

1 **Global Patterns and Trends in Ground-Level Ozone Chemical
2 Formation Regimes from 1996 to 2022**

3 Yu Tian¹, Siyi Wang¹, Xiaomeng Jin¹

4 ¹Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901,
5 U.S.A

6 Correspondence to: Xiaomeng Jin (xiaomeng.jin@rutgers.edu)

7 **Abstract.** Ground-level ozone (O_3) formation in urban areas is nonlinearly dependent on the relative availability of
8 its precursors: oxides of nitrogen (NO_x) and volatile organic compounds (VOCs). To mitigate O_3 pollution, a crucial
9 question is to identify the O_3 formation regime (NO_x -limited or VOC-limited). Here we leverage ground-based O_3
10 observations alongside space-based observations of O_3 precursors, namely nitrogen dioxide (NO_2) and formaldehyde
11 ($HCHO$), to study the long-term shifts in O_3 chemical regimes across global source regions. We first derive the regime
12 threshold values for satellite-derived $HCHO/NO_2$ ratio by examining its relationship with the O_3 weekend effect. We
13 find that a regime transition from VOC-limited to NO_x -limited occurs around 3.1 [2.7 - 3.4] for $HCHO/NO_2$ with
14 slight regional variations. By integrating data from four satellite instruments, including GOME, SCIAMACHY, OMI,
15 and TROPOMI, we build a 27-year (1996 - 2022) satellite $HCHO/NO_2$ record, from which we assess the long-term
16 trends in O_3 production regimes. A discernible global trend towards NO_x -limited regimes is evident, particularly in
17 developed regions such as North America, Europe, and Japan, with emerging trends in developing countries like
18 China and India over the past two decades. This shift is supported by both increasing $HCHO/NO_2$ ratios and a
19 diminishing O_3 weekend effect. Yet, urban areas still hover in the VOC-limited and transitional regime on the basis
20 of annual averages. Our findings stress the importance of adaptive emission control strategies to mitigate O_3 pollution.

Deleted: 5

21 **1 Introduction**

22 Ozone (O_3) near the surface is an air pollutant with profound implications for human health and Earth's ecological
23 system (Chiu et al., 2023; Nuvolone et al., 2018; Mills et al., 2016; Felzer et al., 2007). It is known to cause respiratory
24 and cardiovascular diseases (WHO, 2013). Chronic exposure to O_3 has been linked to an estimated 1.04 to 1.23 million
25 premature mortalities globally in 2010, primarily due to respiratory ailments (Malley et al., 2017), and this issue of
26 O_3 -related deaths have the potential to worsen despite the improvement of other air pollutants like fine particulate
27 matter (Wang et al., 2021). In addition to its harmful effects on human health, O_3 poses a threat to other species by
28 inducing DNA damage in animals and affecting crop productivity and yield through disrupting the plant microflora
29 (Manosalidis et al., 2020).

30 Ground-level O_3 is a secondary air pollutant, formed through photochemical reactions between oxides of nitrogen
31 (NO_x) and volatile organic compounds (VOCs). At ground level, O_3 formation is dominated with the NO_x -limited
32 regime globally, especially in rural or sparsely populated regions (Monks et al., 2015). In areas with high NO_x
33 emissions and relatively low VOC emissions, such as urban and metropolitan centers, O_3 formation can become NO_x -
34 saturated, or in other words, VOC-limited. Freshly emitted NO, particularly from vehicular traffic, can locally deplete
35 O_3 by reacting with it (Solberg et al., 2005), thereby curtailing O_3 accumulation in the immediate vicinity.
36 Consequently, lower O_3 concentrations are typically observed in urban areas (Simon et al., 2024; Paoletti et al., 2014).
37 Over the past several decades, the evolution of global O_3 formation has been shaped by a complex interplay of socio-

39 economic factors, including varying industrial activities and population movements, as well as environmental policies
40 and changing climate (Zhang et al., 2019; Pfister et al., 2014). The combined effects of these factors are highly
41 intricate. For instance, sustained declines in NO_x and VOC emissions have led to reductions in peak O₃ concentrations
42 in many developed countries, but mitigating O₃ exposure at the urban scale is still challenging owing to the
43 nonlinearity of O₃- NO_x-VOC chemistry (Simon et al., 2016). Therefore, understanding the O₃ production regimes
44 transition and its drivers are essential for devising effective mitigation strategies.

45 O₃ sensitivity cannot be directly observed, which is often diagnosed through analyzing the relationship between
46 observed O₃ and its precursors, or by using measurements of indicator species such as NO_y, formaldehyde (HCHO),
47 reactive nitrogen (NO_y), hydrogen peroxide (H₂O₂), nitric acid (HNO₃) (Sillman, 2012; Tonnesen and Dennis, 2000;
48 Sillman, 1999). However, ground-based measurements of these indicators are often limited, making satellite remote
49 sensing a vital alternative for expanding the monitoring of these atmospheric species. Satellites provide retrievals of
50 two key species: HCHO (Fu et al., 2007; Palmer et al., 2003), which is nearly proportional to the summed rate of
51 VOC reactions with hydroxyl radicals (OH) and thus serves as an effective VOCs tracer (Sillman, 2012). Nitrogen
52 dioxide (NO₂) is prevalent in the boundary layer atmosphere and represent the majority of NO_x (Duncan et al., 2010).
53 The ratio of HCHO to NO₂ (HCHO/NO₂) has been used to infer O₃-NO_x-VOC sensitivity (Jin et al., 2020; Jin et al.,
54 2017; Jin and Holloway, 2015; Choi et al., 2012; Duncan et al., 2010; Martin et al., 2004). An important issue to use
55 satellite HCHO/NO₂ is to determine the threshold values separating the NO_x-limited and VOC-limited regimes.
56 Martin et al. (2004) and Duncan et al. (2010) use 1 and 2 regime threshold values, but follow-up studies show that
57 the regime threshold values are uncertain (Jin et al., 2017; Souri et al., 2023; Wang et al., 2021; Schroder et al., 2017).

58 Over the past two decades, the global distributions of HCHO and NO₂ concentrations have been shaped by diverse
59 emission reduction policies, resulting in distinct regional changes. In terms of NO₂, many anthropogenic regions have
60 witnessed nonlinear shifts or reversal years in NO₂ pollutant levels (Georgoulias et al., 2019). In developed regions
61 such as the U.S. and European countries, substantial reductions in NO_x emissions have been achieved, largely due to
62 stringent national regulations (Food & Rural Affairs, UK, 2024; Toro et al., 2021; Krotkov et al., 2016a; Russell et
63 al., 2012), whereas in developing regions, NO_x emission reductions have normally lagged behind. According to Zhao
64 et al. (2013), there was a surge in NO_x emissions in China until around 2010, after which a decline was observed.
65 This decrease has been linked to technological advancements and the implementation of emission control measures
66 in key industries (Sun et al., 2018). Given the diverse trends of O₃ precursor emissions, less is known about how the
67 O₃ production regime has changed over the past decades because of the emission changes. Here we aim to identify
68 the long-term trends in satellite HCHO/NO₂ and the reversal years in different regions, which could signal a change
69 in the direction of O₃ chemical regime changes.

70 Another widely used method to characterize O₃ formation regimes is through comparing the weekend versus weekday
71 difference (WE-WD) in O₃ and its precursors. Under high NO_x mixing ratios, O₃ production rates paradoxically
72 increase as NO_x concentration falls; conversely, in scenarios with low NO_x mixing ratios, O₃ production rates decline.
73 In most urban areas, characterized by high NO_x levels, O₃ concentrations frequently display a significant rise on
74 weekends relative to weekdays. Reasons for this “O₃ weekend effect” can be multifaceted and region-specific,
75 involving reduced NO_x concentrations altering VOC ratios, timing shifts in NO_x emissions, increased VOCs and NO_x
76 emissions on weekend nights, and enhanced sunlight due to lower particulate matter emissions (CARB, 2003). This
77 distinctive WE-WD O₃ pattern has been observed globally, first documented in New York City, U.S. (Cleveland et
78 al., 1974), and subsequently reported in various regions including Europe (Sicard et al., 2020; Adame et al., 2014),
79 East Asia: Tokyo, Japan (Sadanaga et al.), the Pearl River Delta (Zou et al., 2019), the North China Plain (Wang et
80 al., 2014), the Yangtze River Delta (Tang et al., 2008) and Taiwan (Tsai, 2005), North America: Mexico (Stephens

81 et al., 2008) and whole U.S (Jaffe et al., 2022; Atkinsonpalombo et al., 2006), as well as major cities in Latin America: 82 Santiago, Chile (Seguel et al., 2012) and Rio de Janeiro, Brazil (Martins et al., 2015). The varying O₃ weekend effect 83 provides an opportunity to evaluate the chemical regimes of O₃ (Simon et al., 2024; Jin et al., 2020).

84 In this study, we aim to elucidate the long-term shifts in O₃ chemical regimes on a global scale using the two indicators: 85 satellite derived HCHO/NO₂ ratios and ground-based observation of O₃ weekend effect. In Section 3.1, we examined 86 the surface WE-WD O₃ concentration as a function of the tropospheric column HCHO/NO₂ ratio to identify the 87 thresholds distinguishing different O₃ regimes. In Section 3.1, we analyzed the long-term trend of satellite-based 88 HCHO/NO₂ and identified the trend reversals. These two steps set the stage for evaluating the long-term evolution of 89 O₃ production regime. In section 3.3, we analyze whether the satellite-derived HCHO/NO₂ ratio trends align with the 90 long-term patterns of the O₃ weekend effect, offering dual evidence on the evolving O₃ chemical regimes. The HCHO 91 and NO₂ retrievals integrate 27-year (1996 - 2022) data from four satellite instruments: GOME/ERS-2, 92 SCIAMACHY/ENVISAT, OMI/Aura and TROPOMI/Sentinel-5P. In section 3.4, we further investigate the global 93 spatiotemporal evolution of O₃ chemical regimes, focusing on their transition status and potential transition years. By 94 examining the long-term trends of HCHO/NO₂ ratios and applying region-specific thresholds, we categorize the 95 evolution of O₃ regimes into four main types: constant regimes, constant quasi regimes, single shift regimes, and 96 multiple shift regimes. Overall, our goal is to provide insights into O₃ regime variations across regions and decades, 97 which could inform air quality management strategies about the effective strategies to mitigate O₃ pollution.

98 2 Data and Methods

99 2.1 Harmonized Satellite Retrievals of O₃ Precursors

100 We combine satellite retrievals of tropospheric NO₂ and HCHO vertical columns from four different satellite 101 instruments, including: Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter 102 for Atmospheric CHartographY (SCIAMACHY) and Ozone Monitoring Instrument (OMI) and TROPOspheric 103 Monitoring Instrument (TROPOMI). We use satellite-based products developed under the Quality Assurance for 104 Essential Climate Variables (QA4ECV) project, which retrieves NO₂ and HCHO consistently using the same model 105 simulations from TM5-MP as a priori profile that features consistent meteorology, emissions and chemical 106 mechanisms (Boersma et al., 2018; Boersma et al., 2017b, a; De Smedt et al., 2017; Williams et al., 2017). The nadir 107 resolution is 320 × 40 km² for GOME, 60 × 30 km² for SCIAMACHY, 24 × 13 km² for OMI and 5.5 × 3.5 km² for 108 TROPOMI. The overpass time is around 10:00 AM local time for SCIAMACHY and GOME, ~ 1:30 PM for OMI 109 and TROPOMI.

110 To investigate the long-term changes in HCHO/NO₂, we construct annual average tropospheric NO₂ and HCHO VCD 111 data from the GOME (1996-2001), SCIAMACHY (2002-2003) and OMI (2004-2020) and TROPOMI (2020 - 2022) 112 datasets. GOME and SCIAMACHY and TROPOMI data are harmonized with reference to OMI data with a resolution 113 of 0.25° × 0.25°. The retrieval and harmonization scheme are described in Jin et al. (2020). Briefly, we use OMI as a 114 reference to adjust GOME and SCIAMACHY columns as OMI has the finest spatial resolution and the overpass time 115 of interest where captures the most active O₃ formation chemistry. For NO₂, the difference among satellite instruments 116 is decomposed to two components: (1) difference due to resolution; (2) difference due to overpass time. The difference 117 due to resolution is adjusted by comparing the differences in re-gridding Level-2 OMI NO₂ to fine-resolution (0.25° 118 × 0.25°) grid versus a coarse-resolution (2° × 0.5°, resolution closer to that of GOME) grid. The difference in overpass 119 time is derived from the mean difference between OMI and SCIAMACHY during overlapping years (2004 to 2012).

Deleted: 2

Deleted: Section

Deleted: synthesize above analyses

Deleted: objective

Deleted: pinpointing the year when

Deleted: HCHO/NO₂ ratio crossed

Deleted: critical thresholds, indicating a shift from the VOC-limited to the NO_x-limited regime

Deleted: Finally

Deleted: assess whether the satellite-based trends in O₃

Deleted: are consistent with

Deleted: O₃ weekend effect in Section 3.4.

Deleted: a view of O₃

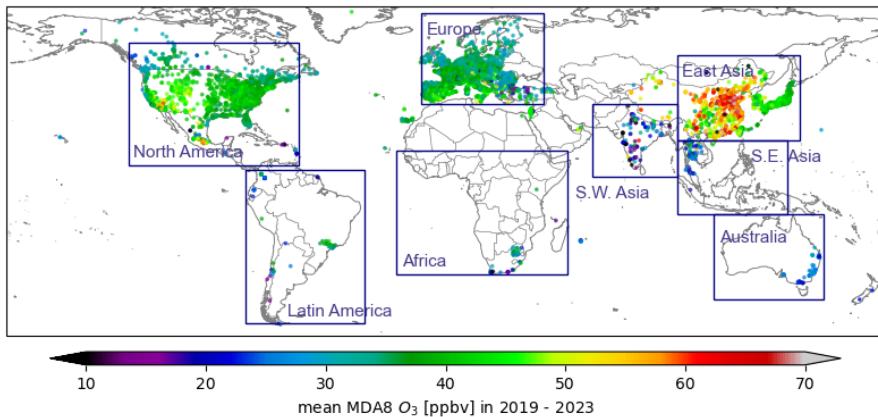
Deleted: changes

Deleted: which could have implications for

Deleted: environmental policy and

Deleted: *a priori* profile obtained from TM5-MP (Boersma et al., 2018; Williams et al., 2017; De Smedt et al., 2017; Boersma et al., 2017b, a).

Deleted: km³


Deleted: To build the relationship between observed O₃ weekend effect and satellite HCHO/NO₂, we mainly use OMI retrievals of HCHO and NO₂, as it provides the longest record with fine resolution suitable for studying the urban O₃ chemistry, and the overpass time of OMI is well suited to detect the O₃ formation sensitivity during the afternoon as the O₃ photo-chemical production peaks and when the boundary layer is high and the solar zenith angle is small, maximizing the instrument sensitivity to HCHO and NO₂ in the lower troposphere (Jin and Holloway, 2015; Jin et al., 2017). To investigate the long-term changes in HCHO/NO₂, we construct annual average HCHO and NO₂ using tropospheric NO₂ and HCHO

Deleted: HCHO

Deleted:

155 at a coarse resolution ($2^\circ \times 0.5^\circ$). For HCHO, as the spatial variations of HCHO are mostly regional, the harmonization
156 only accounts for the difference caused by overpass time (Jin et al., 2020). We grid all Level-2 satellite HCHO
157 products to $0.25^\circ \times 0.25^\circ$, and adjust GOME and SCIAMACHY HCHO columns by adding the mean difference
158 between SCIAMACHY and OMI during the overlapping period. We do not adjust for the difference between OMI
159 and TROPOMI as their overpass time is close.

160 **2.2 Ground-based O₃ observations**

161

162 **Figure 1: Global distribution of O₃ (unit: ppbv) in the past 5 years (2019-2023). Data are sourced from the TOAR database.**

163 For O₃ data, we rely on TOAR-II database (1980-2023, <https://toar-data.org/surface-data>, last access: April 2024).
164 Initiated by the Global Atmospheric Chemistry Project (GACP), TOAR has developed a cutting-edge database that
165 provides hourly surface O₃ concentrations on a global scale since 1970 (Schultz et al., 2017), serving as an
166 unparalleled resources for examining temporal trends in surface O₃ levels (Sicard et al., 2020). Notably, the
167 observation records period various across monitoring stations, with earlier data in the U.S., Europe and Japan dating
168 back to the 1970s-1980s, and later in countries like the South Korea and Latin America, starting from 1995 to 2005.
169 For China, South Africa, Southwest Asia, and densely populated Australian areas, records typically begin around
170 2015. To ensure rigorous study standards, we selected over 8700 stations with at least 3 consecutive years of data for
171 our global analysis. Figure 1 illustrates the distribution of TOAR sites and main regions we focus on.

