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Abstract. Past temperature reconstructions offer valuable insights into the impact of climate change on the global climate-

human-vegetation system. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are recognized as effective temperature

proxies, particularly in lakes and peatlands, where they are well preserved. However, their reliability as palaeothermometers

can be compromised by factors beyond air temperature, especially in drylands. This study introduces the
:::::
further

::::::::
explores

:::
the

::::::
recently

::::::::
compiled

:
Arid Central Asian (ACA) brGDGT surface Data Base, a regional dataset consisting of 162 new

:::
761 surface5

samples from the drylands of ACA, in addition to 599 previously published samples. The distribution of brGDGTs in relation to
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climate and environmental variables was analysed to explore their potential as reliable temperature proxies, mainly focusing on

brGDGTs methylation (MBT), cyclisation (CBT), and isomer (IR) indices. The brGDGT-based palaeothermometer is a promis-

ing tool for understanding past climates, but our comparison between an ACA-centred database and a worldwide continental

surface sample database reveals several challenges. Drylands exhibit extreme climate and soil/lacustrine properties, amplifying10

the impact of confounding factors on brGDGT-based relationships with mean annual air temperature. Salinity emerges as the

dominant factor influencing brGDGT variance, followed by sample type, pH, and aridity, all of which contribute significantly.

These factors interact in complex ways, with the salinity effect varying between soil and lacustrine deposits. For sample physic-

ochemical conditions, the IR′
6+7Me index is best for salinity, and IR6Me is most suitable for pH reconstruction. Despite this, the

MBT′
5Me-temperature relationship is limited in ACA, particularly for lacustrine samples, and MBT′

6Me does not offer a better15

solution under hyper- to semi-arid conditions. Sub-calibrating models for specific environmental conditions such as salinity

and aridity improves the accuracy of temperature reconstructions. Furthermore, the difference between MBT′
5Me and MBT′

6Me

provides a promising proxy to assess aridity. Although the brGDGT signal in drylands is influenced by multiple confounding

:::::::::
controlling factors, it remains a valuable tool for understanding past climate and environmental conditions, especially when

accounting for the complex interactions between these factors based on each study’s unique physicochemical and bioclimatic20

context. Further research, incorporating a broader range of surface samples alongside comprehensive soil and climate data,

holds the potential to enhance the accuracy of brGDGT-based climate reconstructions.

1 Introduction

Given the uncertain implications of the anthropogenic climate change on the environment, hydrology and human society,

reconstructions of the past climate temperatures provide a comprehensive perspective on the impact of climate change on25

the climate-human-vegetation system (Tierney et al., 2020). Branched glycerol dialkyl glycerol tetraethers (brGDGT) are

new promising temperature proxies that have been used on continental archives (Weijers et al., 2007; Peterse et al., 2012;

De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020; Raberg et al., 2021), especially since these lipid compounds

produced from bacterial membranes are ubiquitous (Raberg et al., 2022b), well preserved on past archives of
:::::::
retrieved

:::::
from

lakes (Dang et al., 2016b; Wang et al., 2021; So et al., 2023) and peatlands (Naafs et al., 2017a, b; d’Oliveira et al., 2023).30

From laboratory experiments (Halamka et al., 2023), simulations (Naafs et al., 2021), but especially from soil surface samples

(De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020) or lake surface sediments (Sun et al., 2011), the
:::
The number of

methyl groups on the aliphatic chain of brGDGT changes with air
:::::::
ambient temperature, as shown by Weijers et al. (2007)

and De Jonge et al. (2014)
:
,
:::::::::
permitting

::::
their

:::
use

:::
as

:::
past

::::::::::
temperature

::::::
proxy. The relationship

:::::::
between

:::
the

::::::::::
temperature

::::
and

:::
the

:::::::
brGDGT

::::::
degree

::
of

::::::::::
methylation is clear and linear. The diverse

:
,
::::
from

::::
both

:::
soil

:::::::
surface

::::::
samples

::::::::::::::::::::::::::::::::::::::::::::::::::
(De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020)35

:::
and

::::::::
lacustrine

::::::
surface

:::::::::
sediments

::::::::::::::
(Sun et al., 2011).

:::::
Same

::::::::::
relationship

::
is

::::::::
observed

::::
from

:::::::::
laboratory

::::::::::
experiments

:::
and

::::::::::
simulations

:::::::::::::::::::::::::::::::::
(Naafs et al., 2021; Halamka et al., 2023)

:
.
:::
The

:
applications of brGDGT-based palaeothermometers cover a wide range of

::::
span

::::
many

:
environments and archives: from tropical (Pérez-Angel et al., 2020; Häggi et al., 2023) to arctic lakes (Raberg et al., 2022a)

; from acid (Dang et al., 2016a)
:
,
::::::::
including

::::::
tropical

:
to

:::::
Arctic

::::
lakes

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pérez-Angel et al., 2020; Häggi et al., 2023; Raberg et al., 2022a)
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:
,
:::::
acidic

::
to

:
alkaline lakes (Yang et al., 2014; Dang et al., 2016a); and also from loess-palaeosol sequences (Lin et al., 2024),40

freshwater (Dugerdil et al., 2021b; Robles et al., 2022)
:::::::::::::::::::::::::::::::
(Dang et al., 2016a; Yang et al., 2014),

:::::::::
freshwater to saline lakes (Wang et al., 2021; So et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dugerdil et al., 2021b; Wang et al., 2021; Robles et al., 2022; So et al., 2023)

:
,
:::
and

::::::::
sediment

::::
from

::::::::::::::
loess–palaeosols

:::::::::
sequences

:::::::::::::
(Lin et al., 2024). However, the change in the relative proportion of brGDGTs does not depend solely on the air temperature,

which can significantly undermine the reliability of the palaeothermometer
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., pH, precipitation; Duan et al., 2020; Chen et al., 2021; Duan et al., 2022)

.45

The influence of pH on brGDGT distribution was initially identified and thoroughly constrained (Weijers et al., 2007). pH

primarily influences the relative number of 5- and 6-methyl isomers and the number of cyclisations along the aliphatic chain,

while temperature affects the number of methylations (e.g., higher amount of tetramethylated compounds over warm envi-

ronment, Sun et al., 2011; Peterse et al., 2012; Dang et al., 2016a; Raberg et al., 2022b). De Jonge et al. (2014) present the

application of the index of methylation of branched tetraethers (MBT′
5Me) index associated with mean annual air temperature50

(MAAT), the isomer ratio (IR), and the cyclisation of branched tetraethers (CBT′
:::::::
CBT5Me) indices related to pH. These two

important indices are now widely adopted to calibrate the reconstruction of pH and MAAT in the past by linear relationships.

The sample type, including peat, soil, river, marine, loess, and lacustrine samples, influences the brGDGT-temperature relation-

ship (Loomis et al., 2011; Martínez-Sosa et al., 2023). At the global scale, various specific calibrations between MBT′
5Me and

MAAT have been suggested for soil (De Jonge et al., 2014; Chen et al., 2021), peat (Naafs et al., 2017b), and lacustrine sam-55

ples (Sun et al., 2011; Zhao et al., 2021). The influence of the calibration database size and the biogeographical characteristics

of brGDGT distribution has also been examined (Dugerdil et al., 2021a), and several local or regional calibrations allow for

more accurate MAAT reconstructions in past archives (Chen et al., 2021). Subsequently, an increased number of confounding

factors have been identified, e.g., soil moisture (Dang et al., 2016b) and sample type (e.g., soil or lacustrine; Martin et al.,

2019; Martínez-Sosa et al., 2021; Martínez-Sosa et al., 2023); temperature seasonality (Deng et al., 2016; Dearing Crampton-60

Flood et al., 2020), or vegetation (Häggi et al., 2023). Thus
:::
For

:::::::
instance, the lacustrine samples have lower abundances of

pentamethyls
:::::::::::::
pentamethylated

:::::::::
brGDGTs

:
than soil samples (De Jonge et al., 2014; Martin et al., 2019; Raberg et al., 2022b),

while peat samples are dominated by tetramethyls
:::::::::::::
tetramethylated

::::::::
brGDGTs

:
(Naafs et al., 2017a). The relationship between

brGDGTs and MAAT may exhibit a bias toward the summer temperatures, particularly in soils and lakes that experience a

long frost period (Deng et al., 2016; Dearing Crampton-Flood et al., 2020). Vegetation influences the distribution of brGDGTs,65

likely due to the higher soil organic content found in vegetated soils compared to bare soils (Liang et al., 2019). This leads to a

differential
:::::::
different

::::::::::
temperature

:
relationship between brGDGTs

:
in

::::
soils

:
and MAAT across different vegetation communities

(Häggi et al., 2023).

Confounding
:::
The

:::::::::
interaction

::::::
across

:::::::::
controlling factors introduce various biases depending on geographic and climatic con-

texts. While they have been extensively studied in tropical regions and high-latitude or high-altitude environments (Pérez-Angel70

et al., 2020; Raberg et al., 2021; Zhao et al., 2021; Häggi et al., 2023), they remain poorly constrained in semi-arid to hyper-arid

areas (Yang et al., 2014; Duan et al., 2020; Guo et al., 2021). In drylands, limited and erratic precipitation is the primary water

input, critically influencing soil moisture. This persistent water deficit intensifies aridity, which is defined by the imbalance

between precipitation and evapotranspiration (Trabucco and Zomer, 2018). Such bioclimatic stress affects soil chemistry, often
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Figure 1. Distribution map of the global surface samples presented in this study (WDB, A) followed by the extent of the Arid Central

Asian brGDGT surface Data Base (ACADB, B) and local focus on (C) Qilian Shan and (D) Caucasus surface samples. (E) distribution of

brGDGT sampling sites in the ACA bioclimate space. The elevation map comes from SRTMDigital Elevation Model version 4.1 (Jarvis et al.,

2008), the Aridity Index from CGIAR (Trabucco and Zomer, 2018) and the extracted climate parameters from worldclim2.1 (Fick and

Hijmans, 2017) with mean air temperature of Months Above Freezing, Mean Annual Air Temperature, Mean Annual Precipitation, Mean

Temperature/Precipitation of the Cold and Warm Quarters.

reducing leaching and causing the accumulation of base cations (e.g., calcium, magnesium), which contributes to alkaline soils75

with low organic matter
::::::
content

:
(Muhammad et al., 2008). Coarse-textured, well-drained soils are also common, increasing

the occurrence of gypsum or saline profiles (Plaza et al., 2018). Additionally, sparse vegetation - further stressed by intense
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grazing pressure - exacerbates land degradation (Maestre et al., 2022). The combined effects of aridity and overgrazing in-

crease soil vulnerability to erosion, reinforcing a cycle of organic matter depletion, nutrient loss, and alkaline soil dominance

(Moreno-Jiménez et al., 2019). As a result, brGDGT-based reconstructions in drylands are especially prone to biases driven by80

bare soil conditions, aridity, and soil chemistry impacts on bacterial communities.

Primarily arid soils, characterized as soils receiving less than 500 mm.yr−1 (Peterse et al., 2012; Yang et al., 2014; Guo

et al., 2021), present higher brGDGT variability and specific isomer distribution (Guo et al., 2021). The comparison of soil

samples from drylands indicates a dissimilarity to global brGDGT databases (Yang et al., 2014; Dearing Crampton-Flood et al.,

2020; Véquaud et al., 2022). The main difference is the higher frequency of 6- compared to 5-methyl compounds (Duan et al.,85

2020). This distinct methylation process may explain the reduced statistical strength for brGDGT-temperature calibration under

arid conditions (Peterse et al., 2012; Wang et al., 2019). Moreover, the temperature control over tetramethylated compounds

may be related to 5- or 6-methyl assemblages in diverse contexts, likely due to specific bacterial communities, mitigating

the reliability of MBT′
5Me-based temperature reconstruction (Wang et al., 2024). Additionally, Duan et al. (2022) report the

influence of pH and, in particular, alkalinity on the distribution of brGDGTs in dry soils. A few recent studies have reported90

the impact of salinity on brGDGTs (Wang et al., 2021; Raberg et al., 2021; Kou et al., 2022; So et al., 2023). Salinity is

expected
::::::
thought to influence the relative number of 5-, 6- and 7-methyl isomers (Wang et al., 2021). This effect impacts the

MBT′
5Me- and MBT′

6Me-based temperature reconstructions (Kou et al., 2022; So et al., 2023). Although several palaeosalinity

proxies have been proposed to address these biases, significant work remains to be undertaken, for instance, on the precise

ionic composition of soil (Chen et al., 2022; De Jonge et al., 2024a). Among the possible solutions to reduce these biases, the95

brGDGT-temperature relationship independent of these two indexes includes Multiple linear Regressions (MR; De Jonge et al.,

2014; Raberg et al., 2021), Bayesian calibrations (Dearing Crampton-Flood et al., 2020), and machine learning approaches

(Véquaud et al., 2022). However, the coupled effects of aridity, pH and salinity on soil, loess, and lacustrine archives can

significantly alter the interpretations of brGDGT-based climate reconstructions in the ACA region (Lin et al., 2024).

This study presents
::::
relies

:::
on the first regional database of surface brGDGT samples for drylands, aiming to identify the key100

climate and environmental parameters influencing their distribution. This dataset, referred to as the Arid Central Asian brGDGT

Surface Database (ACADB), includes brGDGT assemblages from various sites across the region, totalling 761 sites. It includes

:::::::
samples.

::::
This

::::::
dataset

::::
was

::::::::
compiled

:::
by

:::::::::::::::::::
Dugerdil et al. (2025a)

::
to

::::
train

:::::::
machine

:::::::
learning

:::::::
models

:::
for

::::::
climate

::::::::::::::
reconstructions.

:::
The

::::::
dataset

:::::::::
combines

:
162 new sites collected from four countries in ACA and aggregated

:::::::
samples

::::::::
collected

::::::
across

::::
four

::::
ACA

::::::::
countries

:
with 599 previously published samples from ACA

::::::
records

:
(Fig. 1). These modern samples are analysed in105

relation to
::
In

:::::::::::::::::::
Dugerdil et al. (2025a),

::::::::
machine

:::::::
learning

::::::::::
calibrations

::::::::::::
outperformed

::::::::
traditional

::::::
linear

:::::::
models,

:::::::::
suggesting

::::
that

::::::::::
confounding

::::::
factors

:::::::
weaken

:::::
linear

::::::::::::::::::
brGDGT–temperature

::::::::::::
relationships.

