consistent datasets suitable for climate-scale analyses remain scarce or altogether absent. Consequently, the evolution of the

onset of surface freeze-back remains poorly documented and has yet to be comprehensively characterized or quantified. In

addition, permafrost studies exhibit a strong seasonal bias, with far more observations collected between June and August

than  during  the  transitional  (spring  and  autumn)  and  cold  (winter)  seasons,  primarily  due  to  accessibility  constraints

(Shogren et al., 2020; Rößger et al., 2022). While year-round ground temperature time series exist at several monitoring sites
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(e.g., Romanovsky et al., 2007; Batir et al., 2017; Smith et al., 2022), their localized nature limits their representativeness for

broader regions. Consequently, no robust conclusions can yet be drawn about long-term trends in the timing of freeze-back

at interannual or interdecadal time scales across large spatial domains.

Several knowledge gaps and research questions thus remain open: What is the year-to-year variability in the onset of surface

freeze-back? Are long-term trends detectable? Can these trends be linked to specific climatic and geographic contexts?

These questions form the backbone of this study. The specific objectives of this work are (i) to investigate the evolution of

the onset of surface freeze-back over the past 70 years and (ii) to identify the main drivers of observed changes and quantify

their relative contributions. In the following section (Section 2: Methodology), we review the datasets, variables, study area

and statistical models used to address these questions. We then present the trends in the onset of surface freeze-back and

their relationship with key variables (Section 3: Results). We discuss the limitations of the study in Section 4 (Discussion)

before concluding (Section 5: Conclusion).

Figure 1:  Conceptual scheme of the seasonal transition between summer and winter with the late shoulder season

marking the transition between plant senescence and surface freeze-back, and the activer layer refreezing period.

Note that the figure is not to scale and misses many characteristics such as the seasonality of methane fluxes.
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2 Methodology

2.1 Study area

The study area (45-65°N; 95-125°E) is located in Siberia, Russia (Fig. 2).  It  covers approximately 4.2 million km² and

encompasses all four main permafrost zones, classified by the proportion of the ground underlain by permafrost: continuous

(> 90%), discontinuous (50-90 %), sporadic (10-50%), and isolated (< 10%), following the dataset of Obu et al. (2018)

which maps permafrost extent across the Northern Hemisphere at 1 km resolution for the period 2000–2016. The broad

spatial coverage ensures sufficient sampling across all zones to support statistically robust conclusions.

Figure 2: Maps of (a) the Northern Hemisphere and (b) the study area highlighting the four different permafrost zones defined
following the classification of Obu et al., 2018).

2.2 ERA5-Land

This study employs the ERA5-Land dataset (Muñoz-Sabater et al., 2021) as the primary source of information to address the

research  questions  outlined  in  the  introduction.  ERA5-Land  is  the  land  component  of  the  fifth-generation  European

ReAnalysis  (ERA5;  Hersbach  et  al.,  2020)  produced  by  the  European  Centre  for  Medium-Range  Weather  Forecasts

(ECMWF). It provides high-frequency (1-hr), global, high resolution (~9 km) data generated by numerical integrations of
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ECMWF’s  land  surface  model  (the  Carbon-Hydrology-Tiled  ECMWF  Scheme  for  Surface  Exchanges  over  Land;

CHTESSEL). The land surface model is  driven by downscaled atmospheric forcing derived from the ERA5 reanalysis.

While ERA5-Land does not assimilate land observations directly,  the land surface evolution is indirectly  influenced by

observations  through  the  atmospheric  forcing.  The  near-surface  thermodynamic  fields  are  also  corrected  for  ground

elevation. The dataset is available from 1950 to present.

The CHTESSEL model used in ERA5-Land solves energy and mass conservation equations to prognostically calculate key

land state variables, including soil temperature and snow cover. Compared to earlier model versions, ERA5-Land accounts

for more comprehensive snow-related processes, such as changes in density due to overburden and thermal metamorphism,

which eventually affects the snow cover fraction (Cao et al., 2020). Soil heat fluxes are modeled by Fourier’s law and the

soil  column  is  discretized  into  four  layers :  0-7  cm,  7-28  cm,  28-100cm,  100-289  cm.  Vegetation  and  land  surface

characteristics are prescribed as time-invariant fields, meaning that soil type, vegetation type and vegetation cover are based

on annually repeating climatologies (Muñoz-Sabater et al., 2021).