172 **2.3 Ground-Based WE-WD O₃ and the Connections with Satellite HCHO/NO_x**

173 The WE-WD O₃ difference reflects the sensitivity of O₃ to emission reduction in NO_x on weekends, which is
174 effectively the derivative of O₃ with respect to NO_x, and the transitioning point at which O₃ weekend effect crosses
175 zero represents the transitioning point at which O₃ sensitivity to NO_x emission changes signs, which often corresponds
176 to the peak O₃ production. In this study, WE-WD O₃ difference is quantified using a standardized
177 protocol: Sundays is designated as weekends, while Tuesdays–Thursdays is designated weekdays, excluding
178 Mondays and Fridays to minimize transitional effects from adjacent days. For each site and weekly interval
179 throughout the observation period, we calculate the mean differences in WE-WD O₃. To calculate long-term trends
180 of WE-WD O₃ in Section 3.3, all sites within the region are included. Given the global scope of this analysis and the

Deleted: (<https://toar-data.org/surface-data>)

Deleted: Figure 1

Deleted: Building Connections Between Satellite
HCHO/NO_x and

Deleted: Observation

We utilize monthly HCHO/NO_x derived from

Deleted: OMI to establish correlations

Deleted: ground-based TOAR O₃ observation. We extract
gridded daily OMI HCHO and NO_x data ($0.25^\circ \times 0.25^\circ$)
for days and grid cells with corresponding O₃ monitoring
data, ensuring that both datasets are paired consistently
in time and location. To quantify O₃ differences between
weekends and weekdays, we designate Sunday to
represent weekends and Tuesday to Thursday to
represent weekdays, excluding other days to minimize
carryover effects from typical workdays and rest-days.
For each site and weekly interval throughout the
observation period, we calculated the mean differences in
MDA8 O₃ concentrations (WE-WD O₃). Given the global
scope of this analysis and the inherent complexity in
defining distinct O₃ seasons across various regions, we
utilize all-year data without seasonal selection. Using t-
test at each site or grid to ascertain the statistical
significance of WE-WD difference (p-value < 0.05). For
annual trends, we apply the non-parametric Mann-
Kendall test (Kendall, 1975; Mann, 1945) coupled with
Theil-Sen's slope estimator (Raj and Koerts, 1992; Sen,
1968). We examine the annual trends in the WE-WD O₃
over 5-year rolling intervals to mitigate the effects of
interannual meteorological variability (Pierce et al., 2010).

Deleted: Detection

212 inherent complexity in defining distinct O_3 seasons across various regions, we utilize all-year data without seasonal
213 selection. Using *t*-test at each site to ascertain the statistical significance of WE-WD difference (p-value<0.05).
214 Statistically significant WE-WD differences are identified at each site, and trends were evaluated using 5-year rolling
215 intervals to dampen interannual meteorological variability (Pierce et al., 2010).

216 To build the relationship between observed O_3 weekend effect and satellite HCHO/NO₂ (Section 3.1), we mainly use
217 OMI retrievals of HCHO and NO₂. OMI is selected as the primary satellite data source due to its unique combination
218 of long-term continuity (2004-2020) and optimal afternoon overpass time. The early afternoon measurement period
219 (13:00-14:00 local time) coincides with peak photochemical activity when O_3 production is most active, boundary
220 layer heights are maximized, and solar zenith angles are minimized - all critical factors for obtaining high-quality
221 retrievals of tropospheric HCHO and NO₂ columns (Jin et al., 2017; Jin and Holloway, 2015). We derive threshold
222 values for the HCHO/NO₂ ratio that delineate O_3 formation regimes by correlating the WE-WD differences in O_3
223 with HCHO/NO₂ using linear regression. The regime threshold corresponds to the intercept (zero-crossing point) of
224 the regression line, where the sign of WE-WD O_3 changes. To establish the relationship between HCHO/NO₂ ratios
225 and WE-WD O_3 , we extract the nearest gridded daily OMI data ($0.125^\circ \times 0.125^\circ$) corresponding to the ground-based
226 O_3 monitoring stations. To ensure precise spatiotemporal matching, we pair the satellite overpass observations with
227 surface measurements by averaging hourly O_3 concentrations at 13:00 and 14:00 local time (corresponding to OMI's
228 overpass window).

229 2.4 Long-term Trend Reversal of Annual HCHO/NO₂ Ratio

Deleted: in

230 As most regions show bi-directional trends of O_3 precursors, we hypothesize that a reversal of trend in HCHO/NO₂
231 can be found during our study period. To identify trend reversal years for the HCHO/NO₂ ratio at each grid point, we
232 adopt the method Georgoulias et al. (2019) used in the analysis of satellite-derived NO₂ trend reversals, originally
233 adapted by Cermak et al. (2010) for studying solar radiation and global brightening trends. The approach is briefly
234 described as follows:

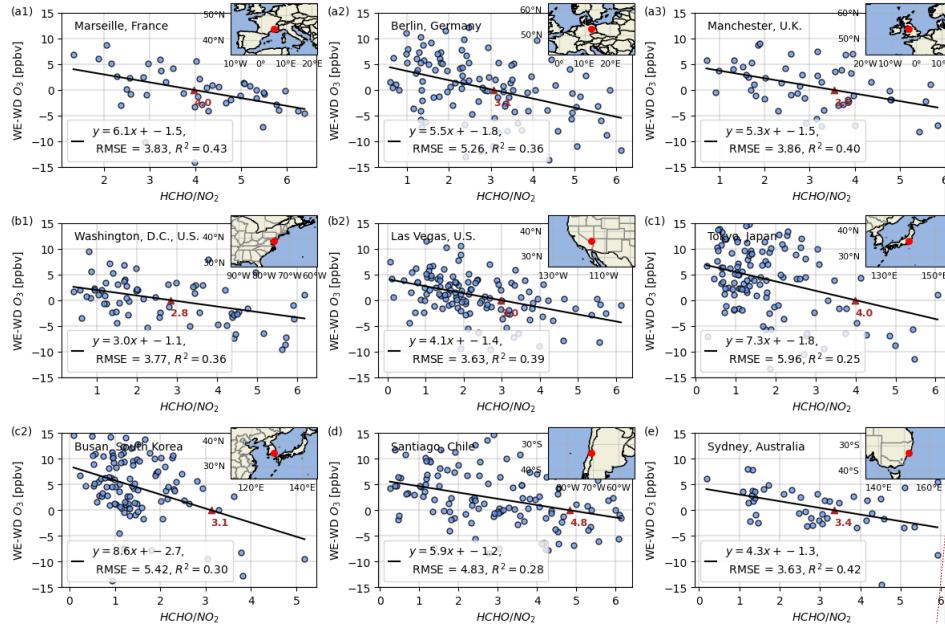
235 Firstly, for each grid point and for each year t , a point score $S(t)$ is calculated to quantify the potential for a trend
236 reversal:

$$237 S(t) = \frac{\min(p(B_1), p(B_r))}{\text{abs}(B_1 - B_r) \times \sigma_{B_{1+r}}} \quad (1)$$

238 Here, B_1 , B_r and B_{1+r} represent the trends calculated over 5-year periods to the left [$t - 4, t$], right [$t, t + 4$], and
239 spanning the year [$t - 4, t + 4$], respectively. The 5-year interval is chosen to reduce the impact of interannual
240 meteorology variability. $p(B_1)$ and $p(B_r)$ are the probabilities (p-value) of the trend B being statistically
241 insignificant, while $\sigma_{B_{1+r}}$ signifies the error in trend fitting. The p-value of the hypothesis test, with the null
242 hypothesis being a zero slope, using a Wald test with a t-distribution.

243 The time series data for each grid and period are fitted to a linear model:

$$244 Y_t = A + BX_t + N_t \quad (2)$$

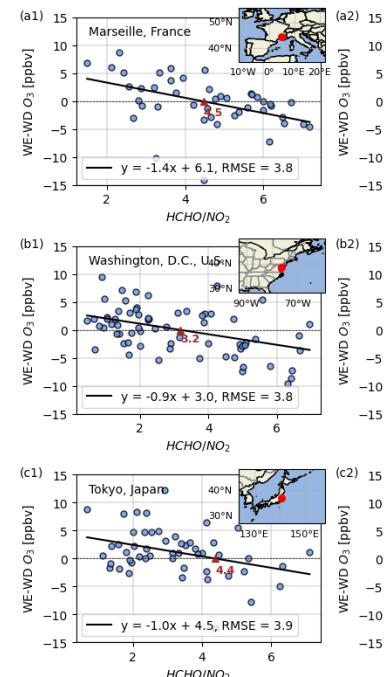

245 where Y_t is the annual mean value for year t , X_t is time variable representing the year, A is the annual mean of
246 the first year, B is the estimated slope of trend line, and N_t represents the residual, or the discrepancy between the

248 fitted and the observed value.

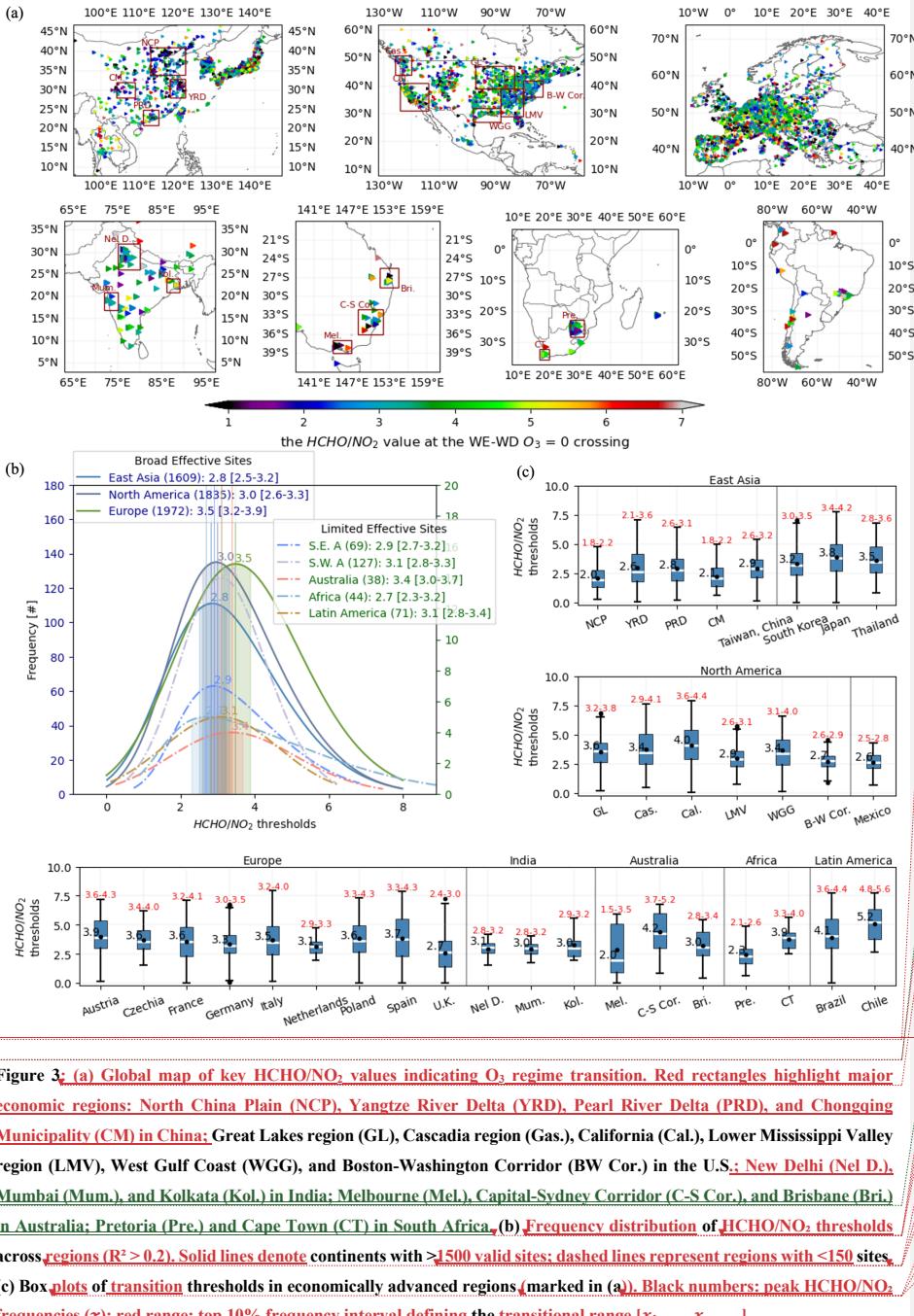
249 A year is identified as a trend reversal year if it exhibits the lowest $S(t)$ value, an opposite sign between B_1 and B_r
 250 ($B_1 \times B_r < 0$), and significant trend starts and ends (both $p(B_1)$ and $p(B_r) < 0.05$). Selecting the year with the
 251 lowest $S(t)$ ensures a maximal difference in trends slope ($\max |B_1 - B_r|$) on either side of the year, with the fitting
 252 error of the trend at this juncture, $\sigma_{B_{l+r}}$, being as pronounced as possible. This method is estimated to be capable of
 253 identifying reversal years with a very limited error of 0.5-1% and standard deviation between 2 and 5% (Cermak et
 254 al., 2010). The trend calculation, based on data spanning 5 years before and after each year, helps to mitigate the
 255 impact of short-term extremes in pollutant concentrations, such as the dramatic decrease in emissions during the 2020
 256 COVID-19 pandemic. This approach allows us to identify regions with long-term changes in trends.

257 3 Results and Discussions

258 3.1 Identification of Region-Specific Regime Thresholds for Satellite-based HCHO/NO₂



259
 260 **Figure 2: Scatter plots of the monthly average satellite-derived HCHO/NO₂ ratio versus the WE-WD O₃ concentration in
 261 9 representative cities. Black line: the fitted linear regression line; red triangles: inflection points where the regression line
 262 intersects the WE-WD O₃ = 0 baseline.**


Deleted: regime thresholds

Deleted:

Deleted: satellite

Deleted:

Deleted: O_3 formation is a highly nonlinear process in relation to NO_x and VOCs. When urban areas enter weekend, NO_x emissions typically decrease due to reduced commuting and industrial activities (Figure S1). In VOC-limited regime, NO_x reduction leads to increased weekend O_3 levels (positive WE-WD O_3), whereas in NO_x -limited regime, it results in decreased weekend O_3 levels (negative WE-WD O_3). In theory, a transition threshold should exist between these two regimes. Figure 2 illustrates the correlation between monthly mean HCHO/NO_2 ratio from satellite data compared to the in-situ WE-WD O_3 in 9 representative metropolitan cities across 4 continents, showing a clear negative correlation and a transition from positive to negative WE-WD O_3 values at a specific HCHO/NO_2 ratio. Assuming that O_3 formation differences are attributable to NO_x changes only, HCHO/NO_2 value at the WE-WD $\text{O}_3 = 0$ crossing can be considered the threshold separating VOC-limited and NO_x -limited regimes. For example, in Washington, D.

Moved down [1]: C.,

Deleted: this key threshold is found to be 3.2 (Figure 2 b1).
(a)

[1]

Deleted: (a) Global map of regime transitional threshold values for HCHO/NO_2 , derived by assessing the correlation between monthly HCHO/NO_2 and WE-WD O_3 difference. We restrict our analysis to ground sites with at least 5 years' observation. Triangles

[2]

Moved (insertion) [2]

Deleted: .

Deleted: Distribution

Deleted: site numbers

Deleted: varying threshold bins, with solid/dashed lines representing

Deleted: 100 sites and 20-100 effective

Deleted: , respectively.