::::
The

::::::
present

:::::
study

::::
tests

::::
this

:::::::::
hypothesis

::
by

:::::::::
analysing

::::::
modern

::::::::
brGDGT

::::::::::
distributions

::::::
against

:
key climate parameters, mainly

::::::::
including

:
aridity, temperature , and

::::
(both

:::::
Mean

:::::::
Annual

:::
Air

:::::::::::
Temperature,

:::::::
MAAT,

:::
and

:::
the

::::::::
seasonal

:::::
mean

::::::::::
temperature

::
of

:::::::
Months

::::::
Above

::::::::
Freezing,

::::::
MAF),

::::
and

:
precipitation, as well

as chemical characteristics such as pH, salinity, and sample type (soil or lacustrine). The results are then compared with the110

global Worldwide brGDGT Surface Database (WDB; modified from Raberg et al., 2022a) to assess whether similar brGDGT
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patterns are observed at both regional and global scales. The methodological approach is synthesized in Fig. 2. Following this

workflow, this study raises the following questions:

1. Which confounding factor - pH, aridity, salinity, or sample type - has the most significant impact on brGDGT-temperature

calibrations in drylands?115

2. Are the MBT′
5Me and MBT′

6Me reliable for reconstructing past temperature in this context?

3. Can we apply aridity- or salinity-related indices to soil and lacustrine samples similarly, or do we need to develop new

indices or calibrations to track these confounding
:::::::::
controlling factors?

2 Materials and Methods

2.1 Study sites120

This study pools new samples from four different ACA countries: Azerbaijan, China (from the Qaidam Basin to the Qilian

Mountains), Tajikistan, and Uzbekistan for a total of 162 samples (Fig. 2, step 1).
:::::::::::::::::::::::::::::::::
(Fig. 2, step 1 and Dugerdil et al., 2025a)

:
.

No data has previously been published
:::::::
analysed for Azerbaijan and Uzbekistan. All site coordinates and geographic features are

presented in Fig. 1 and in Table S.1. From the Caucasus, 48 new surface sites are presented from Azerbaijan. The data location

was randomly selected and
::::
Prior

::
to

:::
the

::::
field

:::::::::
campaign,

::::::
sample

::::::::
locations

::::
were

::::::
defined

:::::
using

::
a
::::::::::
randomized

:::::::
selection

:::::::::
procedure125

:::::
within

::
a
::::
GIS

:::::::::
framework

::
to
::::::::

enhance
:::
the

::::::::::
bioclimatic

:::
and

:::::::::
ecological

:::::::::::::::
representativeness

:::
of

:::
the

::::::
dataset

::::::::::::::::::
(Bunting et al., 2013)

:
.

:::::
Thus,

:::
the

::::::
dataset covers all of Azerbaijan, from the Great Caucasus to the Hyrcanian forest in the Talish Range, through the

Lesser Caucasus Range, the Mil Plain, and the Kura Valley (Fig. 1B). In China, an altitudinal/latitudinal gradient from the

Qinghai Plateau to the southern part of the Gobi Desert, through the Qilian Shan Range, presents 48 new surface samples

(Fig. 1C). For the Tajikistan-Uzbekistan database (TUSDB), the 66 sites come from the Aral Sea basin to the high Pamir-Alai130

Range. The site location and climatic presentation of the TUSDB is also available in Dugerdil et al. (2025b). The summarized

information of each dataset is gathered in Table 1.

::::::::::
Temperature

::::
and

::::::::::
precipitation

:::::
maps

:::
for

:::
the

:::::
ACA

:::
are

::::::::
provided

::
in

:::
Fig.

::
2
:::::
from

::::::::::::::::::
Dugerdil et al. (2025a)

:
,
:::
and

:::::::::
additional

:::::
ACA

::::::::::
climographs

:::
are

::::::
shown

::
in

::::
Fig.

:::
S.1.

:
MAAT for the ACADB has an average value of 3.7 ± 3.2 °C and it is balanced between

warm/mild environments (MAAT > 10 °C), mainly on the western part of the ACA covering Caucasus (Armenia, Azerbaijan)135

and Middle Asia (Uzbekistan and Tajikistan), and colder continental environments (MAAT < 3 °C) located in Central Asia

(i.e., the southern part of Siberia, the Mongolian plateau, and the Tibetan-Qinghai plateau in China, Table 1). On the opposite,

the MAF is more homogeneous with low MAF in China (MAF = 7.5 ± 2.7 °C) and high MAF in Tajikistan and Uzbekistan

(13 ± 2.5 °C). This is due to the higher seasonality in continental Central Asia than in the Caucasus and Middle Asia (Fig. S.1).

Similarly, Mean Annual Precipitation is spatially homogeneous, with consistent low values of 410± 140 mm.yr−1. However,140

the seasonal precipitation pattern varies greatly across ACA. In the western region - including the Caucasus, Iran, and Middle

Asia - winter dominates, with up to 65% of annual rainfall occurring during this season. In contrast, the eastern region, encom-

passing the Central Asian plateaus and southern Siberia, receives up to 87% of its precipitation in summer (Chen et al., 2024).
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Table 1. BrGDGT dataset compiled in the Arid Central Asian Database (ACADB) and Worldwide Database (WDB) with their associated av-

erage climate parameters, data description (covered countries, dataset size, and site elevation), and original publications. New data published

:::
from

:::::::::::::::::
Dugerdil et al. (2025a)

:
,
:::::::
analysed in this

::
the

::::::
present study are highlighted by a * for a total sum of 162 surface samples.

Countries N
Average bioclimate parameters(a) Original

publicationMAAT MAF MAP AI Altitude
(°C) (°C) (mm.yr−1) (m a.s.l.)

ACA lakes 52 1.8 ± 3.4 12 ± 2.7 260 ± 120 2500 ± 1500 1200 ± 890 Wang et al. (2021)
Armenia 22 6.8 ± 3.4 12 ± 2.4 420 ± 110 3600 ± 1300 1900 ± 610 Cromartie et al. (2025)
Azerbaijan 48* 12 ± 3.3 13 ± 1.8 510 ± 160 4200 ± 1600 560 ± 630 This study; Dugerdil et al. (2025a)
China 120 3.7 ± 6 12 ± 4.7 290 ± 170 2800 ± 2000 1600 ± 1300 Wang et al. (2020); Wang and Liu (2021);

Zang et al. (2018); Dang et al. (2018)
China, Inner Mong. 43 1.3 ± 2.4 12 ± 1.1 280 ± 51 2400 ± 730 930 ± 310 Guo et al. (2021); Li et al. (2017)
China, Qinghai 48* -0.012 ± 3.2 7.5 ± 2.7 410 ± 98 4400 ± 1900 3200 ± 680 This study; Dugerdil et al. (2025a)
China, Tian Shan 18 -2.1 ± 4.6 8.9 ± 5.5 280 ± 76 3900 ± 2400 2200 ± 760 Duan et al. (2020)
China, Tibet 129 -1.5 ± 3 6.1 ± 1.4 240 ± 130 2200 ± 1200 4600 ± 240 Kou et al. (2022)
Global BayMBT Soils 15 -1 ± 2.5 8.8 ± 2.8 330 ± 110 3000 ± 1200 2800 ± 1800 Dearing Crampton-Flood et al. (2020)
Global soils 48 0.46 ± 3.6 7.8 ± 3.3 380 ± 76 3400 ± 1000 3600 ± 1500 Naafs et al. (2017a)
Mongolia 31 1.1 ± 2.4 12 ± 2.2 230 ± 78 2200 ± 1000 1500 ± 220 Dugerdil et al. (2021a)
Northern Iran 48 17 ± 0.84 17 ± 0.6 330 ± 15 1900 ± 110 270 ± 140 Duan et al. (2022)
Russia, Baikal 20 -0.21 ± 1.8 9.3 ± 0.9 430 ± 92 5400 ± 1000 530 ± 97 De Jonge et al. (2015); Khodzher et al.

(2017); Dugerdil et al. (2021a); Wang

et al. (2021)
Tajikistan (53+12*) 4.7 ± 4.6 11 ± 2.4 470 ± 260 3700 ± 1800 2600 ± 880 This study; Chen et al. (2021); Dugerdil

et al. (2025a)
Uzbekistan 54* 12 ± 3.3 14 ± 2.2 360 ± 210 2300 ± 1600 1000 ± 760 This study; Dugerdil et al. (2025a)

Total ACA 761 3.7 ± 3.2 11 ± 2.4 350 ± 120 3200 ± 1400 1900 ± 720

World DB 2709 12 ± 8.8 14 ± 6.6 1200 ± 640 11000 ± 6400 730 ± 890 Raberg et al. (2022b)(b)

(a) Bioclimate parameters refer to Mean Annual Air Temperature (MAAT), mean air temperature of Months Above Freezing (MAF), Mean Annual Precipitation (MAP),

and Aridity Index (AI). Data were extracted from worldclim2.1 (Fick and Hijmans, 2017) and CGIAR (Trabucco and Zomer, 2018). (b) for all original publications compiled

in Raberg et al. (2022b), please report to Table S.2.

This spatial diversity within the ACA likely induces important heterogeneity in the bacterial growth season (i.e., fall and spring

in western ACA, summer in eastern ACA, Fig. S.1). In arid environments, brGDGT production may be influenced by water145

availability, potentially increasing during the rainy season. This could bias reconstructed temperatures toward rainy-season

conditions (De Jonge et al., 2014). The ACA altitudinal gradient reached by the database covers -28 to 4038 m a.s.l. with an

average value of about 1600 m a.s.l.

2.2 Environmental parameters

The new
:::::
newly

::::::::
described

:
samples from this study (n = 162) are grouped into two main sample types: soil (n = 143) and150

lacustrine (n = 19) samples. Here, soil means a sample collected on the surface from several subsamples collected within one

m2 area and from the upper five cm part of the soil layer. Lacustrine corresponds to samples from lake sediment core-tops
::::
core
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:::
tops

:
or surface sediments. The majority of these lakes are in arid environments, seasonally dried, and associated with temporary

ponds. For lacustrine samples, one cm3 of the upper parts of several top cores
:::
core

::::
tops

:
were sampled using a die-cut or from

the upper five cm of the surface sediment. For more details on the sample type description, please refer to Dugerdil et al.155

(2021a). For the sampling method of the already published samples, refer to the original publications (Duan et al., 2020, 2022;

Wang et al., 2021; Raberg et al., 2022b; Kou et al., 2022). In total, the ACADB is composed of 560 soil and 201 lacustrine

samples.

::::::::
Following

:::
the

:::::
field

:::::::::
campaign,

:::::::
samples

:::::
were

::::::
stored

::
at

:::::::
freezing

:::::::::::
temperature

:::
and

::::::::
analysed

::
at
::::

the
::::::
earliest

::::::::::
opportunity

:::
to

:::::::
minimise

::::::::::::
post-sampling

:::::::::
alterations

:::
of

:::::::
brGDGT

:::::::::::
distributions

:::
and

::::::::
chemical

:::::::::
properties

:::
that

::::
may

:::::
arise

::::
from

:::::::
ongoing

:::::::::
microbial160

::::::::
metabolic

:::::::
activity. The chemical characteristics of the ACA surface samples include pH and Electro-Conductivity (EC, Fig. 2,

step 2), both measured ex-situ in the laboratory, even for lacustrine samples. These measurements were performed in the Mont-

pellier laboratory using a HANNA Instruments HI991301 after a two-points calibration for pH and a single calibration for EC

(mS/cm). Salinity, in terms of Total Dissolved Solids (TDS), was extrapolated from the EC following Rusydi (2018), Eq. (1):

TDS = α×ECT × 103 (1)165

with TDS in mg/L extrapolated from the EC at ambient temperature (ECT) in mS/cm corrected by a conversion factor α ∈
[0.5;0;8] depending on the sample type (Rusydi, 2018). In Tibetan Plateau, the selected values are 0.65 or 0.8 (values from

Supplementary Materials in Kou et al., 2022). Due to the wide range of salinity values among samples, it is mainly expressed

in log10 (Kou et al., 2022). For new samples, a α of 0.65 was applied in this study to convert EC in TDS (i.e., in salinity). The

ECT is temperature compensated with Eq. (2):170

ECT = EC25 °C ×βT (2)

where β = 1.9% is the temperature correction coefficient, T is the temperature in degrees Celsius, and EC25,◦C is the electrical

conductivity standardized to 25 °C, as conventionally defined. For the salinity of samples published in Wang et al. (2021) and

Kou et al. (2022), please refer to the method section of both publications.
:::
The

::::
TDS

::::::
values

::::
were

:::::
used

::
to

::::::
provide

::::
four

:::::::
salinity

::::::
classes

:::::
(fresh,

::::::::::
hyposaline,

::::::
saline

:::
and

::::::::::::
hypersaline).

:::
The

:::::::
cut-off

:::::
values

:::::
were

:::::::
derived

::::
from

:::::::::::::
Rusydi (2018)

:::
and

:::::
refine

::::
for

:::
the175

:::::::
ACADB

:::::
using

:
a
:::::::::

sensitivity
:::::::
analysis

::::::
(Table

::::
S.3).

:
In the ACADB, salinity values are available for 113 soil and 67 lacustrine

samples.

Since only a few weather stations are available in ACA, extrapolated values from GIS databases were preferred to infer

the climate parameter controlling the brGDGT distribution. Using GIS R packages (rgdal, version 1.6-7 and raster,

version 3.6-30; Bivand et al., 2015; Hijmans et al., 2015), climate parameters were extracted from worldclim2.1 (Fick and180

Hijmans, 2017) and the extrapolated Aridity Index (AI) from the CGIAR database, (version 2; Trabucco and Zomer, 2018)

for each surface sample from the ACA. The parameters used include Mean Annual Air Temperature (MAAT), Mean Annual

Precipitation (MAP), and seasonal variables such as the mean air temperature of Months Above Freezing (MAF), as well as

Mean Precipitation and Temperature for the Cold and Warm Quarters (MPCOQ, MPWAQ, MTCOQ, and MTWAQ).The AI is
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Table 2. Main GDGT indices discussed in this study with their formula, their main interpretations and their references.

Index Formula Proxy interpreta-
tion

References

MBT′
5Me =

Ia+ Ib+ Ic

Ia+ Ib+ Ic+ IIa+ IIb+ IIc+ IIIa
Temperature, soil

moisture

De Jonge et al. (2014); Lin

et al. (2024)

MBT′
6Me =

Ia+ Ib+ Ic

Ia+ Ib+ Ic+ IIa′ + IIb′ + IIc′ + IIIa′
Temperature, inde-

pendent from pH,

better in drylands

De Jonge et al. (2014); Yang

et al. (2015); Dang et al.