The choice of ERA5-Land dataset for this study reflects a trade-off between long-term availability, high temporal resolution,

global  coverage,  and  physical  consistency.  Although  field  observations  could  have  offered  greater  realism  at  specific

locations, they lack the spatial coverage needed for robust analyses across all permafrost zones and geographical regions.

Satellite remote sensing data provides broader spatial coverage but does not include all variables relevant to this study.

ERA5-Land offers a good balance between these two options by proposing a consistent and comprehensive dataset. It has

shown reasonable agreement with independent in-situ observations and has demonstrated improved performance over its

predecessors, especially at high latitudes (Muñoz-Sabater et al., 2021). However, it is not without limitations—for example,

issues  have  been  reported  in  hydrological  modelling  in  the  Alpine  region  (Dalla  Torre  et  al.,  2024)  and  systematic

temperature biases have been identified in permafrost areas (Cao et al., 2020). We return to the limitations of ERA5-Land in

the context of our research questions in Section 4 (Discussion).

2.3 Diagnosing the onset of surface freeze-back

Our diagnosis of the onset of surface freeze-back is based on the date when the daily mean ground temperature in the first

layer (0-7 cm) of ERA-Land drops below the 0°C threshold. Daily mean ground temperature is defined as the arithmetic

average of the temperature at 00:00 and 12:00 UTC. Due to short-term meteorological fluctuations, the 0°C threshold may be

crossed  several  times before  onset  of  sustained winter  freezing.  To filter  out  this  high-frequency  variability  and avoid

detecting temporary freezing events, we apply a 15-day moving average (with equal weighting across days) to the daily time

series. From the smoothed time series, we identify, for each grid cell and each year, the first date (counted as days elapsed

since July 1st) when the temperature drops below 0°C, marking the onset of persistent surface freeze-back.
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The dates of surface freeze-back serve as the predictands (i.e., as our prediction targets) in our spatial prediction model

developed in Section 2.4. For the trend analysis (Section 3.1), these dates are aggregated at the scale of the entire study area

or by permafrost type, using area-weighted averages across all grid cells.

2.4 Spatial regression model for the onset of surface freeze-back

To  interpret  the  year-to-year,  long-term,  and  spatial  variability  of  the  onset  of  surface  freeze-back,  we  use  a  spatial

regression model. A spatial regression model is a variant of a multilinear regression model that includes an additional error

structure to account for spatial autocorrelation—both among the independent variables and within the residuals. The spatial

model used in this study has been implemented using the spreg package in Python 3.10.8 (https://pysal.org/spreg/). It is

defined by the following two equations (Lesage and Pace, 2009):

y=Xβ+e (1)

with

e=ωWu+ϵ  (2) 

In Equation 1, y=( y1, y2 ,… yn ) is an n × 1 vector containing the onset dates of surface freeze-back (as defined in Section

2.3), where n is the number of grid cells in the study area. X  is a n × m matrix of m independent variables (predictors, see

Section 2.5) of length n, each arranged in a column. β  is an m × 1 vector of parameters (or regression coefficients), and e is

the n × 1 vector representing the error term. 

Equation 2 decomposes e into two components: an n × 1 random vector of random errors ϵ= (ϵ 1, ϵ 2 ,…. ϵn ), and a spatially

structured component ωWu. Here, ω (n × m) is a spatial error coefficient,  u (m × 1) is the original unstructured error term,

and W  is the spatial weight matrix W  (sparse m × m matrix) encoding the spatial structure. The suitability of a spatial error

model over a standard linear model was confirmed using a Lagrange multiplier test (Breusch and Pagan, 1980; Lesage and

Pace, 2009), which indicated significant spatial dependence in the residuals (not shown here).

2.5 Candidate predictors

The onset of surface freeze-back depends on several factors, hereafter referred to as “predictors”, some of which are used in

the spatial regression model described in the previous section. We describe below the candidate predictors considered in this

study, along with their data sources and post-processing steps.

2.5.1 Vegetation type
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The type of vegetation is a first potential driver of the onset of surface freeze-back. Environmental stress associated with

Arctic climate change has led to modifications of the Arctic flora (Beck and Goetz, 2011; Billings, 1987; Rixen et al., 2014).

