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Abstract. The demand for skillful climate predictions on subseasonal-to-multidecadal time scales is rising almost by the day,

not least because the growing renewable energy sector, but also many other important socio–economic sectors are vulnerable to

climate variations. Large scale atmospheric patterns in the North–Atlantic European sector, so-called teleconnections, are well

known to have major influence on European climate conditions. For that reason there exists a wide variety of hybrid dynamical–

statistical applications, which combine dynamical model output with teleconnections in one way or another to improve the5

rather modest predictive skill of state-of-the-art dynamical climate forecasts over Europe. The potential improvement generated

by these kinds of postprocessing methods is naturally limited by the strength of association between the circulation patterns and

the local climate parameters. We propose a statistical technique to retrieve atmospheric patterns—targeted teleconnections—

that are maximally predictive for a given climate parameter in a region of choice so as to optimize the potential of statistical

postprocessing. The possibility of improvement in forecast skill induced by the implementation of targeted teleconnections is10

demonstrated in four applications.

1 Introduction

With the development of increasingly reliable climate models, operational climate predictions from subseasonal to multi-

decadal time scales are starting to flourish all across national meteorological agencies, coordinated by multi-national and

global organisations like the Copernicus Climate Change Service (C3S) and the World Meteorological Organisation. Unlike15

numerical weather prediction, climate prediction aims at forecasting atmospheric conditions which lie beyond the deterministic

prediction horizon and reach well into the realms of atmospheric chaos. Nevertheless boundary conditions with low frequency

variability strongly modulate circulation, and owing to their slow variability, their influence transmits a certain predictability

(Hall et al., 2019; Strommen et al., 2023; Sun et al., 2024). Circulation, in turn, has strong impacts on the down stream surface

climate, albeit to varying extent depending on parameter, region and season (Cionni et al., 2022; Simpson et al., 2024). The20

emphasis here is on surface climate as the effects are manifest not in single events, but rather in the probability distributions of

their generation and evolution.
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We are therefore able to identify a causal chain leading from the persistent, partially predictable boundary conditions, first

and foremost the ocean, but also cryoshere, stratosphere, and land surface, to sensible climate like 2m temperature (T2M),

precipitation (PR), wind speed, and radiation (Simpson et al., 2019). The crucial link in this causal chain, notwithstanding25

feedback loops, is the atmospheric circulation, which, turbulent though it is on all scales, appears to be self-organizing in

semi-persistent and recurrent patterns (Hannachi et al., 2017; Faranda et al., 2017; Strommen et al., 2022). The circulation, its

main feature over the North–Atlantic European (NAE) sector being the eddy-driven jet stream (Perez et al., 2024), is usually

measured by means of mean sea level pressure (MSLP) or geopotential height at 500 hPa (ZG500) patterns and has long been

the object of extensive study (Feldstein and Franzke, 2017). One very efficient, even though linear, way of summarizing the low-30

dimensional manifold character of the circulation is Principal Component Analysis (PCA), also known in atmospheric sciences

as Empirical Orthogonal Function (EOF) Analysis (Hannachi, 2021). Focusing on the NAE sector, it has been conclusively

shown that the four dominant circulation patterns describing the location of blocking highs in the sector—namely the North

Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/West Russia Pattern (EAWR) and the Scandinavian

Pattern (SCA)—represent the largest part of the variability of the regional large scale circulation, and are strongly correlated35

to a wide variety of local climate variables in Europe (Cionni et al., 2022; Simpson et al., 2024). Maybe it was this long

distance-relationship, which has won them the alternative name of “teleconnection”.

The teleconnections between circulation and local climate are widely exploited in statistical climatology with one major

application being the statistical postprocessing of climate predictions. Although the reliability of climate predictions has made

enormous progress in recent decades, there still remain large swaths of the globe where state-of-the-art dynamical climate40

models struggle to deliver decision-relevant climate forecasts, among them Europe (Dorrington et al., 2020). Statistical post-

processing of model output is one of the provisional remedies to such inconveniences, which is capable of improving the

predictive skill of the forecasts. The techniques, that rely heavily on knowledge about teleconnections, can roughly be divided

into two main categories, depending on the problem that is identified at the core of this mishap.

It is often the case that a dynamical model presents reasonable skill in predicting the large-scale circulation patterns (Schuhen45

et al., 2022), but this skill is somehow lost on its way from the circulation to the surface variables. Under these circumstances,

a viable workaround can be the substitution of surface variable model output fields by statistical reconstructions of the fields

in question based on observations conditioned on state of the circulation forecast by the model. This approach is often termed

statistical downscaling, it has found widespread application also in the European domain and is applicable both to local climate

fields like T2M and PR and to derived parameters, e. g. run-off and renewable energy production (Rodríguez-Guisado et al.,50

2019; Bloomfield et al., 2021; Ramón et al., 2021; Bett et al., 2022; Cionni et al., 2022; Golian et al., 2022; Tsartsali et al.,

2023; Rouges et al., 2024).

