BrGDGT-based palaeothermometer in drylands: the necessity to
constrain aridity and salinity as confounding factors to ensure the
robustness of calibrations.
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Abstract. Past temperature reconstructions offer valuable insights into the impact of climate change on the global climate-
human-vegetation system. Branched glycerol dialkyl glycerol tetracthers (brGDGTs) are recognized as effective temperature
proxies, particularly in lakes and peatlands, where they are well preserved. However, their reliability as palacothermometers
can be compromised by factors beyond air temperature, especially in drylands. This study intredueces-the-further explores the
5 recently compiled Arid Central Asian (ACA) brGDGT surface Data Base, a regional dataset consisting of +62new-761 surface

samples from the drylands of ACA s. The distribution of brGDGTs in relation to
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climate and environmental variables was analysed to explore their potential as reliable temperature proxies, mainly focusing on
brGDGTs methylation (MBT), cyclisation (CBT), and isomer (IR) indices. The brGDGT-based palaecothermometer is a promis-
ing tool for understanding past climates, but our comparison between an ACA-centred database and a worldwide continental
surface sample database reveals several challenges. Drylands exhibit extreme climate and soil/lacustrine properties, amplifying
the impact of confounding factors on brGDGT-based relationships with mean annual air temperature. Salinity emerges as the
dominant factor influencing brGDGT variance, followed by sample type, pH, and aridity, all of which contribute significantly.
These factors interact in complex ways, with the salinity effect varying between soil and lacustrine deposits. For sample physic-
ochemical conditions, the IR, -\;, index is best for salinity, and IR is most suitable for pH reconstruction. Despite this, the
MBT}, . -temperature relationship is limited in ACA, particularly for lacustrine samples, and MBTg,,,, does not offer a better
solution under hyper- to semi-arid conditions. Sub-calibrating models for specific environmental conditions such as salinity
and aridity improves the accuracy of temperature reconstructions. Furthermore, the difference between MBTY%,;, and MBTg,
provides a promising proxy to assess aridity. Although the brGDGT signal in drylands is influenced by multiple eenfeunding
controlling factors, it remains a valuable tool for understanding past climate and environmental conditions, especially when
accounting for the complex interactions between these factors based on each study’s unique physicochemical and bioclimatic
context. Further research, incorporating a broader range of surface samples alongside comprehensive soil and climate data,

holds the potential to enhance the accuracy of brGDGT-based climate reconstructions.

1 Introduction

Given the uncertain implications of the anthropogenic climate change on the environment, hydrology and human society,
reconstructions of the past climate temperatures provide a comprehensive perspective on the impact of climate change on
the climate-human-vegetation system (Tierney et al., 2020). Branched glycerol dialkyl glycerol tetraethers (brGDGT) are
Aew-promising temperature proxies that have been used on continental archives (Weijers et al., 2007; Peterse et al., 2012;

De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020; Raberg et al., 2021), especially since these lipid compounds

produced from bacterial membranes are ubiquitous (Raberg et al., 2022b), well preserved on past archives efretrieved from
lakes (Dang et al., 2016b; Wang et al., 2021; So et al., 2023) and peatlands (Naafs et al., 2017a, b; d’Oliveira et al., 2023).

methyl groups on the aliphatic chain of brGDGT changes with air-ambient temperature, as shown by Weijers et al. (2007)
and De Jonge et al. (2014), permitting their use as past temperature proxy. The relationship between the temperature and the

brGDGT degree of methylation is clear and linear—Fhe-diverse-, from both soil surface samples (De Jonge et al., 2014; Dearing Crampton-F

and lacustrine surface sediments (Sun et al., 2011). Same relationship is observed from laboratory experiments and simulations
Naafs et al., 2021; Halamka et al., 2023). The apphcatlons of brGDGT-based palaeothermometers eeveﬁa%d&wﬂgee# span

many environments and archives:

rfromacid-(Dang-etal;-2046a)-, including tropical to Arctic lakes (Pérez-Angel et al., 2020; Héggi et al., 2023; Raberg et al., 2022a
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Dugerdil et al., 2021b; Wang et al., 2021; Robles et al., 2022; So et al., 2023)
Lin et al., 2024). However, the change in the relative proportion of brGDGTs does not depend solely on the air temperature,

and sediment from loess—palaeosols sequences

2

which can significantly undermine the reliability of the palaecothermometer (e.g., pH, precipitation; Duan et al., 2020; Chen et al., 2021; Du

The influence of pH on brGDGT distribution was initially identified and thoroughly constrained (Weijers et al., 2007). pH
primarily influences the relative number of 5- and 6-methyl isomers and the number of cyclisations along the aliphatic chain,
while temperature affects the number of methylations (e.g., higher amount of tetramethylated compounds over warm envi-
ronment, Sun et al., 2011; Peterse et al., 2012; Dang et al., 2016a; Raberg et al., 2022b). De Jonge et al. (2014) present the
application of the index of methylation of branched tetraethers (MBTY,,) index associated with mean annual air temperature
(MAAT), the isomer ratio (IR), and the cyclisation of branched tetraethers (EBF-CBTsy.) indices related to pH. These two
important indices are now widely adopted to calibrate the reconstruction of pH and MAAT in the past by linear relationships.
The sample type, including peat, soil, river, marine, loess, and lacustrine samples, influences the brGDGT-temperature relation-
ship (Loomis et al., 2011; Martinez-Sosa et al., 2023). At the global scale, various specific calibrations between MBTY,,, and
MAAT have been suggested for soil (De Jonge et al., 2014; Chen et al., 2021), peat (Naafs et al., 2017b), and lacustrine sam-
ples (Sun et al., 2011; Zhao et al., 2021). The influence of the calibration database size and the biogeographical characteristics
of brGDGT distribution has also been examined (Dugerdil et al., 2021a), and several local or regional calibrations allow for
more accurate MAAT reconstructions in past archives (Chen et al., 2021). Subsequently, an increased number of confounding
factors have been identified, e.g., soil moisture (Dang et al., 2016b) and sample type (e.g., soil or lacustrine; Martin et al.,
2019; Martinez-Sosa et al., 2021; Martinez-Sosa et al., 2023); temperature seasonality (Deng et al., 2016; Dearing Crampton-
Flood et al., 2020), or vegetation (Héggi et al., 2023). ThusFor instance, the lacustrine samples have lower abundances of
pentamethyls-pentamethylated brGDGTs than soil samples (De Jonge et al., 2014; Martin et al., 2019; Raberg et al., 2022b),
while peat samples are dominated by tetramethyls-tetramethylated brGDGTs (Naafs et al., 2017a). The relationship between
brGDGTs and MAAT may exhibit a bias toward the summer temperatures, particularly in soils and lakes that experience a
long frost period (Deng et al., 2016; Dearing Crampton-Flood et al., 2020). Vegetation influences the distribution of brGDGTs,
likely due to the higher soil organic content found in vegetated soils compared to bare soils (Liang et al., 2019). This leads to a
differential-different temperature relationship between brGDGTs in soils and MAAT across different vegetation communities
(Haggi et al., 2023).

ConfoundingThe interaction across controlling factors introduce various biases depending on geographic and climatic con-
texts. While they have been extensively studied in tropical regions and high-latitude or high-altitude environments (Pérez-Angel
et al., 2020; Raberg et al., 2021; Zhao et al., 2021; Héggi et al., 2023), they remain poorly constrained in semi-arid to hyper-arid
areas (Yang et al., 2014; Duan et al., 2020; Guo et al., 2021). In drylands, limited and erratic precipitation is the primary water
input, critically influencing soil moisture. This persistent water deficit intensifies aridity, which is defined by the imbalance

between precipitation and evapotranspiration (Trabucco and Zomer, 2018). Such bioclimatic stress affects soil chemistry, often

(Dang et al., 2016a; Yang et al., 2014), freshwater to saline lakes {Wang-et-al5—2024
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Figure 1. Distribution map of the global surface samples presented in this study (WDB, A) followed by the extent of the Arid Central
Asian brGDGT surface Data Base (ACADB, B) and local focus on (C) Qilian Shan and (D) Caucasus surface samples. (E) distribution of
brGDGT sampling sites in the ACA bioclimate space. The elevation map comes from SRTM Digital Elevation Model version 4.1 (Jarvis et al.,
2008), the Aridity Index from CGIAR (Trabucco and Zomer, 2018) and the extracted climate parameters from worldclim2 .1 (Fick and
Hijmans, 2017) with mean air temperature of Months Above Freezing, Mean Annual Air Temperature, Mean Annual Precipitation, Mean

Temperature/Precipitation of the Cold and Warm Quarters.

reducing leaching and causing the accumulation of base cations (e.g., calcium, magnesium), which contributes to alkaline soils

with low organic matter content (Muhammad et al., 2008). Coarse-textured, well-drained soils are also common, increasing

the occurrence of gypsum or saline profiles (Plaza et al., 2018). Additionally, sparse vegetation - further stressed by intense
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grazing pressure - exacerbates land degradation (Maestre et al., 2022). The combined effects of aridity and overgrazing in-
crease soil vulnerability to erosion, reinforcing a cycle of organic matter depletion, nutrient loss, and alkaline soil dominance
(Moreno-Jiménez et al., 2019). As a result, brGDGT-based reconstructions in drylands are especially prone to biases driven by
bare soil conditions, aridity, and soil chemistry impacts on bacterial communities.

Primarily arid soils, characterized as soils receiving less than 500 mm.yr_1 (Peterse et al., 2012; Yang et al., 2014; Guo
et al., 2021), present higher brGDGT variability and specific isomer distribution (Guo et al., 2021). The comparison of soil
samples from drylands indicates a dissimilarity to global brGDGT databases (Yang et al., 2014; Dearing Crampton-Flood et al.,
2020; Véquaud et al., 2022). The main difference is the higher frequency of 6- compared to 5-methyl compounds (Duan et al.,
2020). This distinct methylation process may explain the reduced statistical strength for brGDGT-temperature calibration under
arid conditions (Peterse et al., 2012; Wang et al., 2019). Moreover, the temperature control over tetramethylated compounds
may be related to 5- or 6-methyl assemblages in diverse contexts, likely due to specific bacterial communities, mitigating
the reliability of MBTY),, -based temperature reconstruction (Wang et al., 2024). Additionally, Duan et al. (2022) report the
influence of pH and, in particular, alkalinity on the distribution of brGDGTs in dry soils. A few recent studies have reported
the impact of salinity on brGDGTs (Wang et al., 2021; Raberg et al., 2021; Kou et al., 2022; So et al., 2023). Salinity is
expeeted-thought to influence the relative number of 5-, 6- and 7-methyl isomers (Wang et al., 2021). This effect impacts the
MBTY,,- and MBT§,,,,-based temperature reconstructions (Kou et al., 2022; So et al., 2023). Although several palacosalinity
proxies have been proposed to address these biases, significant work remains to be undertaken, for instance, on the precise
ionic composition of soil (Chen et al., 2022; De Jonge et al., 2024a). Among the possible solutions to reduce these biases, the
brGDGT-temperature relationship independent of these two indexes includes Multiple linear Regressions (MR; De Jonge et al.,
2014; Raberg et al., 2021), Bayesian calibrations (Dearing Crampton-Flood et al., 2020), and machine learning approaches
(Véquaud et al., 2022). However, the coupled effects of aridity, pH and salinity on soil, loess, and lacustrine archives can
significantly alter the interpretations of brGDGT-based climate reconstructions in the ACA region (Lin et al., 2024).

This study presents-relies on the first regional database of surface brGDGT samples for drylands, aiming to identify the key
climate and environmental parameters influencing their distribution. This dataset, referred to as the Arid Central Asian brGDGT
Surface Database (ACADB), includes brGDGT assemblages from various sites across the region, totalling 761 sites—ttinelades

samples. This dataset was compiled by Dugerdil et al. (2025a) to train machine learning models for climate reconstructions.