(2016b)

CBT5Me = −log

(
Ib+ IIb

Ia+ IIa

)
pH, precipitation De Jonge et al. (2014); Duan

et al. (2022)

CBT′ = −log

(
Ic+ IIa′ + IIb′ + IIc′ + IIIa′ + IIIb′ + IIIc′

Ia+ IIa+ IIIa

)
pH De Jonge et al. (2014); Raberg

et al. (2022b)

IR6Me =

∑
X6Me∑

X5Me +
∑

X6Me

Salinity, pH Raberg et al. (2022b)

IR7Me =
IIIa′′ + IIa′′

IIIa+ IIIa′ + IIIa′′ + IIa+ IIa′ + IIa′′
Salinity Wang et al. (2021)

IR6+7Me =
IR6Me + IR7Me

2
Salinity Wang et al. (2021)

IR′
6+7Me =

0.5× (IIa′ + IIb′ + IIc′ + IIIa′ + IIIb′ + IIIc′)+ IIIa′′′ + IIa′′′

IIa+ IIb+ IIc+ IIIa+ IIIb+ IIIc+ IIa′ + IIb′ + IIc′ + IIIa′ + IIIb′ + IIIc′ + IIIa′′′ + IIa′′′
Salinity Wang et al. (2021)

calculated using the formula Eq. (3):185

AI = 10000× MAP

MA[ET0]
(3)

where MA[ET0] represents the Mean Annual Reference Evapotranspiration (Trabucco and Zomer, 2018). It is noticeable that

AI increases in humid environments and decreases in arid to hyper-arid systems. The thresholds
::::::
cut-offs

:
and colour scale for

aridity classes (hyper-arid, arid, semi-arid, dry sub-humid, and humid) used in this study are detailed in Table S.3 and follow

the classification defined by Nash (1999).190

2.3 GDGT analytical methods

BrGDGTs were analysed (Fig. 2, step 2) following the laboratory protocol fully detailed in Dugerdil et al. (2021a) and Davtian

et al. (2018). First, we ground approximately one cm3 of the soil or lacustrine samples in order to weigh them after a 24-hour

lyophilization process. Then, total lipid content (TLC) was extracted twice from the sample by microwave-assisted extraction

(MAE) at a temperature of 70 °C using DCM:MeOH (3:1, v/v). Following Huguet et al. (2006), a known concentration of an195

internal standard (C46 GTGT) was added to each TLC to estimate the absolute concentration of each GDGT compound. The

TLC was separated into two fractions by elution on SiO2 a column with hexane:DCM (1:1, v/v) and DCM:MeOH (1:1, v/v).

The polar fraction containing br- and isoGDGTs was then dried under N2 before being re-dissolved in hexane:iso-propanol

9



(98:2) solvent prior to injection. Analyses were performed using a high-performance liquid chromatography coupled to mass

spectrometry equipped with atmospheric pressure chemical ionization (HPLC/APCI-MS, Agilent 1260 Infinity coupled to a200

6120 quadrupole mass spectrometer). The entire analytical process was carried out in the geochemistry laboratory LGLTPE

at ENS de Lyon. GDGTs were detected using Single Ion Monitoring (SIM). The protonated molecules were detected at m/z

1302, 1300, 1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018, and 744 (C46). Finally, we manually

integrated each br- and isoGDGT based on the m/z ratio and retention time in order to identify each compound of brGDGTs

with their 5-, 6- (De Jonge et al., 2014), and 7-methyls isomers (Ding et al., 2016). Following De Jonge et al. (2014), the205

Roman numerals represent different GDGT structures. The 6-methyl brGDGTs are marked with an apostrophe after the Roman

numerals to differentiate them from their 5-methyl isomers, and two apostrophes represent the 7-methyls (Ding et al., 2016).

The measurement accuracy of the GDGT analysis method was assessed through the inter-calibration exercises conducted in

2023 (De Jonge et al., 2024b).

2.4 brGDGT indices calculation210

Based on raw GDGT integrations, we calculated absolute concentrations expressed in ng.g−1
sed. (Huguet et al., 2006) and

fractional abundances (FA; De Jonge et al., 2014) using a R routine (Fig. 2, step 3). The classical indices of methylation for 5-

and 6-methyls (MBT′
5Me and MBT′

6Me) and cyclisation (CBT’ and CBT′
5Me::::::::

CBT5Me), as well as, the isomer ratios (IR6Me,

IR7Me, IR6+7Me and IR′
6+7Me; Wang et al., 2021) are also calculated and summarized in Table 2. To avoid overloading this

study with multiple indices, we do not assess the Degree of Cyclisation index (DC; Sinninghe Damsté et al., 2009), nor its215

updated version incorporating 5- and 6-methyl isomers (Baxter et al., 2019). Although the DC index more accurately reflects

changes in the number of internal cyclopentane rings than the CBT index (which track both isomers and cyclisations), we focus

solely on CBT, as it is more commonly used in brGDGT studies from drylands (Guo et al., 2021; Chen et al., 2021; Duan et al.,

2022).

2.5 Database compilations220

Two databases are compared in this study (Figs. 1 and 2, steps 4 and 5). The Arid Central Asian Data Base (ACADB, n =

761) gathers new samples
:::::::
samples

::::
from

:::::::::::::::::::
Dugerdil et al. (2025b)

::::
used

::
to

::::
train

:::::::
machine

:::::::
learning

:::::::::::
calibrations, as well as samples

collected from previously published studies, listed in Table 1 and Table S.2. Among them, the majority of the sites were already

cleaned and homogenized by Raberg et al. (2022b). We appended the northern Iranian samples (Duan et al., 2020, 2022) and

the Sibero-Mongolian samples that have already been published in Dugerdil et al. (2021a) as the New Mongolian–Siberian225

Database. This dataset gathers 43 different sites from the Baikal basin to the northern part of the Gobi Desert (Fig. 1B and

geographical details on Fig. 1 from Dugerdil et al., 2021a). From Cromartie et al. (2025), we appended 22 samples from

Armenia, which follow an altitudinal gradient from the Ararat plain to the high plateau surrounding Lake Sevan (Fig. 1B). The

salinity and 7-methyl FAs from Chinese data were also added (Wang and Liu, 2021; Kou et al., 2022). Among the ACADB

(n = 761), there are 560 soil and 201 lacustrine samples. In order to compare the ACADB results, we also compiled a global230

Worldwide brGDGT surface Data Base (WDB, n = 2709) based on Raberg et al. (2022b) and Kou et al. (2022).
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2.6 Statistical treatment

2.6.1 Univariate and multivariate analysis

Using R (version 4.4.2; R Core Team, 2020), we performed univariate linear relationships and multivariate analyses to under-

stand environmental controls on brGDGT distributions (Fig. 2, step 7). The reliability of univariate relationships was inferred235

by Pearson’s r, coefficient of determination (R2), adjusted-R2 (R2
adj), p-values, and Root Mean Square Error (RMSE). The

multivariate analyses were conducted with the vegan package on scaled data (version 2.6-8; Dixon, 2003) and included

Principal Component Analysis (PCA) on the brGDGT matrix and Redundancy Analysis (RDA) combining the brGDGT and

surface climate parameters matrixes (Dixon, 2003). PCA is an unconstrained ordination that reduces data dimensionality by

identifying axes (principal components) capturing the most variance. RDA is a constrained ordination that explains variation in240

GDGTs using environmental variables. To meet the assumptions of linearity and normality required for both analyses, environ-

mental variables were standardized using the scale() function, while the FAs of each brGDGT compound were transformed

using the Hellinger transformation (Eq. 4), which down-weights dominant compounds.

FA− transformedi,j =

√√√√ FAi,j∑
j

FAi,j
(4)

with FAi,j, the FA of compound j in the sample i. Since the 7-methyl FAs are not available for all samples in the compiled stud-245

ies, they were removed from the databases for multivariate analysis. To select the most reliable environmental driving factors

to apply into the RDA, a Variance Factors analysis (VIFs
:::::::
Inflation

:::::
Factor

:::::::
analysis

:::::
(VIF, a method highlighting the covariance

between factors) was performed on climate parameters and soil characteristics (pH and TDS) using the vif.cca() function

from the same R package. To limit the covariance between them, only environmental factors below a threshold (e.g., below 10;

Cao et al., 2014) were kept for the RDA analysis and the following steps of the statistical workflow. The configurations of the250

two PCAs (for soil and lacustrine samples) were compared using a Procrustes rotation analysis (i.e., comparing the similarity

between PCA and RDA ordination patterns by rotating one configuration to best match the other) and a PROTEST significance

test (i.e., quantification of the fitting degree via permutation test) between the two PCAs using the package vegan (Dixon,

2003). The same method was applied to compare the RDA brGDGT vs. climate parameters for soil and lacustrine samples.

Finally, linear relationships inferred between brGDGT indices and environmental factors follow Pearson’s correlation (only255

coefficients of determination with p-value < 0.001 are displayed on figures).

2.6.2 Grouping factor analysis

Samples were grouped by pH, aridity, salinity, and sample type to evaluate the most influential confounding
::::::::
controlling

:
factors.

The applied thresholds
:::::::
cut-offs to bin classes are displayed in Table S.3. To identify data grouping patterns in relation to

bioclimatic parameters, sensitivity analyses were conducted in R by calculating the determination coefficients (multiple R2260

and R2 for groups above and below threshold
:::::
cut-off

:
values) across a continuous range of thresholds

::::::
cut-offs. For example, pH

thresholds
::::::
cut-offs were tested from 4 to 11 in 0.01 increments. Multivariate Analysis of Variance (MANOVA) was performed
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with the manova() function to detect the most important environmental factors driving the variance among the 15 brGDGT

FA (only the 5- and 6-methyls were selected) and among the main GDGT indices (Fig. 2, step 8). Then, the univariate ANOVA

results were obtained with summary.aov() for each brGDGT compound and index. Both functions come from the stats265

R base package (version 4.4.2; R Core Team, 2020). The MANOVA tests for differences in multiple dependent variables across

different groups to see if group means are significantly different, while the ANOVA tests for differences in the means of a few

groups to determine if at least one group mean is significantly different. The assumption of multivariate normality was tested

with Mardia’s Skewness and Kurtosis tests (i.e., MANOVA is possible only if the two p-values are higher than 0.05; Mardia,

1970). The assumption of homogeneity of variance-covariance was tested for each variable and each grouping factor using the270

Levene’s test (Bierens, 1983). Using the most relevant confounding
:::::::::
controlling factors, specific MBT′

5Me-based temperature

calibrations were done for each grouping factor. To compare the linear relationship among groups, the significance of the

difference was carried out with the z-statistic following Clogg et al. (1995), Eq. (5):

z =
β1 −β2√
SE2

1 +SE2
2

(5)

with βn the coefficients and SEn the standard errors of the linear regressions among the n groups. The p-values for the z-275

statistics are inferred with a normal distribution. The same z-statistic approach [Eq. (5)] was applied to determine the signif-

icance of the difference between each linear model intercept (i.e., here, the offset between each calibration). The z-statistic

was preferred to the t-test since the size of the data is high
:
t
:::
-test

:::::
since

:::
the

:::::::
number

:::
of

:::::::
samples

::
is

::::
large

:
(e.g., more than 30

samples; Moore et al., 2009). All statistical treatments and graphical representations (except the map done with QGIS 3.34

Pritzen and the methodological workflow done with Inkscape) were performed in R. The plots were designed with the280

ggplot2 package (version 3.5.1; Wickham, 2016) and, more particularly, the ggtern (version 3.5.0; Hamilton and Ferry,

2018) for the ternary diagram (Fig. 2, step 6).

3 Results

3.1 brGDGT distribution

3.1.1 brGDGT concentrations285

The brGDGT
:::::::
absolute

::::::::::::
concentrations

:::
are

:::::::::
estimated

::::
from

:::
the

::::
C46:::::::

internal
:::::::
standard

:::::::
method.

:::
To

:::::
avoid

:::::
biases

:::::
from

:::::::::
instrument

:::
drift

::::::::::::::::::
(Huguet et al., 2006),

::::
only

:::
the

:::::::
samples

::::::::
analysed

::
in

:::
the

::::::::::::
geochemistry

::::::::
laboratory

::::::::
LGLTPE

::
at
::::
ENS

:::
de

::::
Lyon

::
are

:::::::::
described

::::
here.

:::
The

::::::
dataset

:::::::
gathers

:::
234

:::::::
samples

::::
from

::::::::
Armenia,

::::::::::
Azerbaijan,

:::::
China,

:::::::::
Mongolia,

:::::::::
Tajikistan,

:::::
Russia

::::
and

:::::::::
Uzbekistan,

:::::::::
published

::
in

:::::::::::::::::::
Dugerdil et al. (2021a),

::::::::::::::::::::
Cromartie et al. (2025)

:::
and

:::::::::::::::::::
Dugerdil et al. (2025a).

::::
The

::::::::
brGDGT

:
concentration is heterogenous

among the ACA surface samples
::::::
dataset, and it mainly depends on the sampling site location and sample type. They vary290

:
It
::::::
varies between 674 ± 2825, 87 ± 314 and 342 ± 1822 ng.g−1

sed. for lacustrine, soil and the whole database
:::::
dataset, re-

spectively. Lacustrine samples are much richer in brGDGT than soil samples (about ten times more concentrated). Among

the soil samples, the more moisture in the soils, the higher the concentrations, from 149 ± 594 to 24 ± 33 ng.g−1
sed.. From
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drylands
::::::::
hyper-arid

::::
and

:::
arid

::::::::::::
environments, samples from sand dunes are poorer than loess, silt-rich, and solonchak samples.

They are close to the detection level (i.e., integration peaks smaller than twice the noise level), thus increasing uncertainties for295

indices based on 6- and 7-methyls.

3.1.2 brGDGT fractional abundances

:::
The

::::::::
brGDGT

::::::::::
distribution

::
is

::::::::
described

::::
from

::::
soil

::::
(Fig.

::::
3A)

:::
and

:::::::::
lacustrine

:::::::
samples

::::
(Fig.

::::
3B).

::::
FAs

:::
for

::::::
lowest

::::::::::
abundances

::::
(i.e.,

::::
mean

:::::
value

:::::
below

::::
5%)

:::
are

:::::
given

::
in

::::::
panels

::::::
A1–B2.