These modifications include widespread increases in vegetation biomass in the last decades in multiple areas across the

Arctic  (Beck and Goetz,  2011;  Heijmans et  al.,  2022).  Vegetation plays a  key role on surface  soil  properties,  through

temperature  and moisture  variations.  In addition,  the shading caused by vegetation mitigates  evaporation  and therefore

mitigates the risk of extreme heat events (Aalto et al., 2013; Ehrenfeld et al., 2005; Asbjornsen et al., 2011; Kropp et al.,

2020). The plant canopy also modifies the local albedo and changes snow interception in winter, and thus influences the

surface characteristics including its energy balances (Sturm et al., 2001b; Schuur et al., 2008; Wang et al., 2019; Druel et al.,

2017).

Vegetation type data were obtained from the Global Land Cover 2000 database (Global Land Cover 2000 database, 2003)

and aggregated to a 1° resolution based on the mode—the most frequently occurring vegetation type within the grid cell.

Land cover types were then reclassified in three categories: “less insulating” (taller vegetation not covering the ground),

“more insulating” (low-lying vegetation) and “unclassified” (Table 1). This classification is based on literature suggesting

that ground-level vegetation provides greater thermal insulation than taller and sparse vegetation (Aalto et al., 2013; Kropp

et al., 2020; Mamet et al., 2017; Paradis et al., 2016; Wang et al., 2019; Wynn and Mostaghimi, 2006; Wu et al., 2014). The

reclassification vegetation type is included in the spatial model as a categorical (logistic) variable.

Table 1. Mapping between the vegetation type available from the Global Land Cover 2000 Database and the assigned

logistic regression variable in the spatial regression model (Less insulating, more insulating, unclassified)

Less insulating More insulating Unclassified

Forest

Evergreen Needle-leaf

Deciduous Broadleaf

Needle-leaf/Broadleaf

Mixed

Broadleaf/Needle-meaf

Deciduous Needle-leaf

Broadleaf deciduous shrubs

Humid grasslands

Steppe

Palsa bog

Riparian vegetation

Prostrate shrub tundra

Sedge Tundra

Bogs and marches

Cropland – Grassland complexes

Recent burns

Burns of year 2000

Unclassified
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Forest – Natural Vegetation complexes

Needle-leaf evergreen shrubs

Urban

Barren tundra

Shrub tundra

Forest – Cropland complexes

Bare soil and rock

Croplands

Permanent snow/ice

Water bodies

Salt-march

Despite some caveats, this classification offers sufficient insight to address our scientific questions. Vegetation data is only

available for a single year (2000) but were used as a proxy for the entire study period (1950-2020). While we acknowledge

an ongoing Arctic greening trend (Forbes et al., 2010; Myers-Smith et al., 2020), this assumption was made to focus on the

spatial rather than the temporal variability of this driver.

2.5.2 Ground water content

Ground water content is a second variable that may influence the onset of the surface freeze-back by affecting heat fluxes, as

it represents a source of latent energy that must be released before freezing can occur. However, ground water content is

controlled by multiple factors such as precipitation (and the nature of it phase), evaporation, drainage potential and active

layer thickness. Permafrost inhibits drainage, often causing perched water tables (Lawrence et al., 2015), increased surface

water runoff and reduced subsurface flow (Ye et al., 2009). Changes in permafrost extent or active layer thickness—or both

—can significantly alter ground hydrology (Walvoord and Kruylyk, 2016). Ground water content (volumetric soil water

level 1 (0-7cm); variable swvl1) was derived from the ERA5-Land dataset.

2.5.3 Snow cover

Snow cover is a third key driver of the onset of the surface freeze-back. Field studies have identified snow as a critical factor

influencing  permafrost  dynamics  (Smith  et  al.,  2016;  Morse  et  al.,  2012;  Peng et  al.,  2017).  Due  to  its  low thermal

conductivity, snow acts as an effective insulator (Zhang et al., 2005). The timing of snowfall is particularly important: if

snow accumulates early in the season, before ground temperatures drop below 0°C, it can trap heat and delay freezing; by

contrast, if snowfall occurs after ground freezing, it slows further heat loss and helps maintaining cold soil conditions.