The dataset combines 162 new sites-coHectedfrom—four—countries—in-ACA—and-aggregated-samples collected across four
ACA countries with 599 previously published samples{rom-ACA-records (Fig. 1). These-modern-samples-are-analysed-in
refation—to-In Dugerdil et al, (2025a), machine learning calibrations outperformed traditional linear models, suggesting that
confounding factors weaken linear brGDGT—temperature relationships. The present study tests this hypothesis by analysing
modern brGDGT distributions against key climate parameters, mainty-including aridity, temperature --and-(both Mean Annual
Air Temperature, MAAT, and the seasonal mean temperature of Months Above Freezing, MAF), and precipitation, as well
as chemical characteristics such as pH, salinity, and sample type (soil or lacustrine). The results are then compared with the
global Worldwide brGDGT Surface Database (WDB; modified from Raberg et al., 2022a) to assess whether similar brGDGT
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patterns are observed at both regional and global scales. The methodological approach is synthesized in Fig. 2. Following this

workflow, this study raises the following questions:

1. Which confounding factor - pH, aridity, salinity, or sample type - has the most significant impact on brGDGT-temperature

calibrations in drylands?
2. Are the MBTY,,, and MBTY,,,, reliable for reconstructing past temperature in this context?

3. Can we apply aridity- or salinity-related indices to soil and lacustrine samples similarly, or do we need to develop new

indices or calibrations to track these eenfeunding-controlling factors?

2 Materials and Methods
2.1 Study sites

This study pools new-samples from four different ACA countries: Azerbaijan, China (from the Qaidam Basin to the Qilian
Mountains), Tajikistan, and Uzbekistan for a total of 162 samples (Fig—2;step—H—(Fig. 2, step 1 and Dugerdil et al., 2025a).
No data has previously been published-analysed for Azerbaijan and Uzbekistan. All site coordinates and geographic features are
presented in Fig. 1 and in Table S.1. From the Caucasus, 48 new-surface sites are presented from Azerbaijan. The-datalocation

was-randemly-seleeted-and-Prior to the field campaign, sample locations were defined using a randomized selection procedure
within a GIS framework to enhance the bioclimatic and ecological representativeness of the dataset (Bunting et al., 2013).

Thus, the dataset covers all of Azerbaijan, from the Great Caucasus to the Hyrcanian forest in the Talish Range, through the
Lesser Caucasus Range, the Mil Plain, and the Kura Valley (Fig. 1B). In China, an altitudinal/latitudinal gradient from the
Qinghai Plateau to the southern part of the Gobi Desert, through the Qilian Shan Range, presents 48 new surface samples
(Fig. 1C). For the Tajikistan-Uzbekistan database (TUSDB), the 66 sites come from the Aral Sea basin to the high Pamir-Alai
Range. The site location and climatic presentation of the TUSDB is also available in Dugerdil et al. (2025b). The summarized
information of each dataset is gathered in Table 1.

Temperature and precipitation maps for the ACA are provided in Fig. 2 from Dugerdil et al. (20252), and additional ACA
climographs are shown in Fig. S.1. MAAT for the ACADB has an average value of 3.7 & 3.2 °C and it is balanced between
warm/mild environments (MAAT > 10 °C), mainly on the western part of the ACA covering Caucasus (Armenia, Azerbaijan)
and Middle Asia (Uzbekistan and Tajikistan), and colder continental environments (MAAT < 3 °C) located in Central Asia
(i-e., the southern part of Siberia, the Mongolian plateau, and the Tibetan-Qinghai plateau in China, Table 1). On the opposite,
the MAF is more homogeneous with low MAF in China (MAF = 7.5 £ 2.7 °C) and high MAF in Tajikistan and Uzbekistan
(13 £ 2.5 °C). This is due to the higher seasonality in continental Central Asia than in the Caucasus and Middle Asia (Fig. S.1).
Similarly, Mean Annual Precipitation is spatially homogeneous, with consistent low values of 410 4= 140 mm.yr~'. However,
the seasonal precipitation pattern varies greatly across ACA. In the western region - including the Caucasus, Iran, and Middle
Asia - winter dominates, with up to 65% of annual rainfall occurring during this season. In contrast, the eastern region, encom-

passing the Central Asian plateaus and southern Siberia, receives up to 87% of its precipitation in summer (Chen et al., 2024).
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Table 1. BrGDGT dataset compiled in the Arid Central Asian Database (ACADB) and Worldwide Database (WDB) with their associated av-
erage climate parameters, data description (covered countries, dataset size, and site elevation), and original publications. New data published
from Dugerdil et al. (2025a), analysed in this-the present study are highlighted by a * for a total sum of 162 surface samples.

Countri N Average bioclimate parameters(®) Original
ountries MAAT MAF  MAP Al Altitude publication
(°C) (°C) (mm.yr—1) (m a.s.l.)

ACA lakes 52 1.84+34 12427 2604120 2500+ 1500 1200 £ 890  Wang et al. (2021)

Armenia 22 6.8+34 12+24 4204+ 110 3600+ 1300 1900 + 610 Cromartie et al. (2025)

Azerbaijan 48+ 12+33 13£1.8 510160 4200+ 1600 560 =+ 630 This study; Dugerdil et al. (2025a)

China 120 37+6 12447 2904170 2800 £ 2000 1600 £ 1300 Wang et al. (2020); Wang and Liu (2021);
Zang et al. (2018); Dang et al. (2018)

China, Inner Mong. 43 1.3+24 12+ 1.1 280+51 2400 + 730 930 + 310 Guo et al. (2021); Li et al. (2017)

China, Qinghai 48:* -0.0124+3.2 75427 410+98 4400 + 1900 3200 £+ 680  This study; Dugerdil et al. (2025a)

China, Tian Shan 18 2.1+4.6 89+55 280+76 3900 £ 2400 2200 =760 Duan et al. (2020)

China, Tibet 129 -1.5+3 6.1 = 1.4 2404130 2200+ 1200 4600 +240 Kou et al. (2022)

Global BayMBT Soils 15 -1£25 8.8+28 330+ 110 3000+ 1200 2800 + 1800 Dearing Crampton-Flood et al. (2020)

Global soils 48 046 +3.6 7.8+33 380+76 3400 £ 1000 3600 £ 1500 Naafs et al. (2017a)

Mongolia 31 1.1+24 12+22 230478 2200 + 1000 1500 £ 220  Dugerdil et al. (2021a)

Northern Iran 48 17 £0.84 17+£0.6 330%15 1900 £+ 110 270 £ 140 Duan et al. (2022)

Russia, Baikal 20 021 +1.8 93+£09 430492 5400 £ 1000 530 £+ 97 De Jonge et al. (2015); Khodzher et al.
(2017); Dugerdil et al. (2021a); Wang
et al. (2021)

Tajikistan (53+12%) 4.7+ 4.6 11+£24 470+260 3700+ 1800 2600 & 880  This study; Chen et al. (2021); Dugerdil
et al. (2025a)

Uzbekistan 54% 12 £33 14+£22 360+£210 2300+ 1600 1000 & 760  This study; Dugerdil et al. (2025a)

Total ACA 761 3.7+32 11 +24 350 +120 3200 + 1400 1900 + 720

World DB 2709 12 +8.8 14 6.6 1200 &= 640 11000 = 6400 730 + 890 Raberg et al. (2022b)®

(@) Bioclimate parameters refer to Mean Annual Air Temperature (MAAT), mean air temperature of Months Above Freezing (MAF), Mean Annual Precipitation (MAP),
and Aridity Index (AI). Data were extracted from worldclim?2 .1 (Fick and Hijmans, 2017) and CGIAR (Trabucco and Zomer, 2018). ®) for all original publications compiled
in Raberg et al. (2022b), please report to Table S.2.

This spatial diversity within the ACA likely induces important heterogeneity in the bacterial growth season (i.e., fall and spring
in western ACA, summer in eastern ACA, Fig. S.1). In arid environments, brGDGT production may be influenced by water
availability, potentially increasing during the rainy season. This could bias reconstructed temperatures toward rainy-season
conditions (De Jonge et al., 2014). The ACA altitudinal gradient reached by the database covers -28 to 4038 m a.s.l. with an

average value of about 1600 m a.s.l.
2.2 Environmental parameters

The newnewly described samples from this study (n = 162) are grouped into two main sample types: soil (n = 143) and

lacustrine (n = 19) samples. Here, soil means a sample collected on the surface from several subsamples collected within one

m? area and from the upper five cm part of the soil layer. Lacustrine corresponds to samples from lake sediment eere-tops-core
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tops or surface sediments. The majority of these lakes are in arid environments, seasonally dried, and associated with temporary
ponds. For lacustrine samples, one cm? of the upper parts of several top-eeres—core tops were sampled using a die-cut or from
the upper five cm of the surface sediment. For more details on the sample type description, please refer to Dugerdil et al.
(2021a). For the sampling method of the already published samples, refer to the original publications (Duan et al., 2020, 2022;
Wang et al., 2021; Raberg et al., 2022b; Kou et al., 2022). In total, the ACADB is composed of 560 soil and 201 lacustrine

samples.

Following the field campaign, samples were stored at freezing temperature and analysed at the earliest opportunity to

minimise post-sampling alterations of brGDGT distributions and chemical properties that may arise from ongoing microbial
metabolic activity. The chemical characteristics of the ACA surface samples include pH and Electro-Conductivity (EC, Fig. 2,

step 2), both measured ex-situ in the laboratory, even for lacustrine samples. These measurements were performed in the Mont-
pellier laboratory using a HANNA Instruments HI991301 after a two-points calibration for pH and a single calibration for EC
(mS/cm). Salinity, in terms of Total Dissolved Solids (TDS), was extrapolated from the EC following Rusydi (2018), Eq. (1):

TDS = a x ECr x 103 (H

with TDS in mg/L extrapolated from the EC at ambient temperature (EC) in mS/cm corrected by a conversion factor o €
[0.5;0;8] depending on the sample type (Rusydi, 2018). In Tibetan Plateau, the selected values are 0.65 or 0.8 (values from
Supplementary Materials in Kou et al., 2022). Due to the wide range of salinity values among samples, it is mainly expressed
in logyo (Kou et al., 2022). For new samples, a a of 0.65 was applied in this study to convert EC in TDS (i.e., in salinity). The

ECr is temperature compensated with Eq. (2):
ECt =EC,; o, x 8T (2)

where 5 = 1.9% is the temperature correction coefficient, T is the temperature in degrees Celsius, and ECj5 o is the electrical
conductivity standardized to 25 °C, as conventionally defined. For the salinity of samples published in Wang et al. (2021) and
Kou et al. (2022), please refer to the method section of both publications. The TDS values were used to provide four salinity
classes (fresh. hyposaline, saline and hypersaline). The cut-off values were derived from Rusydi (2018) and refine for the
ACADB using a sensitivity analysis (Table S.3). In the ACADB, salinity values are available for 113 soil and 67 lacustrine
samples.

Since only a few weather stations are available in ACA, extrapolated values from GIS databases were preferred to infer
the climate parameter controlling the brGDGT distribution. Using GIS R packages (rgdal, version 1.6-7 and raster,
version 3.6-30; Bivand et al., 2015; Hijmans et al., 2015), climate parameters were extracted from worldclim2 .1 (Fick and
Hijmans, 2017) and the extrapolated Aridity Index (AI) from the CGIAR database, (version 2; Trabucco and Zomer, 2018)
for each surface sample from the ACA. The parameters used include Mean Annual Air Temperature (MAAT), Mean Annual
Precipitation (MAP), and seasonal variables such as the mean air temperature of Months Above Freezing (MAF), as well as

Mean Precipitation and Temperature for the Cold and Warm Quarters (MPCOQ, MPWAQ, MTCOQ, and MTWAQ).The Al is
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Table 2. Main GDGT indices discussed in this study with their formula, their main interpretations and their references.