:
With regard to FAs in soil samples, the prevalent compounds are IIa’ (mean

value ≃ 30%), IIIa’ (≃ 22%), Ia (≃ 14%), IIa (≃ 10%) and IIIa (≃ 6%, Fig. 3A). In lacustrine samples, the distribution300

is dominated by IIIa’ (≃ 19%), IIa’ (≃ 16%), Ia (≃ 12%), IIa (≃ 10%) and IIIa (≃ 9%, Fig. 3B). In contrast, compounds

such as IIIb, IIIb’, IIIb”, IIIc, IIIc’, IIb”, IIc, and IIc’ are rare in both soil and lacustrine samples, with average abundances

ranging from 1% to 2% .
::::
(Fig.

::::::::
3A1–B2).

:
It is noteworthy that, for each compound, the 6-methyl isomers are more abundant

than the 5-, and the 5- are more abundant than the 7-. This trend
:::
The

::::::
higher

:::::::
median

::::::
values

:::
for

:::
the

::
6-

:::::
over

:::
the

::::::::
5-methyl

::::::
isomers

:
is more marked for soil than lacustrine samples. The 7-methyl isomers have higher importance

::
are

:::::
more

::::::::
abundant in305

lacustrine than in soil samples. For both sample types, the histograms
:::::::
boxplots reveal that brGDGT distributions vary across

the different aridity classes, with trends emerging with increased aridity :
::::::
median

::::
FAs

::::::
shifting

:::::::
toward

::::::
higher

:::::
values

:::::
with

::::
drier

::::::
aridity

::::::
classes:

:::::::
median IIIa increases in the humid group

::::
class, while IIIa’ and IIIa” are higher in the arid and hyper-arid

groups
::::::
classes. A similar trend

::::::
median

::::
shift is observed between IIc and IIc’. Additionally, IIa increases with humidity

:::::
wetter

:::::
aridity

::::::
classes, while the IIa’ distribution remains largely insensitive to changes in aridity classes for lacustrine but decrease310

with higher humidity for soil samples. Compounds Ia, Ib and Ic exhibit discernible variations between aridity classes, although

the observed trends
::::
shifts

:
are not unequivocal. Finally, aridity control is less evident in other low-abundance compounds,

including the IIIb, IIIc, and IIb, and all 7-methyl isomers.

3.1.3 Methylation distribution

In soil samples from the ACADB, tetra-, penta-, and hexamethylated brGDGTs range from 0 to 55%, 20 to 80%, and 0 to 85%,315

respectively (Fig. 4A1 and A2). The distribution of hexamethylated compounds is the most variable in ACA. By contrast, in

the WDB, brGDGT distributions are strongly centred around tetramethylated compounds, with only a few samples showing

high hexamethylated fractions; the majority contain less than 20% of hexamethylated compounds. About the aridity effect,

ACADB samples from a humid environment fit the WBD distribution better, while arid and hyper-arid samples shift towards

lower tetramethylated content.320

Similarly, for lacustrine samples (Fig. 4B1 and B2), the ACADB shows tetramethylated brGDGTs ranging from 0 to 60%,

pentamethylated from 10 to 85%, and hexamethylated from 10 to 90%. Compared to WDB, the croissant shape of the ternary

distribution is retained but shifts towards less tetra- and more pentamethylated forms. For lacustrine samples, the aridity effect

seems mitigated compared to
:::::::::
distribution

:::::
across

::::::
aridity

:::::::
classes

::::::
appears

::::
less

:::::::::
contrasted

::::
than

:::
for

:
soil samples. However, the

samples from humid environments are spread along a bimodal distribution following the hexamethylated axis, while this is not325

the case for hyper-arid to dry sub-humid samples with hexamethylated above 20%.
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3.1.4 brGDGT multivariate spaces

PCAs were performed on 400 soil and 361 lacustrine surface samples, using Hellinger-transformed FA values (Fig. 5A and

B). The brGDGT loadings for the first and second components explain 42% and 18% for soil samples and 40% and 19% for

lacustrine samples, respectively. For both, the most important contributing compounds are IIIa’, IIa, IIa’, and Ia, followed by330

IIb’, IIIa, IIIb’, IIc’, and IIIc’. PCA1 corresponds to a gradient between the 5- and 6-methyl isomers, with positive loadings for

IIa, Ia, Ib, and IIIa and negative loadings for IIa’, IIIa’, and IIb’. PCA2 follows a gradient marked by the number of internal

cyclisation: the positive loading is driven by compounds with one or two internal cyclisations (mainly IIb’, IIIb’, IIIc’, and

IIc’), while the negative loading presents compounds without internal cyclisation (Ia and IIa’). About the distribution of aridity

classes over this multivariate space (highlighted by the upper and lateral sample densities in Fig. 5), a clear
::
A

:::
and

:::
B),

:::
the

::::
data335

:::::::::
distribution

:::::::
suggest

:::
that

::
an

:
aridity gradient can be superimposed on the isomer gradient (i.e., along PCA1 with humid samples

on a positive loading and hyper-arid samples on a negative one). This gradient is clearer for soil than for lacustrine samples.

In between, arid, semi-arid, and dry sub-humid samples show a higher internal cyclisation number (positive PCA2), giving a

triangular shape to the sample distribution.

Procrustes rotation analysis, along with the PROTEST r and p-values, was used to assess the similarity between the two340

PCAs (Fig. 5C). The statistical results reveal that the brGDGT multivariate space is very similar for soil and lacustrine samples

with m2
12 = 1.05, r = 0.91 and p-value < 0.01. The more variable components between soil and lacustrine multivariate spaces

are IIIa’, IIa, and Ib. It is noteworthy that Ib is correlated with IIb and IIIa in soils, while it is correlated to Ia in lacustrine

samples.

3.2 brGDGT responses to environmental controls345

3.2.1 ACA bioclimate multivariate space

When
:::
The

::::::::
selection

::
of

:::::::::
bioclimatic

:::::::::
parameters

::::
that

:::
can

::
be

:::::::
reliably

:::::::::::
reconstructed

::::
from

:::::
fossil

::::::
proxies

::
is

:::::::
essential

::::::::::::::::::
(Salonen et al., 2019)

:
.
::
To

::::::::
evaluate

::::
this,

:::
we

:::::::::
conducted

:::
(1)

::
a
::::::::::
multivariate

:::::::
analysis

:::
on

:::::::::::::::
worldclim2.1

:::
data

::::::::
extracted

:::
at

:::
the

::::::::
ACADB

::::::::
sampling

::::::::
locations,

::
to

::::::
identify

:::
the

:::::::
primary

:::
and

:::::::::
secondary

:::::::::
bioclimatic

::::::::
gradients

:::
and

::::
their

:::::
main

::::::::
parameter

:::::::::::
contributors,

:::
and

:::
(2)

:
a
::::::::
Variance

:::::::
Inflation

:::::
Factor

:::::
(VIF)

:::::::
analysis

::
to

:::::::
quantify

::::::::::::::
multicollinearity

::::::
within

::
the

:::::::::::::::::
brGDGT–bioclimate

:::::::::::
multi-variate

:::::
space

::
of

:::
the

::::::::
ACADB.350

:::
The

::::
goal

::
is

::
to

:::::::
confirm

:::::
which

::::::::::
bioclimatic

:::::::::
parameters

:::
are

:::
the

:::::
most

:::::::::
informative

::::
and

::::::
ensure

::::
they

:::
are

::
as

:::::::::
statistically

:::::::::::
independent

::
as

:::::::
possible,

::
in

:::::
order

::
to

::::::::
minimize

::::::
biased

::::::
climate

:::::::::::::
reconstructions.

:

::::
First,

:::::
when

:
considering the bioclimate space of ACA sampled at the ACADB sampling points (Fig. 1E), the main loading

(PCA1 = 53%) is a temperature gradient and the secondary loading (PCA2 = 29%) is a precipitation gradient. About the

climate parameter contribution, AI and MAP have more influence on the ACA bioclimate variance, followed by MPCOQ355

and MAAT. In ACA, all temperature parameters are strongly correlated, indicating that temperature seasonality is roughly

homogeneous within the ACADB. This observation is consistent with the lower variance explained by MAF than MAAT. The

coefficient of variation among the ACADB is higher for MAAT than seasonal temperature parameters (170 vs. 30%). Contrar-

ily, Mean Precipitation of Warm / Cold Quarters (MPWAQ and MPCOQ, respectively) are negatively correlated, showing a
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split in seasonal precipitation patterns among the ACADB, which is in line with the global climate observations in ACA (Chen360

et al., 2024).

In order
:::::
Then, to verify that these parameters remain the primary factors to explain the brGDGT variance space, Variance

Factor (VIF )
::::
VIF analyses were performed on two models: (1) using all environmental parameters (i.e., all climate parame-

ters, altitude, pH, and salinity) and (2) only a selection of climate parameters to verify that VIFs < 10 (Cao et al., 2014). In

Table S.4, the multicollinearity between MAAT, MTCOQ, and MTWAQ is clear (VIFs > 159.1) and reduced with MAF (VIF365

= 26.7). Multicollinearity is lower among the precipitation parameters (VIF < 37.8). When keeping only AI, MAAT, MAF,

MPCOQ, pH, and salinity, all VIFs are below 6. VIFs for pH and salinity do not change between the two models, showing their

independence from climate parameters. Finally, from the total set of environmental variables, the VIF analysis removed the alti-

tude, MAP, MPCOQ, MTCOQ, and MTWAQ. The remaining environmental parameters have VIFMAAT = 6, VIFMAF = 4.5,

VIFMPCOQ = 2.1, VIFAI = 1.5, VIFpH = 1.5 and VIFSalinity = 1.3.370

3.2.2 Controls on brGDGTs in the ACA bioclimate space

Regarding the environmental controls on brGDGT distribution, RDAs were performed based on analyses of 113 soil and 67

lacustrine samples (excluding samples without pH and salinity data), including 15 brGDGT compounds (limited to 5- and

6-methyl isomers) and six environmental variables (Fig. 5D and E). The first two RDA axes explained 20% and 5.9% of the

variance in soil samples, and 22% and 3.4% in lacustrine samples. The overall correlation between the brGDGT composition375

and the environmental variables was 0.31 for soils and 0.27 for lakes. About the distribution of sites and brGDGT vectors,

we observe the conservation of the distribution between PCA and RDA for soil (Fig. 5A and D): similar PCA1 and RDA1

loadings, and reverse loading among RDA2 and PCA2.

The distribution of soil samples in the RDA ordination reflects a gradient of aridity
::::
(Fig.

::::
1D), with humid samples on positive

loading associated with high AI and salinity and hyper-arid samples on negative one correlated with pH, MAF, and MAAT.380

This gradient corresponds to a predominance of GDGT compounds IIIa’, IIIb’, and IIa’ in arid samples, while more humid

sites are associated with higher FAs of IIa and Ia. Thus, the aridity gradient along the RDA1 loading is clearly conserved from

PCA to RDA. Surprisingly, higher salinity is associated with higher AI (i.e., humid conditions) and negatively correlated with

pH (i.e., acidic conditions). Although soil salinity is expected to increase under bioclimatic aridity (Muhammad et al., 2008),

our results show that in ACA, salinity is largely independent of climate parameters (Fig. 1E
::
D).385

For lacustrine samples
:::
(Fig.

:::
1B

::::
and

::
E), the loadings are quite different between PCA and RDA, mainly due to low IIa and

IIa’ correlations with environmental parameters in RDA (despite their strong importance in primary and secondary loadings

in PCA). The aridity gradient is not clear (mainly due to the scarcity of hyper-arid and humid lacustrine samples). Here,

salinity is negatively correlated with pH and AI. Additionally, tetramethylated compounds (Ia, Ib, and Ic) are controlled by

both temperature (MAAT and MAF) and salinity.390

The Procrustes rotation analysis carried out on the two different RDAs (Fig. 5F) shows that the correspondence between the

two RDA spaces is smaller than between the two PCA spaces (Fig. 5C) with r = 0.67 and p-value < 0.003. Compounds IIIa

and IIa exhibit the most pronounced rotations (i.e., the differences in their loadings between the two PCAs as revealed by the
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Procrustes rotation analysis), indicating substantial differences in environmental controls between soil and lacustrine samples.

For environmental parameters, salinity and AI are the two parameters with the highest degree of rotation between the soil and395

lacustrine RDA spaces. AI is more contributing in the soil samples RDA, while salinity is more contributing in the lacustrine

samples RDA.

3.2.3 Methylation indices relationships to climate parameters

Linear relationships between the two main indices of methylation generally used in brGDGT calibration studies, the MBT′
5Me

and MBT′
6Me, are tested against pH, AI, MAAT, and salinity (Fig. 6). The R2

:::
(***

::::::::
indicates

:
p
:::::
-value

::
<

:::::
0.001)

:
are given for each400

relationship and for both subsets of sample type (i.e., soil and lacustrine samples). For soil samples, the strongest MBT′
5Me-

based linear relationship is related to MAAT (R2 = 0.31***), even if it is also associated with pH (R2 = 0.17***) and AI (R2

= 0.15***). The relationship with salinity is, however, not significant. Contrarily, for lacustrine samples, salinity exhibits the

strongest relationships with MBT′
5Me (R2 = 0.31***). Correlation coefficients obtained with MBT′

6Me are generally lower

than those with MBT′
5Me with pH for soils (R2 = 0.11***) and with MAAT for lacustrine samples (R2 = 0.13***). When405

statistically significant, all relationships follow similar trends (positive or negative) for MBT′
5Me and MBT′

6Me.

Comparing the ACADB to the WDB
:
in

::::
Fig.

::
6, some relationships are similar: MBT′

5Me with MAAT and salinity, and

MBT′
6Me with pH and AI, despite the tighter climatic range of ACADB compared to WDB. Contrarily, some trends are

reversed: MBT′
6Me with salinity and MBT′

5Me with pH. It is also noticeable that ACADB samples from humid and dry sub-

humid conditions fit better with the WBD distribution than arid and semi-arid systems. Hyper-arid samples often have extreme410

values.

3.2.4 Cyclisation, isomerisation, and pH

The cyclisation and isomer indices (here, CBT’, CBT′
5Me::::::::

CBT5Me, IR6Me and IR′
6+7Me), which are commonly considered to

be pH-related proxies, are tested against aridity, pH and salinity on WBD and ACADB. On the ACADB, the linear relationships

between pH and these indices are not significant for lacustrine samples (Fig. 7). In soil samples, isomer ratios appear to415

correlate more strongly with pH than cyclisation indices, with IR6Me showing the highest explanatory power (R2 = 0.27***).