To capture the insulating effect of snow on the onset of surface freeze-back, we use the snow depth variable from ERA5-

Land (variable sd) which provides twice-daily (00:00 and 12:00 UTC) snow depth estimates from 1950 to 2020. Based on
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physical  considerations,  we seek  to  establish a  critical  snow depth  h that  would  correspond  to  an  effective  insulation

thickness. For this, we start from Fourier’s law of heat conduction:

Qsnow=
k ΔT
h

(3)

where  Qsnow is the conductive heat flux (W/m2) through snow,  k is the snow thermal conductivity (W/(m.K)),  ΔT is the

temperature difference across the snow layer, and h is the snow depth. In the absence of snow, heat transfer between the

ground and the atmosphere can be approximated by the sensible heat flux:

Qno snow=ρ . cp , a .κ .u . ΔT (4)

where ρ is the air density (taken as 1.225 kg/m3), cp,a is the air specific heat (taken as 1000 J/(kg.K)),  is the coefficient of

transfer (dimensionless, taken as 0.01), u is the characteristic speed of friction (taken as 3 m/s), and ΔT is the difference of

temperature between the air and the ground. If we define an “insulating” snow layer as one that reduces the heat transfer to

less than 5% of the value in the absence of snow: Qsnow/Qno snow <0.05. This implies 

h>
k

0.05 ρ c pa . κ . u
(5)

Taking ρsnow = 350 kg/m3, and k = 0.25W/mK (typical values for snow), we find that h > 14 cm corresponds to an insulating

layer. This threshold is used to define the day marking the presence of snow in a grid cell (see Section 3.2).

2.5.4 Near-surface air temperature

Near-surface  air  temperature  (hereafter  referred  to  as  “surface  temperature”)  plays  also  a  direct  role  in  the  ground

temperature fluctuations in the Arctic (Smith et al.,  2022) and is therefore a driver of the onset  of surface freeze-back.

Surface temperatures are influenced by different factors (e.g., cloud cover, heat advection by dominant winds, wind-driven

turbulent heat fluxes at the surface) and their changes also influence other predictors (e.g., the phase of precipitation).

Surface temperature data were extracted from the ERA5-Land dataset (2-meter air temperature, variable 2t). As in Section

2.3, a 15-day moving average was applied to smooth out the high frequency variability. The 0°C threshold was then used to

define the day marking the persistent cold air conditions (see Section 3.2).

2.5.5 Latitude

Latitude is finally an important time- variable to consider for investigating the onset of the surface freeze-back since it

controls the average insolation (amount of solar energy received at the Earth’s surface per unit area and per unit of time) and

its seasonal distribution, which in turn influence the type of permafrost.
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We note that all the variables listed above are correlated to each other (e.g., latitude correlates with near-surface temperature

and snow cover) but these correlations are accommodated by the spatial regression model.

3 Results

3.1 Temporal evolution of the onset of surface freeze-back

The onset  of surface freeze-back (as defined in Section 2.3) is  averaged  over the entire study area  for each  year.  The

resulting time series (Fig. 3) shows a significant positive trend of +4.5 days over the 1950-200 period (p-value < 0.01).

Despite  this  statistically  significant  trend,  year-to-year  variability  remains substantial:  for  example,  the average  surface

freeze-back date differed by nearly two weeks between 1967 and 1968. Additionally, the spatial averages shown in Fig. 3

mask considerable spatial variability at the grid-cell level. The ground in the grid cells situated in sporadic, isolated areas as

well as the grid cells at the Southern and Western boundaries of the domain tend to freeze-back later than the average, while

the areas of continuous permafrost tend to freeze-back earlier than the average (Fig. A1).

Figure 3: Evolution of the average date (counted as days since July 1st) of surface freeze-back in the study area (solid

lines) and the corresponding linear trend (dashed line), according to the ERA5-Land dataset.
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To further investigate regional differences and the role of spatial variability in the results, the study area was divided into

four subareas corresponding to the four main permafrost zones. This allowed us to assess whether the trend reported in Fig. 3

holds within each zone individually. When calculated by permafrost  zone, the positive trend in the onset of the surface

freeze-back remains positive (Fig. 4). Notably, the trend is weakest in areas of continuous permafrost (+3.3 [0.4-6.3] days),

which can be physically understood as follows: in these regions, ground temperatures are lower than in other regions and

often well below 0°C. Ground in these regions are thus less responsive to atmospheric forcing than in other regions. In

contrast, the trends in isolated (+5.1 [1.8-8.5] days), sporadic (+5.4 [2.5-8.4] days) and discontinuous (+5.2 [2.4-8.0] days)

permafrost  are  stronger  and  more  similar  to  each  other  in  magnitude  because  the  ground  is  more  responsive  to  the

atmospheric forcing. Finally, high co-variability is also noticed among the four time series of the date of surface freeze-back

across the four permafrost regimes (Fig. 4). This suggests that the large-scale atmospheric drivers are the primary cause for

the year-to-year variability in the surface freeze-back.