Index Formula Proxy interpreta- References
tion
, la+Ib+1Ic . .
MBTg5y, = Temperature, soil De Jonge et al. (2014); Lin
Ia + Ib + Ic 4 ITa + IIb + IIc 4 I1Ia
moisture et al. (2024)
, Ia+1Ib+Ic i
MBTgy\. = Temperature, inde- De Jonge et al. (2014); Yang

Ia + Ib + Ic 4 ITa/ + IIb’ 4 IIc’ 4 IIIa’
pendent from pH, et al. (2015); Dang et al

better in drylands (2016b)

Ib + IIb I
CBTsme = —log pH, precipitation De Jonge et al. (2014); Duan
Ta + I1a
etal. (2022)
I I1a’ + IIb" 4 IIc’ + II1a’ 4 ITIb’ + I1Ic’
CBT’ = —log ctlla + e +1lla + + e pH De Jonge et al. (2014); Raberg
Ia 4 Ila + I11a
etal. (2022b)
>~ XeMe -
TReMe —m T —o Salinity, pH Raberg et al. (2022b)
° > Xsme + > XoMe P ¢
ITa” + I1a’ o
IR7Me = Salinity Wang et al. (2021)
IITa + I1Ta’ + I11a’! 4 I1a + I1a’ 4 I1a’/
IRene + IR7Me B
IR6t7Me = Mone + Mrnve Salinity Wang et al. (2021)

2

, 0.5 x (IIa’ + IIb’ + IIc’ 4 I11a’ + I1Ib’ + I1Ic") 4 I11a’"" + I1a’"’ .
IRgi7me = Salinity Wang et al. (2021)
ITa + IIb 4 IIc + I1Ia + IIIb 4 IIIc 4 I1a’ 4 IIb’ + IIc’ + IIla’ + IIIb’ 4 I1Ic’ + I11a’’’ + I1a’"’

calculated using the formula Eq. (3):

MAP
Al=1 _
0000 x MA[ET] 3)

where MA[ET)] represents the Mean Annual Reference Evapotranspiration (Trabucco and Zomer, 2018). It is noticeable that
Al increases in humid environments and decreases in arid to hyper-arid systems. The threshelds-cut-offs and colour scale for
aridity classes (hyper-arid, arid, semi-arid, dry sub-humid, and humid) used in this study are detailed in Table S.3 and follow
the classification defined by Nash (1999).

2.3 GDGT analytical methods

BrGDGTs were analysed (Fig. 2, step 2) following the laboratory protocol fully detailed in Dugerdil et al. (2021a) and Davtian
et al. (2018). First, we ground approximately one cm? of the soil or lacustrine samples in order to weigh them after a 24-hour
lyophilization process. Then, total lipid content (TLC) was extracted twice from the sample by microwave-assisted extraction
(MAE) at a temperature of 70 °C using DCM:MeOH (3:1, v/v). Following Huguet et al. (2006), a known concentration of an
internal standard (C4¢ GTGT) was added to each TLC to estimate the absolute concentration of each GDGT compound. The
TLC was separated into two fractions by elution on SiOs a column with hexane:DCM (1:1, v/v) and DCM:MeOH (1:1, v/v).

The polar fraction containing br- and isoGDGTs was then dried under Ny before being re-dissolved in hexane:iso-propanol
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(98:2) solvent prior to injection. Analyses were performed using a high-performance liquid chromatography coupled to mass
spectrometry equipped with atmospheric pressure chemical ionization (HPLC/APCI-MS, Agilent 1260 Infinity coupled to a
6120 quadrupole mass spectrometer). The entire analytical process was carried out in the geochemistry laboratory LGLTPE
at ENS de Lyon. GDGTs were detected using Single Ion Monitoring (SIM). The protonated molecules were detected at m/z
1302, 1300, 1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, and 744 (Cyg). Finally, we manually
integrated each br- and isoGDGT based on the m/z ratio and retention time in order to identify each compound of brGDGTs
with their 5-, 6- (De Jonge et al., 2014), and 7-methyls isomers (Ding et al., 2016). Following De Jonge et al. (2014), the
Roman numerals represent different GDGT structures. The 6-methyl brGDGTs are marked with an apostrophe after the Roman
numerals to differentiate them from their 5-methyl isomers, and two apostrophes represent the 7-methyls (Ding et al., 2016).
The measurement accuracy of the GDGT analysis method was assessed through the inter-calibration exercises conducted in

2023 (De Jonge et al., 2024b).
2.4 brGDGT indices calculation

Based on raw GDGT integrations, we calculated absolute concentrations expressed in ng.g. .} (Huguet et al., 2006) and
fractional abundances (FA; De Jonge et al., 2014) using a R routine (Fig. 2, step 3). The classical indices of methylation for 5-
and 6-methyls (MBTY,,, and MBTY,,,) and cyclisation (CBT’ and €BTtyCBTre), as well as, the isomer ratios (IR gue.,
IR7Me, IR647Me and IR +7Mes Wang et al., 2021) are also calculated and summarized in Table 2. To avoid overloading this
study with multiple indices, we do not assess the Degree of Cyclisation index (DC; Sinninghe Damsté et al., 2009), nor its
updated version incorporating 5- and 6-methyl isomers (Baxter et al., 2019). Although the DC index more accurately reflects
changes in the number of internal cyclopentane rings than the CBT index (which track both isomers and cyclisations), we focus
solely on CBT, as it is more commonly used in brGDGT studies from drylands (Guo et al., 2021; Chen et al., 2021; Duan et al.,
2022).

2.5 Database compilations

Two databases are compared in this study (Figs. 1 and 2, steps 4 and 5). The Arid Central Asian Data Base (ACADB, n =
761) gathers new-samples-samples from Dugerdil et al. (2025b) used to train machine learning calibrations, as well as samples
collected from previously published studies, listed in Table 1 and Table S.2. Among them, the majority of the sites were already
cleaned and homogenized by Raberg et al. (2022b). We appended the northern Iranian samples (Duan et al., 2020, 2022) and
the Sibero-Mongolian samples that have already been published in Dugerdil et al. (2021a) as the New Mongolian—Siberian
Database. This dataset gathers 43 different sites from the Baikal basin to the northern part of the Gobi Desert (Fig. 1B and
geographical details on Fig. 1 from Dugerdil et al., 2021a). From Cromartie et al. (2025), we appended 22 samples from
Armenia, which follow an altitudinal gradient from the Ararat plain to the high plateau surrounding Lake Sevan (Fig. 1B). The
salinity and 7-methyl FAs from Chinese data were also added (Wang and Liu, 2021; Kou et al., 2022). Among the ACADB
(n =761), there are 560 soil and 201 lacustrine samples. In order to compare the ACADB results, we also compiled a global

Worldwide brGDGT surface Data Base (WDB, n = 2709) based on Raberg et al. (2022b) and Kou et al. (2022).
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2.6 Statistical treatment
2.6.1 Univariate and multivariate analysis

Using R (version 4.4.2; R Core Team, 2020), we performed univariate linear relationships and multivariate analyses to under-
stand environmental controls on brGDGT distributions (Fig. 2, step 7). The reliability of univariate relationships was inferred
by Pearson’s r, coefficient of determination (R?), adjusted-R2 (Rgdj), p-values, and Root Mean Square Error (RMSE). The
multivariate analyses were conducted with the vegan package on scaled data (version 2.6-8; Dixon, 2003) and included
Principal Component Analysis (PCA) on the brGDGT matrix and Redundancy Analysis (RDA) combining the brGDGT and
surface climate parameters matrixes (Dixon, 2003). PCA is an unconstrained ordination that reduces data dimensionality by
identifying axes (principal components) capturing the most variance. RDA is a constrained ordination that explains variation in
GDGTs using environmental variables. To meet the assumptions of linearity and normality required for both analyses, environ-
mental variables were standardized using the scale () function, while the FAs of each brGDGT compound were transformed

using the Hellinger transformation (Eq. 4), which down-weights dominant compounds.

“4)

FA — transformed; j; =

with FA; ;, the FA of compound j in the sample i. Since the 7-methyl FAs are not available for all samples in the compiled stud-
ies, they were removed from the databases for multivariate analysis. To select the most reliable environmental driving factors
to apply into the RDA, a Variance Faetors-analysis-(VIiFsInflation Factor analysis (VIF, a method highlighting the covariance
between factors) was performed on climate parameters and soil characteristics (pH and TDS) using the vif.cca () function
from the same R package. To limit the covariance between them, only environmental factors below a threshold (e.g., below 10;
Cao et al., 2014) were kept for the RDA analysis and the following steps of the statistical workflow. The configurations of the
two PCAs (for soil and lacustrine samples) were compared using a Procrustes rotation analysis (i.e., comparing the similarity
between PCA and RDA ordination patterns by rotating one configuration to best match the other) and a PROTEST significance
test (i.e., quantification of the fitting degree via permutation test) between the two PCAs using the package vegan (Dixon,
2003). The same method was applied to compare the RDA brGDGT vs. climate parameters for soil and lacustrine samples.
Finally, linear relationships inferred between brGDGT indices and environmental factors follow Pearson’s correlation (only

coefficients of determination with p-value < 0.001 are displayed on figures).
2.6.2 Grouping factor analysis

Samples were grouped by pH, aridity, salinity, and sample type to evaluate the most influential eenfeunding-controlling factors.
The applied threshelds—cut-offs to bin classes are displayed in Table S.3. To identify data grouping patterns in relation to
bioclimatic parameters, sensitivity analyses were conducted in R by calculating the determination coefficients (multiple 122
and R? for groups above and below thresheld-cut-off values) across a continuous range of thresheldscut-offs. For example, pH
threshelds-cut-offs were tested from 4 to 11 in 0.01 increments. Multivariate Analysis of Variance (MANOVA) was performed

11
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with the manova () function to detect the most important environmental factors driving the variance among the 15 brGDGT
FA (only the 5- and 6-methyls were selected) and among the main GDGT indices (Fig. 2, step 8). Then, the univariate ANOVA
results were obtained with summary.aov () for each brGDGT compound and index. Both functions come from the stats
R base package (version 4.4.2; R Core Team, 2020). The MANOVA tests for differences in multiple dependent variables across
different groups to see if group means are significantly different, while the ANOVA tests for differences in the means of a few
groups to determine if at least one group mean is significantly different. The assumption of multivariate normality was tested
with Mardia’s Skewness and Kurtosis tests (i.e., MANOVA is possible only if the two p-values are higher than 0.05; Mardia,
1970). The assumption of homogeneity of variance-covariance was tested for each variable and each grouping factor using the
Levene’s test (Bierens, 1983). Using the most relevant eenfounding-controlling factors, specific MBT},; -based temperature
calibrations were done for each grouping factor. To compare the linear relationship among groups, the significance of the

difference was carried out with the z-statistic following Clogg et al. (1995), Eq. (5):

Z:M (5)

\/SE? + SE2

with (3, the coefficients and SE,, the standard errors of the linear regressions among the n groups. The p-values for the z-
statistics are inferred with a normal distribution. The same z-statistic approach [Eq. (5)] was applied to determine the signif-
icance of the difference between each linear model intercept (i.e., here, the offset between each calibration). The z-statistic
was preferred to the t-test-sinee-the-size-of-the-data—is-high-test since the number of samples is large (e.g., more than 30
samples; Moore et al., 2009). All statistical treatments and graphical representations (except the map done with QGIS 3.34
Pritzen and the methodological workflow done with Inkscape) were performed in R. The plots were designed with the
ggplot?2 package (version 3.5.1; Wickham, 2016) and, more particularly, the ggtern (version 3.5.0; Hamilton and Ferry,
2018) for the ternary diagram (Fig. 2, step 6).