Deleted: plot

Deleted: of East Asia, North America, and Europe, as

Deleted:). The dark-blue numbers on

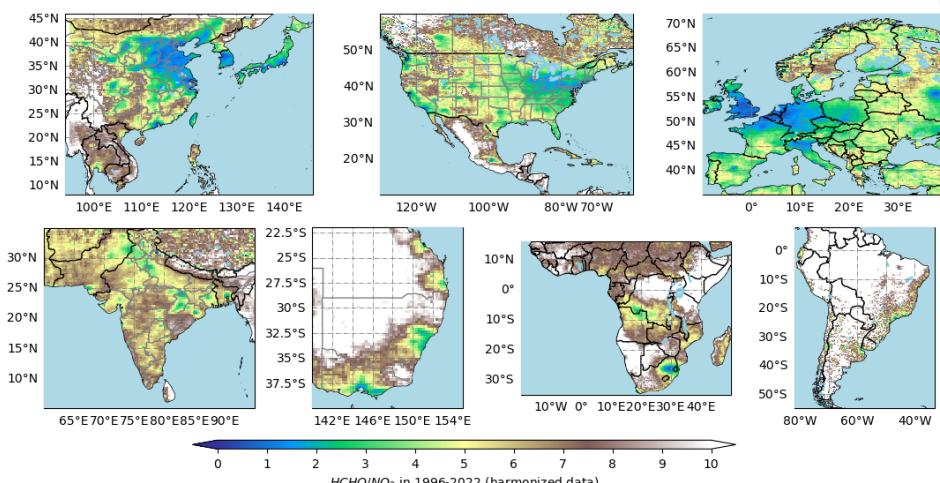
Deleted: right axis indicate the median threshold value for all regions presented.

327 O_3 formation exhibits complex nonlinear dependence on NO_x and VOC concentrations. During weekends, urban NO_x
328 emissions typically decline (Figure S1) due to reduced transportation and industrial activity, leading to distinct O_3
329 response patterns: in VOC-limited regimes, NO_x reductions cause weekend O_3 increases (WE-WD $O_3 > 0$), while NO_x -
330 limited regimes show weekend O_3 decreases (WE-WD $O_3 < 0$). The transition between these regimes occurs at a
331 theoretically threshold, which we identify as the $HCHO/NO_2$ ratio where WE-WD $O_3 = 0$. To demonstrate our
332 approach, we selected nine representative urban stations with long-term (>10 year) records, as shown in Figure 2.
333 These sites were chosen ensuring a balanced global representation while factoring in region site density (3 European,
334 2 North American, 2 Asian, 1 Australian, and 1 Latin American). Our analysis of monthly WE-WD O_3 differences
335 and $HCHO/NO_2$ ratios reveal strong negative correlations (fitting line in Figure 2), consistent with photochemical
336 theory - higher NO_x availability enhances weekend O_3 increases. Assuming WE-WD O_3 differences are primarily
337 NO_x -driven, $HCHO/NO_2$ value at the WE-WD $O_3 = 0$ crossing can be considered the site-specific thresholds
338 separating VOC-limited and NO_x -limited regimes (red triangle in Figure 2b1).

339 Building upon this qualitative approach, we systematically quantify O_3 sensitivity thresholds across the global
340 monitoring network (Figure 3). Our analysis of all qualified monitoring sites ($R^2 > 0.2$) reveals that the probability
341 density distribution of transition thresholds across global stations peaks at $HCHO/NO_2 = 3.1$. The transitional range
342 between VOC-limited and NO_x -limited regimes is quantified using the top 10% frequency interval ([2.7-3.4] for
343 global sites). The observed spatial patterns may reflect regional disparities in emission profiles and chemical regimes
344 (Lu and Chang, 1998). Longer-regulated regions with balanced emission reductions (e.g., Europe) systematically
345 exhibit higher thresholds than rapidly developing areas where NO_x remains dominant (e.g., East Asia). In East Asia
346 (all sites: 2.8 [2.5-3.2]), extremely low values are observed over the NCP at 2.0 [1.8-2.2], while Japan shows the
347 highest threshold range of 3.8 [3.4-4.2]. Europe shows the highest continental-scale $HCHO/NO_2$ threshold among all
348 regions studied (all sites: 3.5 [3.2-3.9]). However, significant country-level variations exist, ranging from the lowest
349 values in the U.K. (2.7 [2.4-3.0]) to the highest in Austria (3.9 [3.6-4.3]). North America also exhibits notable
350 subregional variability in $HCHO/NO_2$ thresholds (all sites: 3.0 [2.6-3.3]), ranging from elevated values in California
351 (4.0 [3.6-4.4]) to lower thresholds along the LMV region (2.9 [2.6-3.1]). This pattern aligns with findings from Jin
352 et al. (2020) employing alternative methodologies. Residual discrepancies in absolute threshold values may arise
353 from temporal shifts in emission trends, such as increasing $HCHO/NO_2$ ratios in recent decades. Regions with limited
354 observational coverage (effective sites < 150) still yield meaningful but less constrained distributions, ranging from
355 Europe-like values in Australia (3.4 [3.0-3.7]) to lower thresholds in South Africa (2.7; 2.3-3.2). Emission
356 heterogeneity and monitoring density may further modulate the interval widths: regions with uneven source
357 distributions or sparse networks likely display broader transition ranges (e.g., Africa, span 0.9: 2.3-3.2) compared to
358 well-monitored regions (e.g., Europe, span 0.7: 3.2-3.9). Other regions-including Southwest Asia (3.1 [2.8-3.3]), and
359 Latin America (3.1 [2.8-3.4])-cluster near the global mean, suggesting intermediate photochemical regimes.

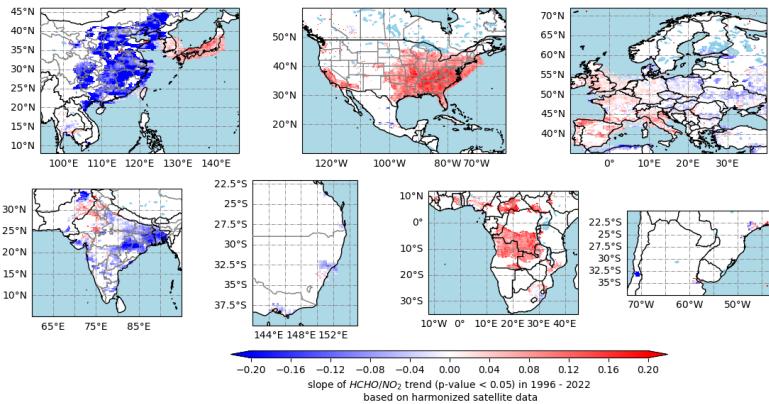
360 The variations of the regime threshold values of $HCHO/NO_2$ are likely caused by several factors. First, here we use
361 tropospheric column $HCHO/NO_2$ to represent the near-surface O_3 chemistry, which is affected by the relationships
362 between column and surface $HCHO$ and NO_2 (Jin et al., 2017). The column-to-surface relationship is determined by
363 the boundary layer height and the vertical profiles of $HCHO$ and NO_2 , which should vary spatially (Adams et al.,
364 2023; Zhang et al., 2016b). Second, $HCHO$ is used as an indicator of VOCs, but the yield of $HCHO$ from oxidation
365 of VOCs varies with different species (Shen et al., 2019; Chan Miller et al., 2016; Zhu et al., 2014). Regions
366 dominated by biogenic VOC emissions like southeast U.S., tropical regions generally have larger $HCHO$ yield (Wells
367 et al., 2020; Palmer et al., 2007; Palmer et al., 2006). Third, the local chemical environmental may also differ spatially.
368 For example, the lower thresholds in China are consistent with elevated regional NO_x levels (Jamali et al., 2020) and
369 enhanced secondary aerosol formation in this region, which may promote radical loss (Li et al., 2019; Liu et al., 2012).

Deleted: By aggregating all TOAR O_3 observations based on corresponding monthly OMI data, we evaluate the thresholds through linear regression between the monthly mean WE-WD O_3 and the $HCHO/NO_2$ ratio at the ground-based sites with at least 5 years' observations. The key thresholds indicating O_3 regime shifts are identified as the critical point where WE-WD O_3 changes sign. The spatial distribution and statistical results of the identified critical points are presented in Figure 3. Globally, robust linear relationships are observed, particularly pronounced in regions such as South Korea, Japan, the U.S., and Europe (Figure 3a), which also have the highest density of monitoring stations. We find a wide distribution of thresholds across different regions (Figure 3b), implying a large spatial variability in the threshold values. Among the sites where the linear regression is statistically significant with p -value < 0.05 , approximately 63% of the sites have threshold values between 2 to 5, with over 80% of these sites between 2.5 and 4.7, and the mean value around 3.5. East Asia has the lowest mean threshold value at 2.8 with the minimum over the East China (2.2) and maximum over Japan (4.4) (Figure 3c). In North America, the threshold value is around 2.9, with the eastern seaboard sites averaging 2.7 ± 1 and the sites in western region, predominantly centered in California, slightly higher at 4.5 ± 1 , and the maximum value is around 4.8, which is located in the southwest of the Great Lakes region. Europe, with the densest sites of robust linear relationship, has the second-highest critical threshold at 4.3, comparable to Latin America, and just below Australia's 4.7. In Europe, a lower threshold cluster from 2.5 to 3.5 is centered in western Germany, extending to Belgium, northeastern France, the Netherlands, and parts of eastern U.K., with similar low spots in northern Portugal, southern Spain, and northern Italy. Southwest Asia's values are centered around 3.2. Africa and Southeast Asia, with fewer than 20 effective sites (over 5-year continuous observation), are excluded from the analyses due to limited representativeness.¶


407 Here we use statistical methods to derive the regime thresholds. Further attribution of the spatial variations is beyond
408 the scope of this study, which warrant further investigation.

409 It should be noted that these calculations do not account for the effects of short-term synoptic processes on
410 temperature and the conditions affecting O₃ transport and diffusion. The regime thresholds have uncertainties, and
411 previous studies typically assume a range for regime threshold values (Jin et al., 2020; Jin et al., 2017; Sillman, 1999).
412 This implies that the critical values identified in this study should not be considered definitive indicators that
413 guarantee a regime shift. Nonetheless, this method remains valuable for leveraging large-scale satellite data to track
414 the global progression of O₃ regimes, especially in regions and periods where in-situ O₃ data are limited. We will
415 further explore this using the statistically derived threshold in Section 3.3.

416 3.2 Long-term Trends in Satellite-based HCHO/NO₂


Deleted: and Trend Reversals

417 3.2.1 Spatial Patterns and Linear Trends

418

419 Figure 4: Tropospheric HCHO/NO₂ ratio patterns using the self-consistent GOME, SCIAMACHY, OMI and TROPOMI
420 dataset for the combined period 1996 – 2022.

422

423 **Figure 5: Satellite-based linear trends of tropospheric HCHO/NO₂ ratios (1996–2022) for grids with a mean NO₂ VCD >**
 424 **1.5×10^{15} (molecules · cm⁻²) and statistically significant trends at the 95 % confidence level.**

425 Given the critical role of satellite-based HCHO/NO₂ in diagnosing O₃ chemical regimes, we first investigate its global
 426 distribution (Figure 4) and long-term trends from 1996 to 2022 across anthropogenic regions (Figure 5). Multi-year
 427 averaged HCHO/NO₂ ratios identify highly VOC-limited regimes in densely populated urban clusters
 428 worldwide, including China's most developed regions (NCP, YRD, and PRD), the Seoul-Incheon metropolitan area
 429 in Korea, the Greater Tokyo region in Japan, Los Angeles in the U.S., and the Belgium-Netherlands-eastern U.K.
 430 region in Europe, as well as Johannesburg in South Africa. More extensive areas exhibit moderate VOC sensitivity
 431 ($1 < \text{HCHO/NO}_2 < 2$), covering eastern China, the eastern U.S., central-western Europe (particularly western
 432 Germany, northern France, and northern Italy), India's Delhi-Mumbai industrial corridor, Australia's coastal urban
 433 centers, and major Latin American metropolitan areas including Rio de Janeiro, Santiago, and Buenos Aires.

434 These spatial patterns correlate strongly with NO_x hotspots (Figure S2a), reflecting the localized nature of NO_x
 435 emissions compared to the more uniform distribution of VOCs (Figure S2b). NO_x emissions, primarily linked to
 436 population density and economic activities, predominantly originate from high-temperature combustion processes
 437 involving nitrogen and oxygen, such as industrial emissions and vehicle exhaust (Liu et al., 2016). With its short
 438 lifetime of a few hours to a day, the distribution of NO₂ reflects hotspots of power generation and fossil fuel
 439 consumption (Jamali et al., 2020). In contrast, HCHO, an intermediate in the degradation of various VOCs (De Smedt
 440 et al., 2015), exhibits a more uniform distribution due to the widespread biogenic sources of VOCs. This contrast
 441 underscores NO_x as the dominant driver of spatial variability in HCHO/NO₂ ratios.

442 Our analysis of tropospheric HCHO/NO₂ ratio trends reveals significant spatial heterogeneity across global
 443 anthropogenic regions (Figure 5). Focusing on areas with mean tropospheric NO₂ columns exceeding 1.5×10^{15}
 444 molecules cm⁻² and statistically significant trends ($p < 0.05$), we observe distinct patterns between developed and
 445 developing economies. Developed regions, particularly Japan and the U.S. (eastern seaboard and California region),
 446 show strong positive trends averaging $0.11 \pm 0.05 \text{ yr}^{-1}$, likely reflecting the success of long-term air quality policies in
 447 reducing NO_x emissions. Similarly, Taiwan (China) and South Korea exhibit weak positive trends ($0.04 \pm 0.02 \text{ yr}^{-1}$).
 448 In contrast, rapidly developing regions display marked negative trends, with central-eastern China and India showing
 449 significant declines ($-0.12 \pm 0.05 \text{ yr}^{-1}$), including localized minima of -0.18 yr^{-1} in China's YRD and -0.13 yr^{-1} in
 450 Kolkata region. Similar negative trends are observed in Chile ($-0.14 \pm 0.02 \text{ yr}^{-1}$), while Australia's southeastern coastal

Moved (insertion) [3]

Moved up [3]: trends of tropospheric HCHO/NO₂ ratios (1996–2022) for grids with a mean NO₂ VCD > 1.5×10^{15} (molecules · cm⁻²) and statistically significant trends at the 95 % confidence level. ¶

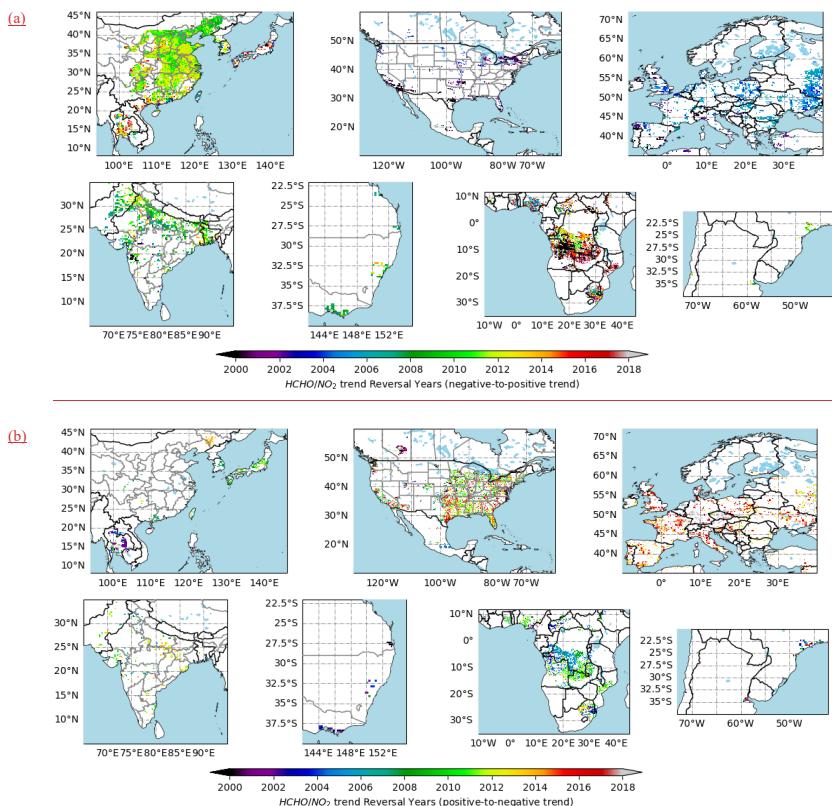
Deleted: Using satellite-based HCHO/NO₂ as a determinant for identifying O₃ chemical regimes, we assess the spatial variations and long-term evolution of O₃ chemical regime over global anthropogenic regions from 1996 to 2022. Figure 4 show the multi-year average HCHO/NO₂ ratio maps from 1996 to 2022, derived from the harmonized satellite dataset. Notable areas with extremely low HCHO/NO₂ ratios of below 1 include East China, Seoul-Suwon region in South Korea, the major urban areas of southern Honshu in Japan, and European regions centered around Belgium, the Netherlands, and eastern United Kingdom, as well as northern Italy. Local minima are found in metropolitan areas such as China's Pearl River Delta, U.S. regions including Los Angeles and San Francisco, urban clusters along the East Coast, and South Africa's Johannesburg etc. These regions are likely under long-term VOC-limited regime. Regions with ratios below 2 include the extensive area of the eastern U.S., the Mumbai and Delhi-New Delhi corridor in India, and major Australian cities like Canberra, Sydney, and Adelaide. The distribution of areas with low HCHO/NO₂ ratio close aligns with that of high NO₂ areas (Figure S2a). NO_x emissions, primarily linked to population density and economic activities, predominantly originate from high-temperature combustion processes involving nitrogen and oxygen, such as industrial emissions and vehicle exhaust (Liu et al., 2016). With its short atmospheric lifetime of a few hours to a day, the distribution of NO₂ reflects hotspots of power generation and fossil fuel consumption (Jamali et al., 2020). In contrast, HCHO, an intermediate in the

... [3]

Deleted: While we apply linear regression to identify the overall trends, trends in Figure 5 could shift due to factors like environmental policies and economic changes etc. These minor trend changes do not affect the linear fit's confidence. However, in certain areas, such as the North China Plain, significant turning points can render the linear fit insignificant. Here, rapid population growth and industrialization were followed by substantial policy-driven reductions in gaseous pollutant emissions, leading to trend reversals that the linear model fails to capture. This indicates that the trends in Figure 5 are not fully captured by the linear model. ¶

... [4]

550 cities show weaker decreases ($-0.05 \pm 0.03 \text{ yr}^{-1}$). European trends present moderate but complex spatial variability,
551 with urban clusters in western Europe showing slight increases ($0.08 \pm 0.04 \text{ yr}^{-1}$) and eastern European regions
552 experiencing decreases ($<-0.04 \text{ yr}^{-1}$).