This pattern is consistent in both the WDB and ACADB datasets. About the cyclisation, CBT’ is more linearly related to pH

than CBT′
5Me::::::::

CBT5Me. However, both indices suffer from a relation break around a pH threshold of 7.3 (highlighted by dashed

lines on Fig. 7A and B). This indicates that the cyclisation degree is linearly correlated to pH only in acidic samples. To test the

pH threshold value, the CBT’ vs. pH linear relationship was tested for the two groups, below and above the threshold, using420

a continuous implementation of threshold
:::::
cut-off

:
pH from 4 to 11, with 0.01 steps each (Fig. S.2). The best R2 is for a pH of

7.3, with multiple R2 of 0.45 for overall soils, 0.54 for acidic soils, and 0.05 for alkaline soils. Similar thresholds
::::::
cut-offs are

also observable with aridity and salinity, although with lower regression strength (R2 of 0.15*** and 0.09***, respectively).

Finally, there is a strong similarity between
:::
the

:
CBT’-IR6Me and CBT’-IR′

6+7Me :::::::::::
relationships

:::
are

:::::
more

::::::
similar

::
in

::::
term

:::
of

::::
slope

::::
and

:::::::::
correlation

:::
for

:::
soil

::::
than

::::::::
lacustrine

:::::::
samples

:
(R2 of 0.87*** and 0.80*** ) for soils, while this does not hold true for425

lacustrinesamples (
:::
for

::::
soil,

:::::::
0.80***

:::
and

:::::::
0.13***

:::
for

:::::::::
lacustrine,

::::::::::
respectively

::
in Fig. 7G and H).
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3.2.5 Isomer ratios responses to aridity and salinity

The common isomer ratios used to infer salinity are tested with aridity and salinity (Fig. 8). The linear relationships between

IRs and MBT′
6Me are also tested. For salinity, the correlations are more statistically significant with lacustrine than with soil

samples, by order of strength: IR′
6+7Me (R2 = 0.41***), IR7Me (0.40***) and IR6+7Me (0.37***). For soil, IR6Me has the430

strongest relationship with pH (R2 = 0.09***), but the relationships with aridity are also significant, especially with IR6+7Me

(R2 = 0.17***). The relationships are comparable between ACADB and WDB, although the WDB environmental range is

wider, especially for low salinity and high AI values. IR′
6+7Me is slightly correlated with the MBT′

5Me index in lacustrine

samples (R2 = 0.29***), while it is more significantly correlated to MBT′
6Me in soil samples (0.58***). These relationships

are similar in WDB, although no linear relationship appears between IR′
6+7Me and MBT′

5Me in WDB. Moreover, the isomer435

ratio relationship with salinity drastically changes depending on the relative weight given to 7-methyl isomers. The regression

between IRs and salinity shows increasing explanatory power with 7-methyls weight, with R2 values rising from 0.08 for IR6Me

to 0.40 for IR7Me, and from 0.37 for IR6+7Me to 0.41 for IR′
6+7Me. This is mainly due to the salinity’s positive correlation

with 7-methyls and negative one with 6-methyls (respectively, Pearson’s r of 0.64 and -0.35, Fig. S.3).

3.3 Robustness of the analysis of variance between groups440

Since it was previously shown that the different environmental parameters have different interactions in the brGDGT distri-

bution worldwide and in the ACA (Yang et al., 2014; Deng et al., 2016), both on soil and lacustrine samples, we evaluate the

strength of each driving factor. Since the sample type group is a qualitative factor, the other quantitative factors (i.e., bioclimate

and physicochemical parameters) were also binned into qualitative groups (see Table S.3 for the thresholds
:::::::
cut-offs used for

binning). The two MANOVA models inferred to evaluate their differential influences on (1) FAs distribution and (2) indices445

from the ACADB are displayed in Table 3.

3.3.1 Analyses of variance for the FAs

This first MANOVA tests the response of the 15 brGDGT FAs to the four grouping factors: aridity, pH, salinity, and sample

type. MANOVA results (in terms of F-statistics and p-values) are given in the first row of Table 3 while ANOVAs for each

compound is given in rows two to 16. Levene’s test p-values are provided in Table S.5. The higher MANOVA F-statistic (with450

a p-value < 0.001, symbolized by the *** symbol) represents the stronger environmental parameter to separate FA into groups.

First, it appears that the sample type (F = 10.2***) is the most influential grouping factor on the FA variance, followed by

salinity (7***) and pH (6.5***). Moreover, the sample type is responsible for the clustering among IIIa, IIIb, IIb, and Ic, while

pH mainly influences IIa’, IIa, Ic, and IIIa’, and salinity influences IIIa, IIIa’, IIIc, and IIb’. Aridity plays a role mainly on IIa,

Ia, and IIIa’. Generally, the main compounds are impacted in their distribution by all confounding
::::::::
controlling

:
factors.455
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Table 3. Statistical results (approximate F-statistics and p-values) of the two MANOVAs carried out to test the brGDGT (1) FAs and (2)

indices responses to environmental classes (i.e., aridity, pH, salinity, and sample type). The MANOVA F-statistics are presented in the first

row of the two models, followed by the F-statistics of the univariate ANOVA for each item (i.e., each FA and each index). The significance

is given by the number of stars(a). The samples without pH or salinity measurements were removed from the analysis (i.e., n = 328). The

p-values from Levene’s test, which are important for assessing the reliability of the MANOVAs, are provided in Table S.5.

Model Compound Aridity pH Salinity Sample type

Model 1 F-statistics 3.4*** 6.5*** 7*** 10.2***(b)

(FAs) f(IIIa) 1.7 3.6* 29*** 38.2***
f(IIIa’) 10.8*** 9.6*** 14.7*** 6.5*
f(IIIb) 0.7 2.4 1.4 25.8***
f(IIIb’) 2.3 2.8 1.2 1.4
f(IIIc) 1.2 6.1** 9.8*** 1.7
f(IIIc’) 0.9 1.9 2.7* 0.4
f(IIa) 22*** 15.7*** 2.9* 1.5
f(IIa’) 2.2 18.5*** 13.9*** 4.6*
f(IIb) 0.6 4.4* 2.5 20.2***
f(IIb’) 1.3 11.5*** 6.6*** 10.3**
f(IIc) 1.7 1.8 0.8 0.5
f(IIc’) 1 5** 1.5 1
f(Ia) 18.5*** 6.7** 4.7** 4.1*
f(Ib) 1.4 2.2 2.5 0.9
f(Ic) 3.7** 12.7*** 0.8 13.9***

Model 2 F-statistics 5.7*** 8.4*** 9.1*** 8.4***
(Indices) MBT′

5Me 6*** 7.2*** 17.7*** 37.1***
MBT′

6Me 11.9*** 8*** 13*** 1.3
IR6Me 13*** 11.3*** 9.9*** 5.4*
IR6+7Me 24.8*** 6.1** 13.9*** 1
IR′

6+7Me 28.1*** 3.5* 18.9*** 0.5
CBT’ 13.7*** 13.4*** 8.7*** 2.3
CBT′

5Me :::::::
CBT5Me 5*** 4.8** 0.6 4.4*

(a) The p-values are expressed in terms of stars with *** for p ≤ 0.001, ** p < 0.01, * p < 0.05 and

nothing for not-significant F-statistic (i.e., p-value ≥ 0.05). (b) The highest F-statistic for each

MANOVA and ANOVA is displayed in bold text.

3.3.2 Analyses of variance for the brGDGT-based indices

Since the majority of brGDGT applications are based on traditional indices, the response of MBT′
5Me, MBT′

6Me, IR6Me,

IR6+7Me and IR′
6+7Me to aridity, pH, salinity, and sample type was tested in the second MANOVA (line 16 of Table 3 followed

by the ANOVA statistical results for each index). For MANOVA, the most important grouping factor is salinity (F = 9.1***),

followed by pH and sample type (8.4***). Aridity is the weakest grouping factor (5.7***). The graphical representation of460

the variance for each group is available in Fig. S.4. More specifically, for MBT′
5Me, the variance is mainly explained by

sample type (37.1***) and salinity (17.7***). For MBT′
6Me, the variance is mainly explained by salinity (13***) and aridity

(11.9***). IR indices show stronger clustering based on aridity and salinity than on pH or sample type. Aridity and salinity

gradients are clear among groups for IR6+7Me and IR′
6+7Me while IR6Me variance is more steady. For all three indices, there is
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a clear distinction for hypersaline and humid group variance (low index value for humid groups and high value for hypersaline).465

CBT′
5Me :::::::

CBT5Me:
have a similar variance for each group, while CBT’ is clustered by aridity and pH (13.7*** and 13.4***).

4 Discussion

Comparing the ACADB results with other studies, the question of the relative importance of the confounding factor on

past
:::::::
brGDGT

::::::::::::::::
palaeothermometer

:
applications from drylands is raised. The effects of the confounding factors

::
on

:::
the

::::
past

::::::::::
temperature

:::::::::
estimation, such as pH (mainly for extrema; Duan et al., 2020), aridity, seasonality, and salinity, are currently470

studied in ACA (Guo et al., 2021; Chen et al., 2021; Kou et al., 2022; Duan et al., 2022). More generally, the impact of

confounding
:::::::::
controlling factors on geochemical proxies used to reconstruct palaeoenvironmental changes has been increas-

ingly recognized in brGDGT-based temperature calibrations (De Jonge et al., 2014; Häggi et al., 2023). Mainly, based on the

ACADB results, we discuss (1) the impact of these factors on brGDGT indices (methylation, isomer and cyclisation indices);

then (2), the complex interaction between confounding
::::::::
controlling

:
factors; (3) the applicability of former and new calibration475

depending on confounding factor classes; and (4), we provide recommendations for their applicability in the past brGDGT

archives in drylands. We will first focus on the reliability of MBT′
5Me and MBT′

6Me to reconstruct past MAAT and on isomer

or cyclisation indices to infer salinity and pH in drylands. The following discussion is mainly based on ACADB results from

linear regressions, as well as multivariate and variance analyses. However, due to limited metadata availability, these integrative

statistical approaches (RDAs and MANOVAs) were applied to a reduced dataset (113 soil and 67 lake samples), and further480

research is needed to confirm the conclusions drawn.

4.1 Applicability of brGDGT-based proxies

4.1.1 MBT ′
5Me :::::::::

MBT′
5Me responses to temperature

The analysis of the ACADB climate space, based on the PCA (Figure 1E) and RDAs (Figure 5D and E), indicates that MAAT

better captures both the climate variability and the brGDGT response across ACA compared to MAF. In both datasets, the pro-485

portion of variance explained by MAAT exceeds that explained by MAF, with the only exception being brGDGT assemblages

from lacustrine samples. Based on this, we focus the discussion on MAAT, even though MAF is often preferred in brGDGT

studies due to its relevance for representing the bacterial growing season (Deng et al., 2016; Dearing Crampton-Flood et al.,

2020). However, the actual timing of bacterial growth may depend not only on temperature, but also on soil water availability

(Lei et al., 2016). This is particularly relevant in the ACADB region, where MAF generally aligns with summer across ACA,490

while soil moisture availability is not spatially synchronous, with rainfall peaks in spring and autumn in eastern ACA, and in

summer in the western part (Figure S.1).

When considering the MBT′
5Me-MAAT relationships in the ACADB, the determination coefficients for both soil and la-

custrine samples are limited (Fig. 6). The linear correlation is significantly higher in semi-arid to humid soils than hyper-arid

and arid soils (Figs. S.8), in line with Wang et al. (2019). This attenuation
:::::::::
weakening of the MBT′

5Me-MAAT correlation is495
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also well observed on lacustrine samples where MBT′
5Me is more correlated to salinity than to MAAT (Fig. 6E and G) in

line with Liang et al. (2024). In drylands, MBT′
5Me is also correlated with soil water content (Dang et al., 2016b). However,

numerous temperature reconstructions use the MBT′
5Me index to capture the brGDGT compound’s response to temperature

(De Jonge et al., 2014; Chen et al., 2021), even if several studies have shown a strong bias in MBT′
5Me-temperature relationship

under arid conditions (Sun et al., 2019; Dugerdil et al., 2021a). Guo et al. (2021) demonstrated that in arid environments, the500

relationship between temperature and brGDGT methylation differs between 5- and 6-methyl isomers. The dominance of Acti-

nobacteria and Verrucomicrobia, each linked to distinct 5- and 6-methyl brGDGT signatures, in arid soils may help explain the

limited effectiveness of the MBT′
5Me index in capturing climate signals within the ACADB. In this context, MBT′

5Me-based

temperature calibration in drylands may have reduced reliability. Among solutions to improve this type of calibration, specific

MBT′
5Me-based temperature calibration can be provided for specific confounding factor classes.505

4.1.2 MBT ′
6Me :::::::::

MBT′
6Me responses to climate

MBT′
6Me-MAAT trends opposite for the WDB compared to the ACADB (Fig. 6F), even if the correlations with temperature

remain weak. The correlation is slightly better with AI (Fig. 6D). The MBT′
6Me index has been proposed as a reliable temper-

ature proxy when MAP and MAAT are negatively correlated (Guo et al., 2021), a condition not met in the ACADB dataset.

From the ACADB, we can estimate that MBT′
6Me is slightly more controlled by AI than MAAT. Moreover, the tetramethylated510

compounds (which are the major compounds involved in MBT′
5Me and MBT′

6Me, De Jonge et al., 2014) are not as important

in ACADB as in WDB (Fig. 4A). Additionally, the climate response of tetramethylated compounds is not clear in ACADB

(Fig. 5D), while the IIa’ is well correlated with MAAT. Initially designed by De Jonge et al. (2014) as a methylation index for

tetramethylated over the sum of tetramethylated plus 6-methyl isomers, the MBT′
6Me is understudied. However, Wang et al.

(2016) and Guo et al. (2021) observed in arid soils that the MBT′
6Me has a better response to temperature and aridity changes515

than the MBT′
5Me. Also, their studies show an opposite correlation with MAAT than in global soil datasets, in lines

:::
line with

our results.