Figure 4: (a) Comparison between the trends in the onset of freeze-back (same conventions as in Fig; 2) for the trend

in the day between 1950 and 2020 (p-value = 0.01 for isolated, sporadic and discontinuous permafrost; p-value = 0.03

for continuous permafrost). (b) Detailed evolution between 1950 and 2020 of the day of the onset of the surface freeze-

back for the different permafrost zones. The y-axes limits are identical for easier comparison.

3.2 Drivers of the onset of surface freeze-back

The spatial regression model (Section 2.4), used to identify the key factors influencing the onset of the surface freeze-back,

is applied on the candidate  variables  listed in Section 2.5.  In contrast  to the analysis of  year-to-year  variability of the
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previous section, where the onset of surface freeze-back was averaged over space, the variables used to identify the drivers

of  freeze-back onset  were  averaged  over time (1950–2020).  This approach was chosen as  to isolate the role of spatial

variability by excluding the influence of temporal fluctuations that could have acted as a confounding factor in the analyses.

To train the spatial error model, approximately 90% of the ERA5-Land data (55,501 out of 60,501 grid cells) were randomly

selected and evenly distributed across the study area. This sampling strategy preserves a portion of the data for out-of-sample

model validation. The remaining dataset was used for verification, allowing for an independent assessment of model skill.

Model performance was evaluated over the entire study area as well as separately for each of the four permafrost zones. 

The model applied to the entire study area yields

da yonset=0.05−0.08×da y snow+1.02×da yair temp. (6)

where  the “day” variables  are  the number  of  days since  July 1st  for  the onset  of  surface  freeze-back,  the snow depth

exceeding 14 cm, and the air temperature dropping below 0°C, respectively. The vegetation type, ground water content (in

July) and latitude were found to be non-significant covariates (p-value > 0.05) and so were not included in Eq. 6.  The

coefficients shown in Eq. 6 are those obtained by running the model a second time without those non-significant covariates.

To assess the predictive power of the model and to ensure it is not overfitting, we apply it to the ~10% of the data that were

withheld during training. That is, we provide as input  daysnow and dayair temp. to Eq. 6 and compare the predicted values for

dayonset to the actual values derived from ERA5-Land. The resulting scatterplot (Fig. 5) shows strong agreement between

predicted and observed values, and the coefficient of determination (R2 = 0.78) confirms the model’s good predictive skill.
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Figure 5: Predicted (x-axis, using Eq. 6) versus observed (y-axis) day of surface freeze-back in the ERA5-Land

dataset (counted from July 1st).

To further investigate spatial differences, the analysis was then repeated by permafrost zone. Permafrost type is a spatially

autocorrelated variable (Fig. 2) and represents a relevant predictor in its own right, as it influences key ground properties.

The standardized regression equations derived for each permafrost zone are presented in Table 2. Unlike the model for the

entire area, vegetation was found this time to be a significant predictor (except over continuous permafrost) of the day of

surface freeze-back.

Table 2. Coefficients for the spatial regression model (Eq. 1, ) for the different variables (X) for each permafrost

zone.  Latitude and ground water content were found to be systematically non-significant and hence excluded from

the  analysis.  To  ensure  an  easy  comparison,  the  variables  in  Eq.  1  have  been  first  standardized

((value-mean)/standard deviation).

Constant offset Air temperature Snow cover Vegetation

Isolated 0.06 0.98 -0.22 -0.07

Sporadic 0.08 1.08 -0.42 -0.06

Discontinuous 0.03 1.06 -0.53 -0.12

Continuous 0.12 0.93 -0.29 Not significant

The standardized regression equations coefficients of Table 2 reveal that both the timing of the 14 cm snow layer and the

drop in 2-meter air temperature below 0°C are key predictors of surface freeze-back onset across all permafrost  zones.