553 The observed trends mirror the global redistribution of O₃ precursors since 1980, where developed nations achieved
554 emission reductions while developing Asia - particularly Southeast, East and South Asia - experienced dramatic
555 increases (Zhang et al., 2016a). Specifically, Europe and North America achieved >60% NO_x reductions between
556 1990-2022 through stringent air quality policies, while Asia experienced an 86% increase during the same period,
557 with India's emissions nearly tripling to 9.4 million metric tons by 2022 (<https://www.statista.com/>, note as Statista
558 Data from here). Although VOC reductions in developed regions (e.g., -46% in the U.S. since 1990 to 2023, Statista
559 Data) would theoretically drive HCHO/NO₂ ratios downward, the observed trends are primarily governed by NO_x
560 dynamics, as evidenced by the stronger correlation between NO₂ and HCHO/NO₂ trends compared to HCHO alone
561 (Figure S3). Local-scale variations in either VOCs or NO_x may account for regional deviations from these general
562 patterns. Japan represents a unique case in East Asia, showing robust linear growth in HCHO/NO₂ ratios, resulting
563 from its early and rigorous regulatory framework targeting both mobile and stationary sources. The country's vehicle
564 emission controls, initiated in 1966 (initially CO-focused), evolved through progressive NO_x standards for light-duty
565 vehicles (1973), stricter gasoline/diesel limits (1989), and world-leading regulations by 2003 (NO_x regulations
566 surpassing contemporaneous U.S. and European standards) (<https://www.env.go.jp/air/>). Parallel industrial policies
567 revised stationary source NO_x limits four times since 1973. These measures drove a 33.7% reduction in national NO_x
568 emissions from 2005 to 2014 (1.93 to 1.28 million metric tons; Statista Data), positioning Japan's emissions at
569 merely 5.8% of China's regional total (0.68 vs. 11.76 Tg N/yr; Han et al., 2020). Satellite data corroborate a 27-year
570 decline in tropospheric NO₂ columns.

571 Over the African continent, almost no change is detected, with one notable exception - the Congo Basin. This finding
572 aligns with previous satellite observations showing no significant trends in either NO₂ (Hilboll et al., 2013) or HCHO
573 (De Smedt et al., 2015) over most of Africa. However, existing studies have not sufficiently explained the continental
574 disparity between Africa's overall trend stability and the Congo Basin's unique behavior. The Congo Basin presents
575 a particularly intriguing case, exhibiting anomalously strong negative HCHO/NO₂ trend (Figure 5) and complex
576 identified reversals (Figure 6). This region's distinct atmospheric chemistry likely stems from its status as one of the
577 world's most active biomass burning hotspots, where competing environmental factors may drive the observed
578 anomalies: a global reduction in burned area including Africa (1998-2015; Andela et al. (2017)) versus persistent
579 localized fire activity from slash-and-burn agriculture (Tyukavina et al., 2018). These fires complicate the trends of
580 HCHO and NO₂, both due to smoke aerosol interference with satellite retrievals, and transient spikes during extreme
581 events (Jin et al., 2023). Consequently, standard trend analysis cannot reliably resolve emission signals in such fire-
582 prone areas, necessitating specialized methodologies beyond this study's scope.

583 While linear regression effectively captures dominant trends, important nonlinearities emerge in regions undergoing
584 rapid trend transitions. For instance, China's NCP region initially showed steep ratio declines during industrialization,
585 followed by stabilization after implementation of stringent emission controls post-2012 (van der A et al., 2017). Such
586 nonlinear behavior, where rapid industrialization drives initial NO_x surges followed by policy-driven reductions,
587 creates trend reversals that simple linear models cannot resolve. Thus, areas with nonsignificant linear trends in Figure
588 5 may conceal abrupt turning points rather than true trendless, emphasizing the need for complementary nonlinear
589 analyses.

590

3.2.2 Drivers of HCHO/NO₂ Trend and Trend Reversals

592 **Figure 6: Persistent trend reversals of tropospheric HCHO/NO₂ ratio: (a) from negative to positive and (b) from positive**
 593 **to negative. Only grid cells with a long-term mean NO₂ columns greater than 1.5×10^{15} molecules/cm² and**
 594 **statistically significant trends with p-value < 0.05 for the period before and after the year of reversals are shown.**

595 **Next, we assess whether trend reversals exist in HCHO/NO₂ time series. Figure 6 presents our estimated years of**
 596 **persistent reversal occurrence, considering only grid cells with statistically significant trends (p value < 0.05) for both**
 597 **pre- and post-reversal periods. Figure 6a shows the regions where we find trend changes from negative to positive,**
 598 **and Figure 6b shows the regions where the trend transitioned from positive to negative. While some locations**
 599 **experienced multiple reversals, we focus on the most significant transition at each grid point.**

600 **The most striking reversals occur in Asia, where East China and parts of India show clear negative-to-positive trend**
 601 **shifts around 2011. In China, this reversal directly corresponds to stringent NO_x controls implemented, including**
 602 **power plant retrofits and upgraded vehicle standards (van der A et al., 2017; Krotkov et al., 2016b). This policy-**
 603 **driven transition is clearly reflected in the satellite record, where the inflection point in HCHO/NO₂ ratios aligns**
 604 **closely with the peak and subsequent decline in NO₂ columns (Figure S3a and Figure S4b). During 1996–2011, NO₂**
 605 **levels in the NCP region surged eightfold, far outpacing HCHO increases (1.5×; Figure S3a). Post-2011, industrial**

Deleted: The year of

Deleted: grids

Deleted: tropospheric

Deleted: (molecules · cm⁻²)

Deleted: Next, we assess whether reversals of the trends exist in satellite HCHO/NO₂, using the methods described in Georgoulias et al. (2019). Figure 6 shows our estimated year when a persistent reversal of the trend occurs for HCHO/NO₂. We only include grid cells with statistically significant trends (p -value < 0.05) for both pre- and post-reversal periods. Figure 6a shows the regions where we find trend changes from negative to positive, and Figure 6b shows the regions where the trend transitioned from positive to negative. It should be noted that some regions may experience several reversals, here we only highlight the most significant trend reversals at each grid. The timing of reversals in the HCHO/NO₂ ratio is highly variable across different regions. In Asia, particularly in East China and North India, we observed a single reversal in the HCHO/NO₂ ratio from negative to positive trends around 2011.

Conversely, major city clusters in North America exhibit a contrasting trend, with a significant shift from positive to negative trends occurring around 2012–2016. European countries generally display multiple distinct trend reversals. The first occurred in the early 2000s, transitioning from increase to decrease trends, followed by a shift back to positive trends around 2005–2012. Another notable shift to negative trends occurred in central and western European countries between 2015 and 2017. Major urban areas in southeast Australia saw a delayed single negative to positive reversal between 2006 and 2009. Overall, since the 21st century, there has been a notable upsurge in HCHO/NO₂ within the industrialized western world. Till 2015, the U.S. experienced a substantial growth rate of 52–124%, Europe by 12%–17%, and Japan by 77%. From 2015, a minor decline emerged in some U.S. regions, with California being one of the most pronounced, yet not widespread enough to form a significant regional pattern. This reversal correlates with the decline of HCHO and the leveling-off of NO₂ trends (Figure S3a). While meteorological factors can account for the 3–5 years cyclical fluctuations in HCHO/NO₂ ratios, the persistent changes in trends are primarily governed by variations in pollutant emission. In China, the post-2011 [5]

703 VOC emissions rose by 20.46% from 2011-2017 (11,122.7 to 13,397.9 thousand tons/yr; Liu et al. (2021)),
704 amplifying the post-2011 ratio recovery.

705 India presents a contrasting case, with more localized and less sustained reversals. While major cities like Delhi and
706 Mumbai saw NO₂ concentrations rise 1.5-2× during 1996-2022 (tracking 15.6% average annual GDP growth post-
707 2002, <https://data.worldbank.org>), only temporary slowdowns occurred during economic dips (e.g., 2011-2013). This
708 pattern reflects fundamental challenges in pollution governance - despite establishing early regulatory frameworks
709 like the 1981 Air Act and the 2019 NCAP, implementation has remained weak (Ganguly et al., 2020), consistently
710 prioritizing economic expansion over environmental protection. During this period, HCHO levels showed only
711 modest growth (1.2×). The temporary GDP slowdown (1.09% growth during 2011-2013) seems to correlate with
712 localized NO₂ ratio slowdowns or declines post-2011, though these were neither sustained nor widespread. This
713 pattern reflects fundamental challenges in pollution governance in India - despite establishing early regulatory
714 frameworks like the 1981 Air (Prevention and Control of Pollution) Act and the 2019 National Clean Air Programme
715 (NCAP), implementation has remained weak (Ganguly et al., 2020), somewhat reflect an insufficient policy
716 prioritization of environmental protection.

717 Developed regions exhibit normally linear dominance with subtle shifts but distinct multi-phase patterns. In the U.S.,
718 initial localized positive trends emerged in the early 2000s. These transitions - from flat or weakly increasing baselines
719 to rapid growth - were more evident referring to Figure 9b. From 1996 to 2015, U.S.'s nationwide HCHO/NO₂ ratios
720 increased by 52-124%, primarily driven by NO_x reductions mandated by the 1990 Clean Air Act Amendments
721 (Amendments, 1990). This legislation prompted a strategic shift from VOC-centric controls to integrated NO_x-VOC
722 management, directly resulting in a significant reduction in NO₂ levels across the U.S. since 2000 (Duncan et al.,
723 2016; Jin et al., 2020; Lamsal et al., 2015), but the trends of HCHO are flat, largely due to the contributions from
724 biogenic VOCs (Jin et al., 2020; Zhu et al., 2017). Although over industrialized areas, anthropogenic emission
725 changes drive HCHO column trends more (Stavrakou et al., 2014; Zhu et al., 2014; De Smedt et al., 2010), the
726 observed large short-term variabilities at regional scales are mainly attributable to meteorological fluctuations, such
727 as temperature fluctuations and fire events (Stavrakou et al., 2014). After 2015, localized reversals appeared, notably
728 in California, where HCHO/NO₂ ratios dipped slightly due to plateauing NO_x reductions and marginally declining
729 HCHO (Figure S3). However, these localized reversals did not coalesce into broader regional trends.

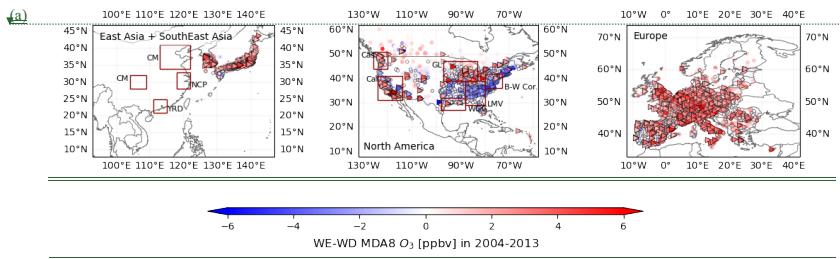
730 Europe exhibits pronounced spatiotemporal heterogeneity in HCHO/NO₂ ratio trends compared to the relatively
731 uniform pattern observed across the U.S. The continental-scale increase, initiated in the early 2000s, demonstrates
732 strong NO₂ reduction dominance, while temporal fluctuations primarily reflect HCHO variability (Figure S3). This
733 overall upward trajectory aligns with the EU's 1996 Integrated Pollution Prevention and Control Directive, which
734 mandated sector-specific emission standards for refineries and chemical industries. Despite coordinated EU-wide air
735 quality policies, national outcomes vary significantly: The U.K. achieved an 80% reduction in NO_x emissions since
736 1990 (from over 3 million tons to 677,500 tons in 2021) (Statista Data), while France cut NO_x by 61% over the past
737 two decades (reaching 651,000 metric tons in 2023), largely through transportation reforms. Spain saw a 55% decline
738 since 1990 (588,100 tons in 2022), likely due to power plant emission controls (Curier et al., 2014). These divergent
739 trends stem from variations in national NO_x sources and policy effectiveness (Jamali et al., 2020; Paraschiv et al.,
740 2017), as well as persistent non-compliance issues—particularly in road transport, which accounted for 94% of EU
741 air quality standard exceedances in 2015 (European Environment Agency, 2015). Under these circumstances, the
742 reversal points also varied across nations: Central European countries (e.g., Poland, Czechia) peaked around 2005,
743 while Western Mediterranean nations (e.g., Spain, Italy) and Germany reached their maxima circa 2020, with France
744 and the Netherlands still maintaining an upward trend (Figure 9a).

Deleted: uniform

Deleted: global threshold of HCHO/NO₂=3.5 to explore potential years of O₃ regimes changes. To describe how the O₃...

Deleted: chemical

Deleted: regime has evolved, we categorize into four main categories based on the long-term trends of HCHO/NO₂ (Table 1): (1) constant O₃ chemical regimes: regions with a single VOC-limited or NO₂-limited regime status without regime transition during the study period; (2) constant quasi regime: regions with single regime for most of


756 In southeastern Australia, while the overall trend in HCHO/NO₂ ratios showed weak decline, a distinct transition from
 757 negative to positive trends emerged around 2007. This reversal coincides temporally with policy-driven emission
 758 reductions implemented following severe haze events in Sydney during the early 1990s, which prompted federal
 759 action targeting vehicular pollution. The 2003 National Clean Air Agreement marked a turning point, achieving a 42%
 760 reduction in diesel vehicle smoke emissions within three years (<https://www.dccew.gov.au/>). The observed 2007
 761 inflection point reflects the time lag between policy implementation and measurable improvements in air quality.

762 Globally, linear trends predominantly characterize HCHO/NO₂ ratio evolution in developed regions (e.g., Western
 763 Europe, the U.S., Japan), resulting from sustained emission reduction policies. In contrast, developing regions (e.g.,
 764 East China) exhibit nonlinear trajectories with marked reversals, attributable to rapid industrialization coupled with
 765 delayed implementation of emission controls. These patterns are consistent with satellite-derived NO₂ trends
 766 (Georgoulias et al., 2019) and VOC dynamics studies (Fan et al., 2023; Kuttippurath et al., 2022; De Smedt et al.,
 767 2015; De Smedt et al., 2008). These studies confirm that meteorological factors could explain sub-decadal
 768 fluctuations, whereas anthropogenic emissions represent the fundamental driver of long-term trends.