3 Results
3.1 brGDGT distribution

3.1.1 brGDGT concentrations

The brGDGT absolute concentrations are estimated from the Cyq internal standard method. To avoid biases from instrument
in Dugerdil et al, (20212), Cromartie et al. (2025) and Dugerdil et al. (20250). The briGDGT concentration is heterogenous
among the ACA-surface-samplesdataset, and it mainly depends on the sampling site location and sample type. Fhey—vary
It varies between 674 4 2825, 87 £ 314 and 342 4 1822 ng.gs_eé' for lacustrine, soil and the whole databasedataset, re-
spectively. Lacustrine samples are much richer in brGDGT than soil samples (about ten times more concentrated). Among

the soil samples, the more moisture in the soils, the higher the concentrations, from 149 + 594 to 24 + 33 ng.g;c(li. From

12
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drylandshyper-arid and arid environments, samples from sand dunes are poorer than loess, silt-rich, and solonchak samples.
They are close to the detection level (i.e., integration peaks smaller than twice the noise level), thus increasing uncertainties for

indices based on 6- and 7-methyls.
3.1.2 brGDGT fractional abundances

The brGDGT distribution is described from soil (Fig. 3A) and lacustrine samples (Fig. 3B). FAs for lowest abundances (i.e.

mean value below 5%) are given in panels A1-B2. With regard to FAs in soil samples, the prevalent compounds are Ila’ (mean
value ~ 30%), IllIa’ (~ 22%), la (~ 14%), Ila (~ 10%) and IIla (~ 6%, Fig. 3A). In lacustrine samples, the distribution
is dominated by Illa’ (~ 19%), Ila’ (~ 16%), Ia (~ 12%), Ila (~ 10%) and Illa (~ 9%, Fig. 3B). In contrast, compounds
such as IIIb, IIIb’, IIb”, Illc, Illc’, IIb”, Ilc, and IIc’ are rare in both soil and lacustrine samples, with average abundances
ranging from 1% to 2% —(Fig. 3A1-B2). It is noteworthy that, for each compound, the 6-methyl isomers are more abundant
than the 5-, and the 5- are more abundant than the 7-. Fhis-trend-The higher median values for the 6- over the 5-methyl
isomers is more marked for soil than lacustrine samples. The 7-methyl isomers have-higherimpertanee-are more abundant in
lacustrine than in soil samples. For both sample types, the histograms-boxplots reveal that brGDGT distributions vary across
the different aridity classes, with trends-emerging-with-inereased-aridity—median FAs shifting toward higher values with
drier aridity classes: median Illa increases in the humid greupclass, while IIla’ and IIIa” are higher in the arid and hyper-arid
groupsclasses. A similar trend-median shift is observed between Ilc and Ilc’. Additionally, Ila increases with humiditywetter
aridity classes, while the IIa’ distribution remains largely insensitive to changes in aridity classes for lacustrine but decrease
with higher humidity for soil samples. Compounds Ia, Ib and Ic exhibit discernible variations between aridity classes, although
the observed trerds—shifts are not unequivocal. Finally, aridity control is less evident in other low-abundance compounds,

including the IIIb, Illc, and IIb, and all 7-methyl isomers.
3.1.3 Methylation distribution

In soil samples from the ACADB, tetra-, penta-, and hexamethylated brGDGTs range from 0 to 55%, 20 to 80%, and O to 85%,
respectively (Fig. 4A1 and A2). The distribution of hexamethylated compounds is the most variable in ACA. By contrast, in
the WDB, brGDGT distributions are strongly centred around tetramethylated compounds, with only a few samples showing
high hexamethylated fractions; the majority contain less than 20% of hexamethylated compounds. About the aridity effect,
ACADB samples from a humid environment fit the WBD distribution better, while arid and hyper-arid samples shift towards
lower tetramethylated content.

Similarly, for lacustrine samples (Fig. 4B1 and B2), the ACADB shows tetramethylated brGDGTs ranging from 0 to 60%,
pentamethylated from 10 to 85%, and hexamethylated from 10 to 90%. Compared to WDB, the croissant shape of the ternary
distribution is retained but shifts towards less tetra- and more pentamethylated forms. For lacustrine samples, the aridity-effeet
seems—mitigated-compared-to-distribution across aridity classes appears less contrasted than for soil samples. However, the
samples from humid environments are spread along a bimodal distribution following the hexamethylated axis, while this is not

the case for hyper-arid to dry sub-humid samples with hexamethylated above 20%.
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3.1.4 brGDGT multivariate spaces

PCAs were performed on 400 soil and 361 lacustrine surface samples, using Hellinger-transformed FA values (Fig. SA and
B). The brGDGT loadings for the first and second components explain 42% and 18% for soil samples and 40% and 19% for

330 lacustrine samples, respectively. For both, the most important contributing compounds are Illa’, Ila, IIa’, and Ia, followed by
IIb’, Ila, ITIb’, TIc’, and IIc’. PCA; corresponds to a gradient between the 5- and 6-methyl isomers, with positive loadings for
IIa, Ia, Ib, and Illa and negative loadings for Ila’, I1Ia’, and IIb’. PCA, follows a gradient marked by the number of internal
cyclisation: the positive loading is driven by compounds with one or two internal cyclisations (mainly IIb’, IIb’, Illc’, and
IIc’), while the negative loading presents compounds without internal cyclisation (Ia and IIa’). About the distribution of aridity

335 classes over this multivariate space (highlighted by the upper and lateral sample densities in Fig. 5);-a-¢learA and B), the data
distribution suggest that an aridity gradient can be superimposed on the isomer gradient (i.e., along PCA; with humid samples
on a positive loading and hyper-arid samples on a negative one). This gradient is clearer for soil than for lacustrine samples.
In between, arid, semi-arid, and dry sub-humid samples show a higher internal cyclisation number (positive PCA»), giving a
triangular shape to the sample distribution.

340 Procrustes rotation analysis, along with the PROTEST r and p-values, was used to assess the similarity between the two
PCAs (Fig. 5C). The statistical results reveal that the brGDGT multivariate space is very similar for soil and lacustrine samples
with m%, = 1.05, r = 0.91 and p-value < 0.01. The more variable components between soil and lacustrine multivariate spaces
are IlIa’, Ila, and Ib. It is noteworthy that Ib is correlated with IIb and Illa in soils, while it is correlated to Ia in lacustrine

samples.
345 3.2 brGDGT responses to environmental controls

3.2.1 ACA bioclimate multivariate space

When-The selection of bioclimatic parameters that can be reliably reconstructed from fossil proxies is essential (Salonen et al., 2019
. To evaluate this, we conducted (1) a multivariate analysis on worldclim2.1 data extracted at the ACADB samplin

locations, to identify the primary and secondary bioclimatic gradients and their main parameter contributors, and (2) a Variance

Inflation Factor (VIF) analysis to quantify multicollinearity within the brGDGT-bioclimate multi-variate space of the ACADB.

The goal is to confirm which bioclimatic parameters are the most informative and ensure they are as statistically independent

as possible, in order to minimize biased climate reconstructions.
First, when considering the bioclimate space of ACA sampled at the ACADB sampling points (Fig. 1E), the main loading

350

(PCA; = 53%) is a temperature gradient and the secondary loading (PCA, = 29%) is a precipitation gradient. About the
355 climate parameter contribution, AI and MAP have more influence on the ACA bioclimate variance, followed by MPCOQ
and MAAT. In ACA, all temperature parameters are strongly correlated, indicating that temperature seasonality is roughly
homogeneous within the ACADB. This observation is consistent with the lower variance explained by MAF than MAAT. The
coefficient of variation among the ACADB is higher for MAAT than seasonal temperature parameters (170 vs. 30%). Contrar-
ily, Mean Precipitation of Warm / Cold Quarters (MPWAQ and MPCOQ, respectively) are negatively correlated, showing a

14



360

365

370

375

380

385

390

split in seasonal precipitation patterns among the ACADB, which is in line with the global climate observations in ACA (Chen
et al., 2024).

t-erder-Then, to verify that these parameters remain the primary factors to explain the brGDGT variance space, Varianee
Faetor(VIF)-VIF analyses were performed on two models: (1) using all environmental parameters (i.e., all climate parame-
ters, altitude, pH, and salinity) and (2) only a selection of climate parameters to verify that VIFs < 10 (Cao et al., 2014). In
Table S.4, the multicollinearity between MAAT, MTCOQ, and MTWAQ is clear (VIFs > 159.1) and reduced with MAF (VIF
= 26.7). Multicollinearity is lower among the precipitation parameters (VIF < 37.8). When keeping only AI, MAAT, MAF,
MPCOQ, pH, and salinity, all VIFs are below 6. VIFs for pH and salinity do not change between the two models, showing their
independence from climate parameters. Finally, from the total set of environmental variables, the VIF analysis removed the alti-
tude, MAP, MPCOQ, MTCOQ, and MTWAQ. The remaining environmental parameters have VIFyaaT = 6, VIF\ar = 4.5,
VIFmpcoq = 2.1, VIFAr = 1.5, VIF,r = 1.5 and VIF g,iinity = 1.3.

3.2.2 Controls on brGDGTs in the ACA bioclimate space

Regarding the environmental controls on brGDGT distribution, RDAs were performed based on analyses of 113 soil and 67
lacustrine samples (excluding samples without pH and salinity data), including 15 brGDGT compounds (limited to 5- and
6-methyl isomers) and six environmental variables (Fig. 5D and E). The first two RDA axes explained 20% and 5.9% of the
variance in soil samples, and 22% and 3.4% in lacustrine samples. The overall correlation between the brGDGT composition
and the environmental variables was 0.31 for soils and 0.27 for lakes. About the distribution of sites and brGDGT vectors,
we observe the conservation of the distribution between PCA and RDA for soil (Fig. 5A and D): similar PCA; and RDA;
loadings, and reverse loading among RDA, and PCA,.

The distribution of soil samples in the RDA ordination reflects a gradient of aridity (Fig. 1D), with humid samples on positive
loading associated with high AI and salinity and hyper-arid samples on negative one correlated with pH, MAF, and MAAT.
This gradient corresponds to a predominance of GDGT compounds IIla’, ITIb’, and I1a’ in arid samples, while more humid
sites are associated with higher FAs of Ila and Ia. Thus, the aridity gradient along the RDA; loading is clearly conserved from
PCA to RDA. Surprisingly, higher salinity is associated with higher Al (i.e., humid conditions) and negatively correlated with
pH (i.e., acidic conditions). Although soil salinity is expected to increase under bioclimatic aridity (Muhammad et al., 2008),
our results show that in ACA, salinity is largely independent of climate parameters (Fig. 1£D).

For lacustrine samples (Fig. 1B and E), the loadings are quite different between PCA and RDA, mainly due to low Ila and
ITa’ correlations with environmental parameters in RDA (despite their strong importance in primary and secondary loadings
in PCA). The aridity gradient is not clear (mainly due to the scarcity of hyper-arid and humid lacustrine samples). Here,
salinity is negatively correlated with pH and Al Additionally, tetramethylated compounds (Ia, Ib, and Ic) are controlled by
both temperature (MAAT and MAF) and salinity.

The Procrustes rotation analysis carried out on the two different RDAs (Fig. 5F) shows that the correspondence between the
two RDA spaces is smaller than between the two PCA spaces (Fig. 5C) with r = 0.67 and p-value < 0.003. Compounds Illa

and Ila exhibit the most pronounced rotations (i.e., the differences in their loadings between the two PCAs as revealed by the
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Procrustes rotation analysis), indicating substantial differences in environmental controls between soil and lacustrine samples.
For environmental parameters, salinity and Al are the two parameters with the highest degree of rotation between the soil and
lacustrine RDA spaces. Al is more contributing in the soil samples RDA, while salinity is more contributing in the lacustrine
samples RDA.

3.2.3 Methylation indices relationships to climate parameters

Linear relationships between the two main indices of methylation generally used in brGDGT calibration studies, the MBTY, ;.
and MBT},,., are tested against pH, AI, MAAT, and salinity (Fig. 6). The R? (*** indicates p-value < 0.001) are given for each
relationship and for both subsets of sample type (i.e., soil and lacustrine samples). For soil samples, the strongest MBTj,. -
based linear relationship is related to MAAT (R? = 0.31%%%), even if it is also associated with pH (R? = 0.17%**) and Al (R?
= 0.15%**). The relationship with salinity is, however, not significant. Contrarily, for lacustrine samples, salinity exhibits the
strongest relationships with MBT%, ;. (R? = 0.31***). Correlation coefficients obtained with MBT§,,, are generally lower
than those with MBTY,,, with pH for soils (R? = 0.11%*%*) and with MAAT for lacustrine samples (R? = 0.13**%). When
statistically significant, all relationships follow similar trends (positive or negative) for MBTY%,,, and MBT{,.