We acknowledge that recently there is a floury of downscaling models based on machine learning (ML) as allegedly opposed

to “traditional” methods. But ML is just another name for statistics, if anything it is a highly nonlinear and consequently very

data intensive branch, and the applications suffer from similar limitations (Hernanz et al., 2024). Therefore we deem such55

distinctions meaningless.
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The other configuration, one which is typically found in the North Atlantic in autumn and winter, is the overdispersive

forecast with wide ensemble spread and low predictive skill in forecasting the atmospheric patterns (the so-called signal-to-

noise paradox, see Scaife and Smith (2018)), while the simultaneous teleconnection between circulation and surface climate

within the ensemble members is reasonably realistic. The wide ensemble spread opens an opportunity to select or weigh the60

forecast members according to a more reliable prediction of the circulation indices based on the initial state of the boundary

conditions, if available. This so-called ensemble subsampling or weighting is being increasingly implemented by European

climate services (Dobrynin et al., 2018; Sánchez-García et al., 2019; Dalelane et al., 2020; Benassi et al., 2024). The reliable

prediction of the circulation indices, on which this whole procedure is based upon, can itself be a dynamical model forecast

like a (multi-model) ensemble mean, or a statistical (including ML) prediction that exploits the relationship between the initial65

boundary conditions and the circulation (Hall et al., 2019; Dalelane et al., 2020; Sun et al., 2024).

In both promising cases, the teleconnection between the circulation indices and the surface variables is crucial to the success

of the postprocessing, the stronger the better. Unfortunately, the strength of those teleconnections is far from uniform, spatially

and temporally (e.g. Bednorz et al. (2019); West et al. (2022)). And having to account for four circulation indices at any one

time can considerably limit the feasibility and the statistical robustness of both approaches. It would therefore be desirable to70

concentrate as much dependence as possible in the smallest possible number of indices.

Let us briefly return to the starting point of our discussion, which was the construction of the circulation patterns/indices.

There we discover that there exists a great number of PCA-related techniques, some of which are specifically designed to

capture the association between two blocks of variables. One of them, Partial Least Squares (PLS) regression, explicitly models

a regression relationship between a block of predictor variables and a block of response variables. The resulting patterns/indices75

are meant to strike a balance between reducing the dimension of the predictor variables and predicting the response variables

efficiently. This very feature will facilitate the kind of postprocessing methods that we are considering in our study. As these

circulation patterns/indices are constructed so as to maximize the teleconnection to a target variable, hence their suggested

name “targeted teleconnections”.

Nevertheless, a warning is appropriate at this point that the targeted teleconnections must not be misintepreted as physical80

modes of the circulation variability. They are in contrast the modes of covariability, which exert the strongest influence from

the circulation to the target. They can and will differ from the EOF-derived circulation patterns. Just as the teleconnections to

one target will differ from the teleconnections to another target.

Recently, a few publications have elaborated on similar ideas. Baker et al. (2018) and Bloomfield et al. (2020) were able

to improve their prediction of seasonal precipitation in various regions of the British Isles by means of a targeted circulation85

index, derived from the correlation maps between PR in Britain and MSLP in the NAE sector. Goutham et al. (2023), in

contrast, replaced the traditional EOF circulation indices in his statistical downscaling application by indices based on redun-

dancy analysis (RDA) to achieve a substantial increase in subseasonal prediction skill for T2M and 100m wind speed. Spuler

et al. (2024)’s targeted weather regimes conducive to Moroccan extreme rainfall pursue a somewhat similar approach on a

subseasonal-to-seasonal timescale, this time by means of a regression-mixture model variational autoencoder. These are to our90

best knowledge the only applications of targeted circulation patterns in climate prediction so far.
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Of course, there is nowadays the breathtaking development of purely data driven climate modeling relying on deep neural

networks (Watt-Meyer et al., 2023; Kochkov et al., 2024). Apart from still lacking the coupling to data driven ocean, cryosphere

and land components, these models’ basic concept is the emulation of reanalyses and/or coupled global circulation models

(GCM), because they are not yet capable of extracting physically consistent forecasts from the available short, scarce and95

noisy observational data record alone. So directly or indirectly, dynamical climate models are still indispensable for doing the

heavy lifting in climate prediction, at least up until today.

On the other hand, there are direct statistical climate prediction models specialized on one specific, often very narrow target

variable like the ENSO-index or some local extreme index at a predefined lead time, as opposed to the earlier mentioned rolling

climate predictions, who propagate the whole atmosphere for as many timesteps as desired (Bracco et al. (2025) and references100

therein). Their predictions have often proven more accurate than forecasts based on dynamical climate model output. The

difference to the more modest postprocessing methods we are considering in this study is their tracing the whole causal chain

outlined above from the initial boundary conditions to the surface parameters in one single model, i.e. black box. So in one

way or another, sophisticated statistics can indeed make the difference, when it comes to producing decision-relevant climate

forecasts.105

In Sec. 2 we will present our dataset along with a remark on detrending. The PLS is outlined in Sec. 3. Its implementa-

tion along with some postprocessing applications are explained and their results discussed in Sec. 4. Sec. 5 draws the final

conclusions.

2 Data

This study constructs targeted teleconnections on the basis of MSLP, T2M and PR seasonally averaged data from the ECMWF’s110

reanalysis ERA5 (Hersbach et al., 2020) in the period 1951–2020. The MSLP patterns are calculated over the NAE sector

[−90,60]◦ E× [20,85]◦ N. Goutham et al. (2023) Sec. 5.a discusses the choice of the domain, its size and location covering

the whole North Atlantic upstream of Europe in detail. The target data consists of T2M and PR on the territory of Germany,

but any other variable in any other region from any other observational data set would do.