4.1.3 Complementarity of MBT ′
5Me :::::::::

MBT′
5Me and MBT ′

6Me :::::::::
MBT′

6Me to infer aridity

We propose to use the difference between MBT′
5Me and MBT′

6Me to track past aridity change, since it was shown that MBT′
6Me

variance is similar to that of MBT′
5Me under humid conditions, while it is smaller under hyper-arid to dry sub-humid conditions520

(Fig. 9A and B). This observation holds true in both soil and lacustrine samples. Therefore, following the trends of these two

indices in the past could allow distinguishing between periods of constant humid conditions, whenever they are correlated

with similar variance, and that of constant or shifted arid conditions (not correlated). Moreover, the current MBT′
5Me-AI

correlation is negative (Fig. S.5A), while the MBT′
6Me-AI correlation is positive (Fig. S.5B), and similar to the soil water

content effect on MBT′
6Me (Dang et al., 2016b). Then, the ∆(MBT′

5Me,MBT′
6Me) gives a quite reliable estimation of the525

AI (i.e., the difference between the two indices, Fig. S.5C). This approach is more appropriate for soil than lake samples,

since the MBT′
6Me distribution in lacustrine samples is correlated with MAAT rather than AI (Fig. 6D and F), making the

MBT′
6Me-based calibration more accurate than the MBT′

5Me one in ACA lakes.
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The statistical independence between AI and MAAT has to be verified, especially since AI is related to temperature via the

Mean Annual Reference Evapotranspiration (cf. Eq. (3) and Trabucco and Zomer, 2018). Among ACADB, MAAT and AI are530

independent bioclimatic variables (R2 below 0.01 for lacustrine and about 0.15 for soil samples). Moreover, focusing only on

soil samples, the ∆(MBT′
5Me,MBT′

6Me)-AI relationship has been tested for similar MAAT values (Fig. 9C). The regressions

across MAAT classes are generally consistent, except at the extremes of the Aridity Index. The higher multiple R2 compared to

the global model indicates that the relationship between ∆(MBT′5Me,MBT′6Me) and AI is largely independent of MAAT.

When comparing this result with previous studies, we found similar MBT′
5Me and MBT′

6Me behaviour compared to MAAT535

(correlations positive for MBT′
5Me and negative for MBT′

6Me in Guo et al., 2021). This is also supported by the evidence that

MBT′
6Me is correlated with AI and soil water content (Dang et al., 2016b; Guo et al., 2021). Although the difference between

ratios is still not commonly used for brGDGTs, this approach is increasingly applied to other geochemical proxies of past

climate parameters (Hällberg et al., 2024).

4.1.4 Controls of salinity on isomer ratios540

Salinity is a major confounding
:::::::::
controlling

:
factor in ACA, impacting both brGDGT distribution in the environmental space

(Fig. 5B and E) and the variance of FA and indices (Table 3). It is also significant that the salinity could be monitored through

isomer content (Fig. 8). Mainly, the IR′
6+7Me appears to be the more reliable index to track salinity gradients among la-

custrine ACADB samples, in line with Wang et al. (2021) and Kou et al. (2022). These studies have revealed the unusual

over-representativeness of 7-methyl compounds in brackish to hypersaline lacustrine lakes, like in the ACADB. Wang et al.545

(2021) also reported a slight impact of salinity on IR6Me which may be due to pH-salinity covariation in their database. Since

pH and salinity are not covarying in the ACADB soils, it explains why IR6Me is less correlated with salinity for ACADB soils

(Fig. 8A). However, the two factors are covarying in the lacustrine dataset. This could explain why IR6Me-salinity regressions

are similar between soils and lacustrine samples (R2 about 0.08) while IR′
6+7Me is not. We conclude that (1) the unusual

over-representativeness of 7-methyl due to salinity is important in lakes but not significant in soils, and (2), IR′
6+7Me is the550

more reliable brGDGT index to track salinity changes in both sample types.

Especially for lakes, IR6Me is well correlated with salinity for low salinity values
:
,
::::::::::
particularly

::
in

::::::::
lacustrine

:::::::
samples

:
(i.e.,

mainly fresh-water lakes, Fig. 8A and Wang et al., 2021), while IR7Me is more significant for higher salinity ranges (Fig. 8B).

These thresholds of salinity classes are
:::::
Below

:::::
TDS

:::::
values

::
of

:::
ca.

:::::
1,000

::::::::
mg.L−1,

:::
the

:::::::::::::
IR6Me–salinity

::::::::::
relationship

:::::
show

:::::
lower

:::
data

:::::::::
dispersion

::::
that

:::::
above

::::
this

::::::::
threshold

::::
(Fig.

::::::
S.6A).

::::
For

:::
the

::::::
IR7Me :::::

index,
::
a
::::::::
saturation

::::::
effect

:::
due

::
to

::::
low

:::::::::
7-methyls

::::::
isomer555

:::::::
mitigate

:::
the

::::::::::::
IR7Me–salinity

:::::::::::
relationship,

:::::
below

:::::
TDS

:::::
values

:::
of

:::
ca.

::::::
11,000

:::::::
mg.L−1

::::
(Fig.

::::::
S.6B).

::::
The

:::::::
different

:::
IR

::::::::
response

::
to

::::::
salinity

:::::
below

::::
and

:::::
above

:::::
these

::::::
salinity

:::::::::
thresholds

:::::
(TDS

:
∈
:
[
:::::
1,000;

::::::
11,000]

::::::::
mg.L−1

::
in

:::
Fig.

:::
8A

::::
and

::
B)

::
is

:
attenuated when both

6- and 7-methyls are included in the ratio over 5-methyls (i.e., IR6+7Me and IR′
6+7Me indices, Fig. 8C and D). Mainly, lake

salinity conditions may impact the in situ bacterial community responsible for the 6- and 7-methyl over-abundances (Liang

et al., 2024). The ACADB validates the use of IR′
6+7Me as a salinity proxy proposed by Wang et al. (2021), in complement to560

previous proxies such as dinoflagellate cysts (Leroy et al., 2013), diatoms (Unkelbach et al., 2020), archaeol, and caldarchaeol

ecometric (Kou et al., 2022) or extended archeol (So et al., 2023).
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4.1.5 Controls of pH on isomer ratios and cyclisation degree

Historically, brGDGT-based pH reconstructions were mainly conducted through cyclisation indices (e.g., CBT’ and CBT5Me,

De Jonge et al., 2014). However, more and more studies highlight that the isomer ratio is also well correlated with pH changes565

(Dang et al., 2016a; De Jonge et al., 2024a). From the ACADB, it appears that pH impacts the isomers more than the cyclisation

content (i.e., IR6Me seems to be a more reliable proxy for pH than CBT’ in ACA, Figs. 7 and 8). This is consistent with the

Inner Mongolian aridity transect study (Guo et al., 2021). At the global scale, CBT’ presents a slightly higher correlation

with pH than IR6Me, but the sample type effect is stronger on CBT’ (i.e., calibration for different sample types are more

different in slope and intercept for CBT’ than IR6Me, Raberg et al., 2022a). IR6Me may be more robust to infer past pH in570

a context of shifting sedimentary flux. Particularly, panels (A) and (B) from Fig. 7, show that the cyclisation indices suffer

from a correlation disruption for alkaline soils. Here, a threshold
:::::::
exhibits

:
a
:::::::::
piecewise,

:::::::::
dual-slope

:::::::
response

::::::
across

:
a
:::::::::
threshold,

::::::::
indicating

:
a
::::::::::

non-linear,
:::::::::::::::::
threshold-dependent

::::::::::
relationship

:::::
rather

::::
than

::
a

:::::
single

::::::
unified

:::
pH

:::::::
control.

::::
The

::::::::
threshold appears after

pH > 7.3 (threshold found by sensitivity analysis, Fig. S.2), in line with a pH > 7.5 threshold demonstrated in Guo et al. (2021).

At the global Chinese soils scale,
::::::::
including

:::::::
samples

::::
from

::::
arid

:::
and

::::::
humid

::::::::::::
environments, CBT’ correlation is very strong with575

pH but not with MAP (Wang et al., 2019). It may show that the alkalinity effect on cyclisation is not enhanced by soil aridity

but by other phenomena. In Guo et al. (2021) where pH and aridity are associated, the more arid conditions do not relate to

increasing cyclisation number. Our results are in line with the study of Guo et al. (2021) who supports the use of IR6Me for pH

reconstruction. This consideration is important to keep in mind mainly for past brGDGT-based reconstructions carried out in

shallow lake (with important soil influx) and loess-palaeosol sequences (Lin et al., 2024), since the effect on lacustrine samples580

is still unclear.

:::
The

:::
IR

::::::::::
outperforms

:::
the

::::
CBT

:::
for

:::::::
tracking

:::
pH

:::::::
because

::
IR

::::::
shows

:
a
::::::
single,

::::::::
consistent

::::::::::
correlation

::::
with

:::
pH,

:::::::
whereas

:::::
CBT

:
.

4.2 Assessing confounding factors combined effects

Although temperature, both MAAT and MAF, remains a major bioclimate parameter controlling the brGDGT distribution, we

have shown that other confounding factors
:::::::::::
environmental

::::::::
variables

:
such as aridity and salinity are at least as important in585

explaining the brGDGT distribution from
:::
the ACADB. Particularly, confounding factors

::::
these

::::::::
variables do not only impact

their related indices used as proxies (e.g., MAAT with MBT′
5Me, salinity with IR′

6+7Me, etc.) but also other indices (e.g., the

ACA MBT′
5Me is also impacted by salinity). However, these confounding factors are typically studied independently, while in

soil and lacustrine systems, multiple interacting factors complicate the understanding of their combined effects.

4.2.1 Combined effect of pH with other confounding
::::::::::
controlling factors590

Several complex interactions drive the pH effects on brGDGT assemblages. For example, pH is more related to the soil organic

matter content than salinity in arid contexts (Muhammad et al., 2008), and in ACADB there is no correlation between pH

and salinity for soil samples (Fig. 5). Similarly, humid environments are more likely to have organic-rich soil, influencing

the pH (Liang et al., 2019). However, isomer ratios are influenced by both these physicochemical soil properties .
::::
(Fig.

:::
8).
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The alkalinity interaction with aridity has been already reported from Chinese brGDGT soil studies (Yang et al., 2014; Dang595

et al., 2016b). They show that the major brGDGT compounds are more diverse in arid than humid soils, implicating different

correlations between brGDGT indices, pH, and MAAT for dry and for wet soils (Wang et al., 2019). Although the brGDGT

cyclisation response to pH is globally well constrained, it is not the case in Chinese soils (Wang et al., 2019), but it is the

case in northern Iran (Duan et al., 2022). Chen et al. (2021) introduced the use of soil water content as an intermediate

parameter to clarify the pH-aridity interaction impact on brGDGT distribution. As a consequence, the brGDGT-based climate600

reconstructions of past archives in ACA need to be interpreted differently for alkaline samples.

4.2.2 Salinity effect and its relationship with aridity and sample types

The Procrustes rotation analysis performed on the ACADB reveals a different control of the environment on the brGDGT dis-

tribution from soil and from lacustrine origin. Particularly, in Fig. 5D and E, the salinity and AI were associated for lacustrine

samples (i.e., the more humid the climate, the fresher the water), but surprisingly we observe the opposite association for soils.605

This could be due to the textural properties of soils, including the fact that salinization is more likely in clay than in sand

(Muhammad et al., 2008). In this context, the numerous sandy desert samples in the ACADB from hyper-arid conditions do

not have high salt content. For ACADB lacustrine samples, aridity enhances the salt water content, which is consistent with

actual observations (Williams, 1999) as well as during the Holocene (So et al., 2023). The salinity effect on not recalibrated

temperature reconstruction may result in a temperature over estimation of more than 2 °C (Liang et al., 2024). Although the610

salinity effect on 7-methyl compounds is more and more understood for lacustrine samples (Wang et al., 2021; Kou et al., 2022;

So et al., 2023; Liang et al., 2024), it remains understudied for soil samples. We have shown that the over-representativeness

::::::
average

::::::::
fractional

:::::::::
abundance

:
of 7-methyl brGDGTs is higher for lacustrine than soil samples. In soils, primarily the 6-methyl

rather than the 5-methyl isomers seems to react to salinity, but this could be due to the combined effect of aridity, pH, and salin-

ity. Salinity inferred by TDS is a bulk physicochemical parameter, and therefore, more details about the soil ionic composition615

are needed to refine the understanding of the salinity confounding
:::::::::
controlling

:
factor effect (Chen et al., 2022; De Jonge et al.,

2024a).

4.2.3 Combined effects of climate aridity on soil moisture, pH, and its consequences on the brGDGT distribution

In the ACADB, it appears that aridity enhances the abundance of cyclised and 6-methyl compounds over Ia, IIa, and IIIa (Figs. 7

and 8). This effect of aridity on both isomerisation (i.e., favouring 6- over 5-methyls) and cyclisation (favouring compounds620

with high internal cyclisation number) is a well-known effect in Arid Central Asia, showing the complex interaction between

arid climate conditions, soil moisture, and pH (Dang et al., 2016b; Chen et al., 2021). Since the aridity effect on brGDGT is not

directly settled by precipitation (Wang et al., 2019) but rather by the soil water content (Sun et al., 2019; Chen et al., 2021), this

could explain why the AI correlation with IR6Me and CBT’ is not as strong for lakes as it is for soils (in which aridity directly

impacts soil water content). Soil water content shows a clear impact on arid environments from both Chinese (Dang et al.,625

2016b) and African (Loomis et al., 2011) soils. Since the soil water content is not a limiting factor for the bacterial community

in soil, the diminution of oxygen content in soil may be responsible (Li et al., 2018). Liang et al. (2019) suggest that this
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effect is particularly important in hyper- to semi-arid environments where bare soils (without vegetation cover) are dominant.

In contrast, in humid environments, the important vegetation cover changes the soil organic content and, by extension, the soil

pH. These physicochemical causal links could explain the aridity’s combined effects on ACA brGDGT distribution.630

4.2.4 Toward a scale
:::::::
ranking of confounding

:::::::::
controlling

:
factors strength

::::::::::
importance

Although several confounding factors
::
We

:::::
have

::::::
shown

:::
that

::::::::::::::::::::
brGDGT—environment

:::::::::::
relationships

::::
are

:::::::::
influenced

::
by

:::::::
several

:::::
biases

::::::
linked

::
to

:::::::::::
confounding

::::::
factors

:::::
(Sect.

::::
4.1;

:::::
Figs.

::
5,

::
6,
::

7
::::

and
:::
8).

::
In

::::::::
addition,

::::::::::
interactions

::::::
among

:::::
these

:::::::
factors

::::::
further

::::
limit

:::::
proxy

:::::::::::
applicability

:::::
(Sect.

::::
4.2).

::
A

::::
key

::::
next

:::
step

:::
to

:::::::
improve

:::
the

::::::::
reliability

:::
of

::::::::
brGDGTs

::
as

::::
past

::::::::::::
environmental

:::::::
proxies

::
is

::
to

::::
rank

:::
the

::::::
relative

::::::::::
importance

::
of

:::::
these

::::::::::
controlling

:::::::::
influences.