Among these, the timing of the temperature drop consistently exhibits the largest and most significant coefficient, followed

by  the  timing  of  the  insulating  snow cover.  Vegetation  is  also  a  significant  predictor  in  all  zones  except  continuous

permafrost  where  it  is  not  significant.  Both the snow and vegetation coefficients  are  negative,  indicating that  an early

formation of an insulating snow cover delays the onset of surface freeze-back (as we expect),  and that ground beneath

insulating vegetation (e.g., grasslands) tends to freeze later in the season.

We finally repeat the scatterplot analysis for the four main zones. When analyzing the four permafrost zones separately,

scatterplots comparing predicted values (from the equations in Table 2) to observed values from the verification dataset (the

10%  withheld  from  training)  show  correlations  ranging  from  0.51  to  0.80,  depending  on  the  zone.  Specifically,  the
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correlation coefficients are 0.76 for continuous, 0.51 for discontinuous, 0.74 for sporadic, and 0.80 for isolated permafrost

(Fig. 6).

Figure 6: Predicted (with coefficients from Table 2) versus observed onset of the surface freeze-back (counted from

July 1st) for (a) isolated (b) sporadic (c) discontinuous and (d) continuous permafrost zones in the study area. These

scatterplots are based on the 10% of the data that was not used for training the spatial regression model.

4 Discussion

4.1 Surface freeze-back delayed but not equally across permafrost zones

Our results indicate that the factors controlling the onset of surface freeze-back in permafrost  regions vary significantly

across space.  While treating the entire study area as a single unit yields more accurate predictions (in a statistical sense),
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subdividing by permafrost zone reveals important differences in the influence of individual drivers. For instance, vegetation

emerges as a significant predictor in the isolated, sporadic, and discontinuous zones, but not in the continuous permafrost

zone (Table 2). 

Freeze-back  also occurs  at  different  times of  the  year  across  permafrost  types,  with the earliest  onset  observed  in  the

continuous permafrost zone (Fig. 4; Fig.  A1). Between 1950 and 2020, the onset of surface freeze-back was delayed by

approximately 3 days in continuous permafrost areas, compared to a 5-day delay in the discontinuous, sporadic, and isolated

zones (Fig. 4).

In the context of ongoing Arctic climate change and Arctic amplification, these findings suggest that ground temperature

responses to key drivers of freeze-back onset evolve more rapidly in thermally marginal permafrost zones (discontinuous,

sporadic, and isolated), while continuous permafrost shows a more limited shift (for now).

At high latitudes, where permafrost is predominantly continuous (Fig. 2), persistent winds are a well-documented feature of

the environment (Wilson, 1959; Sturm et al., 2001a; Gisnås et al., 2016). These strong winds contribute to highly variable

snow distribution (in extent and depth), resulting in patchy snow cover across the landscape (Gisnås et al., 2014; Gisnås et

al., 2016). Because snow is a key control on ground temperature at the field scale, this spatial variability in snow cover

translates into variability in the degree of insulation it provides, and ultimately, on the variability in the date of surface

freeze-back. Given the strong local influence of snow on freeze-back timing, greater heterogeneity in snow cover likely leads

to greater variability in the onset of surface freeze-back within the continuous permafrost zone. This spatial variability may

help explain why the overall trend in freeze-back delay is weaker in continuous permafrost areas: in some locations, early

freeze-back may offset later onset elsewhere, thereby dampening the overall trend signal for that permafrost zone.

4.2 Limitations of the study

ERA5-Land has been shown to exhibit a warm bias in high-latitude permafrost regions, particularly during winter months

(Cao et al., 2020) with the strongest overestimations over Canada and Alaska. The biases over Siberia are less pronounced

but regionally evident. The period analyzed in this study (July to November) is associated with smaller biases than those

observed in winter. While a systematic temperature bias in ERA5-Land could affect  both the estimated onset of surface

freeze-back and the predictor variables used in the regression, such a bias would primarily influence absolute values—not

temporal trends. Therefore, while the exact dates of surface freeze-back should not be taken at face value, the trends and

spatial relationships identified in this study remain robust.