The teleconnections are later on applied to postprocess the seasonal hindcasts produced with the global seasonal prediction115

model GCFS2.1 (Baehr et al., 2015). The hindcasts cover the period from 1990 to 2020 and consist of 30 ensemble members

per initialization date (1st of each month) and are propagated for six months. The ERA5 data is regridded to the native grid of

GCFS2.1 with grid size approximately 1◦.

2.1 Note on Detrending

The statistical method we are going to use, PLS, is based on covariance. Covariance estimators are prone to trends in the data.120

When trends are present, they may show spurious covariance, even if there is non. Climate data, in turn, are very suspicious

of containing trends due to global warming, depending on the parameter considered. It is therefore of utmost importance to

remove trends that are external to circulation, i.e. thermodynamical trends. On the other hand, we want to retain everything
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that is related to circulation, including dynamical trends induced by changes of circulation. That means our detrending must

neither be too sophisticated. We suggest to subtract a simple parametric or nonparametric estimate of warming trends from125

temperature related variables, but to leave precipitation unchanged. Pressure, and more so geopotential height, is a delicate

candidate, because it does respond to changing temperature. However, our experiments showed only barely noticeable influence

of detrending MSLP on our targeted teleconnections. So we leave MSLP also undetrended.

3 Methods

3.1 Partial Least Squares Regression130

As PLS is a well established dimension reduction technique with an host of existing very pedagogical literature, our presenta-

tion of PLS is going to draw heavily on one of them, which we deem exceptionally clear and intelligible. Rosipal and Krämer

(2006):

”In its general form PLS creates orthogonal score vectors (also called latent vectors or components) by maximizing

the covariance between different sets of variables ... The predictor and predicted (response) variables are each con-135

sidered as a block of variables. PLS then extracts the score vectors which serve as a new predictor representation

and regresses the response variables on these new predictors.”

Let X ∈ RI and Y ∈ RJ two multivariate Gaussian random variables with mean 0, assumed to be related by linear regression,

with I and J possibly very large, of which we observe n data samples. The predictor matrix X ∈ Rn×I and the response matrix

Y ∈ Rn×J are decomposed into the form140

X = TPT + E Y = UQT + F (1)

where T ∈ Rn×k and U ∈ Rn×k are the matrices of the k orthonormal score vectors (components, latent vectors), P ∈ RI×k

and Q ∈ RJ×k represent the loadings and E ∈ Rn×I and F ∈ Rn×J are the residuals.

The PLS method finds weight vectors w and v such that the resulting components t are maximally predictive for u:

cov(t,u)2 = cov(Xw,Y v)2 = max
|r|=|s|=1

cov(Xr,Y s)2 (2)145

where cov(t,u) = tT u/n denotes the sample covariance.

The classical PLS method was originally defined by means of the nonlinear iterative partial least squares (NIPALS) algorithm

(Wold, 1975). Høsskuldson (1988) later showed that w is the dominant eigenvector of XT YYT X. Afterwards, Høsskuldson’s

algorithm proceeds analogously to NIPALS:

t = Xw v = YT /tT t u = Yv (3)150

The first eigenvalue corresponds to the squared covariance between t and u. Using equations (1), the vectors of loadings p and

q are computed as the regression coefficients of X on t and Y on u, respectively

p = XT t/(tT t) q = YT u/(uT u) (4)
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The matrices X and Y are subsequently deflated by subtracting their rank-one approximations based on the scores. In PLS

regression (PLS1/PLS2 as opposed to PLS mode A) the deflation of Y is carried out by the regression of Y on the predictor155

score t (rather than u).

X = X− tpT Y = Y− tvT (5)

After deflation, the following pair of scores is extracted, and so on until a satisfactory result is achieved. This deflation scheme

guarantees mutual orthogonality of the extracted score vectors {ti}p
i=1. It is indeed sufficient to deflate only one of the blocks

(Dayal and MacGregor, 1997), or to deflate the covariance matrix directly leaving the X and Y blocks unaltered (De Jong,160

1993).

Because of its special construction, PLS is often the method of choice when the X (and possibly the Y) data is highly co-

linear and ordinary least squares (OLS) regression breakes down, as in the so-called p > n problem, where more variables than

samples are observed. Rosipal and Krämer (2006) (references therein):

”PLS has been related to other regression methods like principal Component Regression (PCR) [26] and Ridge165

Regression (RR) [16] and all these methods can be cast under a unifying approach called continuum regression

[40, 9]. The effectiveness of PLS has been studied theoretically in terms of its variance [32] and its shrinkage

properties [12, 21, 7]. The performance of PLS is investigated in several simulation studies [11, 1].”

3.2 Related Methods

There exists a great number of PCA-related decomposition methods, which all project the original variables in one form or170

another to certain latent variables. Besides PCA itself, Canonical Correlation Analysis (CCA), PSL, Maximum Covariance

Analysis (MCA), and RDA all belong to this category. We quote again from Rosipal and Krämer (2006):

”The connections between PCA, CCA and PLS can be seen through the optimization criterion they use to define

projection directions. PCA projects the original variables onto a direction of maximal variance called principal

direction. Following the notation of (2), the optimization criterion of PCA can be written as175

max
|r|=1

var(Xr)

where var(t) = tT t/n denotes the sample variance. Similarly, CCA finds the direction of maximal correlation

solving the following optimization problem

max
|r|=|s|=1

corr(Xr,Y s)2

where corr(t,u)2 =cov(t,u)2/var(t)/var(u) denotes the sample squared correlation. It is easy to see that the PLS180

criterion (2)

max
|r|=|s|=1

cov(Xr,Y s)2 = max
|r|=|s|=1

var(Xr)corr(Xr,Y s)2var(Y s)
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represents a form of CCA where the criterion of maximal correlation is balanced with the requirement to explain

as much variance as possible in both X- and Y-spaces.”

