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Abstract. Observation-based estimation of urban CO2 emissions can help cities track their pathway to net zero emissions,

a goal many cities worldwide have adopted. While mesoscale atmospheric transport models are an effective component in

inversion systems estimating country-level emissions, their use in urban-scale inversions presents a significant challenge. Here,

we present one-year flux inversion results with the mesoscale ICON-ART atmospheric transport model for two cities with

contrasting size and topographic complexity: Zurich and Paris. Inversions were performed with an ensemble square root filter,5

assimilating observations from a dense rooftop CO2 sensor network in Zurich and from a tall tower network in Paris. The

inversion framework optimized gridded anthropogenic and biospheric fluxes, along with background mole fractions from eight

inflow regions. Prior anthropogenic emissions were based on detailed inventories provided by local authorities. In Zurich, the

inversion resulted in a posterior annual anthropogenic emission of 1012.3 ± 38.8 kt yr−1, representing approximately a 30%

reduction compared to the prior, with the most significant decreases during winter periods of elevated ambient temperatures.10

In contrast, the posterior fluxes in Paris remained close to the prior, with an annual emission of 3580.0 ± 101.9 kt yr−1,

which is 7% higher than the prior. This comparison highlights the influence of city-specific factors—such as topography, city

size, and observational network—on the inversion system performance. Furthermore, our findings demonstrate the potential of

mesoscale models to refine urban emission estimates, offering valuable insights for policymakers and researchers working to

improve emission inventories and advance urban climate strategies.15

1 Introduction

Inversion of CO2 fluxes using atmospheric transport models is a well-established approach that was originally applied at

global scale to constrain the global carbon budget (Gurney et al., 2002; Davis et al., 2021; Broquet et al., 2013; Monteil et al.,

2020; van der Woude et al., 2023). With the development of regional measurement networks and advances in high-resolution
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modeling, this approach has since been extended to continental and national scales. However, despite growing interest, only a20

limited number of inverse modeling studies have been performed at the urban scale (Lauvaux et al., 2016; Kunik et al., 2019;

Sargent et al., 2018; Nalini et al., 2022). Urban inversions are gaining increasing attention, as cities are major contributors to

anthropogenic emissions, making accurate emission estimates at this scale essential for supporting climate action plans and

verifying reported emission reductions.

In this study, we present results from year-long CO2 flux inversions conducted for two European cities, Zurich and Paris.25

This work is part of the European ICOS Cities project, which aimed to develop and evaluate different CO2 emission monitoring

systems in three pilot cities of contrasting size and topographic complexity - Paris, Munich and Zurich. The primary objec-

tive of our study is to generate robust estimates of anthropogenic CO2 emissions in Zurich and Paris, using high-resolution

atmospheric transport simulations in combination with dense urban CO2 observation networks.

Previous studies estimating urban CO2 emissions have highlighted several key challenges. One major difficulty is to dif-30

ferentiate between CO2 enhancements caused by local sources and those resulting from inflow from surrounding regions

(Lauvaux et al., 2016; Sargent et al., 2018; Broquet et al., 2013). This is because the enhancements in CO2 mole fractions due

to biospheric and anthropogenic sources within the domain are often of similar amplitude as the variations in the background

levels. As a result, it is crucial to include observation sites located outside - and ideally upwind - of the urban area to better

constrain background conditions. In this study, we address this issue by jointly optimizing background mole fractions along35

with anthropogenic and biospheric fluxes. Without this simultaneous optimization, any bias in the background would propagate

directly into the estimated fluxes, compromising the accuracy of the inversion.

Another challenge is the separation of anthropogenic and biospheric contributions (Lauvaux et al., 2016; Sargent et al.,

2018; Kunik et al., 2019; Wu et al., 2018), as their atmospheric signals often overlap in both space and time. To disentangle

these sources, we rely on their distinct diurnal, seasonal, and spatial patterns. Nevertheless, this remains a major source of40

uncertainty—particularly during summer months when biospheric activity peaks.

A final challenge relates to the prior information on fluxes and their uncertainties (Broquet et al., 2013; Lauvaux et al., 2016;

Sargent et al., 2018; Kunik et al., 2019). In our case, we could benefit from very detailed city inventories provided by the

authorities of Zurich and Paris. However, temporal profiles were not always available, necessitating the use of generic time

profiles in some cases. To account for these limitations and avoid introducing biases into the optimization, relatively large45

uncertainties were prescribed for all anthropogenic and biospheric sources, allowing the system to adjust the fluxes based on

observations. At the same time, spatial correlations were introduced in the prior error covariance matrices to limit the degrees

of freedom and prevent overfitting.

The measurement networks used in the inversions differed significantly between Zurich and Paris, reflecting their contrasting

geographic and urban characteristics. In Paris, located in the flat Île-de-France region, a tower-based network of 9 sites with50

high-precision instruments was operated. The network was designed to measure both upwind background mole fractions and

downwind increments due to urban emissions. Depending on prevailing wind direction, several sites alternated between upwind

and downwind roles.
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In contrast, Zurich’s complex topography—characterized by intersecting valleys and surrounding ridges—makes it difficult

to consistently define upwind and downwind locations. To address this, a denser network of 13 mid-cost rooftop sensors was55

installed within the city to monitor urban CO2 enhancements, complemented by three high-precision instruments mounted on

towers outside the urban area to provide background measurements.

For the inversion, we used the mesoscale atmospheric transport model ICON-ART (Zängl et al., 2015; Rieger et al., 2015;

Schröter et al., 2018) coupled with the CarbonTracker Data Assimilation Shell (CTDAS) (Peters et al., 2005; van der Laan-

Luijkx et al., 2017). This coupling of ICON-ART and CTDAS, originally developed for methane inversions at the European60

scale (Steiner et al., 2024b), was extended in this study to run CO2 inversions over urban domains and to modify biospheric

fluxes “online” (i.e., during the simulation, Jähn et al., 2020). The ICON-ART simulations were performed at a spatial resolu-

tion fine enough to resolve the main topographic features of the Zurich area, including the Limmattal and Glattal valleys and

the surrounding ridges, which rise 100–400 meters above the valley floors.

In this study, we adress the aforementioned challenges by applying a high-resolution inversion framework that jointly opti-65

mizes anthropogenic emissions, biospheric CO2 fluxes, and background concentrations for two cities with markedly different

characteristics. The comparison spans a relatively straightforward case - Paris, a large, isolated city in flat terrain - and a more

complex scenario - Zurich, a mid-sized city embedded in mountainous terrain and surrounded by other urban agglomerations.

By comparing results from Zurich and Paris, we explore how sensor network design, atmospheric transport, and prior flux

uncertainties influence inversion performance.70

2 Data and Methods

2.1 Observations

Atmospheric CO2 dry air mole fraction measurements for both cities were obtained from ground-based station networks (see

Fig. 1). For brevity, we will refer to dry air mole fractions simply as mole fractions. The measurement data were first aggregated

to hourly values and then averaged over afternoon hours (11:00–16:00 UTC, i.e., 12:00–17:00 local time) before being used75

for model evaluation and flux inversions. It is common practice to consider only daytime or afternoon measurements when

comparing simulated and observed mole fractions, as stable nocturnal boundary layers are challenging to simulate and often

lead to large model-observation mismatches (Gerbig et al., 2003).

In Zurich, the observation network comprised 13 rooftop measurement sites inside the city equipped with mid-cost sensors.