::::::::
Although

:::::
major

::::::::::::
environmental

::::::::::
controlling

::::::
factors

:
have been635

identified worldwide
:::::::
globally (Naafs et al., 2017a; Dearing Crampton-Flood et al., 2020; Raberg et al., 2022a), it seems that

the dominance order of these biases is study dependent. At a
::::
their

:::::::::
dominance

::::::::
hierarchy

:::::::
appears

::
to

::::
vary

:::
by

:::::
study

:::::
region

::::
and

::::::
archive.

:

::
At

:::
the

:
global scale, temperature is the primary factor

::::::::::
consistently

:::
the

:::::::
primary

::::::
control, followed by pH, independent of the

type of sample studied (Raberg et al., 2022a). However, the linear relationship between brGDGT indices and both MAAT and640

pH is sample type dependent (i.e., the linear slope and intercept are not similar for soil, peat and lacustrine samples, Naafs et al., 2017a, b)

::::::::
regardless

::
of

::::::
sample

::::
type

::::::::::::::::::
(Raberg et al., 2022a).

::::
This

:::::::
general

::::::
ranking

:::::::::::
(temperature

::
as

:::::::
primary

:::::
factor

:::
and

:::
pH

::
as

:::::::::
secondary

::::
one)

::::
holds

::::::
across

::::::::::::
environments,

:::
but

:::::::
sample

::::
type

:::
still

::::::::
modifies

:::::::::
regression

::::::::::
parameters:

:::::
slopes

::::
and

::::::::
intercepts

::::::
differ

:::::::
between

:::::
soils,

:::::
peats,

:::
and

::::
lake

:::::::::
sediments

:::::::::::::::::::
(Naafs et al., 2017a, b). Then, specific biases appear for specific sample types: mainly seasonality

is important for lacustrine calibrations (Dang et al., 2018; Martínez-Sosa et al., 2021; Raberg et al., 2021). Even if seasonality645

also impacts soil-based
::::::::
additional

:::::::::
influences

:::::::
depend

::
on

:::::::
specific

::::::
sample

:::::
type.

:::
For

::::::::
example,

::::::::
seasonal

::::::
effects

:::
are

::::::::
strongest

::
in

:::::::::
lake-based

:::::::::
calibrations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dang et al., 2018; Martínez-Sosa et al., 2021; Raberg et al., 2021, 2022a).

::::::::::
Seasonality

::::
also

:::::
affects

::::
soil

calibrations (Deng et al., 2016; Dearing Crampton-Flood et al., 2020),
:::
but it has been shown that the monthly temperature fluc-

tuations reported by brGDGT indices were similar to the average temperature (Cao et al., 2018), mainly due to the slow turnover

of brGDGT production and deposit in soil samples (Weijers et al., 2011). In any case, seasonality is presented as one of the650

major confounding factors for global soil calibration (Dearing Crampton-Flood et al., 2020), while the aridity effect seems to

be limited using Bayesian calibration.In brief, confounding factors studied at the global scale are slightly different from ones

studied at
:::::::
Overall,

::::::
current

::::::::
evidence

::::::::
indicates

:::
that

::::::::::
temperature

::::
and

:::
pH

::::::::
dominate

::::::::
brGDGT

:::::::::::
distributions,

::::::::
followed

::
by

:::::::
sample

:::
type

::::
and

::::::::::::
proxy-specific

::::::::
modifiers

::::
such

::
as

::::::::::
seasonality,

:::::::
salinity,

:::
and

::::::
aridity.

:

:::
Our

::::::::
ACADB

::::
data

::::::
suggest

::
a
::::::::
different

::::::
ranking

:::
of

:::::::::
controlling

::::::
factors

:::
for

:::::
Arid

::::::
Central

:::::
Asia,

::::
and

:::::::
drylands

:::::
more

:::::::::
generally.655

:::::
Based

::
on

:::
the

:::::::::
MANOVA

::::::
results

::::::
(Table

::
3),

:::::::
salinity

:::::::
emerges

::
as

:::
the

::::::::
dominant

:::::
factor

::::
after

:::::::::::
temperature,

::::::::
followed

::
by

::::::
sample

:::::
type,

:::
pH,

:::
and

:::::::
aridity,

::
all

:::::::::::
contributing

::::::::::
significantly

::
to

::::::::
brGDGT

::::::::
variance.

::::::::
However,

::::
this

::::::
ranking

::
is

:::::::
derived

::::
from

::
a

::::::
limited

:::::
subset

:::
of

::::::
samples

:::::::
because

:::::::
salinity

::::
and

:::
pH

::::::::::::
measurements

:::
do

:::
not

:::::
cover

:::
the

:::::
entire

:::::::
dataset

::::
(Fig.

:::
5).

:::::::::
Moreover,

:::
the

:::::::
present

::::::::
approach

::
is

:::::
further

:::::::
limited

::
by

:::
the

::::::
ex-situ

:::::::::::
measurement

::
of

:::::::
salinity

:::
and

:::
pH

:::::
(Fig.

::
2).

::::::::
Ongoing

::::::::
microbial

:::::::::
metabolic

:::::::
activity

:::::
during

:::::::
sample

:::::::
transport

::::
and

::::::
storage

::::
may

::::
have

::::::
altered

::::::
in-situ

:::
pH

::::::::
conditions

:::::
prior

::
to

:::::::::
laboratory

:::::::
analysis,

:::::::::
potentially

::::::
biasing

:::::::::
measured

::::::
values.660

:::::::::::
Nevertheless,

:::
the

::::
ACA

:::::::
ranking

::::::
clearly

::::::
differs

::::
from

:::
the

:::::
global

:::::::::
hierarchy.

:::::::
Previous

:
regional and local scales.
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At the Chinese soil scale
:::::
studies

:::::
have

:::::::
likewise

:::::::
reported

::::::::::
differences

::::
from

::::
the

::::::::::
global-scale

::::::::
rankings.

:::
In

:::::::
Chinese

::::
soils, pH

is the dominant controlling factor on brGDGT distribution (even before temperature, Wang et al., 2019), while focused on

::::::
primary

:::::::
control

::
on

::::::::
brGDGT

:::::::::::
distributions,

:::::::::
surpassing

:::::::::::
temperature

::::::::::::::::
(Wang et al., 2019).

::
In
:

hyper- to semi-arid environments,

the
:::::::
settings, annual precipitation and aridity become more important than pH and

::::::::
influential

::::
than

:::::
either

:::
pH

::
or
:

temperature665

(Duan et al., 2022). In their study, all soil samples from northern Iran are alkaline and characterized by high temperature;

then the environmental gradient is controlled by the precipitation gradient instead of the pH or seasonality. In Iran, the

extreme alkalinity conditions should be responsible for the difference in confounding factor dominance with global brGDGT

studies. The seasonality bias on temperature is also climate dependent, with a stronger effect on areas with important seasonal

variations, such as wide elevation gradients (Deng et al., 2016), continental areas, (Lei et al., 2016) and high latitudes (Dang et al., 2018; Cao et al., 2018)670

. In contrast, seasonality effects are not reported from tropical area (Pérez-Angel et al., 2020; Häggi et al., 2023). From lacustrine

samples from
:::
For

::::::::
lacustrine

::::::::
archives

::
on

:
the Tibetan Plateau, salinity is the first confounding

:::::
leading

::::::::::
controlling factor (Liang

et al., 2024). The difference in
::::
Such

:
site-specific confounding factors is supporting

::::::::
variability

::
in
::::::

factor
:::::::::
importance

::::::::
supports

the idea that community shift is more determinant
::::
shifts,

::::::
rather than physiological plasticityto explain the brGDGT response

:
,

:::::::
primarily

::::::
govern

::::::::
brGDGT

::::::::
responses to environmental parameters (Guo et al., 2021). This idea is also supported by the observed675

threshold in the brGDGT calibration under different temperature conditions (De Jonge et al., 2019). However, physiological

plasticity remains supported by simulations and incubation experiments (Naafs et al., 2021; Halamka et al., 2023). These considerations

give another valuable argument to assess the local or regional scale of the confounding factor effect on brGDGT index

applicability
::::::
further

::::::::::
underscores

:::
the

::::
need

::
to

:::::::
evaluate

:::::::::
controlling

::::::
factors

:
at
:::::
local

::
to

:::::::
regional

:::::
scales

::::
when

::::::::
assessing

:::
the

::::::::::
applicability

::
of

::::::::::::
brGDGT-based

:::::::
indices.680

4.3 brGDGT-based climate calibrations for drylands

We have shown that brGDGT-based indices are impacted in ACA by several confounding factors

4.3.1
:::::::::::
Temperature

::::::::::
calibration

::::::
errors

::
As

::
a

:::::
result

::
of

:::
the

:::::::
multiple

:::::::::
controlling

::::::
factors

:::::::::
influencing

:::
the

::::::::
response

::
of

:::::::::
brGDGTs

::
to

:::::::
climate, and their complex interactions.

Here, we discuss the possibility of applying and developing specific calibration for drylands, mainly focusing on specific685

::::::::
combined

::::::
effects,

:::::::::
traditional

::::::::::
temperature

:::::::::
calibrations

::::::
exhibit

:::::::::
substantial

::::::
errors

::::
when

:::::::::::::
cross-validated

:::::
using

::
the

::::::::
ACADB

::::::
dataset

::::
(Fig.

::::
10).

::::
This

::
is
::::

true
::::

for
::::
both

:::
the

::::::
Mean

::::::
Annual

::::
Air

:::::::::::
Temperature

:::::
(Fig.

:::
10

:
A

:
)
:::
and

::::
the

:::::
mean

:::
air

::::::::::
temperature

:::
of

:::::::
Months

:::::
Above

::::::::
Freezing

::::
(Fig.

:::
10

:
B
:
).
:::
At

:::
the

::::::::
ACADB

:::::
scale,

::::
local

::::::::::
calibrations

:::::
show

:
a
:::::::::
significant

:::::::
average

::::
bias,

:::::::::
producing

:::::
either

::::::
overly

:::::
warm

::::::::::::::::::::::::::::::::::::::::::::::
(Yang et al., 2014; Sun et al., 2011; Thomas et al., 2017)

::
or

:::::
overly

::::
cold

::::::::
estimates

::::::::::::::::
(Wang et al., 2016)

:
.
::::::::
Although

::::::
global

:::::::::
calibrations

::::::
reduce

::::
this

:::::
offset,

::::
they

::::
still

::::::
display

::::
wide

:::::::::
dispersion

:::::::
(ranging

:::::
from

:::
–20

::
to

:::
35

::::
°C).

:::::
These

::::
large

:::::
errors

::::::
persist

::::::
across690

::::::
various

::::::::
statistical

::::::::::
approaches,

::::::::
including

::::::::
quadratic

:::
and

:::::::
multiple

:::::
linear

::::::::::
regressions,

::::::::::::::
MBT′

5Me-based,
::::
and

:::::::
Bayesian

:::::::::::
calibrations.

:::::::::
Altogether,

:::::
these

:::::::
findings

::::::::
highlight

:::
the

:::::
need

:::
for

::::::::::
developing

::::::::
dedicated

::::::::::
calibrations

::::
for

:::::::
dryland

::::::::::::
environments,

::::::::::
particularly

:::::::
focusing

:::
on temperature and precipitation calibrations for specific sample groups

::::::::::::
reconstructions

:::::::
tailored

::
to

::::::
specific

:::::::
sample

::::
types

:
(e.g., fresh, hypersaline, etc.

::::::::
freshwater

:::
vs.

::::::::::
hypersaline

:::::::
systems).
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4.3.2 Aridity and precipitation calibrations695

The particular arid conditions in ACA have constrained
::
led

:
several studies to propose brGDGT-based precipitation reconstruc-

tions (mainly MAP) in parallel or instead of MAAT calibrations (Dugerdil et al., 2021a; Duan et al., 2022). In both cases,

the statistical relationship between MBT′
5Me or MBT′

6Me matched precipitation better than temperature, and MR calibrations

based on brGDGT fractional abundances were proposed. However, precipitation was inferred by MR calibration or cyclisation

indices rather than by methylation indices (Dugerdil et al., 2021a; Duan et al., 2022). Moreover, even if no proper calibration700

is given, Lin et al. (2024) have shown a stronger linear correlation for MBT′
5Me with MAP than MAAT, especially for Chinese

arid soils, giving specific interpretation for brGDGT loess-palaeosol sequences. A similar strong correlation with soil water

content was also found in arid soils (Dang et al., 2016b).

4.3.3 brGDGT-temperature calibration

Our multivariate (Fig. 5) and univariate (Figs. 6 and 11
:
8) results have shown that several confounding factors can at least influ-705

ence or at worst reverse the palaeothermometer calibration trends in drylands. The results of analyses of variance particularly

evidence the influence of salinity and sample type on brGDGT FA. Mixing soil and lacustrine samples for such calibration

raises the risk of misleading correlations. In ACA, MBT′
5Me-based palaeothermometer should be applied carefully or, even

better, it should be recalibrated by confounding factor classes. Mainly, the ACADB analysis of variance carried out on several

brGDGT indices reveals that the sample type effect is weaker than salinity and as strong as pH. If the sample type effect is al-710

ready leading to particular calibration (i.e., soil, peat, and lacustrine ones) in global (De Jonge et al., 2014; Naafs et al., 2017a, b;

Dearing Crampton-Flood et al., 2020; Martínez-Sosa et al., 2021) and regional calibrations (Sun et al., 2011; Yang et al., 2014;

Chen et al., 2021), leading to specific peat, lake, and soil calibrations, caution needs to be taken with sample type calibrations

in drylands. This is because, first, the sample type information for each sample is not always an indisputable observation. La-

custrine samples can be undoubtedly determined only from a deep lake (which is rare in drylands). Most ACA lakes from the715

lowland basin are temporary ponds, seasonally drained, while several soil samples come from solonchak (i.e., saline rangelands

covered by halophytic vegetation and periodically flooded, Gintzburger, 2003). For high-elevation lakes, due to their low level

of water, the amount of soil influx from water springs and aerial dust is important. They also commonly have a semi-peatland

behaviour due to the hydrophytic vegetation colonisation from belt to lake centre in the context of shallow water level (Cromar-

tie et al., 2020; Robles et al., 2022). Among the difficulties encountered in reconstructing accurate temperatures with brGDGT,720

the temperature offset between global calibration and study site climate context appears. In most cases, MAAT or MAF in-

ferred by brGDGT shows an important shift between actual MAAT and reconstructed MAAT for the lacustrine top cores
::::
core

:::
tops

:
(Martin et al., 2019; Dugerdil et al., 2021b; d’Oliveira et al., 2023). Using a local calibration (Dugerdil et al., 2021a)

or locally recalibrated global calibration (Chen et al., 2021)
::
or

:::::::
regional

:::::::::
calibration

::::::::::::::::::::::::::::::::::
(Dugerdil et al., 2021a; Chen et al., 2021),

generally reduces this offset. Comparing pollen-based and brGDGT-based temperatures also reveals that the brGDGT-MAAT725

relationship has wider temperature variation over the same time span (Robles et al., 2022; d’Oliveira et al., 2023).
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4.3.4 Confounding factors effect on temperature calibrations

While MBT′
5Me-based temperature calibrations are commonly specified only based on the sample type (i.e., separate calibra-

tions exist for soil, peat, and lacustrine samples), we have shown previously that the statistically most influential confounding

factor in the ACADB was salinity before pH and sample type. Mainly, the Procrustes rotation analyses show similar multivari-730

ate spaces for soil and lacustrine samples (Fig. 5C and F). Based on this finding, specific calibrations based on salinity classes

are tested on Fig. 11. The same tests were applied for pH (Fig. S.7), aridity (Fig. S.8) and sample type (Fig. S.9).