Comparing the ACADB to the WDB in Fig. 6, some relationships are similar: MBTY%,;, with MAAT and salinity, and
MBT§,, with pH and Al, despite the tighter climatic range of ACADB compared to WDB. Contrarily, some trends are
reversed: MBTY,,, with salinity and MBTY,,, with pH. It is also noticeable that ACADB samples from humid and dry sub-
humid conditions fit better with the WBD distribution than arid and semi-arid systems. Hyper-arid-samples-often-have-extreme

3.2.4 Cyclisation, isomerisation, and pH

The cyclisation and isomer indices (here, CBT’, ©€BT55;:CB Tspe, IR6Me and IRG L 7Me)» Which are commonly considered to
be pH-related proxies, are tested against aridity, pH and salinity on WBD and ACADB. On the ACADB, the linear relationships
between pH and these indices are not significant for lacustrine samples (Fig. 7). In soil samples, isomer ratios appear to
correlate more strongly with pH than cyclisation indices, with IRg\re Showing the highest explanatory power (R2 = 0.27%%%),
This pattern is consistent in both the WDB and ACADB datasets. About the cyclisation, CBT’ is more linearly related to pH
than ©BF5-CBT 5. However, both indices suffer from a relation break around a pH threshold of 7.3 (highlighted by dashed
lines on Fig. 7A and B). This indicates that the cyclisation degree is linearly correlated to pH only in acidic samples. To test the
pH threshold value, the CBT’ vs. pH linear relationship was tested for the two groups, below and above the threshold, using
a continuous implementation of thresheld-cut-off pH from 4 to 11, with 0.01 steps each (Fig. S.2). The best R? is for a pH of
7.3, with multiple R? of 0.45 for overall soils, 0.54 for acidic soils, and 0.05 for alkaline soils. Similar threshelds-cut-offs are
also observable with aridity and salinity, although with lower regression strength (R2? of 0.15%** and 0.09%**, respectively).
Finally, there-is-a-strong-simitarity between-the CBT -IRgmc. and CBT’-IRg 7). relationships are more similar in term of
slope and correlation for soil than lacustrine samples (R? of 0.87%** and 0.80%** }-forseils-while-this-deesnothold-truefor

s-for soil, 0.80*** and 0.13*** for lacustrine, respectively in Fig. 7G and H).
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3.2.5 Isomer ratios responses to aridity and salinity

The common isomer ratios used to infer salinity are tested with aridity and salinity (Fig. 8). The linear relationships between
IRs and MBTY,,, are also tested. For salinity, the correlations are more statistically significant with lacustrine than with soil
samples, by order of strength: IRgHMe (R? = 0.41%%%) IR7Me (0.40%%%) and IRg+7Me (0.37%%%). For soil, IRgpe has the
strongest relationship with pH (R? = 0.09***), but the relationships with aridity are also significant, especially with IR¢ 7ne
(R? = 0.17#**), The relationships are comparable between ACADB and WDB, although the WDB environmental range is
wider, especially for low salinity and high AI values. IR§ 7\, is slightly correlated with the MBTY,,, index in lacustrine
samples (R? = 0.29***), while it is more significantly correlated to MBT},,, in soil samples (0.58***). These relationships
are similar in WDB, although no linear relationship appears between IR, 7, and MBT,;, in WDB. Moreover, the isomer
ratio relationship with salinity drastically changes depending on the relative weight given to 7-methyl isomers. The regression
between IRs and salinity shows increasing explanatory power with 7-methyls weight, with R? values rising from 0.08 for IR¢yre
to 0.40 for IR7ne, and from 0.37 for IRg17nMe to 0.41 for IR L 7Me- This is mainly due to the salinity’s positive correlation

with 7-methyls and negative one with 6-methyls (respectively, Pearson’s r of 0.64 and -0.35, Fig. S.3).
3.3 Robustness of the analysis of variance between groups

Since it was previously shown that the different environmental parameters have different interactions in the brGDGT distri-
bution worldwide and in the ACA (Yang et al., 2014; Deng et al., 2016), both on soil and lacustrine samples, we evaluate the
strength of each driving factor. Since the sample type group is a qualitative factor, the other quantitative factors (i.e., bioclimate
and physicochemical parameters) were also binned into qualitative groups (see Table S.3 for the threshelds—cut-offs used for
binning). The two MANOVA models inferred to evaluate their differential influences on (1) FAs distribution and (2) indices
from the ACADB are displayed in Table 3.

3.3.1 Analyses of variance for the FAs

This first MANOVA tests the response of the 15 brGDGT FAs to the four grouping factors: aridity, pH, salinity, and sample
type. MANOVA results (in terms of F-statistics and p-values) are given in the first row of Table 3 while ANOVAs for each
compound is given in rows two to 16. Levene’s test p-values are provided in Table S.5. The higher MANOVA F-statistic (with
a p-value < 0.001, symbolized by the *** symbol) represents the stronger environmental parameter to separate FA into groups.
First, it appears that the sample type (F = 10.2*%**) is the most influential grouping factor on the FA variance, followed by
salinity (7***) and pH (6.5***). Moreover, the sample type is responsible for the clustering among IIla, ITIb, IIb, and Ic, while
pH mainly influences IIa’, Ila, Ic, and IlIa’, and salinity influences Illa, ITIa’, Illc, and IIb’. Aridity plays a role mainly on Ila,

Ia, and Illa’. Generally, the main compounds are impacted in their distribution by all eenfounding-controlling factors.
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Table 3. Statistical results (approximate F-statistics and p-values) of the two MANOVAs carried out to test the brGDGT (1) FAs and (2)
indices responses to environmental classes (i.e., aridity, pH, salinity, and sample type). The MANOVA F-statistics are presented in the first
row of the two models, followed by the F-statistics of the univariate ANOVA for each item (i.e., each FA and each index). The significance
is given by the number of stars(® . The samples without pH or salinity measurements were removed from the analysis (i.e., n = 328). The

p-values from Levene’s test, which are important for assessing the reliability of the MANOVAs, are provided in Table S.5.

Model Compound Aridity pH Salinity Sample type
Model 1  F-statistics I A 10.2%%%()
(FAs) f(1lla) 1.7 3.6% 29%k% 38.27%**
f(1lIa’) 10.8%*%* 9 g**x 4 THkx 5%
f(I1Ib) 0.7 24 1.4 25.8%%*
f(ITIb’) 2.3 2.8 1.2 14
f(IIc) 1.2 6.1°%* 9.8%#* 1.7
f(IlIc*) 0.9 1.9 2.7* 0.4
f(ITa) 22 %3%* 15.7%%%  2.9% 1.5
f(ITa) 22 18.5%%*  13.9%%* 4 6%
f(IIb) 0.6 4.4% 2.5 20.2%**
f(IIb’) 1.3 11.5%**  6.6%%%  10.3%*
f(Tlc) 1.7 1.8 0.8 0.5
f(Ilc’) 1 Sk 1.5 1
f(Ta) 18.5%** 6. 7** 4.7%* 4.1%
f(Ib) 1.4 22 2.5 0.9
f(Ic) 3.7%* 12.7#%% 0.8 13.9%%%
Model 2  F-statistics S.7HFR B 4wEE QPR G Aekk
(Indices) MBTjy, Gk 7.2wEE ] Tk 3T PR
MBT§ e 11,9 Gtk 3%k 13
IReMe 13 11.3%%% 9Ok §54%
TR6+7Me 24 8#k* 6, ]%* 13.9%** ]
IRG | 7ne 28.1%%* 3 5% 18.9*%*% (.5
CBT’ 13.7%%% 13 4%%%k g THkE D3
EBFreCBTsne 5% 4.8%* 0.6 4.4%

(@) The p-values are expressed in terms of stars with *** for p < 0.001, ** p <0.01, * p < 0.05 and
nothing for not-significant F-statistic (i.e., p-value > 0.05). (®) The highest F-statistic for each
MANOVA and ANOVA is displayed in bold text.

3.3.2 Analyses of variance for the brGDGT-based indices

Since the majority of brGDGT applications are based on traditional indices, the response of MBTY%,,., MBT{,;., IRgMe.
IR +7Me and IR, 7, to aridity, pH, salinity, and sample type was tested in the second MANOVA (line 16 of Table 3 followed
by the ANOVA statistical results for each index). For MANOVA, the most important grouping factor is salinity (F' = 9.1%%%),
followed by pH and sample type (8.4%**). Aridity is the weakest grouping factor (5.7***). The graphical representation of
the variance for each group is available in Fig. S.4. More specifically, for MBTY},,., the variance is mainly explained by
sample type (37.1***) and salinity (17.7***). For MBT}, .. the variance is mainly explained by salinity (13***) and aridity
(11.9*%**)_ IR indices show stronger clustering based on aridity and salinity than on pH or sample type. Aridity and salinity

gradients are clear among groups for IR 7ne and IR, 7y, While IRgne variance is more steady. For all three indices, there is
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a clear distinction for hypersaline and humid group variance (low index value for humid groups and high value for hypersaline).

EBFL~CBT5)\e have a similar variance for each group, while CBT’ is clustered by aridity and pH (13.7*** and 13.4%%%*),

4 Discussion

Comparing the ACADB results with other studies, the question of the relative importance of the confounding factor on
past-brGDGT palaeothermometer applications from drylands is raised. The effects of the confounding factors on the past
temperature estimation, such as pH (mainly for extrema; Duan et al., 2020), aridity, seasonality, and salinity, are currently
studied in ACA (Guo et al., 2021; Chen et al., 2021; Kou et al., 2022; Duan et al., 2022). More generally, the impact of
eonfounding-controlling factors on geochemical proxies used to reconstruct palacoenvironmental changes has been increas-
ingly recognized in brGDGT-based temperature calibrations (De Jonge et al., 2014; Higgi et al., 2023). Mainly, based on the
ACADRB results, we discuss (1) the impact of these factors on brGDGT indices (methylation, isomer and cyclisation indices);
then (2), the complex interaction between cenfeunding-controlling factors; (3) the applicability of former and new calibration
depending on confounding factor classes; and (4), we provide recommendations for their applicability in the past brGDGT
archives in drylands. We will first focus on the reliability of MBTY,,, and MBTg,,, to reconstruct past MAAT and on isomer
or cyclisation indices to infer salinity and pH in drylands. The following discussion is mainly based on ACADB results from
linear regressions, as well as multivariate and variance analyses. However, due to limited metadata availability, these integrative
statistical approaches (RDAs and MANOVAs) were applied to a reduced dataset (113 soil and 67 lake samples), and further

research is needed to confirm the conclusions drawn.
4.1 Applicability of brGDGT-based proxies
411 MBTL;-MBTL,, responses to temperature

The analysis of the ACADB climate space, based on the PCA (Figure 1E) and RDAs (Figure 5D and E), indicates that MAAT
better captures both the climate variability and the brGDGT response across ACA compared to MAF. In both datasets, the pro-
portion of variance explained by MAAT exceeds that explained by MAF, with the only exception being brGDGT assemblages
from lacustrine samples. Based on this, we focus the discussion on MAAT, even though MAF is often preferred in brGDGT
studies due to its relevance for representing the bacterial growing season (Deng et al., 2016; Dearing Crampton-Flood et al.,
2020). However, the actual timing of bacterial growth may depend not only on temperature, but also on soil water availability
(Lei et al., 2016). This is particularly relevant in the ACADB region, where MAF generally aligns with summer across ACA,
while soil moisture availability is not spatially synchronous, with rainfall peaks in spring and autumn in eastern ACA, and in
summer in the western part (Figure S.1).