Here we use the term mid-cost sensors to distinguish them from high-precision analyzers (e.g., cavity ring-down spectroscopy)80

and from low-cost sensors such as those deployed in the Carbosense network (Müller et al., 2020). As described in (Grange

et al., 2025), three different models of non-dispersive infrared (NDIR) sensors were deployed in Zurich’s mid-cost sensor

network called ZiCOS-M. Different from the sensors in Zurich’s low-cost sensor network ZiCOS-L, which was operated in

parallel (Creman et al., 2025), the mid-cost sensors had higher sensitivity, were mostly operated in temperature-controlled

rooms, and were calibrated daily by supplying calibration gas from two reference gas cylinders. Their accuracy was about 185

ppm (Grange et al., 2025), which is one order of magnitude better than the accuracy of the low-cost units. Three background
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Figure 1. Locations of the measurement stations comprising the Zurich (a) and Paris (b) CO2 observation networks. Tower sites in both

cities are labeled with their acronyms. Photo of the Zurich Schule Milchbuck station by Pascal Rubli; photo of the Paris Saclay station by

Michel Ramonet. Basemap tiles for panels (a) and (b) © OpenStreetMap contributors 2025. Distributed under the Open Data Commons

Open Database License (ODbL) v1.0.

sites were located outside the city. Two of the background sites were equipped with high-precision instruments, one with a mid-

cost sensor. An overview of the sites is provided in Table 1. Hardau II (hard) is a central site with a 20 m long mast mounted

on top of a 95.3 m building. The sampling at this site occurs at a much higher altitude compared to the other rooftops in the

network (Grange et al., 2025). This site, which features additional monitoring activities including an eddy covariance system,90

is highlighted in Fig.1 as high-rise to indicate its elevated inlet height. The mid-cost sensor network consisted of 19 sites inside

the city, but six of these were discarded because they either measured at street-level or were influenced by local sources. Both

situations cannot be captured adequately by a mesoscale atmospheric transport model. Data from the stations were subject to

basic quality control before being used in the inversion. A full description of the Zurich sensor network, calibration strategy

and data processing is provided in Grange et al. (2025). The inversion period spanned a full year from September 2022 to95

August 2023, preceded by a two-week spin-up in August 2022.

In Paris, all measurements used in this work were recorded at nine tower sites equipped with high-precision instruments

(Doc et al., 2024). Most of the sites were located outside the city, with three measuring upwind mole fractions and three

measuring downwind ones, while the remaining three were located within the city. The sites are listed in Tab. 2. The inversion

for Paris also covered a full year, but for the period between January 2023 to December 2023. A detailed description of the100

measurement network and data handling procedures is available in (Doc et al., 2024). A mid-cost CO2 sensor network was
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Table 1. ICOS Cities sites in Zurich with mid-cost sensors installed on rooftops and 2 background sites (Beromünster and Laegern-

Hochwacht) equipped with high-precision instruments. Elevation refers to height above sea level, and inlet height to height above ground

level.

Acronym Name Longitude Latitude Elevation (m) Inlet height (m) Instrument

zhab Albisgüetli 8.5128 47.3535 469.8 22.1 mid-cost

zbas Badenerstrasse Farbhof 8.4803 47.3904 399.6 22.5 mid-cost

zubv Bankenviertel Bleicherweg 8.5380 47.3689 408.7 26.5 mid-cost

ber Beromuenster 8.1755 47.1896 797.0 212.0 high-precision

brei Birchwil Turm 8.6492 47.4672 592.2 54.0 mid-cost

zgub Güterbahnhof 8.5176 47.3817 407.5 29.4 mid-cost

hard Hardau II 8.5102 47.3813 409.4 110.3 mid-cost

zhhm Hardturmstrasse Förrlibuck 8.5153 47.3920 401.2 40.6 mid-cost

zhhf Kantonales Labor Zürich 8.5585 47.3713 451.8 20.4 mid-cost

lgh Laegern-Hochwacht 8.3973 47.4822 840.0 32.0 high-precision

ztle Letzigraben Telefonzentrale 8.5005 47.3788 411.8 24.0 mid-cost

zhmi Schule Milchbuck 8.5378 47.3957 477.7 35.3 mid-cost

zhsf Stauffacherstrasse Werdplatz 8.5289 47.3724 411.4 48.0 mid-cost

ztie Tiefenbrunnen Wildbachstrasse 8.5589 47.3530 408.7 38.8 mid-cost

zhui Universität Zürich Irchel 8.5506 47.3987 491.7 29.0 mid-cost

zhwh Wollishofen 8.5333 47.3470 407.9 40.6 mid-cost

recently also established in Paris (Lian et al., 2024). These sites were excluded from this study due to upgrades and expansion

under the ICOS Cities project, but they will be available for future studies.

The dense rooftop sensor network in Zurich offers detailed spatial coverage and high sensitivity to emission sources within

the city. In contrast, the tall tower network in Paris is only sensitive to emissions integrated over larger portions of the city.105

2.2 ICON-ART model

ICON-ART (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) is a mesoscale meteorology and

atmospheric transport model that consists of two components: the climate and weather prediction model ICON (Zängl et al.,

2015), developed by the German Weather Service (DWD) and the Max Planck Institute for Meteorology, and ART (Rieger

et al., 2015; Schröter et al., 2018; Hoshyaripour et al., 2025), mainly created by the Karlsruhe Institute of Technology, for110

simulations of passive and chemically reactive tracers. ICON is a versatile model that can be run from global to regional

and even to sub-kilometer scale. It operates on a semi-structured grid with triangular grid cells and offers options for online

(through regional grid refinement) and offline nesting. Here, we use ICON in limited-area configurations with offline nesting.

ICON-ART is a fully coupled model jointly simulating weather and atmospheric tracer transport in a consistent way (Baklanov
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Table 2. Sites from the tower network in Paris. All sites are equipped with high-precision instruments. Elevation refers to height above sea

level, and inlet height to height above ground level.

Acronym Name Longitude Latitude Elevation (m) Inlet height (m) Instrument

and Andilly 2.3018 49.0126 175.0 60.0 high-precision

cds Cité des Sciences 2.3880 48.8956 43.0 34.0 high-precision

cou Coubron 2.5680 48.9242 126.0 30.0 high-precision

gns Gonesse 2.4205 49.0052 81.0 36.0 high-precision

jus Jussieu 2.3561 48.8464 38.0 30.0 high-precision

meu Meudon 2.2044 48.8025 173.0 90.0 high-precision

ovsq OVSQ 2.0486 48.7779 150.0 20.0 high-precision

rov Romainville 2.4225 48.8854 128.0 103.0 high-precision

sac Saclay 2.1420 48.7227 160.0 60.0 high-precision

et al., 2014). ICON and ART have recently been released under a permissive open source license and are now maintained and115

developed by a broader consortium of German and Swiss research partners and weather services.

2.2.1 Model setup

We ran separate CO2 simulations for the two cities, each nested offline within a larger central European domain. The central

European domain was simulated at 6.5 km resolution using grid R3B8 (see Fig. 2), while the inner domains were run at a

resolution of 0.5 km for Zurich (R19B9 grid) and 1 km for Paris (R5B10 grid). Zurich required a higher resolution due to its120

complex topography and smaller size. The European simulation provided the initial and boundary conditions for the two nested

domains and was itself nested into the Copernicus Atmospheric Monitoring Service (CAMS) global inversion-optimized CO2

simulation v24r3, which is based on assimilation of satellite observations (Chevallier et al., 2010; Copernicus Atmosphere

Monitoring Service (CAMS), 2020). Meteorological initial and boundary conditions for the European simulation were taken

from the ERA5 global reanalysis of the European Centre for Medium Range Weather Forecasts (ECWMF) (Hersbach et al.,125

2020). The intermediate European simulation was necessary because of the significant spatial resolution difference between the

CAMS and ERA5 global products and the high-resolution simulations for the two cities. To keep the simulated meteorology

close to the analyzed meteorology, the ICON-ART meteorological fields were weakly nudged towards the ERA5 data as

described in Steiner et al. (2024b).