769 3.3 Dual Evidence of Evolving O₃ Chemical Regimes in Major Economic Regions

770 To characterize O₃ production regime transitions across global economic regions, we employ two complementary
 771 diagnostic approaches. The ground-based method analyzes WE-WD O₃ differences, where interannual variations in
 772 both sign and magnitude provide direct evidence of regime shifts (Figure 7 and Figure 8). While this approach is
 773 particularly effective in regions with multi-decadal monitoring records (e.g., European countries, the U.S., and Japan),
 774 it is limited in regions where systematic O₃ monitoring began more recently (e.g., urban China, India). To overcome
 775 this limitation, we incorporate satellite-derived HCHO/NO₂ ratios, applying region-specific transition thresholds
 776 (Figure 3c) to long-term trends (Figure 9). The classification system categorizes regimes as VOC-limited
 777 (HCHO/NO₂ below the regional threshold range), transitional range (within the threshold range), or NO_x-limited
 778 (above the threshold range). This dual-metric approach helps identify regime shifts across all regions. Here, we
 779 examine the O₃ regime changes based on annual average HCHO/NO₂, but the O₃ chemical regime should vary
 780 seasonally (Jin et al., 2017; Jacob et al., 1995), typically becoming more NO_x-saturated in wintertime and more NO_x-
 781 limited in summertime. We exclude seasonal analysis because varying climatic definitions across regions would
 782 complicate cross-regional comparisons, and these cyclical variations do not substantially affect long-term decadal
 783 trends.

784 3.3.1 Disappearing WE-WD O₃ Effect in Highly Developed Regions

Deleted: the time

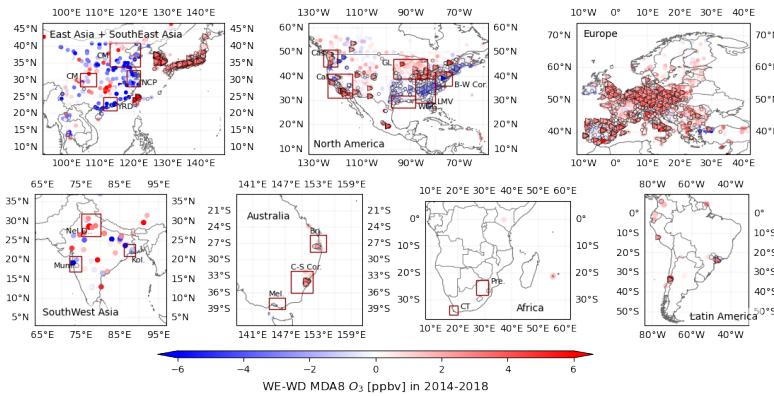
Deleted: but has potential to exceed the threshold value of 3.5; (3) single shift of the regime: regions with single shift, either from VOC-limited to NO_x-limited, or vice versa; (4) multiple shifts of the regime: regions with

Deleted: nonlinear

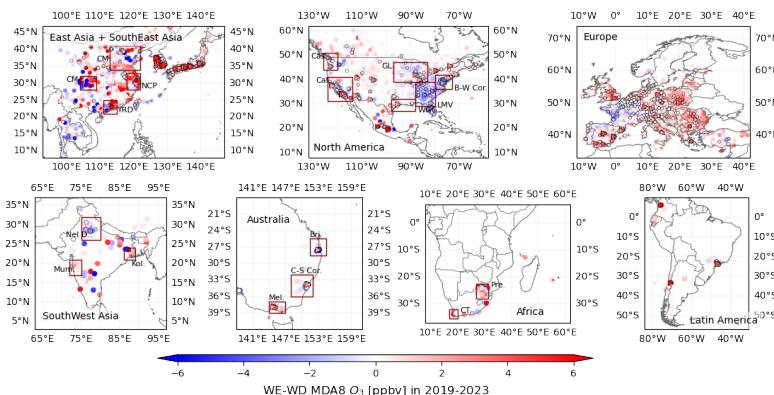
Deleted: trends in HCHO/NO₂, in which a reversal of the trends in HCHO/NO₂ is identified, and HCHO/NO₂ crosses over the threshold values at least once

Deleted: (Jin et al., 2017; Jacob et al., 1995),

Deleted: We do not account for the seasonality of O₃ production regimes

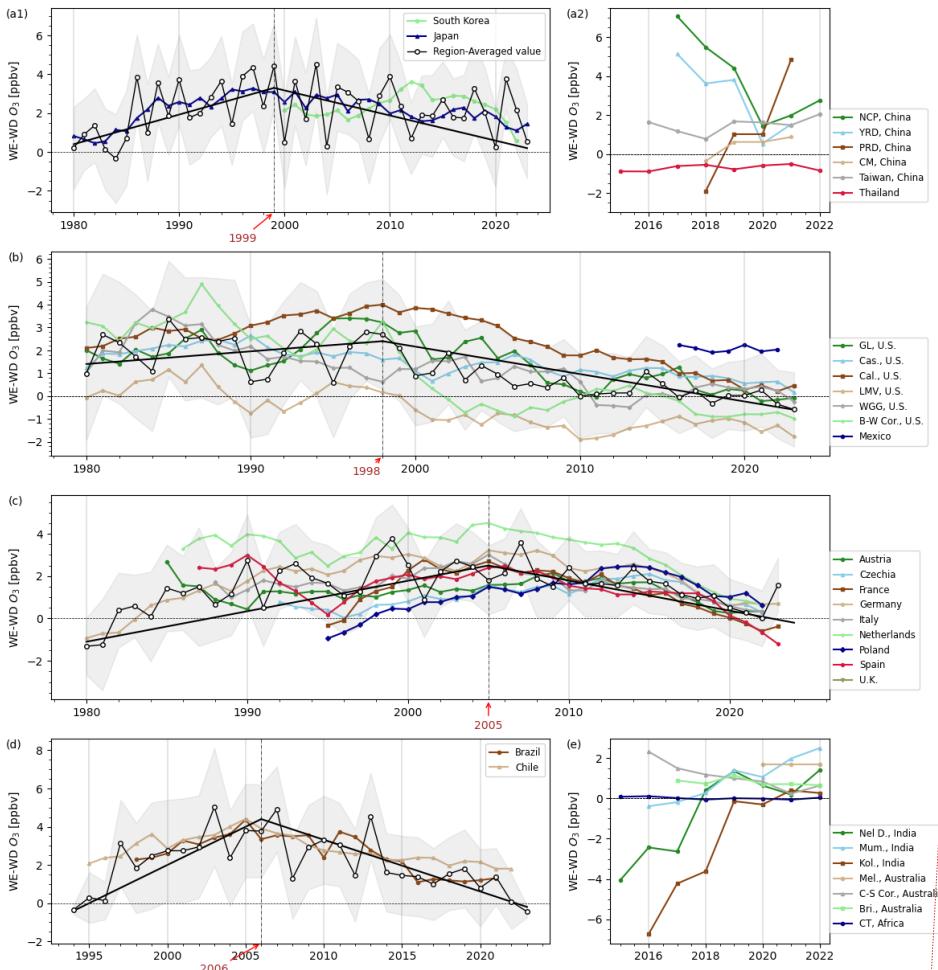

Deleted: the

Deleted: of seasons vary by climate

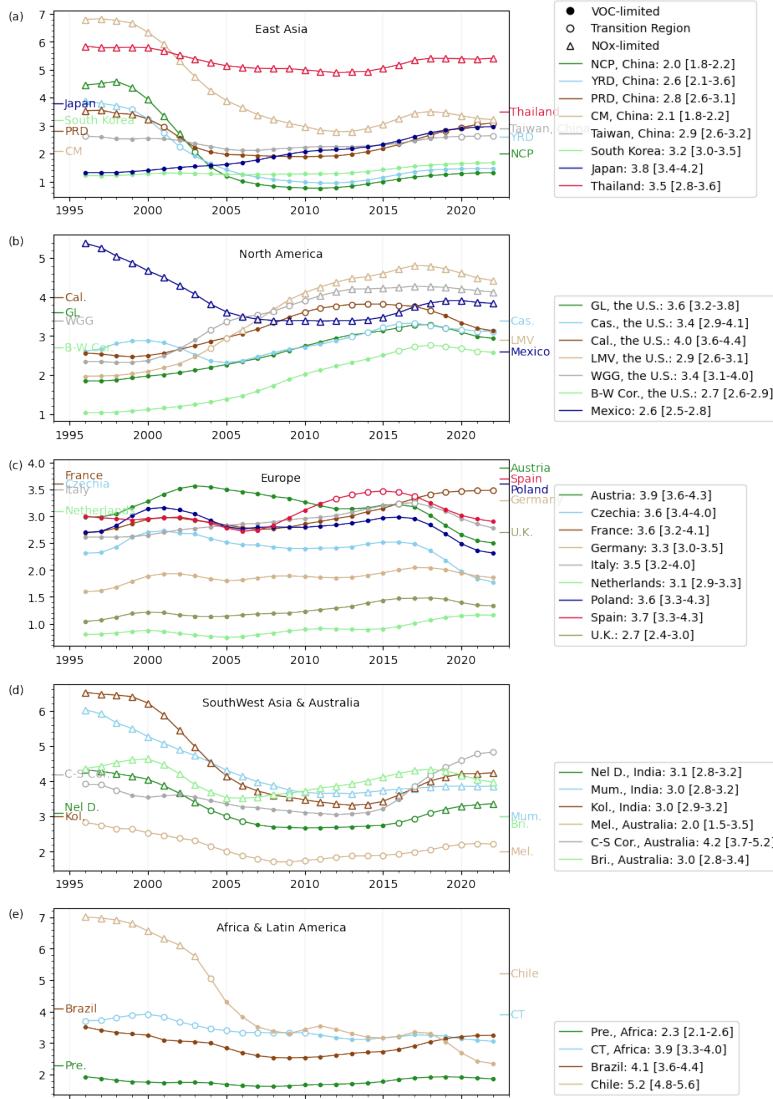

Deleted: the

Moved (insertion) [5]

(b)


(c)

800
801
802


Figure 7: Two-decade evolution of WE-WD O_3 differences across three distinct period: (a) 2004-2013, (b) 2014-2018, (c) 2019-2023. Significant (p -value of t -test < 0.05) WE-WD O_3 difference and WE-WD NO_2 differences are denoted by triangles and black-edged symbols respectively.

Moved (insertion) [6]

Deleted: across different

803
804 **Figure 8: Long-term trends of WE-WD O₃ trends across major economic regions (see Figure 3a for locations) and selected**
805 **countries using TOAR data (>100 sites). All sites with >=10 years of data are included in the continental region-averaged**
806 **statistics (black line), and sites with >=3 years of data are included in the major economic regions and selected countries**
807 **statistics.**

809

810 **Figure 9: Temporal evolution of tropospheric HCHO/NO₂ ratios by region, with symbols indicating annual O₃ regimes:**
 811 **VOC-limited (solid circle), transitional range (open circle), and NO_x-limited (open triangles). Regional peak threshold**
 812 **values (x, marker on y-axis) correspond to Figure 3c definitions.**

813 Over the past two decades, significant NO₂ reductions have been observed globally, accompanied by a persistent but
 814 weakening weekend NO_x dip (Figure S1). This decline in NO_x availability has systematically altered weekend O₃
 815 pattern, as evidenced by Theil-Sen regression analyses showing statistically significant ($p < 0.05$) negative trends in
 816 WE-WD O₃ across most monitoring sites (Figure S5). The phenomenon is particularly pronounced in North America,

817 Europe, and developed East Asia regions like Japan, South Korea, and Taiwan. For example, in Europe, more than
818 70% of TOAR monitoring sites exhibited significant weekend O₃ increases before 2013 (Figure 7a), but by 2019–
819 2023, only 2% of sites still showed such an effect (Figure 7c).

820 The consistent alignment between WE-WD O₃ trends and HCHO/NO₂ ratio evolution provides robust evidence for
821 O₃ regime transitions. This coherence is particularly evident in the temporal correspondence between reversal points
822 – where WE-WD O₃ reductions either coincided with or slightly lagged behind the reversal points in HCHO/NO₂
823 trends. Early-industrialized regions were already in typical VOC-limited regimes by 1996 (significant positive WE-
824 WD O₃ and low HCHO/NO₂), and demonstrate a clear transition toward NO_x-limited conditions (decreasing WE-
825 WD O₃ and increasing HCHO/NO₂) since late 1990s. North America shows peak WE-WD O₃ differences (2.5 ± 1.1
826 ppbv) during 1995–2000, concurrent with accelerating HCHO/NO₂ growth. Similarly, Europe's aggregated WE-WD
827 O₃ maximum (~2005) following continental-scale HCHO/NO₂ increases. This lag reflects the causal sequence where
828 HCHO/NO₂ changes drive regime shifts that subsequently manifest in WE-WD O₃ trends. In East Asia, long-term O₃
829 observations are available mainly for Japan and South Korea. Japanese data showing a peak WE-WD O₃ (3.3 ± 0.5
830 ppbv) around 1999 (Figure 8a1), while South Korea's maximum occurred later (~2012).

831 Post-1996 acceleration in HCHO/NO₂ ratios across North America and Europe preceded partial transitions from
832 VOC-limited to transitional regimes (2011–2016), observed in regions like California, Cascadia, the U.S. B-W
833 Corridor, Spain, and France. However, complete transitions to NO_x-limited conditions remained rare, except in high-
834 BVOC regions like the southeastern U.S. (LMV, WGG). Sporadic negative WE-WD O₃ (Figure 7b–c) indicates
835 emerging NO_x sensitivity, though lack temporal consistency. By 2023, most regions retained either: strong VOC-
836 limited regimes (e.g., most European countries, Japan, and South Korea) or transitional states (e.g., U.S. B-W Corridor)
837 (Figure 9a–c). Notably, early transitioning regions (e.g., California) showed secondary shifts toward weakened VOC-
838 sensitivity, characterized by near-zero WE-WD O₃ (± 1 ppbv) and HCHO/NO₂ ratios approaching the transitional
839 range lower bound (x_{lower}), indicating persistent VOC-dominated but NO_x-influenced chemistry.

840 **3.3.2 Delayed Transition Pathways in Rapidly Developing Economies**

841 O₃ production regimes in later-industrializing economies exhibit a temporal lag evolutionary pathways compared to
842 developed regions. China completed its monitoring network around 2017, coinciding with stringent emission control
843 policies at the same period. Consequently, observed WE-WD O₃ trends align with the global pattern of declining O₃
844 weekend effects (Figure 8a2). Satellite-derived HCHO/NO₂ ratios provide crucial complementary data, revealing that
845 eastern China's megacity clusters (NCP and YRD) underwent a dramatic regime shift from NO_x-limited to VOC-
846 limited conditions during 1998–2005, with ratios plummeting from >4 to ~ 1.2 ($-0.56/\text{yr}$). Despite modest post-2011
847 recovery ($<0.1/\text{yr}$) under emission controls, most Chinese regions remain VOC-limited.

848 India presents a distinctive case where persistent NO_x-limited conditions prevail across most regions, driven by unique
849 climatic and emission characteristics. Major urban centers including Delhi, Mumbai, and Kolkata experienced
850 significant HCHO/NO₂ ratio declines during the late 1990s, followed by gradual recovery after 2011. While the Delhi
851 metropolitan area exhibits fluctuations suggesting potential regime shifts, however the relatively late establishment
852 of comprehensive monitoring networks (around 2015) introduces uncertainty in determining precise threshold values
853 for regime classification in this region. For most of India, despite large anthropogenic NO_x emissions, India's hot,
854 humid climate enhances biogenic VOC emissions (Kuttippurath et al., 2022), leading to a NO_x-limited dominated
855 regime.

856 Economies like Australia and Latin America exhibit intermediate patterns. Australian urban areas display varied
857 regime behaviors: Melbourne remains transitional, the Canberra-Sydney corridor fluctuates near VOC-limited

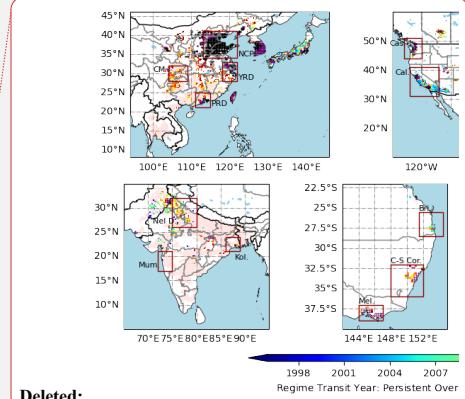
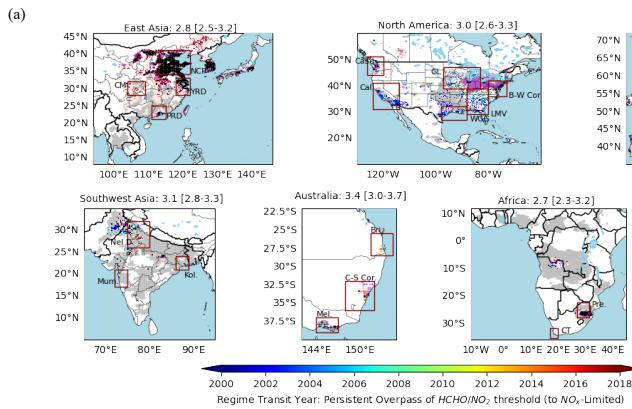
858 thresholds, while Brisbane maintains NO_x -limited conditions due to lower anthropogenic influence (Figure 9d). WE-
 859 WD O_3 trends confirm these classifications, with most Australian sites showing insignificant weekend high O_3 in
 860 recent years.