For the salinity classes , all except adjusted-regression hyposaline are improved compared to the global regression
:::::::
Salinity

::::::
classes

::::
were

:::::
based

:::
on

:
a
:::::::::::
classification

:::::::
adapted

:::::
from

::::::::::::
(Rusydi, 2018)

:
.
:::
The

:::::
TDS

::::::
cut-offs

:::::
were

::::::
refined

:::::
using

:::::::::
sensitivity

:::::::
analysis

:::
and

:::
are

:::::::
reported

:::
in

:::::
Table

::::
S.3.

::
In

::::
Fig.

::::
S.7,

:::
all

:::::::
adjusted

::::::::::
regressions

::
–

::::::
except

:::
for

:::::::::
hyposaline

:::::::
samples

::
–
:::::::
perform

::::::
better

::::
than735

::
the

::::::
global

::::::
model (i.e., the full ACADB), especially for fresh water, hypersalineand saline

::::
with

:::
the

::::::
largest

::::::::::::
improvements

:::
for

:::::::::
freshwater,

::::::::::
hypersaline,

:::
and

::::::
saline

::::::
samples

:
(R2

adj of 0.61, 0.49, and 0.37, respectively). This method principally improves the

statistical result for extreme classes. However, this improvement could be artificial and only produced by statistical biases such

as the dataset size or the reduction of variance among groups. To ensure relevant salinity-specific calibrations, the z-statistic

checks differences between regressions. Fresh calibration has a different slope than hyposaline and the whole dataset with740

z(a) = 2.7*** and 2.5***. Saline samples share a similar slope with hyposaline but a different offset with z(b) = -2.2**. No

conclusion can be made for hypersaline due to high variance. Saline and likely hypersaline have a similar slope to hyposaline

but a significantly higher offset (z(b) = -2.8*** with hyposaline, z(b) = 2.3*** with the whole dataset). This analysis allows

for ACA MBT′
5Me calibration based on salinity classes [Eq. (6)].

MAATFresh =−6.37+28.03×MBT′
5Me, (n = 61,R2

adj = 0.61,RMSE = 4)

MAATSal. =−11.1+23.17×MBT′
5Me(n = 45,R2

adj = 0.32,RMSE = 5.22)

MAATHypersal. =−8.33+22.36×MBT′
5Me(n = 17,R2

adj = 0.47,RMSE = 3.88)

745

:::
All

::
the

::::::
linear

::::::
models

::
in

:::
Eq.

:::
(6)

::::
have

::
a

:
p
:::::
-value

::
<

:::::
0.001

::::
when

::::::
tested

::::
using

:::::::::::::::::
20,000-permutation

::::::::::
significance

::::
tests.

:

MAATFresh =−6.37+28.03×MBT′
5Me, (n = 61, R2

adj = 0.61, RMSE = 4)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6.1)

MAATHyposal. =−3.87+16.72×MBT′
5Me, (n = 215, R2

adj = 0.12, RMSE = 5.97)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6.2)

MAATSal. =−11.1+23.17×MBT′
5Me, (n = 45, R2

adj = 0.32, RMSE = 5.22)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6.3)

MAATHypersal. =−8.33+22.36×MBT′
5Me, (n = 17, R2

adj = 0.47, RMSE = 3.88)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6.4)750

MAATAll =−6.28+20.19×MBT′
5Me, (n = 761, R2

adj = 0.27, RMSE = 5.62)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6.5)

27



4.4 Recommendations for brGDGT applications to past records in drylands

4.4.1 Differential brGDGT sources effect in the past

If one of the solutions to reduce biases for
:::::::::
Developing

::::::::::
calibrations

:::
for

:::::::
specific

::::::::
sediment

:::::
types

:::
can

:::::
help

::::::
reduce

:::::
biases

:::
in

brGDGT-based climate reconstructionsin the past is to lead sediment type particular brGDGT calibrations, some tricky issues
:
,755

:::
but

::::
some

:::::::::
challenges

:
remain. (1) The sediment type characterisation has to be reliable. Several studies attempt to use brGDGT

themselves as a proxy of brGDGT sources based on mixing models (Martin et al., 2019) or classification machine learning

approaches (Martínez-Sosa et al., 2023; Cromartie et al., 2025). Other proxies of the sample type could be a more reliable

solution to evaluate the environmental condition of brGDGT deposit (Robles et al., 2022; d’Oliveira et al., 2023). (2) The

brGDGT influx is not always related to the sediment deposit flux itself. In some particular conditions, a lake can record soil-760

produced brGDGT coming from the watershed instead of in-situ produced brGDGT (Zhao et al., 2021; Robles et al., 2022).

In some other conditions, the in-situ production is dominant in the brGDGT assemblage (Wang et al., 2021; Kou et al., 2022).

(3) When sediment types vary along a core, accurately characterizing them becomes challenging, making it difficult to apply

a single brGDGT-based climate calibration. For instance, using a uniform lacustrine calibration may yield inconsistent results

when applied to both hypersaline and freshwater lake samples, as illustrated in Fig. 11.765

4.4.2 Confounding impacts and correction in the past

Then, the past sediment type characterisation appears to be insufficient to reliably apply selective brGDGT-based climate

calibrations. The main confounding factor effect has to be taken into account. However, these confounding factors are study-

context dependent: the saturation effect of the MBT′
5Me and the vegetation buffer in tropical areas (Pérez-Angel et al., 2020;

Häggi et al., 2023), the important seasonality in the Arctic (Raberg et al., 2021), soil moisture and salinity impact in drylands770

(Fig. 11; Dang et al., 2016b; Kou et al., 2022), etc. A second limitation of this grouping factor selective calibration approach

in the past is that the confounding factor impact is not always stationary over time. For instance, salinity (So et al., 2023) or

vegetation cover (Robles et al., 2022; d’Oliveira et al., 2023) dramatically shifted in the past. It is particularly the case during

the Holocene in ACA (Chen et al., 2024). In this case, inferring confounding factor covariation has to be considered. Several

studies attempt to track these covariations using brGDGT-based confounding factor proxies, such as isomer ratios (Liang et al.,775

2024). Some others use a multi-proxy approach (e.g., pollen or chironomids) to independently infer the confounding factor

variation trends (Dugerdil et al., 2021a, b; Robles et al., 2022; d’Oliveira et al., 2023).

To improve the regression between MBT′5Me and MAAT, we apply calibrations using different grouping factors, mainly

salinity (Wang et al., 2021, Fig. 11), but also pH and aridity (Figs. S.7 and S.8). Chen et al. (2021) split the GDGT dataset

by surface sample pH (threshold of pH = 7), which is reflected in the ACADB CBT’-pH relationship (Fig. 7A and B) and780

reported in arid soils (Guo et al., 2021). Similarly, Wang et al. (2021) improved the MBT′5Me-based temperature calibration

for Tibetan lacustrine samples by including salinity, but quantitative values for these factors are unavailable for past brGDGT

sequences.
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One of the solutions to fulfil this lack of information about the deposit system in the past is to make differential calibrations

not on confounding factor values but on brGDGT-based proxies of these confounding factor values. Such an approach has785

been tested in Véquaud et al. (2022), using the Community Index (De Jonge et al., 2019) with mitigated
::::::
limited

:
regression

improvement. In Véquaud et al. (2022), the two clusters based on the Community Index threshold were thought to improve

the temperature reconstruction by showing specific regression for each of them. However, the two sub-groups give mitigated

determination coefficient (R2 of 0.20 and 0.71). More recently, Liang et al. (2024) propose to use the isomer ratio (since this

index includes both salinity and pH effects) to constrain MBT′
5Me-based MAAT calibration with more reliable results in saline790

lakes. All these attempts are still incomplete to totally correct the brGDGT-based temperature reconstruction bias, even if they

significantly reduce the over-estimation of MAAT. In any case, a careful examination of the brGDGT distribution from past

archives is essential to minimize errors resulting from the inappropriate selection of applied calibrations.

5 Conclusions

The brGDGT-based palaeothermometer is one of the most promising approaches to improve our understanding of past climate795

in different regions of the world. However, based on the comparison between an ACA-centred database and the world surface

sample database, our study has shown that:

1. Drylands suffer from particular climate and physicochemical properties of soils and lakes, enhancing the impact of

confounding factors on brGDGT-based MBT′
5Me and fractional abundances’ relationship with MAAT.

2. Among the confounding
:::::::::
controlling

:
factors (i.e., pH, aridity, salinity, and sample type), salinity is the most dominant,800

followed by sample type and pH. However, aridity plays a major role in the brGDGT variance among the dataset.

Moreover, these biases cannot be studied individually since their interactions are not always similar. For instance, the

salinity control on brGDGT isomerisation is different in soil and lacustrine deposit contexts.

3. In order to use brGDGT as a proxy for sediment physicochemical conditions, it appears that the IR′
6+7Me is the best

index of salinity, while IR6Me is the best for pH reconstruction despite its saturation effect for pH < 4 and pH > 10. For805

aridity, drawing ∆(MBT′
5Me,MBT′

6Me) gives a fairly reliable estimate.

4. MBT′
5Me relationship with MAAT is very limited in ACA, especially for lacustrine samples, mitigating the applicability

of palaeothermometers based on methylation indices. However, the specific sub-calibrations for different environmental

classes (mainly salinity and aridity classes) dramatically improve the linear regression strength. This report paves the

way for a specific calibration application on past brGDGT sequences based on environmental classes inferred or by810

brGDGT indices or by other independent proxies (e.g., pollen or chironomids).

Mainly, even if the brGDGT signal in drylands such as ACA is mitigated and the number of confounding
:::::::::
controlling factors

is sometimes difficult to unravel, it remains a very promising tool to improve our understanding of both past climate and

future forecasting (Tierney et al., 2020). However, some work still remains in process, including the increase of arid sites in
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the database (both for the calibration process associated with exhaustive physicochemical and bioclimatic properties of the815

samples and for the past brGDGT sequences enhanced by a multi-proxy approach) and the development of a machine learning

approach, which promises a more powerful unravelling process of confounding
:::::::::
controlling factor comprehension.
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Figure 7. pH-related indices, mainly cyclisation indices (CBT’ and CBT′
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CBT5Me) and isomer ratios (IR6Me and IR′
6+7Me) are shown.

Linear regressions are tested with pH (A to D), AI (E) and salinity (F) and among them (G and D). The colours refer to the aridity classes

for the samples. Two groups by sample type (i.e., lacustrine and soil) are used to infer linear relationships. The grey hexagonal bins show the

sample density from the WDB. AI and salinity are displayed on log10 scale. R2 values are shown only for statistically significant regressions

(p<0.05), while p-values below 0.001, 0.01, and 0.05 are indicated with ***, **, and *, respectively.
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Figure 8. Salinity-related indices: IR6Me, IR7Me, IR6+7Me and IR′
6+7Me are the most ubiquitous brGDGT-based indexes used to infer

salinity in ACA. The indices are compared to salinity (A to D), the Aridity Index (E and F), MBT′
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bins show the sample density from WDB. AI and salinity are displayed on a log10 scale. R2 values are shown only for statistically significant
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Figure 9. Illustration of the approach comparing MBT′5Me and MBT′6Me to investigate interactions between MAAT, aridity, and sample

type. Boxplots of both indices are shown by aridity classes (see Fig.1 for colour codes), separately for soil (A) and lacustrine (B) samples.

Panel C displays the relationship between ∆(MBT′5Me,MBT′6Me) and the Aridity Index for soil samples, across 14 groups of Mean

Annual Air Temperature, each containing approximately 40 samples. The orange line indicates the overall regression trend. Corresponding

univariate regressions with AI are shown in Fig. S.5.
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Figure 11. Effect of salinity (i.e., the TDS of each surface sample) on the linear relationship between temperature (here MAAT) and the

MBT′
5Me. The analysis is based on

:::
Panel

::
A

::::
shows the full ACADB. Based on

::::
results

::
of
:
the

:
z
::::::
-statistic

::::
tests

:::::::
assessing

::::::::
significant

::::::::
differences

::
in

::::
slopes

::::
and

:::::::
intercepts

::::::
between

:
salinity classes(i.e.,

:
.
::::
Panel

::
B

::::::
presents

::::
linear

:::::::::
regressions

::
for

:
fresh, hyposaline, saline, and hypersaline )

:::::
classes,

different temperature calibrations based on the degree
::
full

::::::::
ACADB.

:::
For

::::
each

:::::
salinity

::::::
group,

:::::::::
temperature

:::::::::
calibrations of methylation with

::
the

::::
form

:
MAAT = a ×MBT′

5Me + b are proposed
:
(
:
B). Using the

:::
The z-statistic with its p-value

:::::
method

:
(Clogg et al., 1995) ,

:::::::
evaluates

:
the

significance of the difference between the slopes
::::
slope

:
(a) of the linear regression is evaluated. Similarly, the z-statistic was used for the

:::
and

intercept (b) differences . For
::::
across

:::
two

::::::
classes

::::
(grey

::::
lines

:::
link

:
the

:::
two

::::::
classes

:::
with

::::
their

:
z
:::::::
-statistics

::
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:::::
Panel

:
A
::
).

:::
The p-values we have

::
of

::
the

:
z
::::::
-statistic

:::
are

:::::::
displayed

::::
with

:
*** for p p ≤ 0.01, ** for p

:
p ≤ 0.05, and * for p

:
p ≤ 0.1.
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