The last two projection methods that we want to mention here are MCA and RDA. MCA maximizes the same optimization185

criterion as PLS. But whereas PLS retrieves the latent variables sequentially from alternately deflated X and Y variables, MCA

retrieves them all simultaneously from the SVD of the original covariance matrix XT Y. This procedure is symmetric like CCA

and results in a different decomposition, slightly less efficient in terms of regression. Rosipal and Krämer (2006) discusses

MCA under the name of PLS-SB as a variant of PLS.

In constrast, RDA (Goutham et al., 2023) works similarly to MCA, but the predictor variables are asymmetrically whitend/-190

sphered before taking the covariance. The sphering of X entails the inversion of the covariance matrix of X: X′ = (XT X)−1/2X.

If the covariance matrix of X is close to singular, the inversion of XT X becomes a delicate matter. This problem occurs when

heavy co-linearities exist in the X data as is necessarily the case for p > n—the very reason why we need to replace the OLS

in the first place. RDA is therefore not our method of choice. Although not mentioned in Rosipal and Krämer (2006), the

same problem befalls CCA in the calculation of the correlation matrix, so that CCA is usually applied only after a preliminary195

truncated PCA.

4 Applications

Let us note that the targeted teleconnections-algorithm is applicable to all kinds of predictor and target fields comprising

scalar (PLS1), vector (PLS2), matrix, and tensor-valued (N-PLS (Bro, 1996)) time series, as long as, apart from having an

approximately linear relationship, the random variables are at least roughly Gaussian, i.e. have a finite variance and are more200

or less symmetric, such that the Least Squares Estimator≈Maximum Likelihood Estimator. Non-Gaussian variables with a

continuous density could be converted to Gaussian ones by a distribution transform, while the minimization criterion would be

distorted likewise. In contrast, this is not possible for distributions with point-mass on particular values like daily PR or some

of the various climate indicators, which are very much in use today. There exist many specific variants of PLS for these and

other deviations from the assumptions of classical PLS.205

– Discrete targets: PLS for classification and discrimination

– Contaminated targets: robust weighted PLS where both outliers and leverage points are iteratively weighted down

– Non-Gaussian (skewed, heavy-tailed ...) targets: Partial Least Distance Squares (PLDS) substituting distance covariance

for product covariance, PLS combined with Independent Component Analysis (IDA)

– Non-linear relationships between predictor and target: Kernel-PLS is by far the most successful approach.210

The discussion of those variants is beyond the scope of this study.
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4.1 Teleconnections targeted at 2 meter temperature in Germany

Here, we will give a detailed description of how to construct targeted teleconnections to maximize explanatory power for

temperature in Germany on the seasonal timescale. Our ultimate goal is to postprocess seasonal forecasts of DWD’s GCFS2.1,

which predicts seasonal averages with lead times of 0 to 3 months (e.g. a forecast initialized January, 1st predicts 3-monthly215

means or JFM, FMA, MAM and AMJ). So we take the time series of seasonal averages of ERA5 MSLP and T2M (JFM,

FMA, MAM...) to describe interannual variability and covariability of seasonal circulation and temperature. But the same

computations are evidently also possible on any other time scale, on which traditional EOF teleconnections are usually derived.

Firstly, we check that the Gaussianity assumption is sufficiently well fulfilled for both seasonal MSLP and T2M anomalies.

As discussed in Sec. 2, we apply a simple detrending to T2M only, by calculating an overall trend of the spatial average over220

the territory of Germany and subtracting it from the individual grid cell time series. To ensure generality, we conduct the same

experiment with two different forms of trend: i) a quadratic trend to allow for increased warming towards the end of the time

period, which seems very appropriate for a temperature time series starting in 1950; ii) a trend of lagging 15-year averages

so as to extend the advantage of having a nonparametric trend right through 2020 as applied in Goutham et al. (2023). We

found no visible difference in the results caused by the two forms of detrending. The MSLP anomalies are calculated without225

detrending. An area weighting of
√

cos(lat) is applied.

For numerical reasons, we rescale the whole seasonal fields of MSLP and T2M by their square root sums of squares (Frobe-

nius norm). After the procedure, the component patterns are remultiplied by those factors to bring them back to their physical

units. Additionally, we standardize the index time series by their standard deviation and also multiply it to the patterns.

We are now in a position to feed our pairs of blocks of predictor and response variables into the PLS algorithm1, one season at230

a time. Let us repeat our warning that the targeted teleconnections must not be mistaken for variability modes of the circulation.

They are in contrast the modes of covariability, which exert the strongest influence from the circulation onto the target.

To begin with, we have a look at the correlations between the newly produced targeted teleconnection indices and the target,

i.e. T2M in Germany. Table 1 gives the average coefficients of determination achieved by regressing each grid cell’s T2M time

series on the two principle indices in the four main seasons. The indices derived by EOF and those derived by PLS for both235

MSLP, the actual teleconnections, and for T2M, the target, are contrasted. We decided to regress T2M on only two teleconnec-

tions, because when dealing with indices estimated from samples (either dynamical climate model output or observations) the

trailing indices are less robust. And the trade-off between additional explanatory power and estimation uncertainty quickly tilts

to the negative.