At the field scale (~meters), snow cover and vegetation are widely recognized as the primary factors influencing ground

temperature, largely due to their insulating properties (Luetschg et al., 2004; Zhang et al., 2001; Zhang et al., 2005; Loranty

et al., 2018; Kropp et al., 2020). These factors can also be monitored via remote sensing, using indicators such as land

surface temperature, snow cover, and vegetation indices (Alphonse et al., 2024; Tikhomirov et al., 2021; Ylönen et al., 2025;
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Beamish et al., 2020). At first glance, these findings may seem to contrast with our results, where snow cover emerges as a

secondary driver after air temperature, and vegetation shows a significant impact only when the analysis is delineated by

permafrost zone. This apparent discrepancy may partly arise from the overrepresentation of continuous permafrost in our

study area, where vegetation has little variability and is not a significant driver. More fundamentally, the difference in spatial

scale likely plays a major role.  At the coarser resolution of ERA5-Land (~9 km), fine-scale heterogeneity in snow and

vegetation is not fully captured, which may diminish their statistical influence on the freeze-back date. Additionally, the

importance  of  surface  temperature  in  our  model  results  may  indirectly  reflect  sub-grid  variability  in  snow cover  and

vegetation, so that surface temperature would in fact act as a proxy for these unresolved processes.

4.3 Implications for permafrost and seasonally frozen regions

A delayed  onset  of  surface  freeze-back  extends  the window of favorable  conditions for  vegetation growth,  potentially

contributing to the observed Arctic greening (Arndt et al., 2019).  In turn, increased vegetation productivity or changes in

vegetation cover (Druel et al., 2019; Anderson et al., 2019) can further influence the timing of surface freeze-back. Recent

studies have highlighted the complexity of vegetation–soil interactions in permafrost regions, particularly the extension of

the late root growing season prior to the complete freezing of the surface soil layer (Blume-Werry et al., 2019). During this

period, plants may access deeper mineral layers, promoting root development and altering nutrient cycling (Finger et al.,

2016; Hewitt et al., 2018; Ogden et al., 2023). These dynamics can drive differential vegetation responses, such as increased

root biomass—enhancing soil carbon storage—or even shifts in species composition (Hewitt et al., 2018; Yun et al., 2024).

Such  changes  are  further  amplified  by  modifications  in  the  hydrological  regimes,  which  often  accompany  permafrost

degradation (Finger et al., 2016; Yun et al., 2024). Altogether, shifts in freeze-back timing can trigger cascading, long-term

consequences that extend beyond the growing season. These include broader impacts on surface albedo, soil structure, and

ground stability—factors with important implications for Arctic ecosystem functioning and feedbacks to the climate system.

There are still large uncertainties regarding whether Arctic landscapes will become wetter or drier in the future, particularly

at regional scales (Xie et al., 2015).  This uncertainty has major implications for vegetation changes in the Arctic. In drier

conditions, vegetation is expected to become shrub-dominated (Jónsdóttir et al., 2005; Shaver et al., 2001; Heijmans et al.,

2022). Increased shrub cover, in turn, would enhance snow interception (Chapin et al., 2005; Sturm et al., 2001b), thereby

altering the thermal insulation provided by snow and influencing the timing of surface freeze-back. These interactions are

further  complicated  by feedbacks  between snow cover  and vegetation  dynamics,  making the  system's  evolution highly

nonlinear. Establishing a robust present-day baseline for the timing and drivers of surface freeze-back was therefore a key

objective of this study, providing a reference point for future modeling.

A delayed onset of surface freeze-back also favors microbial activity, thereby contributing to permafrost-derived CO  and₂

CH  emissions (₄ Zona et al., 2016). Although the majority of CH  emissions occur during the thawing season, approximately₄

14% of the mean annual CH  flux is released between the onset of surface freeze-back and the complete refreezing of the₄
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active layer (Rößger et al., 2022). During this transitional period, parts of the soil remain unfrozen and biologically active,

allowing continued microbial processes (Commane et al., 2017). Extending the window for soil biogeochemical  activity

during the late shoulder season—bridging the thawing and freezing periods—is also critical for the mobilization and export

of dissolved organic carbon (DOC) from soils (Villani et al., 2025). Once exported to aquatic systems, this DOC becomes

susceptible to microbial and photodegradation, altering the fate and persistence of carbon in the Arctic environment (Bowen

et al., 2020).

4.4 Outlook

This study is primarily diagnostic,  based on linear relationships established between predictor  and predictand variables.