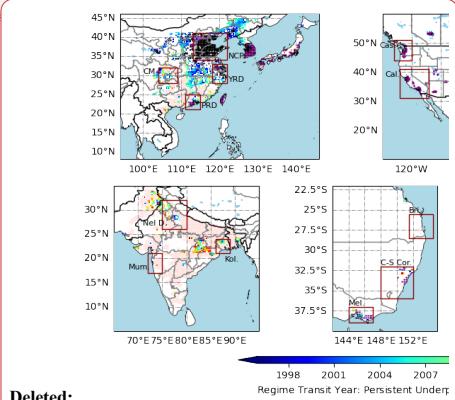
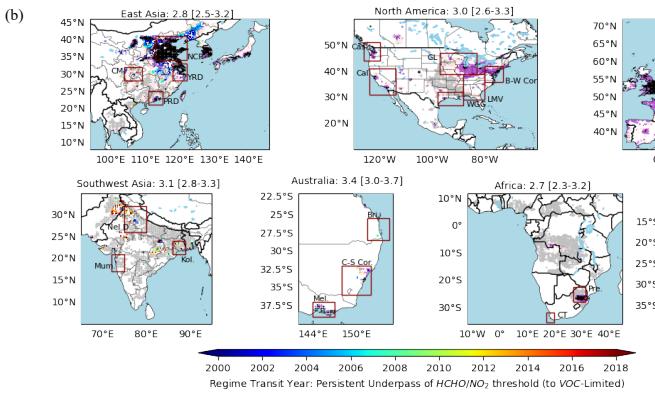
861 In Latin America, developed areas like Brazil and Chile recorded peak WE-WD O_3 (~ 4 ppbv) around 2006, coinciding
 862 with minimum HCHO/NO_2 ratios around the year. Urban Brazil has kept consistently VOC-sensitive. Chile, however,
 863 underwent a dramatic transition—from strongly NO_x -limited conditions ($\text{HCHO}/\text{NO}_2 \sim 7$) in 1996 to VOC-limited
 864 regimes by 2005—mirroring the initial trajectory observed in eastern China but without subsequent recovery. By
 865 2018, Chile's HCHO/NO_2 ratio even showed accelerated decline, maintaining WE-WD $\text{O}_3 > 0$ with no signs of transit.

866 South Africa's Cape Town demonstrates remarkably stable HCHO/NO_2 ratios over the past 27 years, showing
 867 minimal temporal variation (coefficient of variation $< 10\%$). This stability maintains quasi-transitional O_3 production
 868 conditions (WE-WD $\text{O}_3 \approx 0 \pm 0.5$ ppbv), indicating a near-equilibrium state between NO_x and VOC sensitivities.

869 Globally, the inverse correlation between WE-WD O_3 and HCHO/NO_2 ratios reveals consistent regime evolution
 870 patterns. Industrialized regions show widespread weakening of VOC-limited conditions, with most now transitional
 871 or weakly VOC-limited (WE-WD $\text{O}_3 \approx 0 \pm 1$ ppbv). In contrast, developing regions that rapidly shifted from NO_x -
 872 limited to VOC-limited conditions in the late 1990s show incipient reversals since 2011, though most remain firmly
 873 VOC-limited. These findings demonstrate that O_3 chemical regimes continue to undergo global-scale transitions, with
 874 progression rates modulated by regional emission trajectories and environmental factors.

875 3.4 Global Spatiotemporal Evolution in O_3 Chemical Regimes: Transition Status and Potential Transition 876 Years



877 **Table 1: Classification criteria for O_3 regime transitions based on three key parameters for each region: peak HCHO/NO_2
 878 frequencies (\mathbf{x}), transition threshold interval $[\mathbf{x}_{lower}, \mathbf{x}_{upper}]$ defined by the top 10% frequency distribution.**



Category	Subcategory	Description of HCHO/NO_2 Trend Pattern	Transition Year
Constant regimes	1.1 VOC-limited	Typical VOC-limited condition ($\text{HCHO}/\text{NO}_2 \leq \mathbf{x}_{lower}$) for 80% of the period.	
	1.2 NO_x -limited	Typical NO_x -limited condition ($\text{HCHO}/\text{NO}_2 \geq \mathbf{x}_{upper}$) for 80% of the period.	
Quasi-constant regimes	2.1 quasi-VOC-limited	HCHO/NO_2 ratio within $[\mathbf{x}_{lower}, \mathbf{x}]$ for 80% of the period, with the possibility of falling below \mathbf{x}_{lower} but never exceeding \mathbf{x} .	No regime transition
	2.2 quasi- NO_x -limited	HCHO/NO_2 ratio within $[\mathbf{x}, \mathbf{x}_{upper}]$ for 80% of the period, with the possibility of exceeding \mathbf{x}_{upper} but never falling below \mathbf{x} .	
Single-shift regimes	3.1 shift from VOC-limited to NO_x -limited	positive HCHO/NO_2 trend (\nearrow) and crosses the $\text{HCHO}/\text{NO}_2 = \mathbf{x}$.	Intersection with $\text{HCHO}/\text{NO}_2 = \mathbf{x}$

- Deleted: NO_x -
- Deleted: ≥ 4.5
- Deleted: fixed NO_x
- Deleted: saturated
- Deleted: ≤ 2.5
- Deleted: fixed VOC
- Deleted: 3.5 - 4.5
- Deleted: exceeding 4.5 but never
- Deleted: 3.5.
- Deleted: fixed
- Deleted: NO_x
- Deleted: Constant quasi
- Deleted: 2.5 - 3.5
- Deleted: fixed
- Deleted: VOC
- Deleted: 2.5 but never exceeding 3.5.
- Deleted: Linear trend with regime transition
- Deleted:
- Deleted: 3.5
- Deleted: 3.5.

	3.2 shift from NO_x -limited to VOC-limited	negative HCHO/NO_2 trend (\searrow) and crosses the $\text{HCHO}/\text{NO}_2 = \text{X}$	Deleted: 3.5.
Multi-shifts regimes	4.1 shift from VOC-limited to NO_x -limited	4.1.1 For negative to positive trend ($\searrow\nearrow$): HCHO/NO_2 crosses X after the reversal year (\nearrow)	Deleted: 3.5
		4.1.2 For positive to negative trend ($\nearrow\searrow$): HCHO/NO_2 crosses X before the reversal year (\searrow)	Deleted: 3.3
	4.2 shift from NO_x -limited to VOC-limited	4.2.1 For negative to positive trend ($\searrow\nearrow$): HCHO/NO_2 crosses X before the reversal year (\searrow)	Deleted: 3.5
		4.2.2 For positive to negative trend ($\nearrow\searrow$): HCHO/NO_2 crosses X after the reversal year (\nearrow)	Deleted: 3.5
			Deleted: Non-linear trend with regime transition
			Deleted: 3.5

899

Deleted:

Deleted: 7

Deleted: This classification takes into account the initial conditions of O₃ regimes and their transitional characters based on the observed HCHO/NO₂ trend.

Deleted: Estimated transition year of O₃ regimes: grids where the annual HCHO/NO₂ ratio exceeds 3.5 (a) with a positive annual trend, and (b) with a negative annual trend. Only grids with a long-term mean NO₂ VCD > 1.5 × 10¹⁵

909 **Figure 10:** Spatial distribution of estimated transition years for O₃ regime shifts, based on annual HCHO/NO₂ ratios
910 crossing region-specific thresholds (identified in Figure 3b). Panels show: (a) grids with positive trends (categories
911 3.1+4.1.1+4.2.1 in Table 1) and (b) grids with negative trends (categories 3.2+4.1.2+4.2.2). Only grids with long-term mean
912 NO₂ VCD >1.5×10¹⁵ molecules cm⁻² are shown. Color coding indicates: constant VOC-limited (black, category 1.1),
913 constant quasi-VOC-limited (purple, category 2.1), constant quasi-NO_x-limited (pink, category 2.2), constant NO_x-limited
914 (grav, category 1.2).

915 Building on our analysis of O₃ regime transitions across economic regions, we refine the regional aggregation
916 approach by implementing a gridded analytical framework. To ensure accuracy, we employ region-specific
917 thresholds derived from Figure 3b to identify potential transition years. This generates a spatially explicit
918 classification map of regime evolution across the 27-year study period (1996–2022), where each grid cell is
919 categorized into four distinct types based on HCHO/NO₂ ratios trend and regional key threshold ranges: (1) Constant
920 regimes, which stays in either VOC-limited or NO_x-limited regimes without transition; (2) Quasi-constant regimes,
921 which is predominantly in one regime but intermittently approached the upper or lower limit of threshold range; (3)
922 Single-shift regimes, which had one directional shift between VOC- and NO_x-limited states during the study period;
923 (4) Multi-shifts regimes, which had nonlinear trends with threshold crossings in both directions. This classification
924 takes into account the initial conditions of O₃ regimes and their transitional characters based on the observed
925 HCHO/NO₂ trends. Table 1 outlines the diagnostic criteria and the methodology for identifying transition
926 years. Applying the classification rules from Table 1 to global grid cells, Figure 10 illustrates the spatial distribution
927 of O₃ regime changes. Only areas with significant anthropogenic influence (NO₂ vertical column density >1.5×10¹⁵
928 molecules·cm⁻²) are shown here.

929 Despite varying HCHO/NO₂ trends, yet many central economic zones remain VOC-limited or quasi-VOC-limited,
930 with HCHO/NO₂ ratios rarely exceeding the upper limit of threshold range (x_{upper}). Key regions exhibiting long-
931 term typical VOC-limited dominance include China's NCP, YRD, and PRD; metropolitan areas in west Taiwan
932 (China), South Korea and Japan; the U.S. East Coast and California's Los Angeles and San Francisco regions;
933 southern U.K.; the Netherlands; Belgium; northern France; central-western Germany; northern Italy; New Delhi area
934 (India); Pretoria area (South Africa); and Rio de Janeiro area (Brazil). Quasi-VOC-limited conditions prevail in
935 several regions, including the southern Great Lakes area in the U.S., much of central-western Europe, Melbourne and
936 the C-S Corridor area (Australia), the Santiago metropolitan area (Chile), and Buenos Aires area (Argentina). In
937 contrast, NO_x-limited or quasi-NO_x-limited regimes dominate southern China (except the highly developed YRD and

948 PRD), the lower reaches of Mississippi River Basin in the U.S., large parts of India, and the Congo Basin—regions
949 characterized by distinct climatic and emission profiles.

950 In regions with significant human activity, transitions to VOC-limited regimes generally precede those to NO_x-limited
951 regimes. Notable VOC-limited transitions are identified between 2000–2005 in peripheral zones of China's NCP and
952 the middle-lower Yangtze River regions (Figure 10b). The entire NCP transitioned to VOC-limited conditions around
953 or slightly before this period, but persistent strong VOC-limited dominance led to its classification as a typical VOC-
954 limited region. NO_x-limited transitions exhibit an urban-rural gradient, with megacity peripheries shifting first and
955 progression inward—a pattern particularly evident in Los Angeles and San Francisco (North America region in Figure
956 10a). Regions showing clear transitions to NO_x-limited regimes include part of central Honshu (Japan), mid-southern
957 California, parts of the southeast U.S., and scattered areas in Europe (e.g., part of Spain, France), primarily between
958 2000–2010.

959 In summary, between 1996–2022, most highly developed regions remained consistently VOC-limited or quasi-VOC-
960 limited. Although a global shift toward NO_x-limited conditions is emerging, full transitions remain rare, with only
961 isolated cases in parts of central Honshu in Japan, California and southeast U.S., and certain European regions. Note
962 that the regime threshold values are subject to large uncertainties due to factors such as meteorological conditions
963 and satellite detection noise (Souri et al., 2020; Jin et al., 2017; Schroeder et al., 2017; Souri et al., 2017). The key
964 HCHO/NO₂ threshold used here is derived from observation sites from TOAR network, which tend to be in urban or
965 accessible areas, which is more reflective of regions with significant human impact rather than pristine natural
966 environments. These factors have the potential to bias the estimated transition year. However, such bias is not
967 significant. It is estimated that a ~10% variation in the threshold (e.g., from 3 to 3.3) would shift the estimated
968 transition years by only about 1-2 years for the major global regions. The uncertainty introduced by this simplified
969 approach is considered acceptable.

971 4 Conclusion

972 In this study, satellite-derived HCHO/NO₂ ratios and ground-based O₃ observations were directly connected to
973 capture the nonlinearity of global shifts in O₃ chemical regimes. Key findings are as follows:

974 The evolution of O₃ regimes is discernible through the analysis of HCHO/NO₂ ratio and WE-WD O₃ trends. We have
975 pinpoint broadly similar but regionally modulated threshold ranges—2.8 [2.5 - 3.2] for East Asia, 3.0 [2.6 - 3.3] for
976 North America, 3.5 [3.2 - 3.9] for Europe, 2.9 [2.7 - 3.2] for Southeast Asia, 3.1 [2.8 - 3.3] for Southwest Asia, 3.4
977 [3.0 - 3.7] for Australia, 2.7 [2.3 - 3.2] for Africa and 3.1 [2.9 - 3.4] Latin America. These thresholds are shaped by
978 variations in regional emission profiles.

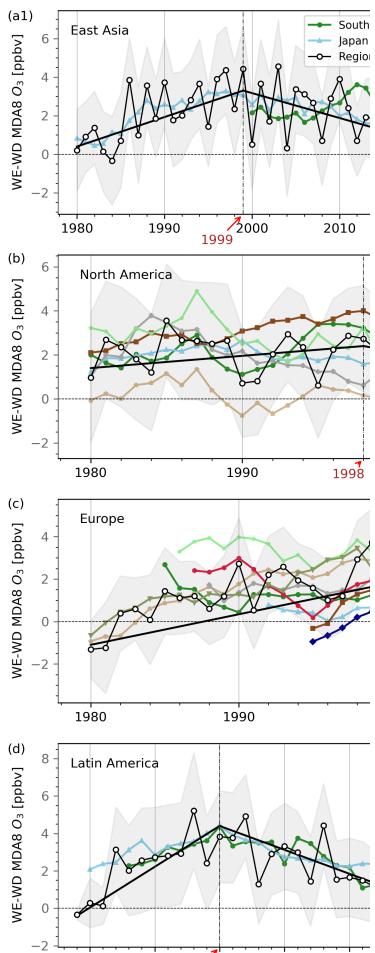
979 Amidst the ongoing changes in the ratios of O₃ precursors, a global trend towards NO_x-limited O₃ regimes have
980 emerged over the past two decades. This is evidenced by both the rising HCHO/NO₂ ratios and the diminishing O₃
981 weekend effect, particularly in densely populated regions. Applying linear fitting and reversals analysis, we've
982 observed a predominant positive or negative-to-positive shift global trend in the HCHO/NO₂ ratio over the past 27
983 years. Later-industrializing regions like East China and India initially saw a decline before rebounding around 2011;
984 industrialized nations like the U.S., Europe, and Japan experienced significant increases in the HCHO/NO₂ ratio from
985 the early 2000s due to substantial NO_x emission reductions. By 2023, most regions' annual-mean HCHO/NO₂ ratios
986 have not significantly surpassed the key threshold, indicating they remain within VOC-limited or transitional regimes.

Moved up [4]: (molecules · cm⁻²)

Moved up [2]: Mumbai (Mum.), and Kolkata (Kol.) in India; Melbourne (Mel.), Capital-Sydney Corridor (C-S Cor.), and Brisbane (Bri.) in Australia; Pretoria (Pre.) and Cape Town (CT) in South Africa.

Deleted: are shown. Specific economic regions are highlighted with red rectangles, including: Specific economic regions are highlighted with red rectangles same as Figure 3a, adding: North China Plain (NCP) ... [61]

Deleted: ¶


Figure 7 shows the classification of the regime changes. Globally, HCHO/NO₂ has shown a general upward trend post-2011, yet many central economic zones remain V... [71]

Moved up [5]: (a)

Deleted: 3.4 O₃ Regime Transition Consistent with Diminishing O₃ Weekend Effect ¶

Over the past 2 decades, a significant reduction in NO₂ concentrations is found (Figure S3). Despite this trend, ... [81]

Moved up [6]: Two-decade evolution of WE-WD O₃ differences across three distinct period: (a) 2004-2013, (b) 2014-2018, (c) 2019-2023. Significant (p-value of t-test < 0.05) WE-WD O₃ difference and WE-WD NO₂.