We appreciate that the target indices explain the T2M values very closely, though slightly less so in summer. We further240

appreciate that the coefficients of determination are always higher in the PLS teleconnections than in the EOF teleconnections.

But we notice that in winter the untargeted EOF indices explain nearly as much of the T2M variation in Germany as the targeted

indices. This is surely one reason, why large part of the studies involving the impact of EOF teleconnections on surface climate

1We deflate the covariance matrix directly according to De Jong (1993).
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Table 1. average coefficients of determination for ERA5 T2M and PR in Germany using two teleconnections

EOF(MSLP) PLS(MSLP|target) PLS(target)

T2M Germany

DJF 0.7798 0.8217 0.8937

MAM 0.5428 0.6658 0.8087

JJA 0.3529 0.6063 0.7075

SON 0.3829 0.6393 0.8497

PR Germany

DJF 0.2916 0.6373 0.8583

MAM 0.2919 0.6652 0.8173

JJA 0.3716 0.5588 0.7840

SON 0.4107 0.6502 0.8338

in Europe focus on the winter season. Lastly we observe that this relation changes for the other seasons. There, the transition

from EOF to PLS teleconnections entails a substantial gain in explanatory power.245

We now have a look on the corresponding circulation and target patterns. Fig. 1 shows the two dominant patterns for each of

the main seasons. As the coefficients of determination already hinted to, in winter the EOF and PLS patterns of MSLP are very

similar. NAO and EA are clearly recognizable, with the southern center of action of NAO in the PLS pattern slightly weaker

than in der EOF pattern. Both positive anomalies of NAO and EA in the PLS patterns are shifted eastwards, which seems

plausible given the location of the target region. The respective T2M patterns correspond to the well-known impact of these250

teleconnections on European T2M (Simpson et al., 2024).

The differences are more pronounced in the other seasons, with the second patterns in spring and summer and both patterns

in autumn being very different. Although a comparison of our winter PLS teleconnections to those of Goutham et al. (2023)

is rather hampered by different settings (MSLP vs. ZG500, seasonal vs. weekly time scale, target domains Germany vs. Eu-

rope+surrounding seas), the patterns are reasonably similar, and Goutham et al. (2023)’s detailed discussion of the differences255

between their RDA patterns and the traditional EOF patterns in their Sec. 4.a applies in large part also to our PLS patterns. We

notice further that our T2M patterns are only slightly structured owing to the small target domain and the smooth response of

temperature to circulation patterns.

Analogously constructed teleconnection patterns targeted to PR seasonal sums over Germany can be found in the Supporting

Information Fig. S1.260

4.2 North–Atlantic European Ocean–Atmosphere Interactions

As already noted above, the targeted teleconnections algorithm based on PLS is a very versatile tool. Ultimately, a number of

studies have been published about the interaction between the NAE circulation with the underlying ocean in the framework of

decadal climate predictions (Patrizio et al., 2025; Kolstad and O’Reilly, 2024; Patterson et al., 2024). Some of these studies

9

https://doi.org/10.5194/egusphere-2025-3664
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 1. NAE seasonal teleconnection patterns. Seasonal subplots left/center/right colums: untargeted MSLP (EOF)/T2M-targeted

MSLP/respective T2M-patterns. Upper/lower rows: first/second dominant patterns.

are using rather complicated methodologies in the attempt to pin down the causal impact of sea surface temperatures (SST)265

onto the circulation. We suggest that an analysis of targeted teleconnections from SST to MSLP could be very helpful in this

context, as it finds those predictor and target coupled modes of variability, which maximize predictability (Fig. 2).

Comparing Fig. 3 of Patrizio et al. (2025), Fig. 6 of Patterson et al. (2024) and Fig. 1 of Kolstad and O’Reilly (2024) to

our Fig. 2 (DJF), we find the same well-known oceanic tri-pole pattern associated with the NAO di-pole, and furthermore in

Patterson et al. (2024) also the large anomaly in the central NA connected to an EA-like mono-pole over the North Atlantic.270

The patterns in the other seasons are resembling variations of the same theme.

When the PLS algorithm is applied to SSTs lagging MSLP, then the relationship can be exploited to statistically predict the

future atmospheric circulation from observed SSTs. DWD’s empirical first guess MSLP indices used in ensemble subsampling

are actually based on this idea (see Sec. 4.3.1).

4.3 Postprocessing Applications275

The following examplary applications to dynamical model output are meant to highlight the possible gains that can be achieved

by substituting targeted teleconnection for untargeted ones. They should be understood as a proof of concept, not an exhaustive

list.
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Figure 2. Seasonal NAE ocean–atmosphere interaction patterns. Seasonal subplots left/right colums: MSLP-targeted SST/respective MSLP-

patterns. Upper/lower rows: first/second dominant patterns.

4.3.1 Ensemble Subsampling

In DWD, seasonal forecasts of GCFS2.1 with initialization dates from September to December are postprocessed with a280

subsampling algorithm, which selects forecast ensemble members according to their closeness to an empirical first guess of

the future circulation indices. Fig. 3 row (a) shows the mean squared error skill scores (MSESS) of the seasonal ensemble

mean hindcasts initialized in September for T2M wrt. climatology for lead times 0 to 3 months with rather modest skill.