When considering the MBTY,;.-MAAT relationships in the ACADB, the determination coefficients for both soil and la-
custrine samples are limited (Fig. 6). The linear correlation is significantly higher in semi-arid to humid soils than hyper-arid

and arid soils (Figs. S.8), in line with Wang et al. (2019). This attenuation-weakening of the MBTY,; -MAAT correlation is
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also well observed on lacustrine samples where MBTY,,, is more correlated to salinity than to MAAT (Fig. 6E and G) in
line with Liang et al. (2024). In drylands, MBTY%,, is also correlated with soil water content (Dang et al., 2016b). However,
numerous temperature reconstructions use the MBTY%,,. index to capture the brGDGT compound’s response to temperature
(De Jonge et al., 2014; Chen et al., 2021), even if several studies have shown a strong bias in MBTgMe-temperature relationship
under arid conditions (Sun et al., 2019; Dugerdil et al., 2021a). Guo et al. (2021) demonstrated that in arid environments, the
relationship between temperature and brGDGT methylation differs between 5- and 6-methyl isomers. The dominance of Acti-
nobacteria and Verrucomicrobia, each linked to distinct 5- and 6-methyl brGDGT signatures, in arid soils may help explain the
limited effectiveness of the MBTY, . index in capturing climate signals within the ACADB. In this context, MBTY,, -based
temperature calibration in drylands may have reduced reliability. Among solutions to improve this type of calibration, specific

MBT},.-based temperature calibration can be provided for specific confounding factor classes.
412 MBT{;-MBTg,,. responses to climate

MBTg,.-MAAT trends opposite for the WDB compared to the ACADB (Fig. 6F), even if the correlations with temperature
remain weak. The correlation is slightly better with AI (Fig. 6D). The MBTY,,, index has been proposed as a reliable temper-
ature proxy when MAP and MAAT are negatively correlated (Guo et al., 2021), a condition not met in the ACADB dataset.
From the ACADB, we can estimate that MBTY, , is slightly more controlled by AI than MAAT. Moreover, the tetramethylated
compounds (which are the major compounds involved in MBTY%,,; and MBTy,,, De Jonge et al., 2014) are not as important
in ACADB as in WDB (Fig. 4A). Additionally, the climate response of tetramethylated compounds is not clear in ACADB
(Fig. 5D), while the IIa’ is well correlated with MAAT. Initially designed by De Jonge et al. (2014) as a methylation index for
tetramethylated over the sum of tetramethylated plus 6-methyl isomers, the MBTYg,, is understudied. However, Wang et al.
(2016) and Guo et al. (2021) observed in arid soils that the MBT{,,,, has a better response to temperature and aridity changes
than the MBTY, .. Also, their studies show an opposite correlation with MAAT than in global soil datasets, in tines-line with

our results.
4.1.3 Complementarity of M- BT,;;-MBTy,, and MBI —MBTg,,. toinfer aridity

We propose to use the difference between MBTY, ;. and MBTg,,, to track past aridity change, since it was shown that MBTg,
variance is similar to that of MBTY, ;. under humid conditions, while it is smaller under hyper-arid to dry sub-humid conditions
(Fig. 9A and B). This observation holds true in both soil and lacustrine samples. Therefore, following the trends of these two
indices in the past could allow distinguishing between periods of constant humid conditions, whenever they are correlated
with similar variance, and that of constant or shifted arid conditions (not correlated). Moreover, the current MBTgMe-AI
correlation is negative (Fig. S.5A), while the MBT¥,,.-Al correlation is positive (Fig. S.5B), and similar to the soil water
content effect on MBTY{,,;, (Dang et al., 2016b). Then, the A(MBT¥,,,, MBT{,,,) gives a quite reliable estimation of the
Al (i.e., the difference between the two indices, Fig. S.5C). This approach is more appropriate for soil than lake samples,
since the MBTY,,, distribution in lacustrine samples is correlated with MAAT rather than Al (Fig. 6D and F), making the

MBTY,.-based calibration more accurate than the MBTY,;, one in ACA lakes.
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The statistical independence between Al and MAAT has to be verified, especially since Al is related to temperature via the
Mean Annual Reference Evapotranspiration (cf. Eq. (3) and Trabucco and Zomer, 2018). Among ACADB, MAAT and Al are
independent bioclimatic variables (R? below 0.01 for lacustrine and about 0.15 for soil samples). Moreover, focusing only on
soil samples, the A(MBTY%, ., MBTj,,,)-Al relationship has been tested for similar MAAT values (Fig. 9C). The regressions
across MAAT classes are generally consistent, except at the extremes of the Aridity Index. The higher multiple R? compared to
the global model indicates that the relationship between A(MBT'5Me, MBT'6Me) and Al is largely independent of MAAT.
When comparing this result with previous studies, we found similar MBTY%,,, and MBTg,,, behaviour compared to MAAT
(correlations positive for MBTY, . and negative for MBTy,,;, in Guo et al., 2021). This is also supported by the evidence that
MBT%MC is correlated with Al and soil water content (Dang et al., 2016b; Guo et al., 2021). Although the difference between
ratios is still not commonly used for brGDGTs, this approach is increasingly applied to other geochemical proxies of past

climate parameters (Héllberg et al., 2024).
4.1.4 Controls of salinity on isomer ratios

Salinity is a major eonfeunding-controlling factor in ACA, impacting both brGDGT distribution in the environmental space
(Fig. 5B and E) and the variance of FA and indices (Table 3). It is also significant that the salinity could be monitored through
isomer content (Fig. 8). Mainly, the IR§, ;\;, appears to be the more reliable index to track salinity gradients among la-
custrine ACADB samples, in line with Wang et al. (2021) and Kou et al. (2022). These studies have revealed the unusual
over-representativeness of 7-methyl compounds in brackish to hypersaline lacustrine lakes, like in the ACADB. Wang et al.
(2021) also reported a slight impact of salinity on IRgne Which may be due to pH-salinity covariation in their database. Since
pH and salinity are not covarying in the ACADB soils, it explains why IRgpe is less correlated with salinity for ACADB soils
(Fig. 8A). However, the two factors are covarying in the lacustrine dataset. This could explain why IR¢pe-salinity regressions
are similar between soils and lacustrine samples (R? about 0.08) while IR, ;. is not. We conclude that (1) the unusual
over-representativeness of 7-methyl due to salinity is important in lakes but not significant in soils, and (2), IR§ 7 is the
more reliable brGDGT index to track salinity changes in both sample types.

Espeetatlyfor-takes; IRene is well correlated with salinity for low salinity values, particularly in lacustrine samples (i.e.,
mainly fresh-water lakes, Fig. 8A and Wang et al., 2021), while IRz is more significant for higher salinity ranges (Fig. 8B).
mitigate the IR\, , below TDS values of ca. 11,000 meg.L—! (Fig. S.6B). The different IR response to

salinity below and above these salinity thresholds (TDS € [1,000; 11,000] mg.L—! in Fig. 8A and B) is attenuated when both
6- and 7-methyls are included in the ratio over 5-methyls (i.e., IRg+7me and IR 7M. indices, Fig. 8C and D). Mainly, lake

—salinity relationshi

salinity conditions may impact the in sifu bacterial community responsible for the 6- and 7-methyl over-abundances (Liang
et al., 2024). The ACADB validates the use of IR§, 7\, as a salinity proxy proposed by Wang et al. (2021), in complement to
previous proxies such as dinoflagellate cysts (Leroy et al., 2013), diatoms (Unkelbach et al., 2020), archaeol, and caldarchaeol

ecometric (Kou et al., 2022) or extended archeol (So et al., 2023).
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4.1.5 Controls of pH on isomer ratios and cyclisation degree

Historically, brGDGT-based pH reconstructions were mainly conducted through cyclisation indices (e.g., CBT’ and CBT5 e,
De Jonge et al., 2014). However, more and more studies highlight that the isomer ratio is also well correlated with pH changes
(Dang et al., 2016a; De Jonge et al., 2024a). From the ACADB, it appears that pH impacts the isomers more than the cyclisation
content (i.e., IRgne seems to be a more reliable proxy for pH than CBT’ in ACA, Figs. 7 and 8). This is consistent with the
Inner Mongolian aridity transect study (Guo et al., 2021). At the global scale, CBT’ presents a slightly higher correlation
with pH than IRgpe, but the sample type effect is stronger on CBT’ (i.e., calibration for different sample types are more
different in slope and intercept for CBT’ than IRgn e, Raberg et al., 2022a). IRgne may be more robust to infer past pH in
a context of shifting sedimentary flux. Particularly, panels (A) and (B) from Fig. 7, show that the cyclisation indices suffer
fromra-correlation-disruption-for atkalinesotls—Heresa-threshold-exhibits a piecewise, dual-slope response across a threshold,
indicating a nonlinear, threshold-dependent relationship rather than a single unified pH control, The threshold appears after
pH > 7.3 (threshold found by sensitivity analysis, Fig. S.2), in line with a pH > 7.5 threshold demonstrated in Guo et al. (2021).
At the gtebal-Chinese soils scale, including samples from arid and humid environments, CBT’ correlation is very strong with
pH but not with MAP (Wang et al., 2019). It may show that the alkalinity effect on cyclisation is not enhanced by soil aridity
but by other phenomena. In Guo et al. (2021) where pH and aridity are associated, the more arid conditions do not relate to
increasing cyclisation number. Our results are in line with the study of Guo et al. (2021) who supports the use of IRgne for pH
reconstruction. This consideration is important to keep in mind mainly for past brGDGT-based reconstructions carried out in
shallow lake (with important soil influx) and loess-palaecosol sequences (Lin et al., 2024), since the effect on lacustrine samples

is still unclear.

The IR outperforms the CBT for tracking pH because IR shows a single, consistent correlation with pH, whereas CBT .

4.2 Assessing confounding factors combined effects

Although temperature, both MAAT and MAF, remains a major bioclimate parameter controlling the brGDGT distribution, we
have shown that other eonfoundingfactors-environmental variables such as aridity and salinity are at least as important in
explaining the brGDGT distribution from the ACADB. Particularly, confoundingfactors-these variables do not only impact
their related indices used as proxies (e.g., MAAT with MBTYj,,, salinity with IR, 7). etc.) but also other indices (e.g., the
ACA MBTY,,, is also impacted by salinity). However, these eenfoundingfactors are typically studied independently, while in

soil and lacustrine systems, multiple interacting factors complicate the understanding of their combined effects.
4.2.1 Combined effect of pH with other eenfeunding-controlling factors

Several complex interactions drive the pH effects on brGDGT assemblages. For example, pH is more related to the soil organic
matter content than salinity in arid contexts (Muhammad et al., 2008), and in ACADB there is no correlation between pH
and salinity for soil samples (Fig. 5). Similarly, humid environments are more likely to have organic-rich soil, influencing

the pH (Liang et al., 2019). However, isomer ratios are influenced by both these physicochemical soil properties —(Fig. 8).
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The alkalinity interaction with aridity has been already reported from Chinese brGDGT soil studies (Yang et al., 2014; Dang
et al., 2016b). They show that the major brGDGT compounds are more diverse in arid than humid soils, implicating different
correlations between brGDGT indices, pH, and MAAT for dry and for wet soils (Wang et al., 2019). Although the brGDGT
cyclisation response to pH is globally well constrained, it is not the case in Chinese soils (Wang et al., 2019), but it is the
case in northern Iran (Duan et al., 2022). Chen et al. (2021) introduced the use of soil water content as an intermediate
parameter to clarify the pH-aridity interaction impact on brGDGT distribution. As a consequence, the brGDGT-based climate

reconstructions of past archives in ACA need to be interpreted differently for alkaline samples.
4.2.2 Salinity effect and its relationship with aridity and sample types

The Procrustes rotation analysis performed on the ACADB reveals a different control of the environment on the brGDGT dis-
tribution from soil and from lacustrine origin. Particularly, in Fig. SD and E, the salinity and Al were associated for lacustrine
samples (i.e., the more humid the climate, the fresher the water), but surprisingly we observe the opposite association for soils.
This could be due to the textural properties of soils, including the fact that salinization is more likely in clay than in sand
(Muhammad et al., 2008). In this context, the numerous sandy desert samples in the ACADB from hyper-arid conditions do
not have high salt content. For ACADB lacustrine samples, aridity enhances the salt water content, which is consistent with
actual observations (Williams, 1999) as well as during the Holocene (So et al., 2023). The salinity effect on notreealibrated
temperature reconstruction may result in a temperature over estimation of more than 2 °C (Liang et al., 2024). Although the
salinity effect on 7-methyl compounds is more and more understood for lacustrine samples (Wang et al., 2021; Kou et al., 2022;
So et al., 2023; Liang et al., 2024), it remains understudied for soil samples. We have shown that the ever-representativeness
average fractional abundance of 7-methyl brGDGTs is higher for lacustrine than soil samples. In soils, primarily the 6-methyl
rather than the 5-methyl isomers seems to react to salinity, but this could be due to the combined effect of aridity, pH, and salin-
ity. Salinity inferred by TDS is a bulk physicochemical parameter, and therefore, more details about the soil ionic composition
are needed to refine the understanding of the salinity eenfeunding-controlling factor effect (Chen et al., 2022; De Jonge et al.,
2024a).