However, it can serve as a foundation for predictive applications of the onset of surface freeze-back. Many weather and

climate centers routinely publish seasonal forecasts of variables such as precipitation and near-surface air temperature. These

forecasts, when combined and downscaled with the regression models developed in this work, could be used to produce

probabilistic estimates of freeze-back onset with a lead time of several days to weeks. Although such estimates would carry

uncertainties stemming from the forecast inputs, they could provide valuable information for logistical planning of field

campaigns  in  permafrost  regions.  Moreover,  timely  knowledge  of  freeze-back  onset  could  help  constrain  land  surface

models and improve representation of cold-season processes.

The predictors used in this model—air temperature, snow cover, and vegetation—are included in seasonal forecast systems,

such as those from the European Centre for Medium-Range Weather Forecasts (ECMWF), making them available several

months in advance. These forecasts could be used to generate probability distributions of expected freeze-back dates under

current and near-future climate conditions. 

Looking ahead, understanding how these key variables are projected to change can offer insights into future trends in the

onset of surface freeze-back. While air temperature, snow cover, and vegetation are all expected to evolve under climate

change, their trajectories will be spatially heterogeneous (Bintanja, 2018; Bjorkman et al., 2020). This suggests that future

changes in freeze-back timing—and the associated permafrost carbon emissions—will also vary regionally, underlining the

importance of spatially explicit projections.

5 Conclusions

The primary objective of this study was to document large-scale temporal changes in the onset of surface freeze-back across

Siberian permafrost regions. Over the 70-year period from 1950 to 2020, the average onset of surface freeze-back (defined at

0–7 cm soil depth) over a 4.2 million km² area in Siberia (45–65°N, 95–125°E) has shifted by approximately five days—

delaying from October 12th to October 17th.
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We also investigated the drivers of this shift using a spatial error model, a type of spatial regression that accounts for spatial

autocorrelation in the residuals. One of the main findings is that, at the coarse spatial scale of ERA5-Land (~0.1° resolution),

near-surface air temperature is the dominant predictor of surface freeze-back onset, followed by snow cover. This result

contrasts with numerous field studies, which emphasize the roles of snow and vegetation as primary controls. This apparent

discrepancy  likely arises  from scale  differences:  field studies  can  resolve  fine-scale  processes  (e.g.,  snow interception,

microtopography, vegetation heterogeneity) that are smoothed out at the coarse scale used here.

The spatial regression model was applied to both the full study area and to subsets defined by permafrost zone. While the

model applied to the entire domain yielded the highest predictive accuracy (R2 = 0.78), stratifying the analysis by permafrost

zone provided deeper insight into how the influence of different predictors varies with permafrost type. In particular, while

air temperature and snow insulation timing remained significant across all zones, vegetation insulation was only significant

in the discontinuous, sporadic, and isolated permafrost zones, and not in the continuous permafrost zone. This supports the

idea that the influence of vegetation is more pronounced in thermally marginal permafrost environments.

Overall, our results highlight the dominant role of air temperature in shaping freeze-back timing at large scales, with snow

cover and vegetation playing secondary but still important roles. These findings reflect both the resolution of the dataset and

the interdependence of variables at this scale. More broadly, they highlight how the choice of spatial scale can shape our

understanding  of  permafrost  processes.  Large-scale  diagnostics,  such  as  the one presented  here,  complement  fine-scale

studies by providing an integrated perspective on regional patterns and drivers.
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Figure A1: Study area (a) and spatial variation of the anomaly of the onset of the surface freeze-back relative to the

spatial average for (b) the first year of the study (1950) and (c) the last year of the study (2020). Red areas mean that

surface freeze-back occurs later than the spatial average and blue areas that surface freeze-back occurs earlier than

the spatial average.

Code and data availability

The code used for this paper is available at https://doi.org/10.5281/zenodo.14832934 

The data used is freely available online at 

- "Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present.  Copernicus Climate Change Service

(C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac" for the ground temperature, 2m air temperature

and snow data. 
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- "Global  Land  Cover  2000  database.  European  Commission,  Joint  Research  Centre,

2003, https://forobs.jrc.ec.europa.eu/glc2000" for the vegetation data

- "Obu, Jaroslav; Westermann, Sebastian; Kääb, Andreas; Bartsch, Annett (2018): Ground Temperature Map, 2000-

2016, Northern Hemisphere Permafrost [dataset]. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine

Research, Bremerhaven, PANGAEA,  https://doi.org/10.1594/PANGAEA.888600" for the data on the permafrost

zones.
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