Deleted: ¶

Deleted: pinpointed distinct regional thresholds...inpoint broadly similar but regionally modulated threshold ranges—2.8 [2.5 - 3.2] for East Asia, 3.2 for Southwest Asia, 3.... [2.6 - 3.3] for North America, 4.3....5 [3.2 - 3.9] for E... [101]

1233 However, O₃ chemical regime varies seasonally, and we expect the regime transition has occurred during the warm
1234 season when O₃ pollution is highest. Regarding WE-WD O₃, while some regions like France and northern Spain show
1235 lower weekend levels, the majority still report slightly higher weekend O₃ on annual basis, but not statistically
1236 significant anymore. A few areas, such as the southeastern U.S., heavily influenced by BVOCs, have clearly entered
1237 an NO_x-limited regime on the annual basis. These results align with the general trend of weakening VOC-limited
1238 conditions.

1239 Our findings provide valuable insights into global O₃ regime transitions. By employing region-specific threshold
1240 ranges, we demonstrate that early-industrialized nations benefit most from integrated NO_x-VOC controls, as both
1241 precursors contribute significantly to O₃ formation in their transitional regimes. For late-industrializing regions,
1242 prioritizing NO_x reductions remains critical to avoid entrenched VOC-limited conditions. This framework highlights
1243 the necessity of adaptive emission strategies that account for both chemical regime shifts and development stages.
1244 However, it should be noted that using satellite HCHO/NO₂ to diagnose O₃ production regimes is subject to
1245 uncertainties of satellite retrievals and the regime threshold values. We use tropospheric NO₂ and HCHO column
1246 densities to infer near-surface O₃ chemistry, but this approach is influenced by variable column-to-surface
1247 relationships driven by boundary layer dynamics and contributions from the free troposphere (Dang et al., 2023;
1248 Wolfe et al., 2019; Jin et al., 2017). Especially for the regions with decreasing NO₂, the contribution of free
1249 tropospheric NO₂ is likely increase (Dang et al., 2023), which could bias the observed trends of HCHO/NO₂. Here
1250 we focus on O₃ regime evolution annually, but O₃ regime also varies seasonally and diurnally. How the seasonal and
1251 diurnal variations of O₃ regime have evolved over time warrants further investigation. Further research could employ
1252 chemical-transport modeling to better understand both seasonal influences and the physical drivers of regional
1253 threshold differences, for instance, examining why economically developed regions characterized by higher values
1254 compared to less industrialized areas.

Deleted: The transitional zone for O₃ regimes should be a range rather than a fixed HCHO/NO₂ ratio. Our study simplifies this by using the central value of this range, acknowledging a limitation. Despite this, our findings provide valuable insights, highlighting the need for adaptable emission controls in response to atmospheric changes. Early industrialized nations could benefit from policies addressing both NO_x and VOCs to further curb O₃, while later industrializers should prioritize NO_x controls to prevent excessive O₃ formation.¶

1255 Acknowledgement

1256 Support for this project was provided by NASA Aura Science Team and Atmospheric Composition Modeling and
1257 Analysis Program (grant number: 80NSSC23K1004). This research used the computational cluster resource provided
1258 by the Office of Advanced Research Computing (OARC) at Rutgers, The State University of New Jersey. We are
1259 grateful to the many scientists who contributed to the GOME, GOME-2, SCIAMACHY, OMI and TROPOMI
1260 instruments and products.

1261 Data Availability

1262 Multi-satellite products (GOME, SCIMACHY, OMI) of tropospheric NO₂ and HCHO vertical columns are developed
1263 under the EU FP7-project Quality Assurance for Essential Climate Variables (QA4ECV) are publicly available at
1264 <https://knmi.sitarchief.nl/?subsite=qa4ecv#archive>. TROPOMI NO₂ data (<https://doi.org/10.5270/S5P-s4ljg54>) and
1265 TROPOMI HCHO (<https://doi.org/10.5270/S5P-vgl170>) are available from NASA Goddard Earth Sciences (GES)
1266 Data and Information Services Center (DISC, <https://disc.gsfc.nasa.gov/datasets/>). Ground-based O₃ observations
1267 are available from TOAR-II database (<https://toar-data.org/surface-data>). The harmonized annual satellite-based
1268 HCHO and NO₂ products will be made publicly available at the publication stage.

1279 **Author Contributions**

1280 **Y.T.**: Methodology, Formal Analysis, Investigation, Visualization, Writing - Original Draft. **S.W.**: Data Collection
1281 of Satellite NO₂ products. **X.J.**: Conceptualization, Supervision, Methodology, Data Curation, Funding Acquisition,
1282 Writing - Review & Editing. All authors have given approval to the final version of the manuscript.

1283 **Competing Interests**

1284 The authors decline that they have no conflict of interest.

1285 **References**

1286 [Adame, J. A., Hernández-Ceballos, M. Á., Sorribas, M., Lozano, A., and Morena, B. A. D. I.: Weekend-weekday
1287 effect assessment for O₃, NO_x, CO and PM10 in Andalusia, Spain \(2003-2008\), Aerosol and Air Quality Research,
1288 14, 1862-1874, 10.4209/aaqr.2014.02.0026, 2014.](#)

1289 [Adams, T. J., Geddes, J. A., and Lind, E. S.: New Insights Into the Role of Atmospheric Transport and Mixing on
1290 Column and Surface Concentrations of NO₂ at a Coastal Urban Site, Journal of Geophysical Research: Atmospheres,
1291 128, 10.1029/2022jd038237, 2023.](#)

1292 [Amendments, C. A. A.: Clean Air Act Amendments of 1990, Pub. L. No. 101-549, 104 Stat. 2399, 1990.](#)

1293 [Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J.,
1294 Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and
1295 Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356-1362, 10.1126/science.aal4108,
1296 2017.](#)

1297 [Atkinsonpalombo, C., Miller, J., and Ballingr, R.: Quantifying the ozone “weekend effect” at various locations in
1298 Phoenix, Arizona, Atmospheric Environment, 40, 7644-7658, 10.1016/j.atmosenv.2006.05.023, 2006.](#)

1299 [Boersma, K. F., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van
1300 Rozendaal, M., and Wagner, T.: QA4ECV NO₂ tropospheric and stratospheric column data from OMI, Royal
1301 Netherlands Meteorological Institute \(KNMI\), 10.21944/qa4ecv-no2-omi-v1.1, 2017a.](#)

1302 [Boersma, K. F., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van
1303 Rozendaal, M., and Wagner, T.: QA4ECV NO₂ tropospheric and stratospheric column data from GOME, Royal
1304 Netherlands Meteorological Institute \(KNMI\), 10.21944/qa4ecv-no2-gome-v1.1, 2017b.](#)

1305 [Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M.,
1306 Peters, E., Van Rozendaal, M., Wagner, T., Maasakers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie,
1307 H., Pinardi, G., Lambert, J., C and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite
1308 NO₂ retrievals: results from the quality assurance for the essential climate variables \(QA4ECV\) project, Atmospheric
1309 Measurement Techniques, 11, 6651-6678, 10.5194/amt-11-6651-2018, 2018.](#)

1310 CARB: The Ozone Weekend Effect in California. , Planning and Technical Support Division, Sacramento 2003.,
1311 2003.

1312 Cermak, J., Wild, M., Knutti, R., Mishchenko, M. I., and Heidinger, A. K.: Consistency of global satellite-derived
1313 aerosol and cloud data sets with recent brightening observations, Geophysical Research Letters, 37,

Moved (insertion) [1]

Deleted: ..

1315 10.1029/2010gl044632, 2010.

1316 Chan Miller, C., Jacob, D. J., González Abad, G., and Chance, K.: Hotspot of glyoxal over the Pearl River delta seen
1317 from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons, *Atmospheric Chemistry and*
1318 *Physics*, 16, 4631-4639, 10.5194/acp-16-4631-2016, 2016.

1319 Chiu, Y. M., Wilson, A., Hsu, H. L., Jamal, H., Mathews, N., Kloog, I., Schwartz, J., Bellinger, D. C., Xhani, N.,
1320 Wright, R. O., Coull, B. A., and Wright, R. J.: Prenatal ambient air pollutant mixture exposure and neurodevelopment
1321 in urban children in the Northeastern United States, *Environmental Research*, 233, 116394-116409,
1322 10.1016/j.envres.2023.116394, 2023.

1323 Choi, Y., Kim, H., Tong, D., and Lee, P.: Summertime weekly cycles of observed and modeled NO and O₃
1324 concentrations as a function of satellite-derived ozone production sensitivity and land use types over the Continental
1325 United States, *Atmospheric Chemistry and Physics*, 12, 6291-6307, 10.5194/acp-12-6291-2012, 2012.

1326 Cleveland, W. S., Graedel, T. E., Kleiner, B., and Warner, J. L.: Sunday and workday variations in photochemical air
1327 pollutants in new jersey and new york, *Science*, 186, 1037-1038, 10.1126/science.186.4168.1037, 1974.

1328 Curier, R. L., Kranenburg, R., Segers, A. J. S., Timmermans, R. M. A., and Schaap, M.: Synergistic use of OMI NO₂
1329 tropospheric columns and LOTOS-EUROS to evaluate the NO_x emission trends across Europe, *Remote Sensing of*
1330 *Environment*, 149, 58-69, 10.1016/j.rse.2014.03.032, 2014.

1331 Dang, R., Jacob, D. J., Shah, V., Eastham, S. D., Fritz, T. M., Mickley, L. J., Liu, T., Wang, Y., and Wang, J.:
1332 Background nitrogen dioxide (NO₂) over the United States and its implications for satellite observations and trends:
1333 effects of nitrate photolysis, aircraft, and open fires, *Atmospheric Chemistry and Physics*, 23, 6271-6284,
1334 10.5194/acp-23-6271-2023, 2023.

1335 De Smedt, I., Stavrakou, T., Müller, J. F., van der A, R. J., and Van Roozendael, M.: Trend detection in satellite
1336 observations of formaldehyde tropospheric columns, *Geophysical Research Letters*, 37, 10.1029/2010gl044245, 2010.

1337 De Smedt, I., Müller, J. F., Stavrakou, T., van der A, R., Eskes, H., and Van Roozendael, M.: Twelve years of global
1338 observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors, *Atmospheric Chemistry and*
1339 *Physics*, 8, 4947-4963, 10.5194/acp-8-4947-2008, 2008.

1340 De Smedt, I., YU, H., Richter, A., Beirle, S., Eskes, H., Boersma, K. F., Van Roozendael, M., Van Geffen, J., Wagner,
1341 T., Lorente, A., and Peters, E.: QA4ECV HCHO tropospheric column data from OMI, Royal Belgian Institute for
1342 Space Aeronomy, 10.18758/71021031, 2017.

1343 De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C., Gielen, C.,
1344 Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J. F., and Van Roozendael, M.: Diurnal, seasonal and
1345 long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations,
1346 *Atmospheric Chemistry and Physics*, 15, 12519-12545, 10.5194/acp-15-12519-2015, 2015.

1347 Department for Environment, Food & Rural Affairs, UK: Emissions of air pollutants in the UK – Nitrogen oxides
1348 (NO_x), <https://www.gov.uk/government/statistics/emissions-of-air-pollutants>, R/OL, 2024.

1349 Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher,
1350 C., Allen, D. J., and Crawford, J. H.: Application of OMI observations to a space-based indicator of NO_x and VOC
1351 controls on surface ozone formation, *Atmospheric Environment*, 44, 2213-2223, 10.1016/j.atmosenv.2010.03.010,
1352 2010.

1353 Fan, J., Wang, T., Wang, Q., Ma, D., Li, Y., Zhou, M., and Wang, T.: Assessment of HCHO in Beijing during 2009
1354 to 2020 using satellite observation and numerical model: Spatial characteristic and impact factor, *Science of the Total*
1355 *Environment*, 894, 165060-165072, 10.1016/j.scitotenv.2023.165060, 2023.

1356 Felzer, B. S., Cronin, T., Reilly, J. M., Melillo, J. M., and Wang, X.: Impacts of ozone on trees and crops, *Comptes*
1357 *Rendus. Géoscience*, 339, 784-798, 10.1016/j.crte.2007.08.008, 2007.

1358 Fu, T. M., Jacob, D. J., Palmer, P. I., Chance, K., Wang, Y. X., Barletta, B., Blake, D. R., Stanton, J. C., and Pilling,
1359 M. J.: Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and
1360 south Asia and implications for ozone, *Journal of Geophysical Research: Atmospheres*, 112, 6312-6327,
1361 10.1029/2006jd007853, 2007.

1362 Ganguly, T., Selvaraj, K. L., and Guttikunda, S. K.: National Clean Air Programme (NCAP) for Indian cities: Review
1363 and outlook of clean air action plans, *Atmospheric Environment: X*, 8, 10.1016/j.aeaoa.2020.100096, 2020.

1364 Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and trend reversal
1365 detection in 2 decades of tropospheric NO₂ satellite observations, *Atmospheric Chemistry and Physics*, 19, 6269-
1366 6294, 10.5194/acp-19-6269-2019, 2019.

1367 Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO₂ over megacities derived from
1368 multiple satellite instruments, *Atmospheric Chemistry and Physics*, 13, 4145-4169, 10.5194/acp-13-4145-2013, 2013.

1369 Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G., Dickerson, R. R., Artz, R. S., and Keene, W. C.: Seasonal
1370 transition from NO_x- to hydrocarbon-limited conditions for ozone production over the eastern United States in
1371 September, *Journal of Geophysical Research*, 100, 9315-9324, 10.1029/94jd03125, 1995.

1372 Jaffe, D. A., Ninneman, M., and Chan, H. C.: NO_x and O₃ trends at U.S. non-attainment areas for 1995-2020:
1373 influence of COVID-19 reductions and wildland fires on policy-relevant concentrations, *Journal of Geophysical*
1374 *Research: Atmospheres*, 127, e2021JD036385, 10.1029/2021JD036385, 2022.

1375 Jamali, S., Klingmyr, D., and Tagesson, T.: Global-Scale Patterns and Trends in Tropospheric NO₂ Concentrations,
1376 2005–2018, *Remote Sensing*, 12, 10.3390/rs12213526, 2020.

1377 Jin, X. and Holloway, T.: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone
1378 Monitoring Instrument, *Journal of Geophysical Research: Atmospheres*, 120, 7229-7246, 10.1002/2015jd023250,
1379 2015.

1380 Jin, X., Fiore, A. M., and Cohen, R. C.: Space-Based Observations of Ozone Precursors within California Wildfire
1381 Plumes and the Impacts on Ozone-NO(x)-VOC Chemistry, *Environ Sci Technol*, 57, 14648-14660,
1382 10.1021/acs.est.3c04411, 2023.

1383 Jin, X., Fiore, A., Boersma, K. F., Smedt, I., and Valin, L.: Inferring changes in summertime surface ozone-NO_x-
1384 VOC chemistry over U.S. urban areas from two decades of satellite and ground-based observations, *Environmental*
1385 *Science & Technology*, 54, 6518-6529, 10.1021/acs.est.9b07785, 2020.

1386 Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., Boersma, K. F., De Smedt, I., Abad, G.
1387 G., Chance, K., and Tornes, G. S.: Evaluating a space-based indicator of surface ozone-NO_x-VOC sensitivity over
1388 midlatitude source regions and application to decadal trends, *Journal of Geophysical Research: Atmospheres*, 122,
1389 10439-10488, 10.1002/2017JD026720, 2017.

1390 Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela,
25

1391 E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He,
1392 H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, *Atmospheric Chemistry and Physics*, 16, 4605-
1393 4629, 10.5194/acp-16-4605-2016, 2016a.

1394

1395 Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., C., E. A., M., S. V., S., W. H., B., E. J., J., J., D., B. N.,
1396 Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.:
1397 Aura OMI observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, *Atmos. Chem. Phys.*, 16,
1398 4605–4629, 10.5194/acp-16-4605-2016, 2016b.

1399 Kuttippurath, J., Abhishek, K., Gopikrishnan, G. S., and Pathak, M.: Investigation of long-term trends and major
1400 sources of atmospheric HCHO over India, *Environmental Challenges*, 7, 10.1016/j.envc.2022.100477, 2022.

1401 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends in
1402 summer surface ozone in China, *Proc Natl Acad Sci U S A*, 116, 422-427, 10.1073/pnas.1812168116, 2019.

1403 Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NO_x lifetimes and emissions of cities and power
1404 plants in polluted background estimated by satellite observations, *Atmospheric Chemistry and Physics*, 16, 5283-
1405 5298, 10.5194/acp-16-5283-2016, 2016.