Rows (b) and (c) show subselected hindcasts, where the true (EOF and PLS, respectively) teleconnection indices are applied.

We chose to showcase the hindcast initialized on September 1, because it covers both the SON and the DJF season, which285

present opposite behaviors in their coefficients of determination as listed in Table 1. The subsampling applied to true indices

marks the limits to the potential improvement, when estimation errors are zero. Whilest the subsampled hindcast for DJF wrt.

untargeted telecconections is equally skillful as the one subsampled wrt. T2M-targeted teleconnections, the other hindcasts’
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Figure 3. MSESS of seasonal T2M GCFS2.1 hindcasts initialized in September. (a) ensemble mean; (b) subensemble mean based on true

untargeted teleconnctions; (c) subensemble mean based on true T2M-targeted teleconnections; (d) subensemble mean based on empirically

predicted T2M-targeted teleconnections. Left to right: lead times SON to DJF.

skill does indeed improve. (Not shown: anomaly correlation coefficients (ACC) are substancially improved, ranked probability

skill scores (RPSS) only slightly so due to very low subsampled ensemble size around 10 members, but are nevertheless nearly290

everywhere positive in contrast to the full ensemble mean.)

When plugging in DWD’s actual empirical first guess produced with advanced machine learning techniques2 for the targeted

teleconnection indices (Fig. 3 (d)), the result falls only slightly short of the optimum. (Analogous plots for all start months in

the Supporting Information S2 to S13.)

2Tensor PLS regression of the selected circulation index onto the 3-modal tensor of the latest 6 months of sea surface temperature (SST).
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Table 2. correlation coefficients of the dominant untargeted/targeted teleconnection indices of the forecast ensemble mean initialized in

December and subensemble mean selected wrt. T2M-targeted teleconnections of GCFS2.1 against ERA5

lead EOFEM(MSLP) EOFsub(MSLP) PLSsub(MSLP|T2M) PLSsub(MSLP|PR)

0 0.514 0.842 0.828 0.772

1 0.068 0.742 0.753 0.705

2 0.024 0.779 0.759 0.529

3 0.014 0.785 0.774 0.720

4.3.2 Statistical Downscaling295

The other major application of teleconnections in postprocessing is statistical downscaling, where the observational relationship

between the circulation and the surface parameters is transferred to the large scale climate model output. Namely, the model

produced circulation indices are multiplied with the target patterns and superposed to form the prediction. This can be done

either at individual hindcast member level or at ensemble mean level, ultimately leading to the same prediction due to linearity.

In Fig. 4, we show the improvement in MSESS that can be achieved by the use of targeted teleconnections as compared to300

traditional ones, given the large scale circulation model output is reasonably skillful. This time GCFS2.1 hindcasts initialized

on December 1 for PR are presented. Row (a) again shows the ensemble mean hindcasts, which have mostly negative skill

except at lead time 0. Row (b) shows the skill, when the ensemble mean MSLP hindcast is downscaled based on the EOF

teleconnection indices with their respective PR-projections. The MSESS thereby increases to levels around zero, but nothing

more.305

In search of an explanation for the low skill, we have a look at the correlation of the dominant teleconnection indices that

are predicted by GCFS2.1 wrt. ERA5 (Table 2). At lead time 0 the ensemble mean dominant EOF index (column 2) reaches

a respectable correlation to ERA5 of > 0.5, similarly the ensemble mean PR prediction at lead 0 is quite good (being PR). At

later lead times the correlation between ensemble mean and ERA5 indices drops off dramatically to zero. But the skill of the

PR hindcast becomes even negative (Fig. 4 row (a)), despite the correlation of the teleconnection indices being not. This can310

only mean that the teleconnection between circulation and PR is not well represented by the model. It is therefore consistent

that downscaling improves the MSESS, but only so much as predetermined by the MSLP field.

If we were able to find a more skillful hindcast for the teleconnection index, it is not impossible that the skill of the down-

scaled PR might increase as well. Having constructed hindcasts with improved circulation representation by means of sub-

sampling, we take those as our obvious candidates. Table 2 corroborates that the subsampling (despite being targeted at T2M)315

improves not only the T2M-targeted teleconnection indices (column 4), but also the untargeted ones (column 3) and even those

targeted at PR (column 5). This should not come as a surprise given that all circulation indices live on the same MSLP fields.

But caution, the connection is not always strong, depending on the season.

When downscaling the subensemble mean using untargeted EOF teleconnections, the MSESS shows still the same patchy

pattern as for the downscaled full ensemble mean with very low MSESS covering about the half of the domain against 0 in the320
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Figure 4. MSESS of seasonal PR GFCS2.1 hindcasts initialized in December. (a) ensemble mean; (b) ensemble mean downscaled with

EOF teleconnctions; (c) subensemble mean based on empirical prediction of T2M-targeted teleconnections, downscaled with untargeted

teleconnections; (d) subensemble mean based on empirical prediction of T2M-targetd teleconnections, downscaled with PR-targeted tele-

connections. Left to right: lead times DJF to MAM.