4.2.3 Combined effects of climate aridity on soil moisture, pH, and its consequences on the brGDGT distribution

In the ACADB, it appears that aridity enhances the abundance of cyclised and 6-methyl compounds over Ia, Ila, and IIla (Figs. 7
and 8). This effect of aridity on both isomerisation (i.e., favouring 6- over 5-methyls) and cyclisation (favouring compounds
with high internal cyclisation number) is a well-known effect in Arid Central Asia, showing the complex interaction between
arid climate conditions, soil moisture, and pH (Dang et al., 2016b; Chen et al., 2021). Since the aridity effect on brGDGT is not
directly settled by precipitation (Wang et al., 2019) but rather by the soil water content (Sun et al., 2019; Chen et al., 2021), this
could explain why the AI correlation with IRg\e and CBT’ is not as strong for lakes as it is for soils (in which aridity directly
impacts soil water content). Soil water content shows a clear impact on arid environments from both Chinese (Dang et al.,
2016b) and African (Loomis et al., 2011) soils. Since the soil water content is not a limiting factor for the bacterial community

in soil, the diminution of oxygen content in soil may be responsible (Li et al., 2018). Liang et al. (2019) suggest that this
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effect is particularly important in hyper- to semi-arid environments where bare soils (without vegetation cover) are dominant.
In contrast, in humid environments, the important vegetation cover changes the soil organic content and, by extension, the soil

pH. These physicochemical causal links could explain the aridity’s combined effects on ACA brGDGT distribution.
4.2.4 Toward a seale ranking of eonfounding-controlling factors strengthimportance

Altheugh-several-confoundingfactors-We have shown that brGDGT—environment relationships are influenced by several

biases linked to confounding factors (Sect. 4.1; Figs. 5, 6, 7 and 8). In addition, interactions among these factors further

step to improve the reliability of brGDGT's as past environmental proxies is

to rank the relative importance of these controlling influences. Although major environmental controlling factors have been
identified worldwide-globally (Naafs et al., 2017a; Dearing Crampton-Flood et al., 2020; Raberg et al., 2022a), itseems-that

the-dominance-order-of-these-biases-is-study-dependent—At-a-their dominance hierarchy appears to vary by study region and

archive,

At the global scale, temperature is the-primary-factorconsistently the primary control, followed by pH, independent-of-the

regardless of sample type (Raberg et al., 2022a). This general ranking (temperature as primary factor and pH as secondary one

holds across environments, but sample type still modifies regression parameters: slopes and intercepts differ between soils

eats, and lake sediments (Naafs et al., 2017a, b). Then, s

alse-tmpaets—soil-based-additional influences depend on specific sample type. For example, seasonal effects are strongest in
lake-based calibrations (Dang et al., 2018; Martinez-Sosa et al., 2021; Raberg et al., 2021, 2022a). Seasonality also affects soil

calibrations (Deng et al., 2016; Dearing Crampton-Flood et al., 2020), but it has been shown that the monthly temperature fluc-
tuations reported by brGDGT indices were similar to the average temperature (Cao et al., 2018), mainly due to the slow turnover

of brGDGT production and deposit in soil samples (Weijers et al., 2011). In-any-case;-seasonality-is-presented-as-one-of-the

studied-at-Qverall, current evidence indicates that temperature and pH dominate brGDGT distributions, followed by sample
type and proxy-specific modifiers such as seasonality, salinity, and aridity.

Our ACADB data suggest a different ranking of controlling factors for Arid Central Asia, and drylands more generally.
Based on the MANOVA results (Table 3), salinity emerges as the dominant factor after temperature, followed by sample type,
pH, and aridity, all contributing significantly to brGDGT variance. However, this ranking is derived from a limited subset of
samples because salinity and pH measurements do not cover the entire dataset (Fig. 5). Moreover, the present approach is
further limited by the ex-situ measurement of salinity and pH (Fig. 2). Ongoing microbial metabolic activity during sample
transport and storage may have altered in-situ pH conditions prior to laboratory analysis, potentially biasing measured values.
Nevertheless, the ACA ranking clearly differs from the global hierarchy. Previous regional and local seates-
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At-the-Chinese—seil-sealestudies have likewise reported differences from the global-scale rankings. In Chinese soils, pH

is the dominant controlling factor on brGDGT distribution (even befo perature, Wange et al.. 2019),while focused on
rimary control on brGDGT distributions, surpassing temperature (Wang et al., 2019). In hyper- to semi-arid envi S5
665 the-settings, annual precipitation and aridity become more impeortant-than-pH-and-influential than either pH or temperature

(Duan et al., 2022). In-theirstudy—all-seil-samples—fromnortherntran-area ne-and-characterized-by-hich-temperature:

670

samples+rom-Tor lacustrine archives on the Tibetan Plateau, salinity is the firstconfounding-leading controlling factor (Liang

et al., 2024). The-difference-in-Such site-specific confoundingfactors-is-supporting-variability in factor importance supports
the idea that community shiftis-more-determinant-shifts, rather than physiological plasticityte-explain-the-brGDGTresponse-,

675 primarily govern brGDGT responses to environmental parameters (Guo et al., 2021). This idea-is-alseo-supperted-by-the-observed

appheability-further underscores the need to evaluate controlling factors at local to regional scales when assessing the applicabilit
680 of brGDGT-based indices.

4.3 brGDGT-based climate calibrations for drylands

4.3.1 Temperature calibration errors

As aresult of the multiple controlling factors influencing the response of brGDGTS to climate, and their complex interactions:

685 Hero—we disess-tho-ossibility-of-applying and_developing_spociic_calibration for-drylands_mainky_focusing_on_spocit
combined effects, traditional temperature calibrations exhibit substantial errors when cross-validated using the ACADB dataset
(Fig. 10). This is _true for both the Mean Annual Air Temperature (Fig. 10A) and the mean air temperature of Months
Above Freezing (Fig. 10B). At the ACADB scale, local calibrations show a significant average bias, producing either overl
warm (Yang etal., 2014; Sun et al., 2011; Thomas et al., 2017) or overly cold estimates (Wang et al., 2016). Although global

690 calibrations reduce this offset, they still display wide dispersion (ranging from —20 to 35 °C). These large errors persist across
various statistical approaches, including quadratic and multiple linear regressions, MBT¢,,,-based, and Bayesian calibrations.
Altogether, these findings highlight the need for developing dedicated calibrations for dryland environments. particularly
focusing on temperature and precipitation ealibrations—for-speeific-sample-groups-reconstructions tailored to specific sample
types (e.g., freshhypersalinesete—freshwater vs. hypersaline systems).
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4.3.2 Aridity and precipitation calibrations

The particular arid conditions in ACA have eenstrained-led several studies to propose brGDGT-based precipitation reconstruc-
tions (mainly MAP) in parallel or instead of MAAT calibrations (Dugerdil et al., 2021a; Duan et al., 2022). In both cases,
the statistical relationship between MBTY, . or MBTY,,, matched precipitation better than temperature, and MR calibrations
based on brGDGT fractional abundances were proposed. However, precipitation was inferred by MR calibration or cyclisation
indices rather than by methylation indices (Dugerdil et al., 2021a; Duan et al., 2022). Moreover, even if no proper calibration
is given, Lin et al. (2024) have shown a stronger linear correlation for MBTY, ;, with MAP than MAAT, especially for Chinese
arid soils, giving specific interpretation for brGDGT loess-palaeosol sequences. A similar strong correlation with soil water

content was also found in arid soils (Dang et al., 2016b).
4.3.3 brGDGT-temperature calibration

Our multivariate (Fig. 5) and univariate (Figs. 6 and +18) results have shown that several confounding factors can at least influ-
ence or at worst reverse the palaeothermometer calibration trends in drylands. The results of analyses of variance particularly
evidence the influence of salinity and sample type on brGDGT FA. Mixing soil and lacustrine samples for such calibration
raises the risk of misleading correlations. In ACA, MBTY,, -based palacothermometer should be applied carefully or, even
better, it should be recalibrated by confounding factor classes. Mainly, the ACADB analysis of variance carried out on several
brGDGT indices reveals that the sample type effect is weaker than salinity and as strong as pH. If the sample type effect is al-
ready leading to particular calibration (i.e., soil, peat, and lacustrine ones) in global (De Jonge et al., 2014; Naafs et al., 2017a, b;
Dearing Crampton-Flood et al., 2020; Martinez-Sosa et al., 2021) and regional calibrations (Sun et al., 2011; Yang et al., 2014;
Chen et al., 2021), leading to specific peat, lake, and soil calibrations, caution needs to be taken with sample type calibrations
in drylands. This is because, first, the sample type information for each sample is not always an indisputable observation. La-
custrine samples can be undoubtedly determined only from a deep lake (which is rare in drylands). Most ACA lakes from the
lowland basin are temporary ponds, seasonally drained, while several soil samples come from solonchak (i.e., saline rangelands
covered by halophytic vegetation and periodically flooded, Gintzburger, 2003). For high-elevation lakes, due to their low level
of water, the amount of soil influx from water springs and aerial dust is important. They also commonly have a semi-peatland
behaviour due to the hydrophytic vegetation colonisation from belt to lake centre in the context of shallow water level (Cromar-
tie et al., 2020; Robles et al., 2022). Among the difficulties encountered in reconstructing accurate temperatures with brGDGT,
the temperature offset between global calibration and study site climate context appears. In most cases, MAAT or MAF in-

ferred by brGDGT shows an important shift between actual MAAT and reconstructed MAAT for the lacustrine tep-eeres-core

tops (Martin et al., 2019; Dugerdil et al., 2021b; d’Oliveira et al., 2023). Using a local ealibration—(Dugerdil-et-al;202ta)-

or-locallyreealibrated-global-calibration(Chen-et-al5202Hor regional calibration (Dugerdil et al., 2021a; Chen et al., 2021),
generally reduces this offset. Comparing pollen-based and brGDGT-based temperatures also reveals that the brGDGT-MAAT

relationship has wider temperature variation over the same time span (Robles et al., 2022; d’Oliveira et al., 2023).
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4.3.4 Confounding factors effect on temperature calibrations

While MBTY%, .-based temperature calibrations are commonly specified only based on the sample type (i.e., separate calibra-
tions exist for soil, peat, and lacustrine samples), we have shown previously that the statistically most influential confounding
factor in the ACADB was salinity before pH and sample type. Mainly, the Procrustes rotation analyses show similar multivari-
ate spaces for soil and lacustrine samples (Fig. 5C and F). Based on this finding, specific calibrations based on salinity classes

are tested on Fig. 11. The same tests were applied for pH (Fig. S.7), aridity (Fig. S.8) and sample type (Fig. S.9).

classes were based on a classification adapted from (Rusydi, 2018). The TDS cut-offs were refined using sensitivity analysis
and are reported in Table S.3. In Fig. S.7, all adjusted regressions — except for hyposaline samples — perform better than

the global model (i.e., the full ACADB), espeeiallyforfresh-waterhypersalineand-saline-with the largest improvements for
freshwater, hypersaline, and saline samples (R?,q; of 0.61, 0.49, and 0.37, respectively). This method principally improves the

statistical result for extreme classes. However, this improvement could be artificial and only produced by statistical biases such
as the dataset size or the reduction of variance among groups. To ensure relevant salinity-specific calibrations, the z-statistic
checks differences between regressions. Fresh calibration has a different slope than hyposaline and the whole dataset with
z(a) = 2.7%%* and 2.5%*%*. Saline samples share a similar slope with hyposaline but a different offset with z(b) = -2.2**. No
conclusion can be made for hypersaline due to high variance. Saline and likely hypersaline have a similar slope to hyposaline
but a significantly higher offset (z(b) = -2.8*** with hyposaline, z(b) = 2.3*** with the whole dataset). This analysis allows
for ACA MBTY,,, calibration based on salinity classes [Eq. (6)].