All simulations were run with 60 vertical layers. The time step was 50 s in the European domain, 10 s for Paris, and 5 s130

for Zurich. Model output was saved hourly. The Tiedtke-Bechtold convection scheme (inwp_convection = 1) was used

throughout, but in the city domains, only shallow convection was enabled (shallowconv_only = .TRUE.), while in the

European domain both shallow and deep convection were active. The configuration for the city domains closely followed the

setup of the Swiss weather service for its operational forecasts at 1 km resolution.

6
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Figure 2. Model domains used in this study. The outermost domain covers Central Europe at 6.5 km resolution. The insets show the two

nested domains centered on the Zurich and Paris metropolitan areas simulated at a resolution of 0.5 km and 1 km, respectively. The topography

is shown as background shading. The black contour denotes the limits of the city of Zurich. For Paris, the black contour corresponds to the

Île-de-France, a region covering the agglomerations of Paris. The city limits are represented by the green contour.

Assimilation of CO2 observations was only performed in the two nested domains, not in the European domain. Any potential135

CO2 mole fraction biases in the European run, which served as boundary conditions for the regional domains, were corrected

for by the inversion as described later. To estimate the magnitude of these biases, the simulated mole fractions were compared

against measurements from the European Integrated Carbon Observation System (ICOS) (Yver-Kwok et al., 2021). The results

will be presented in Sect. 3.1.1.

Different gridded emission inventories were used depending on the simulation domain. For the European domain, the TNO-140

GHGco inventory (Super et al., 2020) for the year 2021 at about 5 km resolution was used. This inventory relied on the 2023

official reporting of 2021 emissions from the AVENGERS project, except for shipping emissions, which were sourced from

the 2021 TNO-GHGco inventory used in the CoCO2 project, reflecting an earlier reporting version for that sector. For the

Zurich domain, three inventories were combined: the TNO-GHGco inventory was used for regions outside Switzerland; within

Switzerland, the 2020 Swiss national inventory at 100 m resolution was applied; and for the city of Zurich specifically, this was145

replaced by a more detailed 2020 inventory as described in Brunner et al. (2025). The city inventory, originally provided as

7
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point, line, and area sources, was rasterized onto the ICON model grid before merging with the other inventories (see Figure

3a). The three inventories were mapped to the ICON grid and merged into a single dataset using the Python package emiproc

(Lionel et al., 2025). For the Paris domain, the TNO-GHGco inventory was merged with a 500 m resolution inventory for the

île-de-France (see Fig. 3b) provided by the regional air quality agency AIRPARIF for 2022.150

Figure 3. Annual mean anthropogenic CO2 emissions in the Zurich (a) and Paris (b) domains in kt yr−1. The Zurich data are based on the

Swiss national and Zurich inventories, along with TNO-GHGco inventory covering bordering regions of Germany. The Paris data are from

AIRPARIF inventory for Île-de-France region, with the remaining area covered by TNO-GHGco inventory. City borders are shown with

black lines, and lakes in the Zurich domain are outlined in white.

Biospheric fluxes were computed online using the Vegetation Photosynthesis and Respiration Model (VPRM, Mahadevan

et al., 2008) integrated into ICON-ART. As input, it requires shortwave radiation and two-meter temperature, which were pro-

vided by ICON, as well as satellite measurements of two indices, the enhanced vegetation index (EVI) and the land surface

water index (LSWI) obtained from the MODIS instrument (Vermote, 2015). These indices describe the influence of phenol-

ogy and water stress on photosynthetic uptake of CO2 by vegetation. VPRM independently simulates gross photosynthetic155

production (GPP) and ecosystem respiration (RE) for seven vegetation classes. The net ecosystem exchange (NEE) is then the

difference RE - GPP. The vegetation class-specific parameters of VPRM were taken from Table F1 of Glauch et al. (2025), ob-

tained through an optimization procedure that compared VPRM simulated fluxes with Eddy covariance flux tower observations

in Europe.

Another important input for calculating biospheric fluxes is land cover, which provides information about the spatial distribu-160

tion and type of vegetation in the model domain. We used the CORINE 2018 land cover dataset from the European Environment

Agency’s Copernicus Land Monitoring Service at 100 m resolution (European Environment Agency (EEA), 2018). However,

CORINE fails to resolve small vegetation patches or individual trees in urban areas; thus, a high-resolution vegetation dataset

was created for Zurich as described in Brunner et al. (2025) and merged with CORINE data outside the city. Since no such
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tailored high-resolution product was developed for Paris, vegetation cover in Paris is likely underestimated. A 10 m resolution165

version of the land cover map for Zurich is presented in the supplement.

Land cover in ICON-ART is represented using a tile approach, where multiple land cover types are included in a grid cell

proportional to their fractional area. We used the default setting of three tiles, i.e., only the three dominating land cover types

were represented. In metropolitan areas, these typically consist of one urban land cover (non-vegetated) and two of the seven

vegetation classes considered by VPRM, often grassland and deciduous forest.170

2.3 Inversion approach

2.3.1 CTDAS inversion framework

To estimate CO2 fluxes, we used the Carbon Tracker Data Assimilation Shell (CTDAS), which is a flexible framework that

employs an Ensemble Square Root Filter (EnSRF) to optimize a state vector of flux scaling factors and other elements (Peters

et al., 2005; van der Laan-Luijkx et al., 2017). CTDAS has been coupled with various Eulerian and Lagrangian atmospheric175

transport models, including ICON-ART (Steiner et al., 2024b). The ensemble approach requires the model to simulate a large

ensemble of CO2 tracers, each representing a different perturbation of the state vector elements being optimized.

Our setup closely followed that in Steiner et al. (2024b). In short, we jointly optimized scaling factors for fluxes and back-

ground CO2 mole fractions over individual 1-week assimilation windows. Each week was optimized twice: first with observa-

tions from the current week and a second time with observations from the following week. This assumes that CO2 emitted in180

the current week also influenced CO2 in the next week.

Estimating the fluxes for a full year requires 52 individual assimilation cycles, each cycle consisting of three week-long

simulations (except for the first cycle, which simulates only two weeks). A schematic illustrating the workflow and information

transfer between weeks and assimilation cycles was presented in Steiner et al. (2024b). Figure 4 presents an alternative view

illustrating the ensemble of CO2 mole fractions simulated by the system at an arbitrary observation location.185

The first two weeks comprise a continuous simulation with a restart after the first week to set different flux and boundary

condition scaling factors for the second week (see Fig. 4 (a)). ICON-ART provides a restart capability, enabling simulations to

be paused, checkpointed, and continued from the same meteorological and tracer fields. Simulated mole fractions are written

out hourly and interpolated to station locations using inverse distance weighting, with vertical interpolation based on the two

nearest levels and horizontal interpolation from the five closest ICON cells. Only daytime values (11:00 - 16:00 UTC) are then190

averaged and used for assimilation. Each week is optimized twice using observations from two weeks, except for the first week

of the first cycle (see Fig. 4a) which is optimized only once using the observations from the first two weeks.