other half, only this time the slightly negative values have turned positive (Fig. 4 row (c)). This is caused by the low coefficients

of determination from the EOF indices to PR (Table 1). To take advantage of their much higher coefficients of determination,

we replace the EOF teleconnections by their PR-targeted counterparts (evidently, we can project the model output MSLP fields

on as many circulation patterns as we please). This time we get a modest, yet nearly uniformly positive MSESS (Fig. 4 row

(d)). (Analogous plots for all start months in the Supporting Information S14 to S25.)325

Of course, we could have subsampled the ensemble wrt. an empirical estimate of the PR-targeted teleconnections in the

first place. However, the poor representation of the MSLP–PR relationship in GCFS impedes a substantial improvement of the

subensemble PR hindcasts, while lowering the skill of T2M. On the other hand, the two independently subsampled hindcasts,

T2M subsampled wrt. T2M and PR subsampled wrt. PR, would not be consistent with each other, because they are most proba-
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Table 3. mean of MSESS over all initialization dates, lead times, and grid cells in the target region for various subsampling/downscaling

strategies

MSESS(T2Msub) MSESS(PRsub) MSESS(PRsub+down)

T2M-targeted 0.338 -0.054 0.062

PR-targeted 0.143 0.055 0.156

T2M+PR-targeted 0.321 -0.015 0.135

bly based on different ensemble members. In contrast, T2M subsampled wrt. T2M and PR subsampled wrt. T2M+downscaled330

wrt. PR are indeed consistent due to the shared MSLP fields. A further experiment to subsample wrt. T2M-targeted and PR-

targeted teleconnection indices at the same time proved worthwhile in giving nearly the same MSESSs for T2M and PR as the

respective single-field-targeted subensembles (Table 3).

4.3.3 Multimodel Ensemble Weighting

Ensemble weighting (Sánchez-García et al., 2019) is a general postprocessing approach that encompasses subsampling, in335

the sense that subsampling is a 0/1-weighting. It also enables a more accurate estimation of key winter circulation features,

specifically the NAO, which is strongly linked to temperature and precipitation anomalies across much of Europe and the

Mediterranean. Ensemble weighting reduces or eliminates the originally equal weight of those ensemble members, which

poorly represent a given NAO forecast, which is supposed to be more accurate than the forecast ensemble mean.

The possibility to extend this technique to incorporate other NAE variability modes in an application to T2M and PR340

forecasts over the Iberian Peninsula is explored next. Note that our ability to improve the forecast of a target variable is

influenced by two factors: on one hand, the amount of variance of the target variable that can be explained by the variability

mode, and, on the other hand, our ability to predict the mode accurately, so we can weight the ensemble accordingly. In

(Sánchez-García et al., 2019), both preconditions are fulfilled: NAO shows a strong correlation with winter precipitation over

the Iberian Peninsula, and an empirical model which skillfully predicts NAO was developed.345

In order to evaluate whether incorporating additional variability patterns beyond the NAO can improve the predictive value,

and to assess this technique’s potential through other seasons, the first four EOFs of the seasonal MSLP anomalies are computed

over the NAE sector (90°W–60°E, 20°–85°N), which will be used as our variability patterns. The observed phase (PC∗k)4k=1

of the modes according to ERA5 is used as an idealized ”perfect” prediction for each hindcast year. Ensemble members are

weighted such that more weight is assigned to members i with a phase vector (PCik)4k=1 similar to that of the “perfect”350

prediction, using a weight function based on the Cauchy kernel defined as

wi(h) =
1

1 +
(

1
h

∑K
k=1 vk · |PCik −PC∗k|

)2

where vk is the eigenvalue of the k-th mode (normalized so that
∑

k vk = 1), and K = 4 is the number of modes used, and the

bandwidth parameter h = 1.
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Figure 5. Difference in Spearman correlation between observed and weighted/unweighted hindcast anomalies (start date April) for T2M

averaged over MJJ in six C3S seasonal forecast models. upper row: weighting wrt. EOF modes; lower row: weighting wrt. PLS modes

Weighting the ensemble using NAE variability modes leads to an improvement of the forecast for T2M and PR in winter–355

early spring, whereas a slight improvement is observed from April–May to October (Supporting Information Fig. S26 and

S27). This seasonal contrast may be related to the EOF modes capturing a higher fraction of T2M and PR variance in Iberia

over the winter months.

This raises the question whether an alternative definition of the modes used for ensemble weighting could improve forecast

skill in those months, which do not profit from weighting with EOF modes, such as April–October.360

To assess whether an alternative basis for the modes could lead to further improvement in the warm season, we construct

targeted teleconnection indices using the PLS methodology described in Sec. 3.

The predictor is once again MSLP anomalies over the NAO sector, while the predictands are T2M and PR anomalies over

Iberia. The modes are obtained using the PLS regression implementation from the scikit-learn Python library.

For direct comparison, we calculate the first four modes, and apply the same methodology as for the EOF modes (Supporting365

Information Fig. S28 and S29). When doing so, we find no improvement against EOF for October–March months, neither for

T2M nor PR. However, for this period, EOF-computed modes already explain a significant amount of variance, so it is not

straightforward to find an improvement by changing the definition of the modes. In contrast, comparing T2M results from

the AMJ to JJA seasons and for ASO, a gain in forecast skill is observed when using PLS-based modes. In the spatial maps

of Spearman correlation difference between weighted/unweighted T2M ensemble hindcasts initialised in April with lead time370

MJJ, most of Iberia experiences an improvement in skill (Fig. 5).