1406 Liu, R., Zhong, M., Zhao, X., Lu, S., Tian, J., Li, Y., Hou, M., Liang, X., Huang, H., Fan, L., and Ye, D.:
1407 Characteristics of industrial volatile organic compounds(VOCs) emission in China from 2011 to 2019, *Environmental
1408 Science*, 42, 5169-5179, 2021.

1409 Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A.,
1410 Costabile, F., Chang, C. C., and Liu, S. C.: Summertime photochemistry during CAREBeijing-2007: ROx budgets
1411 and O₃ formation, *Atmospheric Chemistry and Physics*, 12, 7737-7752, 10.5194/acp-12-7737-2012, 2012.

1412 Lu, C. H. and Chang, J. S.: On the indicator-based approach to assess ozone sensitivities and emissions features,
1413 *Journal of Geophysical Research: Atmospheres*, 103, 3453-3462, 10.1029/97jd03128, 1998.

1414 Malley, C. S., Henze, D. K., Kuylenstierna, J. C. I., Vallack, H. W., Davila, Y., Anenberg, S. C., Turner, M. C., and
1415 Ashmore, M. R.: Updated global estimates of respiratory mortality in adults >=30 years of age attributable to long-
1416 term ozone exposure, *Environmental Health Perspectives*, 125, 087021, 10.1289/EHP1390, 2017.

1417 Manosalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.: Environmental and health impacts of air
1418 pollution: A review, *Front Public Health*, 8, 14, 10.3389/fpubh.2020.00014, 2020.

1419 Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of surface ozone sensitivity to
1420 anthropogenic emissions, *Geophysical Research Letters*, 31, 10.1029/2004gl019416, 2004.

1421 Martins, E. M., Nunes, A. C. L., and Corrêa, S. M.: Understanding ozone concentrations during weekdays and
1422 weekends in the urban area of the city of Rio de Janeiro, *Journal of the Brazilian Chemical Society*, 26, 1967-1975,
1423 10.5935/0103-5053.20150175, 2015.

1424 Mills, G., Harmsen, H., Wagg, S., Sharps, K., Hayes, F., Fowler, D., Sutton, M., and Davies, B.: Ozone impacts on
1425 vegetation in a nitrogen enriched and changing climate, *Environmental Pollution*, 208, 898-908,
1426 10.1016/j.envpol.2015.09.038, 2016.

1427 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S.,
1428 Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and
26

1429 Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-
1430 lived climate forcer, *Atmospheric Chemistry and Physics*, 15, 8889-8973, 10.5194/acp-15-8889-2015, 2015.

1431 Nuvolone, D., Petri, D., and Voller, F.: The effects of ozone on human health, *Environmental Science and Pollution*
1432 *Research International*, 25, 8074-8088, 10.1007/s11356-017-9239-3, 2018.

1433 Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., and Kurosu, T. P.: Mapping isoprene emissions
1434 over North America using formaldehyde column observations from space, *Journal of Geophysical Research: Atmospheres*, 108, 4180-4196, 10.1029/2002jd002153, 2003.

1435 Palmer, P. I., Barkley, M. P., Kurosu, T. P., Lewis, A. C., Saxton, J. E., Chance, K., and Gatti, L. V.: Interpreting
1436 satellite column observations of formaldehyde over tropical South America, *Philos Trans A Math Phys Eng Sci*, 365,
1437 1741-1751, 10.1098/rsta.2007.2042, 2007.

1438 Palmer, P. I., Abbot, D. S., Fu, T. M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A., Wiedinmyer, C., Stanton,
1439 J. C., Pilling, M. J., Pressley, S. N., Lamb, B., and Sumner, A. L.: Quantifying the seasonal and interannual variability
1440 of North American isoprene emissions using satellite observations of the formaldehyde column, *Journal of Geophysical Research: Atmospheres*, 111, 10.1029/2005jd006689, 2006.

1441 Paoletti, E., De Marco, A., Beddows, D. C., Harrison, R. M., and Manning, W. J.: Ozone levels in European and USA
1442 cities are increasing more than at rural sites, while peak values are decreasing, *Environ Pollut*, 192, 295-299,
1443 10.1016/j.envpol.2014.04.040, 2014.

1444 Paraschiv, S., Constantin, D. E., Paraschiv, S. L., and Voiculescu, M.: OMI and Ground-Based In-Situ Tropospheric
1445 Nitrogen Dioxide Observations over Several Important European Cities during 2005-2014, *Int J Environ Res Public
1446 Health*, 14, 10.3390/ijerph14111415, 2017.

1447 Pfister, G. G., Walters, S., Lamarque, J. F., Fast, J., Barth, M. C., Wong, J., Done, J., Holland, G., and Bruyère, C.
1448 L.: Projections of future summertime ozone over the U.S, *Journal of Geophysical Research: Atmospheres*, 119, 5559-
1449 5582, 10.1002/2013jd020932, 2014.

1450 Pierce, T., Hogrefe, C., Trivikrama Rao, S., Porter, P. S., and Ku, J.-Y.: Dynamic evaluation of a regional air quality
1451 model: Assessing the emissions-induced weekly ozone cycle, *Atmospheric Environment*, 44, 3583-3596,
1452 10.1016/j.atmosenv.2010.05.046, 2010.

1453 Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United States: effects of
1454 emission control technology and the economic recession, *Atmospheric Chemistry and Physics*, 12, 12197-12209,
1455 10.5194/acp-12-12197-2012, 2012.

1456 Sadanaga, Y., Sengen, M., Takenaka, N., and Bandow, H.: Analyses of the ozone weekend effect in Tokyo, Japan:
1457 Regime of oxidant (O₃ + NO₂) production, *Aerosol and Air Quality Research*, 12, 161-168,
1458 10.4209/aaqr.2011.07.0102, 2012.

1459 Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., Müller, M., Mikoviny, T.,
1460 Chen, G., Shook, M., Blake, D. R., and Tonnesen, G. S.: New insights into the column CH₂O/NO₂ ratio as an
1461 indicator of near-surface ozone sensitivity, *Journal of Geophysical Research: Atmospheres*, 122, 8885-8907,
1462 10.1002/2017jd026781, 2017.

1463 Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E.,
1464 Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M.,

1467 Hjellbrekke, A.-G., Hong, Y.-D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M.,
1468 Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A.,
1469 Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-
1470 Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S.,
1471 Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U.,
1472 Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R.,
1473 McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid,
1474 N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Semik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G.,
1475 Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyanwan, E., Torre, P., Trickl, T., Weili,
1476 L., Weller, R., Xiaobin, X., Xue, L., Zhiqiang, M., Chang, M. E., and Lewis, A.: Tropospheric Ozone Assessment
1477 Report: Database and metrics data of global surface ozone observations, *Elementa: Science of the Anthropocene*, 5,
1478 10.1525/elementa.244, 2017.

1479 Seguel, R. J., Morales, S. R., and Leiva, G. M.: Ozone weekend effect in Santiago, Chile, *Environmental Pollution*,
1480 162, 72-79, 10.1016/j.envpol.2011.10.019, 2012.

1481 Shen, L., Jacob, D. J., Zhu, L., Zhang, Q., Zheng, B., Sulprizio, M. P., Li, K., De Smedt, I., González Abad, G., Cao,
1482 H., Fu, T. M., and Liao, H.: The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites:
1483 Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions,
1484 *Geophysical Research Letters*, 46, 4468-4475, 10.1029/2019gl082172, 2019.

1485 Sicard, P., Paoletti, E., Agathokleous, E., Araminiene, V., Proietti, C., Coulibaly, F., and De Marco, A.: Ozone
1486 weekend effect in cities: Deep insights for urban air pollution control, *Environmental Research*, 191, 110193-110205,
1487 10.1016/j.envres.2020.110193, 2020.

1488 Sillman, S.: The relation between ozone, NO_x and hydrocarbons in urban and polluted rural environments,
1489 *Atmospheric Environment*, 33, 1821-1845, 10.1016/s1352-2310(98)00345-8, 1999.

1490 Sillman, S.: The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon sensitivity in urban
1491 locations, *Journal of Geophysical Research: Atmospheres*, 100, 14175-14188, 10.1029/94jd02953, 2012.

1492 Simon, H., Wells, B., Baker, K. R., and Hubbell, B.: Assessing temporal and spatial patterns of observed and predicted
1493 ozone in multiple urban areas, *Environmental Health Perspectives*, 124, 1443-1452, 10.1289/EHP190, 2016.

1494 Simon, H., Hogrefe, C., Whitehill, A., Foley, K. M., Liljegren, J., Possiel, N., Wells, B., Henderson, B. H., Valin, L.
1495 C., Tonnesen, G., Appel, K. W., and Koplitz, S.: Revisiting day-of-week ozone patterns in an era of evolving US air
1496 quality, *Atmospheric Chemistry and Physics*, 24, 1855-1871, 10.5194/acp-24-1855-2024, 2024.

1497 Solberg, S., Bergström, R., Langner, J., Laurila, T., and Lindsjö, A.: Changes in Nordic surface ozone episodes due
1498 to European emission reductions in the 1990s, *Atmospheric Environment*, 39, 179-192,
1499 10.1016/j.atmosenv.2004.08.049, 2005.

1500 Souri, A. H., Choi, Y., Jeon, W., Woo, J. H., Zhang, Q., and Kurokawa, J. i.: Remote sensing evidence of decadal
1501 changes in major tropospheric ozone precursors over East Asia, *Journal of Geophysical Research: Atmospheres*, 122,
1502 2474-2492, 10.1002/2016jd025663, 2017.

1503 Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C. E., Abad, G. G., Janz, S. J., Fried, A.,
1504 Blake, D. R., Weinheimer, A. J., Diskin, G. S., Liu, X., and Chance, K.: Revisiting the effectiveness of HCHO/NO₂
1505 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a

1506 high ozone episode during the KORUS-AQ campaign, *Atmospheric Environment*, 224, 117341-117353,
1507 10.1016/j.atmosenv.2020.117341, 2020.

1508 Stavrakou, T., Müller, J. F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., and Xia, X.:
1509 Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes, *Atmospheric Chemistry and*
1510 *Physics*, 14, 4587-4605, 10.5194/acp-14-4587-2014, 2014.

1511 Stephens, S., Madronich, S., Wu, F., Olson, J. B., Ramos, R., Retama, A., and Muñoz, R.: Weekly patterns of México
1512 City's surface concentrations of CO, NO_x, PM10 and O₃ during 1986–2007, *Atmospheric Chemistry and Physics*, 8,
1513 5313-5325, 10.5194/acp-8-5313-2008, 2008.

1514 Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C. S., and Zheng, J. Y.: Long-Term Trends of Anthropogenic SO₂, NO_x,
1515 CO, and NMVOCs Emissions in China, *Earth's Future*, 6, 1112-1133, 10.1029/2018ef000822, 2018.

1516 Tang, W., Zhao, C., Geng, F., Peng, L., Zhou, G., Gao, W., Xu, J., and Tie, X.: Study of ozone “weekend effect” in
1517 Shanghai, *Science in China Series D: Earth Sciences*, 51, 1354-1360, 10.1007/s11430-008-0088-2, 2008.

1518 Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation efficiency to assess ozone sensitivity to
1519 hydrocarbons and NO_x: 2 Long-lived species as indicators of ozone concentration sensitivity, *Journal of Geophysical*
1520 *Research: Atmospheres*, 105, 9227-9241, 10.1029/1999jd900372, 2000.

1521 Toro, C., Foley, K., Simon, H., Henderson, B., Baker, K. R., Eyth, A., Timin, B., Appel, W., Luecken, D., Beardsley,
1522 M., Sonntag, D., Possiel, N., and Roberts, S.: Evaluation of 15 years of modeled atmospheric oxidized nitrogen
1523 compounds across the contiguous United States, *Elementa: Science of the Anthropocene*, 9,
1524 10.1525/elementa.2020.00158, 2021.

1525 Tsai, Y. I.: Atmospheric visibility trends in an urban area in Taiwan 1961–2003, *Atmospheric Environment*, 39, 5555-
1526 5567, 10.1016/j.atmosenv.2005.06.012, 2005.

1527 Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V., Kommareddy, I., and Turubanova,
1528 S.: Congo Basin forest loss dominated by increasing smallholder clearing, *Sci Adv*, 4, eaat2993,
1529 10.1126/sciadv.aat2993, 2018.

1530 van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys, N.: Cleaning up the air:
1531 effectiveness of air quality policy for SO₂ and NO_x emissions in China, *Atmospheric Chemistry and Physics*, 17,
1532 1775-1789, 10.5194/acp-17-1775-2017, 2017.

1533 Wang, F., Qiu, X., Cao, J., Peng, L., Zhang, N., Yan, Y., and Li, R.: Policy-driven changes in the health risk of PM2.5
1534 and O₃ exposure in China during 2013-2018, *Science of the Total Environment*, 757, 143775-143784,
1535 10.1016/j.scitotenv.2020.143775, 2021.

1536 Wang, Y. H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, T., Wang, L. L., Gao, W. K.,
1537 Wang, X. K., and Wang, Y. S.: Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China,
1538 *Atmospheric Chemistry and Physics*, 14, 2419-2429, 10.5194/acp-14-2419-2014, 2014.

1539 Wells, K. C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H., de Gouw, J. A., Graus, M., Warneke, C.,
1540 Wisthaler, A., and Fuentes, J. D.: Satellite isoprene retrievals constrain emissions and atmospheric oxidation, *Nature*,
1541 585, 225-233, 10.1038/s41586-020-2664-3, 2020.

1542 WHO: Review of evidence on health aspects of air pollution - REVIHAAP Project. , Technical Report. World Health
1543 Organization, Regional Office for Europe, Copenhagen, Denmark., R, 2013.

1544 Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The high-resolution version of TM5-MP for
1545 optimized satellite retrievals: description and validation, *Geoscientific Model Development*, 10, 721-750,
1546 10.5194/gmd-10-721-2017, 2017.

1547 Wolfe, G. M., Nicely, J. M., St Clair, J. M., Hanisco, T. F., Liao, J., Oman, L. D., Brune, W. B., Miller, D., Thames,
1548 A., Gonzalez Abad, G., Ryerson, T. B., Thompson, C. R., Peischl, J., McCain, K., Sweeney, C., Wennberg, P. O.,
1549 Kim, M., Crounse, J. D., Hall, S. R., Ullmann, K., Diskin, G., Bui, P., Chang, C., and Dean-Day, J.: Mapping hydroxyl
1550 variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations,
1551 *Proc Natl Acad Sci U S A*, 116, 11171-11180, 10.1073/pnas.1821661116, 2019.

1552 Zhang, J. J., Wei, Y., and Fang, Z.: Ozone pollution: A major health hazard worldwide, *Front Immunol*, 10, 2518-
1553 2528, 10.3389/fimmu.2019.02518, 2019.

1554 Zhang, Y., Cooper, O. R., Gaudel, A., Nedelec, P., Ogino, S. Y., Thompson, A. M., and West, J. J.: Tropospheric
1555 ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions, *Nat Geosci*, 9, 875-879,
1556 10.1038/NGEO2827, 2016a.

1557 Zhang, Y., Wang, Y., Chen, G., Smeltzer, C., Crawford, J., Olson, J., Szykman, J., Weinheimer, A. J., Knapp, D. J.,
1558 Montzka, D. D., Wisthaler, A., Mikoviny, T., Fried, A., and Diskin, G.: Large vertical gradient of reactive nitrogen
1559 oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations, *Journal of Geophysical
1560 Research: Atmospheres*, 121, 1922-1934, 10.1002/2015jd024203, 2016b.

1561 Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., and Amann, M.: NO_x
1562 emissions in China: historical trends and future perspectives, *Atmospheric Chemistry and Physics*, 13, 9869-9897,
1563 10.5194/acp-13-9869-2013, 2013.

1564 Zhu, L., Jacob, D. J., Mickley, L. J., Marais, E. A., Cohan, D. S., Yoshida, Y., Duncan, B. N., González Abad, G.,
1565 and Chance, K. V.: Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred
1566 from oversampling of satellite (OMI) measurements of HCHO columns, *Environmental Research Letters*, 9,
1567 10.1088/1748-9326/9/1/114004, 2014.

1568 Zou, Y., Charlesworth, E., Yin, C. Q., Yan, X. L., Deng, X. J., and Li, F.: The weekday/weekend ozone differences
1569 induced by the emissions change during summer and autumn in Guangzhou, China, *Atmospheric Environment*, 199,
1570 114-126, 10.1016/j.atmosenv.2018.11.019, 2019.