The second cycle starts with another simulation for the first week but now using the optimized scaling factors returned by

CTDAS to propagate the optimized boundary conditions and fluxes forward in time to serve as optimized CO2 initial conditions

for the next week. Only one single CO2 tracer is simulated in this case as seen in the left part of Fig. 4b. The second week of195

the second cycle is then restarted from these optimized initial conditions and a new ensemble is generated based on the once

optimized scaling factors for week 2 from the previous cycle. Consequently, the spread among ensemble members in week 2
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is smaller in the second cycle compared to the first (compare panels (a) and (b)). The third week restarts from the checkpoint

at the end of the second week, generating a new ensemble with a larger spread. Only observations from the third week are

assimilated in this cycle, ensuring no observations are assimilated twice. Finally, panel (c) illustrates the third cycle, where the200

first two weeks are now fully optimized. This process continues for all subsequent cycles, following the same procedure as

outlined for the second cycle.

One design choice for the inversion system involved transferring information between different assimilation cycles. One

option would be to use the optimized scaling factors from the previous week as prior values for the next week. Alternatively,

one could revert to the original prior values, all set to 1. In the first case, the scaling factors optimized for the previous week205

are assumed to be a good first guess for the present week. In the second case, the weekly scaling factors are assumed to be

independent of each other such that each week should restart from the original prior values (λ = 1). We followed the same

approach as in (Steiner et al., 2024b), which blends these two extremes: We computed the new priors as a weighted mean with

a weight of 1/3 for the original prior and 2/3 for the posterior from the previous cycle. This approach propagates information

from the previous cycle while ensuring that, in the absence of new observations, the fluxes gradually relax back to the prior210

within a few weeks.

Another aspect that could be transferred between optimization cycles is the state vector uncertainty or ensemble spread.

However, we decided to keep the uncertainty for a given cycle unaffected by the optimized uncertainties of previous cycles.

Transferring the optimized uncertainties to the next week tends to excessively reduce the ensemble spread. Keeping the value

unchanged allows the system to remain stable and adapt quickly to sudden changes in flux intensity or background mole215

fraction errors.

2.3.2 State vector x

To estimate anthropogenic and biospheric CO2 fluxes separately, the state vector included separate scaling factors for anthro-

pogenic fluxes, gross photosynthetic uptake (GPP), and total ecosystem respiration (RE). Each factor applies to the fluxes

within a group of four neighboring grid cells. This grouping reduces the spatial resolution of the inversion but was necessary220

to save computation time and memory. In addition, eight scaling factors were included to adjust the background CO2 mole

fractions in eight inflow regions following the method outlined in Steiner et al. (2024b). Since an assimilation cycle includes

two time windows, each scaling factor is required twice: once for each of the two weeks. For Zurich, the state vector size s is

2 x (2926 x 3 + 8) = 17’572. For Paris, which has a larger domain with 7680 regions, the size was 2 x (7680 x 3 + 8) = 46’126

elements.225

The state vector elements are scaling factors x = (λ1,λ2, ..,λs), so the initial prior state vector xb simply consisted of ones,

xb = (1,1, ..,1). As mentioned before, from week 3 onwards (see Fig.4), the prior values were defined by a weighted mean

between the initial prior and the posterior λi values from the previous week.
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Figure 4. Schematic representation of CTDAS assimilation cycles (a) 1, (b) 2 and (c) 3. Black dots indicate hourly daytime (11:00–16:00

UTC) observations which were averaged daily and assimilated during each cycle, while gray dots show all other observations. Each panel

shows observations only for days assimilated in the corresponding cycle. λi denotes the state vector parameters (flux scaling factors) for cycle

i, λa1
i and λa2

i indicate once and twice optimized scaling factors, respectively, following the notations in Peters et al. (2005) and Steiner et al.

(2024b).
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2.3.3 Ensemble Square Root Filter approach

In order to optimize fluxes of CO2, the following Bayesian cost function J of observation-model residuals and differences230

between prior and posterior fluxes is minimized (Peters et al., 2005):

J(x) =
1
2
(x−xb)TP−1(x−xb) +

1
2
(Hx−yo)T R−1(Hx−yo) (1)

where yo denotes the observed mole fractions, H the observation operator (implemented via the ICON-ART model sampled

at station locations), x the state vector (flux and background scaling factors), xb the “background” (or prior) state vector, Hx

the simulated mole fraction, P the prior error covariance matrix, and R the observation error covariance matrix. The optimal235

posterior solution is

xa = xb +PHT
(
HPHT +R

)−1 (
yo−Hxb) . (2)

CTDAS implements an Ensemble Square Root Filter (EnSRF, Whitaker and Hamill, 2002), or an Ensemble Square Root

Smoother if more than one window per cycle is used, to solve this problem. A detailed description of the theory and imple-

mentation of EnSRFs for inverse modeling is provided by Thanwerdas et al. (2025).240

In the EnSRF approach, the matrix P of dimension [s x s] is approximated using an ensemble of N state vectors. Let X

denote the ensemble of state vector anomalies of size [s x N ], representing deviations from the ensemble mean (e.g., the prior

has as mean simply 1). Then P is estimated as

P = ZZT ≈ 1
N − 1

ZG︸︷︷︸
X

GT ZT
︸ ︷︷ ︸

XT

, (3)

where Z is the lower Cholesky decomposition, i.e., one possible definition of the matrix square root, and G is a Gaussian245

random matrix of reduced size [s x N ] drawn from a standard normal distribution (and GGT /(N − 1)≈ I). This provides a

low-rank approximation of the full covariance matrix, such that the problem becomes tractable for high-dimensional inverse

problems, as we can now re-write eq. (2) as

xa ≈ xb +
XYT

N − 1

(
YYT

N − 1
+R

)−1 (
yo−Hxb) , (4)

where Y = HX, denotes the ensemble of N modeled mixing ratio deviations from the ensemble mean sampled at the observa-250

tion locations and times. All these mixing ratios were simulated as separate CO2 tracers within the same forward ICON-ART

run. For our inversions, we chose N=186, following Steiner et al. (2024b).

2.3.4 Observation error covariance matrix R

Uncertainties in the differences between modeled and observed mole fractions are described using the observation error co-

variance matrix R. These uncertainties are caused by measurement errors, transport model errors, and representation errors.255

Representation errors occur when a model with limited spatial resolution cannot resolve measurements at a single point. In
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most cases, this matrix is considered to be diagonal, meaning that each model-observation difference is statistically indepen-

dent from the others. This is a valid assumption when assimilating daily mean mole fractions from stations separated by large

distances. In the case of urban scale inversions with a large number of stations being within 1–5 km from each other, however,

this approximation might be not be justified. Several different approaches to account for correlated uncertainties in the R ma-260

trix have been presented, for example, by (Ghosh et al., 2021). Neglecting such correlations may give too much weight to the

observations, giving undue weight to the second term of the cost function in Eq. 1.

Due to the high computational cost of full EnSRF inversions, complex formulations of the observation error covariance

matrix R, including off-diagonal elements to account for correlated uncertainties between individual observation sites, were

only tested in short sensitivity experiments or by re-optimizing individual assimilation cycles without re-running the transport265

model. These limited tests showed only a small impact on the flux estimates. Therefore, the final inversions presented here

employed a diagonal R matrix (see Eq. 5). Observations are assimilated serially, leveraging the diagonal structure of the

observation error covariance matrix R by processing each observation one at a time.

To estimate the diagonal elements, we first calculated centered (i.e., bias-corrected) weekly average root mean square errors

(RMSEs) between modeled and observed mole fractions at each station (Fig. 5) and then applied a centered 5-week moving270

average. The RMSEs were generally larger in Zurich than in Paris because most of the stations were mid-cost sites measuring

above rooftop with high sensitivity to surrounding emissions. The largest RMSEs occurred in the period from November to

March and the lowest in late summer. Additionally, elevated RMSEs were observed in the first week of April 2023. In Paris,

the highest RMSEs were found for the sites gns, cds and jus. This was likely because cds and jus were located within the city,

while gns had a data gap during the late summer months, when model-observation differences are typically smaller.275

The smoothed weekly uncertainties for each station served as the model-data mismatch (MDM) thus generating the R matrix

as follows:

R =




MDM2
11 · · · 0

...
. . .