PR, however, does not show a clear improvement over Iberia during spring–autumn. The limited skill improvement may be

linked to the convective nature of precipitation in spring and summer in Iberia, with precipitation being highly dependent on

local fluxes and humidity advection, and less so on the mean circulation, as opposed to winter.

Additional tests suggest that more potential for improvement can be found using different weighting functions and band-375

widths. A variation in the number of modes (1–4) is equally worth studying, as there could be a risk of introducing some

over-fitting with too many modes.
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Figure 6. MSESS of seasonal 100m wind speed GFCS2.1 hindcasts initialized in November for leadtime DJF. left: ensemble mean; right:

subensemble mean based on empirically predicted T2M-targeted teleconnections.

Our preliminary results provide evidence that the use of targeted variability modes can offer an opportunity to improve sea-

sonal forecasts in Iberia in line with what has been shown for Germany and have the potential to enhance ensemble weighting

approaches beyond the winter season in the majority of the models.380

Of course, the skill of predicting the modes still remains to be assessed: we may have modes that explain a high amount of

variability of the target variables, but we also need to be able to predict them to fulfill this potential. Future work will try to

refine the methodology for Iberia and explore the ability of the models to predict the targeted teleconnection modes.

4.3.4 Wind, Solar and Energy Forecasts Based on a Subensemble

Forecasts for energy related variables like 100m wind speed and solar radiation, as well as the forecast of renewable energy385

production is challenging on seasonal timescales (Lledó et al., 2019; Bett et al., 2022; Tyagi et al., 2025b). Substantial skill only

emerges in selected months (i.e. DJF for 100m wind speed and energy and JAS for solar radiation (not shown)). Therefore given

the growing need for accurate seasonal forecasts for the energy sector (Orlov et al., 2020), we apply the subensemble based on

empirically predicted T2M-targeted teleconnections to seasonal GCFS2.1 hindcasts (1991–2020) of 100m wind speed, solar

radiation and renewable energy production.390

For 100m wind speed and solar radiation, we see an improvement in skill (measured by MSESS, ACC and RPSS) compared

to the full ensemble for most of the tested initialization dates (February, Mai, August, November) and lead times (0 to 3

months). The improvement is especially pronounced for 100m wind speed hindcasts initialized in November (Fig. 6) and May

(not shown) and for solar radiation hindcasts initialized in February and May (not shown). Moreover, for 100m wind speed

hindcasts initialized in November the subensemble based on T2M-targeted teleconnections performs better than the current395

operational version of the subsampling (Dalelane et al., 2020) based on traditional EOFs. Still, some initialization dates and

specific lead times show less to no improvement in skill compared to the full ensemble or the current operational subsampling

(not shown). In conclusion, the results indicate that T2M-targeted teleconnections can also yield an added value to seasonal

forecasts of other variables like 100m wind speed and solar radiation.
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Seasonal wind energy forecasts derived from a physical model using 10 m wind speeds exhibit similar patterns of skill400

improvement based on the same subensemble as those based on 100 m wind speeds. Notably, a substantial increase in predictive

skill is observed across all lead times for forecasts targeting the extended winter period (November to February). Interestingly,

this season also coincides with the highest variability in wind energy production. The overlap between enhanced forecast skill

and peak variability presents promising opportunities for the wind energy sector (Tyagi et al., 2025a).

5 Summary405

In this study, we have proposed targeted teleconnections as a means to construct circulation indices that are maximally pre-

dictive for a chosen target variable in the sense of linear regression. We have shown its application to T2M gridded fields

over Germany from ERA5, highlighting their increased potential to predict this target in comparison to traditional circula-

tion indices (NAO, EA ...). Their subsequent use in the subsampling and downscaling of dynamical model output has elicited

promising results, such that their implementation will allow the DWD to provide to the public subsampled seasonal forecasts410

of temperature and precipitation with strongly improved forecast skill as of autumn 2025 (see specific climate predictions on

www.dwd.de/climatepredictions).

It was further shown that due to strong correlation with T2M, the skill of the subsampled seasonal forecasts also carries over

to derived seasonal forecasts for 100m windspeed, solar radiation and renewable energy production.

The PLS methodology was successfully transferred to the Iberian Peninsula and the derived targeted teleconnection modes415

implemented into an ensemble weighting procedure.

Similar to the targeted teleconnections between MSLP and T2M/PR, coupled modes of the NAE ocean–atmosphere interac-

tion were calculated between SST and MSLP, which could be of potential use in decadal climate prediction.

Let us emphasize that the technical implementation of targeted teleconnections to user-selected climate fields is relatively

easy given the standard provision of PLS algorithms in virtually all statistical software packages. Targeted teleconnections420

are adaptable to a wide range of climate variables, the only assumption being their approximate Gaussianity. Even for target

variables violating this assumption, there are variants of PLS that can deal with classification and non-linear regression.

We would like to promote the consideration of using targeted teleconnections as an alternative to traditional EOF-based

circulation indices in all applications, where the latter have proven beneficial, and including in situations, where a theoretical

possibility exists, but has not worked out due to low correlation between EOF modes and targets.425

Code and data availability. ERA5 data are available at https://cds.climate.copernicus.eu/. GCFS2.1 hindcasts are available at https://esgf-

metagrid.cloud.dkrz.de/. Ready-to-use PLS implementations are available in virtually every statistical software distribution including open-

source packages for R and Python.
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