MAATEy e, = —6.37 + 28.03 x MBTY

s}

Me» (n=61,R? 4; = 0.61, RMSE = 4)
MAATS,, = —11.1+23.17 x MBT}%y, (n = 45,R? .4; = 0.32, RMSE = 5.22)
MAATHypersal, = —8.33 +22.36 x MBT};, (n = 17,R?,4; = 0.47, RMSE = 3.88)

All the linear models in Eq. (6) have a p-value < 0.001 when tested using 20,000-permutation significance tests.

MAAT pyeqn, = —6.37 + 28.03 X MBThyy, (n = 61, R?,q; = 0.61, RMSE = 4) (6.1)
MAAT ) = ~6.28°+20.19 % MBThye, (n =761, = 027, RMSE =562 ©3)
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4.4 Recommendations for brGDGT applications to past records in drylands
4.4.1 Differential brGDGT sources effect in the past

H-one-of the-solutions-to-reduce-biasesfor-Developing calibrations for specific sediment types can help reduce biases in
brGDGT-based climate reconstructionsin-the-pastis-to-leadsedimenttype particutar brGBGTealibrations; some-tricky-issues,
but some challenges remain. (1) The sediment type characterisation has to be reliable. Several studies attempt to use brGDGT
themselves as a proxy of brGDGT sources based on mixing models (Martin et al., 2019) or classification machine learning
approaches (Martinez-Sosa et al., 2023; Cromartie et al., 2025). Other proxies of the sample type could be a more reliable
solution to evaluate the environmental condition of brGDGT deposit (Robles et al., 2022; d’Oliveira et al., 2023). (2) The
brGDGT influx is not always related to the sediment deposit flux itself. In some particular conditions, a lake can record soil-
produced brGDGT coming from the watershed instead of in-situ produced brGDGT (Zhao et al., 2021; Robles et al., 2022).
In some other conditions, the in-situ production is dominant in the brGDGT assemblage (Wang et al., 2021; Kou et al., 2022).
(3) When sediment types vary along a core, accurately characterizing them becomes challenging, making it difficult to apply
a single brGDGT-based climate calibration. For instance, using a uniform lacustrine calibration may yield inconsistent results

when applied to both hypersaline and freshwater lake samples, as illustrated in Fig. 11.
4.4.2 Confounding impacts and correction in the past

Then, the past sediment type characterisation appears to be insufficient to reliably apply selective brGDGT-based climate
calibrations. The main confounding factor effect has to be taken into account. However, these confounding factors are study-
context dependent: the saturation effect of the MBTY,,, and the vegetation buffer in tropical areas (Pérez-Angel et al., 2020;
Higgi et al., 2023), the important seasonality in the Arctic (Raberg et al., 2021), soil moisture and salinity impact in drylands
(Fig. 11; Dang et al., 2016b; Kou et al., 2022), etc. A second limitation of this grouping factor selective calibration approach
in the past is that the confounding factor impact is not always stationary over time. For instance, salinity (So et al., 2023) or
vegetation cover (Robles et al., 2022; d’Oliveira et al., 2023) dramatically shifted in the past. It is particularly the case during
the Holocene in ACA (Chen et al., 2024). In this case, inferring confounding factor covariation has to be considered. Several
studies attempt to track these covariations using brGDGT-based confounding factor proxies, such as isomer ratios (Liang et al.,
2024). Some others use a multi-proxy approach (e.g., pollen or chironomids) to independently infer the confounding factor
variation trends (Dugerdil et al., 2021a, b; Robles et al., 2022; d’Oliveira et al., 2023).

To improve the regression between MBT'5Me and MAAT, we apply calibrations using different grouping factors, mainly
salinity (Wang et al., 2021, Fig. 11), but also pH and aridity (Figs. S.7 and S.8). Chen et al. (2021) split the GDGT dataset
by surface sample pH (threshold of pH = 7), which is reflected in the ACADB CBT’-pH relationship (Fig. 7A and B) and
reported in arid soils (Guo et al., 2021). Similarly, Wang et al. (2021) improved the MBT’5Me-based temperature calibration
for Tibetan lacustrine samples by including salinity, but quantitative values for these factors are unavailable for past brGDGT

sequences.
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One of the solutions to fulfil this lack of information about the deposit system in the past is to make differential calibrations
not on confounding factor values but on brGDGT-based proxies of these confounding factor values. Such an approach has
been tested in Véquaud et al. (2022), using the Community Index (De Jonge et al., 2019) with mitigated-limited regression
improvement. In Véquaud et al. (2022), the two clusters based on the Community Index threshold were thought to improve
the temperature reconstruction by showing specific regression for each of them. However, the two sub-groups give mitigated
determination coefficient (R? of 0.20 and 0.71). More recently, Liang et al. (2024) propose to use the isomer ratio (since this
index includes both salinity and pH effects) to constrain MBTY,; -based MAAT calibration with more reliable results in saline
lakes. All these attempts are still incomplete to totally correct the brGDGT-based temperature reconstruction bias, even if they
significantly reduce the over-estimation of MAAT. In any case, a careful examination of the brGDGT distribution from past

archives is essential to minimize errors resulting from the inappropriate selection of applied calibrations.

5 Conclusions

The brGDGT-based palaeothermometer is one of the most promising approaches to improve our understanding of past climate
in different regions of the world. However, based on the comparison between an ACA-centred database and the world surface

sample database, our study has shown that:

1. Drylands suffer from particular climate and physicochemical properties of soils and lakes, enhancing the impact of

confounding factors on brGDGT-based MBTY, . and fractional abundances’ relationship with MAAT.

2. Among the eonfounding—controlling factors (i.e., pH, aridity, salinity, and sample type), salinity is the most dominant,
followed by sample type and pH. However, aridity plays a major role in the brGDGT variance among the dataset.
Moreover, these biases cannot be studied individually since their interactions are not always similar. For instance, the

salinity control on brGDGT isomerisation is different in soil and lacustrine deposit contexts.

3. In order to use brGDGT as a proxy for sediment physicochemical conditions, it appears that the IR§, 7\ is the best
index of salinity, while IRgnz, is the best for pH reconstruction despite its saturation effect for pH < 4 and pH > 10. For

aridity, drawing A(MBTY,,,, MBTg,,,) gives a fairly reliable estimate.

4. MBTY,,, relationship with MAAT is very limited in ACA, especially for lacustrine samples, mitigating the applicability
of palacothermometers based on methylation indices. However, the specific sub-calibrations for different environmental
classes (mainly salinity and aridity classes) dramatically improve the linear regression strength. This report paves the
way for a specific calibration application on past brGDGT sequences based on environmental classes inferred or by

brGDGT indices or by other independent proxies (e.g., pollen or chironomids).

Mainly, even if the brGDGT signal in drylands such as ACA is mitigated and the number of eenfounding-controlling factors
is sometimes difficult to unravel, it remains a very promising tool to improve our understanding of both past climate and

future forecasting (Tierney et al., 2020). However, some work still remains in process, including the increase of arid sites in
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the database (both for the calibration process associated with exhaustive physicochemical and bioclimatic properties of the
samples and for the past brGDGT sequences enhanced by a multi-proxy approach) and the development of a machine learning

approach, which promises a more powerful unravelling process of eonfetnding-controlling factor comprehension.
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Figure 2. Methodological workflow followed in this study: from the first methodological step (input data — left-hand side) to the final results

and perspectives. Each column of boxes represents a methodological step carried out for the data process (A) and the statistical analysis (B).
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Figure 3. Distribution of individual brGDGTs grouped by aridity index, following the five aridity classes (Nash, 1999) in the ACADB for
soil (A) and lacustrine samples (B). The brGDGT fractional abundances (FA) are displayed with * for the 6-methyl and ™ for the 7-methyl

isomers. The hinges of the boxplots show the 25% (Q1) and 75% (Q3) quantiles, the middle horizontal line indicates the median, and the

whiskers extend to the most extreme data points that lie within 1.5 x the inter-quartile range (i.e., Q3 - Q1). Points beyond the whiskers are

considered outliers and are not shown here. The compounds of lowest abundances (mean value below 5%) are zoomed on panels A1, A2, B1

and B2.
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Figure 5. Multivariate analyses of the ACA brGDGT surface samples highlighting the brGDGT distribution using Principal Component
Analysis (PCA) for soil (A) and lacustrine (B) samples, and (C) the Procrustes rotation analysis to compare the distribution of the brGDGTs
along the loadings of the two PCAs (i.e., multivariate configurations similarity assessment). Then, Redundancy Analyses (RDA) track the
main environmental drivers of soil (D) and lacustrine (E) sample distribution, and the Procrustes rotation analysis compares them (F). Anal-
yses were performed only on the 5- and 6-methyl due to the few number of 7-methyl measurements in the database. The most contributing
environmental drivers (Aridity Index, salinity, mean air temperature of Months Above Freezing, Mean Annual Air Temperature, Mean Pre-
cipitation of the Cold Quarter, pH and Altitude) were selected using a Variance Inflation Factor test (i.e., VIF < 10 for all). The PCA is
performed on the whole ACA dataset (nsoi1 = 400 and nj.c. = 361), while the RDA only covers 113 soil and 67 lacustrine samples due to

scarce pH and salinity measurements available. The colour code for dots corresponds to the five aridity classes.
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Figure 8. Salinity-related indices: IRsme, IR7Me, IR647Me and IRG 7y, are the most ubiquitous brGDGT-based indexes used to infer

salinity in ACA. The indices are compared to salinity (A to D), the Aridity Index (E and F), MBT%y,, and MBT§,;,(G and H). The colours

refer to sample aridity classes. Two groups per sample type (i.e., lacustrine and soil) are used to infer linear relationships. The grey hexagonal

bins show the sample density from WDB. Al and salinity are displayed on a log1 scale. R? values are shown only for statistically significant

regressions (p<0.05), while p-values below 0.001, 0.01, and 0.05 are indicated with ***, ** and *, respectively.
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Figure 9. Illustration of the approach comparing MBT'5Me and MBT’6Me to investigate interactions between MAAT, aridity, and sample
type. Boxplots of both indices are shown by aridity classes (see Fig.1 for colour codes), separately for soil (A) and lacustrine (B) samples.
Panel C displays the relationship between A(MBT'5Me, MBT'6Me) and the Aridity Index for soil samples, across 14 groups of Mean
Annual Air Temperature, each containing approximately 40 samples. The orange line indicates the overall regression trend. Corresponding

univariate regressions with Al are shown in Fig. S.5.
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Figure 10. Temperature residuals derived from 15 different brGDGT-temperature calibrations for the Mean

Annual Air Temperature (A) and the mean air temperature of Months Above Freezin B). The different

calibration methods, formulas and RMSE are available in Table S.6. For each calibration original publication, see

Sun et al. (2011); Peterse et al. (2012); De Jonge et al. (2014); Yang et al. (2014); Wang et al. (2016); Naafs et al. (2017a, b); Thomas et al. (2017)
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Figure 11. Effect of salinity (i.e., the TDS of each surface sample) on the linear relationship between temperature (here MAAT) and the

MBT5),.. Fhe-analysisis-based-onPanel A shows the ful-ACADB-Based-onresults of the z-statistic tests assessing significant differences in
slopes and intercepts between salinity classesti-e--. Panel B presents linear regressions for fresh, hyposaline, saline, and hypersaline jclasses,
different-temperature-calibrations-based on the degree-full ACADB. For each salinity group, temperature calibrations of methylation—with
the form MAAT = a x MBTjy,, + b are proposed (B). Hﬁﬂg—theThe Z-statistic wﬁh—&s—p—va}u&method method (Clogg et al., 1995) sevaluates the

significance of the-differenee-between-the-stopes-slope (a)
intercept (b) differences —Fer-across two classes (grey lines link the WM&M&E p-values we-have-of

and

the z-statistic are displayed with *** for p-p < 0.01, ** for pp < 0.05, and * for pp < 0.1.
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