...

0 · · · MDM2
nn


 , (5)

where n is the number of observations assimilated in a given cycle.

2.3.5 Prior error covariance matrix P280

The prior error covariance matrix P describes uncertainties related to prior flux and background scaling factors, as well as

their correlations. These correlations effectively reduce the degrees of freedom, which is necessary to avoid overfitting. The

observation networks often lack the density to independently constrain all state vector elements. The length scale of the spatial

correlations determines the typical size of structures that can be estimated independently by the inversion. Correlated uncer-

tainties also determine how uncertainties are reduced when averaging over larger domains. For example, if the correlation285

length exceeds the city size, averaging over the city’s grid cells does not reduce uncertainty in total urban emissions.
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Figure 5. Bias-corrected weekly RMSEs in parts per million (ppm) between modeled and observed CO2 mole fractions for each station in

(a) Zurich (September 2022–September 2023) and (b) Paris (January 2023–January 2024).Background sites in Zurich are indicated in red on

the y axis.

The structure of P was standardized for both inversions to a common block-diagonal format,

P =




fa · e−D⊘La 0 0

0 fb · e−D⊘Lb 0

0 0 Pbg


 , (6)

where e· is implied to be taken element-wise, and we use definitions

– fa = 1, fb = 0.5: the prior uncertainty for the anthropogenic and biospheric categories, respectively. Factors between 0290

and 1 correspond to standard deviations of 0 and 100 % per flux region,

– D ∈ RNr×Nr : distance matrix with entries dij between flux regions i and j,

– La,Lb ∈ RNr×Nr : length scale matrices for the anthropogenic and biospheric categories with entries Lij,a and Lij,b,
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– ⊘: element-wise division,

– Pbg ∈ R8×8: block corresponding to background parameters. It has a banded structure with diagonal elements set to295

0.0052, corresponding to 0.5 % variance per background inflow region, and off-diagonal correlations between neighbor-

ing regions: ±1 and ±2 positions are weighted by factors of 0.5 and 0.2, respectively. The total uncertainty is approxi-

mately 1 %.

For Paris, the spatial correlation between flux scaling factors was fixed to length scales of Lij,a = La = 20 km and Lij,b =

Lb = 50km for anthropogenic and biospheric fluxes, respectively. The greater length scale for biospheric fluxes arises from the300

assumption that vegetation responds to environmental drivers in a correlated manner across neighboring regions in the model

domain.

In Zurich, spatially varying correlation lengths were considered. Shorter correlation lengths were applied within the city, as

the dense observation network can resolve flux gradients. Longer correlation lengths were utilized outside the city. The spatial

dependence of Lij was defined as a linear function of the average distance between flux regions i and j to the city center dc,ij :305

Lij,a =
(

dc,ij

dmax

)
La +

(
1− dc,ij

dmax

)
Lurban,a, (7)

(and analogously defined Lij,b) where La and Lurban,a are the correlation length limits between which we would like Lij,a to

vary outside and inside the city, and dmax is the maximum distance between flux regions. Using the mean distance dc,ij was

important to preserve the symmetry of the P matrix. As in Paris, we set La = 20 km for anthropogenic and Lb = 50km for

biospheric fluxes, while we used Lurban,a = 5 km for anthropogenic and Lurban,b = 8 km for biospheric fluxes.310

The prior and posterior flux uncertainties presented in the Section 3 were computed from the full covariance matrices to

account for spatial covariances, similar to the approach described in Steiner et al. (2024b). For each weekly inversion cycle,

we calculated:

U =
√

gT Pg, (8)

where P is the prior or posterior error covariance matrix and g is a vector of 0 and 1 (or a binary mask) corresponding to315

the selected region of model grid (e.g., selected grid cells inside Zurich, Paris or Île-de-France region). For seasonal or annual

means, weekly uncertainties were aggregated using standard error propagation.

3 Results

3.1 Evaluation of the forward simulations compared to observations

3.1.1 European simulation320

The main purpose of the European simulation was to provide initial and boundary conditions for the two nested domains.

Comparisons with measurements in Europe thus provide information on the magnitude and temporal dynamics of errors in

these boundary conditions.
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Overall, the mean daily afternoon CO2 mole fractions from the European simulation showed very good agreement with

measurements from the ICOS network. The list of sites included in this comparison is provided in the supplement Fig. S2.325

Figure 6 presents monthly mean mole fractions, model biases, RMSEs, and correlation coefficients averaged across all sites.

The annual mean bias was about 1.24 ppm and the RMSE about 4.19 ppm.

Figure 6. Monthly statistics of mean modeled versus observed afternoon CO2 mole fractions at ICOS stations in the European model domain.

Panel (a) shows the contributions of the different components (background, anthropogenic and biospheric) to total CO2 mole fractions. Total

and background mole fractions are offset by –410 ppm. The remaining panels present (b) monthly mean biases, (c) RMSEs, and (d) Pearson

correlation coefficient (r).

The high monthly correlation coefficients (mean value of 0.73) suggest that the model captured most of the day-to-day

variability in the observations. However, the error statistics show significant variations between months. For instance, biases

in simulated CO2 mole fractions exhibit a clear seasonal pattern. The largest biases, reaching up to 3 ppm, occurred in August330

and September. This overestimation is likely related to the challenge in accurately modeling biospheric CO2 fluxes, which

dominate during the warm season. Photosynthetic uptake and respiration processes introduce uncertainties in the prior fluxes
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that are difficult to constrain at the European scale. RMSEs were quite stable over the year with a tendency of higher values

during the cold season (October–March). This increase may be associated with uncertainties in residential heating, which is one

of the main anthropogenic sources. Another important factor that may lead to larger errors during the cold season is stronger335

vertical stratification and shallower boundary layers. The lowest correlation of 0.5 occurred in April 2023. This could be related

to transition-season effects, where shifts in both biospheric activity (onset of vegetation activity) and heating demand (end of

heating period) introduce additional uncertainty. All correlations were calculated as Pearson correlation coefficient r using the

np.corrcoef function in Python.

3.1.2 Nested simulations over Zurich and Paris340

A similar comparison of the prior simulation against measurements was conducted for the two nested simulations using instead

the measurement networks in Zurich and Paris (two stations of the Paris network are also ICOS stations). The results are

presented in Fig. 7 (blue bars) in terms of statistics per station rather than per month. To be comparable with the results for

the European domain, correlation coefficients were first averaged by month and then averaged over all months. Otherwise,

high correlation coefficients would be obtained due to the strong seasonal cycle in CO2, which the model is usually able to345

capture well. RMSEs and biases of the prior simulation (blue bars) were generally much larger for stations in Zurich than in

Paris. This is due to the different network types with mostly rooftop mid-cost sensors in Zurich as opposed to high-precision

measurements on tall towers in Paris. The sites in Zurich are mostly located inside the city and at a much lower altitude above

the surface than in Paris. As a result, they are more sensitive to emissions from the city and therefore also to errors in these

emissions. For the two background sites, Beromünster and Lägern-Hochwacht in the Zurich domain, the model showed very350

similar performance as for the sites in the Paris domain.

The biases and RMSEs in the Paris domain were of similar magnitude to the values of the comparison with ICOS sites in the

European simulation. The correlation coefficients were also comparable for both simulations, with Paris showing only a slight

improvement in the priors, indicating that higher resolution did not substantially increase correlation in this case.

3.2 Inversion results355

The inversion significantly improved simulated CO2 mole fractions compared to observations (orange bars in Fig. 7). Daily

RMSEs averaged across all stations decreased in both cities, dropping from 11.83 to 7.1 ppm in Zurich, and from 5.33 to

4.25 ppm in Paris. The bias was reduced to near zero, from 2.62 to 0.05 ppm in Zurich and from 1.36 to -0.11 ppm in Paris.

The reduction in the biases was mostly a result of the adjustment of the background scaling factors rather than the flux scaling

factors. Finally, the correlation coefficients increased from 0.73 to 0.83 in Zurich and from 0.76 to 0.83 in Paris. Although360

the correlations were already high in the prior simulation, the inversion further improved the temporal agreement between the

model and observations. After inversion, the distribution of errors across sites was more uniform, suggesting an improvement

in spatial CO2 gradients.

17

https://doi.org/10.5194/egusphere-2025-3668
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 7. Daytime (11:00 – 16:00 UTC) mean bias, RMSE, and Pearson correlation coefficient (r) values of CO2 mole fractions before and

after inversion between ICON-ART and the observations over Zurich (left panels) and Paris (right panels). Blue bars denote the results for

the prior simulation, orange bars for the posterior simulation after optimization.

Figures 8 and 9 show timeseries of weekly prior and posterior flux estimates averaged across Zurich and Paris, as well as

their surrounding agglomerations. For Zurich, the larger region encompasses the entire area of the nested simulation. In Paris,365

it corresponds to the Île-de-France (black contour in Fig. 2).

In Zurich, most flux adjustments were concentrated within the city, while domain-wide totals remained close to the prior

estimates (Figure 8). Anthropogenic emissions, the dominant source of CO2 in the urban area, were reduced in almost all

weeks, especially during the heating season. The reductions were particularly large in the last weeks of December 2022 and

the first week of January 2023. This was a period of comparatively warm temperatures and coincided with the Christmas370

and New Year period when many residents leave the city for holidays. Our prior estimates of emissions from residential
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heating accounted for outdoor temperatures by following a heating-degree-days approach (see Brunner et al. (2025) for details).

However, the strong reduction in the posterior estimates during warm winter periods suggests that this approach may not

accurately capture the influence of temperature. Another factor, which likely contributed to the lower posterior emissions, was

the energy crisis driven by the Russo-Ukrainian War. This crisis led to strongly increased prices for gas and electricity. Due to375

the shortage in primary energy, the Swiss government formulated the goal of a reduction of gas consumption by 15 %, a goal

that was exceeded during the heating period October 2022 to March 2023 (https://www.news.admin.ch/de/nsb?id=94439). Our

prior emissions did not account for this factor. Despite these plausible factors, the reductions in winter were likely too strong as

discussed below in Section 4. The prior emissions showed a maximum in winter and a minimum in summer, which is expected

given the important contribution of heating to total CO2 emissions in the city. The posterior fluxes showed a very different380

behavior that does not seem to be realistic.

The inversion significantly increased the net uptake of CO2 by the biosphere in late May/June 2023, suggesting that prior

estimates underestimated photosynthetic activity. In other periods, the posterior NEE fluxes remained closer to the prior. In

most weeks, NEE was much smaller than the anthropogenic fluxes in the city of Zurich, but in summer, they were of similar

magnitude. The increase in posterior uptake in June was partially offset by higher anthropogenic emissions, suggesting poor385

separation between anthropogenic and biospheric fluxes during this period.

Some studies, such as Lauvaux et al. (2016); Lian et al. (2021), focused only on the dormant season to minimize such inter-

ference from biospheric fluxes when estimating anthropogenic emissions. Comparing uncertainty reductions between summer

and winter thus helps assess how biospheric fluxes influence the inversion constraints. For Zurich, the inversion resulted in

notably larger reductions for anthropogenic and total flux uncertainties in winter (both about 90 %) than in summer (about 45390

and 35 %, respectively). This difference may partly result from the inversion attributing model transport errors to emissions

during winter shallow boundary layer conditions, as discussed earlier. In summer, Zurich showed relatively higher uncertainty

reduction for respiration fluxes (about 33 %) compared to winter (about 20 %), while the uncertainty of photosynthetic uptake

by the plants (GPP) remained largely unchanged in both seasons. The uptake uncertainties remaining high are likely due to the

lack of assimilated nighttime observations, which would help separate RE and GPP. Detailed information about summer and395

winter prior and posterior fluxes is provided in the Table S3 in the Supplement.

In Paris, the inversion produced much smaller adjustments compared to Zurich (Figure 9). The total and anthropogenic

CO2 fluxes remained close to the prior estimates, not only in the Île-de-France region, but also in the city. Biospheric fluxes

showed minimal changes in both regions, indicating that the inversion system found little evidence to revise the prior estimates.

The posterior uncertainties were significantly reduced for anthropogenic fluxes but remained almost unchanged for biospheric400

fluxes, suggesting that the observation network was less sensitive to CO2 exchange with vegetation. This aligns with the fact

that NEE fluxes were nearly ten times smaller than anthropogenic fluxes. This may result from the CORINE land cover dataset,

which inadequately resolves vegetation in cities.

Overall, the relatively small updates in Paris might be explained by a better initial agreement between the model and obser-

vations, as well as by a lower signal-to-noise ratio, with anthropogenic enhancements being less distinct against background405

variability at the tall towers in Paris compared to the rooftop measurements in Zurich.
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Figure 8. Time series of prior and posterior CO2 fluxes in Zurich in (a) the total domain and (b) the city. The remaining panels show the

anthropogenic (c) and biospheric (d) CO2 fluxes in Zurich. Biospheric fluxes are shown in terms of net ecosystem exchange (NEE). Vertical

bars denote the 1σ uncertainty in the domain-averaged fluxes computed from the prior and posterior error covariance matrices.

Consistent with this, the inversion barely adjusted biogenic flux uncertainties in Paris (e.g., GPP uncertainty reduction was

-0.4 % in summer and -6.0 % in winter). This underlines the importance of integrating high-resolution urban vegetation data to

better resolve biogenic fluxes within city domains. In Paris, the reductions in total and anthropogenic flux uncertainties were

similar in both seasons (about 75 - 78 %), with slightly lower reductions in summer, indicating that anthropogenic emissions410

were effectively constrained owing to the limited sensitivity to biogenic fluxes.

In both cities, the inversion optimized anthropogenic and biospheric fluxes as well as background CO2 mole fractions from

eight inflow regions (Figure 10). The Zurich case showed larger changes in background levels and a wider spread between

different wind directions. Scaling factors were adjusted by up to 2 %, which corresponds to about 8 ppm given a background

of about 400 ppm. Background mole fractions were consistently scaled down when air was advected from the southern sector415
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Figure 9. Time series of prior and posterior CO2 fluxes in Paris in (a) the Île-de-France region and (b) the city. The remaining panels show

the anthropogenic (c) and biospheric (d) CO2 fluxes in the city of Paris. Biospheric fluxes are shown in terms of net ecosystem exchange

(NEE). Vertical bars denote the 1σ uncertainty in the domain-averaged fluxes.

(SSE and SSW) but scaled up when advected from the north (NNE and NNW). The eastern sectors (ENE and ESE) showed

upward corrections in winter but mostly downward corrections in summer.

In contrast, the results for Paris exhibited smaller adjustments, mostly within 1 %, and more consistent between the different

wind directions, indicating a systematic overestimation in the prior. For both cities, the adjustments are expected to correct

for biases in the boundary conditions provided by the European simulation, which itself is not corrected for biases through420

data assimilation. The larger corrections for Zurich might be due to the city being more strongly influenced by the European

continent due to its position further east from the Atlantic compared to Paris.

Figure 11 summarizes the annual mean CO2 fluxes and their relative changes for Zurich and Paris. The total fluxes are

substantially higher in the French capital, reflecting not only its larger area but also its greater population and correspond-

ingly stronger emissions. Net biospheric fluxes (NEE) are only significant for the larger domains (with net uptake in both the425
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Figure 10. Optimized scaling factors for background CO2 mole fractions in (a) Zurich and (b) Paris. The different colors correspond to the

8 different inflow regions.

prior and posterior fluxes) but are negligible over the two cities. The relative changes are thus driven almost entirely by up-

dates to anthropogenic emissions. In Paris, both domain-wide and city-level fluxes remain close to the prior, though total and

anthropogenic fluxes increase by about 7 % in the city. In contrast, more substantial adjustments are found for Zurich: domain-

wide fluxes are reduced by approximately 10 %, primarily due to large reductions within the city, where annual anthropogenic

emissions decrease by 27 %.430

The spatial distribution of annual mean anthropogenic CO2 flux updates for both areas is shown in Figure 12. Larger

adjustments are evident in Zurich, particularly within and upstream of the city, reflecting the high sensitivity of the observation

network to these regions. Emissions were reduced in the eastern and western parts of Zurich, corresponding to residential and

vegetated areas, with the largest decrease occurring near the western border, an area dominated by vegetation. In contrast,

fluxes in Zurich’s center were scaled up. In Paris, updates are generally smaller. The results for the Île-de-France show a slight435

increase north of the city. This is the region covered by the sites gns and cds, which showed particularly large deviations

from the ICON-ART model simulation (see Fig. 5). Vegetated zones to the east and west of Paris show minimal changes in

anthropogenic fluxes, as expected. Within the city, a minor redistribution of emissions is visible with reductions in the northern

districts and increases in the south.
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Figure 11. Annual total, anthropogenic and biospheric CO2 fluxes in Zurich and Paris (a). Relative changes in total and anthropogenic fluxes

(b).

4 Discussion440

Posterior anthropogenic emissions in Zurich were likely underestimated (i.e., scaled down too much) in some periods, espe-

cially in late December 2022 and early January 2023. As shown in Fig. 13 for one of the rooftop sites, the ICON-ART model

tended to underestimate wind speeds during periods of low winds. This behavior is consistent with previous studies, which
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Figure 12. Maps of annual mean anthropogenic CO2 scaling factor updates in (a) the Zurich model domain, (b) the Paris model domain, (c)

the city of Zurich and (d) the city of Paris.

showed that mesoscale transport models tend to underestimate wind speed and mixing under stable, low-wind conditions, par-

ticularly in urban environments with enhanced surface roughness (Bréon et al., 2015; Lauvaux et al., 2016; Wu et al., 2018).445

The selected period, from 15 December to 13 January, coincides with the largest downward adjustments in emissions. When

modeled wind speeds exceeded 1 m s-1, the model captured the observed day-to-day variability reasonably well. However, dur-

ing calm episodes, the model often simulated wind speeds below 1 m s-1 for several consecutive days, whereas the observations

remained higher. These prolonged calm periods result in excessive CO2 accumulation in the model. The inversion system com-

pensates for this overestimation by reducing the emissions. This highlights how errors in representing the actual meteorology,450

particularly during low-wind episodes, can introduce artifacts into the inversion.

The network-wide statistics presented in Fig. 14 underscore the systematic nature of these transport errors. The figure shows

how prior CO2 biases and RMSEs vary with modeled wind speed across all sites in Zurich and Paris. In Paris, where sensors

are installed on tall towers well above the surface layer, modeled wind speeds fell below 1 m/s in less than 2 % of observations.
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Figure 13. Comparison of modeled and observed wind speed at the rooftop site Kantonales Labor in Zurich for the period 15 December

2022 to 13 January 2023.

At the rooftop sites in Zurich, in contrast, wind speeds below 1 m/s occurred during nearly 15 % of all measurement times. This455

wind speed threshold marks a sharp transition in model performance: Biases in simulated versus observed CO2 mole fractions

increase to around 9 ppm, and RMSEs exceed 25 ppm. These statistics reflect a regime in which the model systematically

underestimates wind speeds allowing CO2 to accumulate unrealistically. Rather than being isolated events, calm conditions

were frequently observed at most sites. The problems of ICON-ART in capturing these situations negatively impact flux

estimates during stagnant weather episodes in winter.460

The inversion results revealed significant differences in background CO2 mole fraction corrections between Zurich and

Paris. The larger background CO2 mole fraction adjustments in Zurich compared to Paris are likely related to the difference

in their geographic position. Paris, located closer to the Atlantic Ocean, is exposed to air masses less affected by European

anthropogenic emissions. In contrast, Zurich lies further inland and is more influenced by continental sources, resulting in a

more complex and variable background signal. This makes it more challenging to differentiate between the influence of local465

emissions and background changes. Especially in winter when anthropogenic emissions increase not only in Zurich but also

across Europe. This is reflected in the background adjustments: during periods of large reductions in anthropogenic fluxes in

Zurich, the background CO2 was actually increased for the NNW, ENE, and ESE wind sectors. This pattern is explained by

all three background tower sites (Beromünster, Laegern-Hochwacht, and Birchwil Turm). All of them were showing elevated
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Figure 14. Bias and RMSE of CO2 mole fractions as a function of simulated wind speed in Paris and Zurich.

levels of CO2 mole fractions higher than those simulated by the model, indicating a regional-scale increase in emissions that470

was not fully captured in the prior model setup.

Another limitation of the model involves the VPRM model. In our simulations, VPRM relied on satellite indices derived from

MODIS observations at a resolution of 250 to 500 m, which is insufficient for resolving urban vegetation. This poses a challenge

when modeling photosynthetic uptake in heterogeneous urban environments. For instance, Ren et al. (2017) conducted a spatio-

temporal analysis using Landsat data and field measurements and demonstrated that mixed-pixel effects in urban settings475

severely compromise estimates of tree density and structural vegetation attributes, especially in areas with impervious surfaces

such as roads. Likewise, (Velasco et al., 2016) emphasize that urban greenery is often poorly captured in models, and argue that

no method currently exists to directly evaluate the CO2 uptake by urban vegetation. Together, these studies suggest that current

urban biosphere models, which are relying on moderate-to-high-resolution satellite imagery, may systematically underestimate

the contribution of small vegetation patches and street trees to total CO2 fluxes, and misrepresent the net carbon exchange in480

densely built-up areas. In Paris, this issue was likely exacerbated by using the coarse CORINE land cover dataset at 100 m

resolution.

The impact of biospheric flux uncertainties on the estimation of anthropogenic emissions becomes increasingly important

during the summer months. In our VPRM simulations for Zurich, prior net ecosystem exchange (NEE) was mostly positive (net

source) in the city center, even in summer, with a mean NEE of +0.29 µmolm−2s−1. In contrast, surrounding vegetated areas485

functioned as sinks, as expected for the growing season (Figure15). The positive NEE in the city center appears unrealistic,

suggesting an underestimation of photosynthetic uptake by urban vegetation, likely due to the coarse resolution of satellite
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data. Respiration in VPRM only depends on temperature but not on satellite indices. The different impacts of low resolution

MODIS observations on photosynthesis and respiration may thus explain the unrealistic net positive NEE values.

After optimization, the inversion reduced respiration and enhanced uptake, particularly in surrounding green areas, resulting490

in a mean NEE of –2.15 µmol m−2 s−1 averaged across the city. This adjustment brings the posterior fluxes into better

agreement with local eddy covariance measurements (Brunner et al., in preparation), which show that daytime photosynthetic

uptake during summer can exceed concurrent anthropogenic emissions, leading to net negative fluxes in certain areas.

Figure 15. Net ecosystem exchange (NEE) fluxes in Zurich in summer (Jun/Jul/Aug) 2023. (a) Prior NEE, (b) posterior NEE, and (c)

posterior – prior difference.

Together, these results illustrate how inversion outcomes are influenced by transport model biases and simplifications in

prior flux estimates, which vary by space, season, and flux type. The observed corrections provide a quantitative view of where495

and when the inversion deviates from the prior, revealing limitations in current models and offering guidance for improving

urban CO2 flux estimation.

Table 3 summarizes the anthropogenic CO2 emission estimates from this study. It also includes information on the inventory

data used as a prior and literature values for Île-de-France and Paris. The inversion reduced prior estimates for Zurich city from

1388.9± 156.8 to 1012.3± 38.8 kt yr−1, although no independent literature estimate exists for comparison. For Île-de-France,500

the prior and posterior values are close to each other, and about 16 % lower than the earlier estimate in (Staufer et al., 2016)

between August 2010 and July 2011. In Paris, the posterior estimate of 3580.0 ± 101.9 is slightly higher than the prior 3375

± 172 kt yr−1 and in good agreement with the estimate for the year of 2020 of 3650 ± 1830 described in (Nalini et al.,

2022). Overall, the inversion reduced posterior uncertainties compared to priors, demonstrating the added value of atmospheric

constraints in emission estimates.505
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Table 3. Prior and posterior anthropogenic CO2 emissions in Zurich, Île-de-France region and Paris based on the results from this study,

inventory data and other independent estimates.

Region / City Source Year Anthr. CO2 emissions (kt yr−1) Remarks

Zurich Mapluft 2020 1388.9 ± 156.8 Used as prior

This study Sept. 22 - Aug. 23 1012.3 ± 38.8 Posterior

Île-de-France AIRPARIF 2022 34849.6 ± 2181.3 Used as prior

This study 2023 34553.8 ± 880.0 Posterior

Staufer et.al 2016 Aug. 2010 - Jul. 2011 40900

Lian et.al 2023 2021 34300 ± 2300

Paris AIRPARIF 2022 3375.1 ± 429.2 Used as prior

This study 2023 3580.0 ± 101.9 Posterior

Nalini et.al 2022 2019 6410 ± 2330

Nalini et.al 2022 2020 3650 ± 1830

5 Conclusions

In this study, we applied the ICON-ART-CTDAS inversion framework at high spatial resolution to estimate urban CO2 fluxes

in Zurich and Paris over a full annual cycle. Simulations were conducted for a central European domain along with nested

domains centered on each city. To better capture the influence of complex terrain on mesoscale flow dynamics, the Zurich

domain was simulated at a finer resolution (500 m) compared to Paris (1 km).510

Forward simulations were evaluated against CO2 observations in all three domains. Simulated mole fractions for the Euro-

pean domain showed high (monthly mean) correlations with observations from the ICOS network, indicating that the model

captures effectively day-to-day variability. Biases and RMSEs were of the order of a few ppm. Additionally, the model repro-

duced daily variations in wind speed and temperature well (see Supplementary Information). However, comparisons revealed a

strong sensitivity to wind speed, with mole fraction errors increasing substantially during calm periods, limiting the inversion515

performance in Zurich with its complex terrain. In contrast, the Paris domain, characterized by flatter terrain and a tower-based

measurement network, exhibited fewer instances of low wind speeds and overall smaller model–observation mismatches.

In Zurich, the inversion reduced anthropogenic emissions by 27 % relative to the prior inventory, resulting in a posterior

annual emission of 1012.3 ± 38.8 kt yr−1, whereas in Paris, emissions increased by 7 %, yielding a posterior emission of

3580.0 ± 101.9 kt yr−1. These differences do not necessarily indicate varying accuracy in the inventory estimates but are520

partly due to factors such as observational constraints. Zurich’s dense rooftop sensor network provides greater sensitivity

to local sources, while Paris’ tower-based measurements better represent the regional boundary layer. In Zurich, seasonal

patterns revealed a clear anti-correlation between optimized anthropogenic emissions and 2-meter air temperature, highlighting

the significant contribution of residential heating to wintertime CO2 emissions. The most significant reductions appeared
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under stagnant weather with low wind speeds and shallow mixing layers, causing inflated simulated CO2 concentrations525

and necessitating stronger downward flux corrections. Even minor changes in emissions during these periods produced large

modeled enhancements in urban concentrations, indicating the inversion’s sensitivity to transport errors. In contrast, seasonal

corrections in Paris were more moderate. The higher sensor placement and fewer calm periods reduced the occurrence of

artificial CO2 accumulation in the model, limiting the magnitude of such inferred flux changes.

Our results also underscore the importance of accurately representing prior biospheric fluxes in urban areas, especially in530

summer when vegetation uptake significantly influences total CO2 fluxes. In Zurich, prior estimates of net ecosystem exchange

(NEE) indicated an unrealistic net carbon source in the city center. The inversion corrected this by reducing respiration and

enhancing uptake in vegetated areas, aligning posterior fluxes more closely with local eddy covariance observations. This

highlights the need for improved representation and parameterization of urban vegetation in biospheric flux models to better

capture seasonal and spatial variability.535

We did not perform any meteorological data assimilation and did not have access to a meteorological ensemble, which

limited our ability to explicitly quantify transport-related uncertainties in the simulated CO2 mole fractions. To estimate

model–data mismatch (MDM), we used a pragmatic approach based on bias-corrected RMSE values calculated for each

station. Periods of large model–observation discrepancies, especially under low wind speeds, resulted in exaggerated emis-

sion corrections, as the inversion system attempted to compensate for transport biases through flux adjustments. We addressed540

this issue by rejecting extreme outliers. Although this improved the stability of the inversion, addressing transport related bi-

ases more fundamentally will require improved meteorological input, potentially through the use of transport ensembles (e.g.,

Steiner et al. (2024a); McNorton et al. (2020)) or joint optimization of fluxes and meteorology.

As urban CO2 flux estimation becomes increasingly central to net-zero planning, improving both transport and biospheric

model fidelity, as well as integrating enhanced observational constraints, will become essential for reliable emissions moni-545

toring in cities. Projects like ICOS Cities (Lan et al., 2024) have demonstrated the importance of deploying tall-tower eddy

covariance, isotopic, and street-level sensors in urban environments to validate emission inventories and improve model con-

straints on anthropogenic and biospheric fluxes. The CoCO2-MOSAIC 1.0 dataset (Urraca et al., 2024) is complementary to

these observational efforts and offers high-resolution ( 0.1°) emission priors, which is in line with the crucial role of detailed

bottom-up information in urban inversion frameworks.550

Overall, our study highlights the sensitivity of urban CO2 flux inversions to transport model biases, observational network

design, and uncertainties in prior flux estimates. Addressing these challenges requires integrated approaches that combine

high-resolution meteorology, improved biospheric flux modeling, and expanded observational networks tailored to urban com-

plexity. Future research should explore joint inversion frameworks that incorporate both meteorology and flux uncertainties and

leverage transport ensembles to better constrain emissions. These advances will be critical for reliable urban carbon monitoring555

and for supporting policy efforts aimed at reducing emissions in complex city environments.
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