
Dear Yan Bai,

On behalf of all co-authors, I would like to warmly thank you for your thorough review and 
constructive feedback. Below, I address your main concern.

Major concern 1 :

The  preprint  was  submitted  to  the  EGU  discussion  platform  for  peer-review  consideration  in 
Biogeosciences  on 28 July  2025,  while  the  second article  published in  Paleoceanography and 
Paleoclimatology  (https://doi.org/10.1029/2025PA005214)  appeared  later,  on  6  October  2025.
Initially, this preprint was intended as the first part of the project, focusing on the description of 162 
new  samples and  the  comparison  of  GDGT  distributions  across  Arid  Central  Asia.  The 
Paleoceanography and Paleoclimatology paper (Dugerdil et al., 2025) was conceived as the second 
part, dedicated to comparing traditional and machine learning-based calibration methods.

However, due to differences in the peer-review timelines between Biogeosciences (which includes a 
public discussion phase) and Paleoceanography and Paleoclimatology (which follows a classical 
closed review process), the second part was published before the first.

Although both manuscripts rely on the same dataset (162 new samples combined with 599 
previously published ones), the current preprint presents, for the first time, a detailed description 
and analysis of the fractional abundances and major GDGT indices for these new samples. In 
contrast, Dugerdil et al. (2025, Paleo) uses the ACADB dataset solely to train machine learning 
models, without providing the complete data characterization presented here.

However, we agree that, in the current state of publication, it appears more accurate to remove the 
term "new" in the current study. This word has been removed along the manuscript and a reference 
to Dugerdil et al., (2025, Paleo) has been added in line 93-104 within the introduction with  : “This  
study relies on the first  regional database of surface brGDGT samples for drylands, aiming to  
identify the key climate and environmental parameters influencing their distribution. This dataset,  
referred to as the Arid Central  Asian brGDGT Surface Database (ACADB),  includes brGDGT  
assemblages from various sites across the region, totalling 761 sites. This dataset was compiled by  
Dugerdil et al., (2025) to train machine learning models for climate reconstructions. The dataset  
combines 162 new samples collected across four ACA countries with 599 previously published  
records (Fig. 1). In Dugerdil et al. (2025), machine learning calibrations outperformed traditional  
linear  models,  suggesting  that  confounding  factors  weaken  linear  brGDGT–temperature  
relationships. The present study tests this hypothesis by analysing modern brGDGT distributions  
against key climate parameters, mainly aridity, temperature, and precipitation, as well as chemical  
characteristics  such as  pH,  salinity,  and sample type (soil  or  lacustrine).  The results  are then  
compared with the global Worldwide brGDGT Surface Database (WDB; modified from Raberg et  
al., 2022b) to assess whether similar brGDGT patterns are observed at both regional and global  
scales.”.  Also the Materials and Method section have been modified as follow (l. 211-213) “Two 
databases are compared in this study (Figs. 1 and 2, steps 4 and 5). The Arid Central Asian Data  
Base  (ACADB,  n  =  761)  gathers  samples  from Dugerdil  et  al.  (2025)  used  to  train  machine  
learning calibrations, as well as samples collected from previously published studies, listed in Table  
1 and Table S.2.”.

Major concern 2 :
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We agree that previous studies have shown that linear regressions (i.e., MBT-based calibrations) and 
multiple linear regressions perform less effectively in drylands than in more humid environments. 
In  the  present  study,  we  build  upon  these  findings  by  testing  a  broader  range  of  indices, 
environmental parameters, and an expanded dataset, the ACADB.

To further enhance palaeoclimate reconstructions in drylands, we propose two methodological 
improvements: (1) a salinity-specific set of MBT-based calibrations, and (2) a new index based on 
the difference between MBT’5Me and MBT’6Me to track aridity changes. These improvements 
directly result of the analyse of the modern brGDGT response to environmental gradients.

The detailed evaluation of quantitative reconstructions derived from modern brGDGT samples (i.e., 
proper climate calibration process) constitutes the primary focus of Dugerdil et al. (2025, Paleo). 
We therefore consider the two publications to be distinct yet complementary, each addressing a 
different aspect of the overarching research objective: (1) the brGDGT distribution response against 
climate and soil properties, and (2) the quantitative climate calibration process.

However, to make this articles distinction and complementarity more clear we modified the present 
manuscript by adding a section Temperature calibration errors in section 4.3.1 from the Discussion. 
This section is supported by a new figure (Fig. 10) and the following text (l. 648-656): “As a result 
of the multiple confounding factors influencing the response of brGDGTs to climate, and their 
complex combined effects, traditional temperature calibrations exhibit substantial errors when 
cross-validated using the ACADB dataset (Fig. 10). This is true for both the Mean Annual Air 
Temperature (Fig. 10A) and the mean air temperature of Months Above Freezing (Fig. 10B). At the 
ACADB scale, local calibrations show a significant average bias, producing either overly warm 
(Yang et al., 2014; Sun et al., 2011; Thomas et al., 2017) or overly cold estimates (Wang et al., 
2016). Although global calibrations reduce this offset, they still display wide dispersion (ranging 
from –20 to 35 °C). These large errors persist across various statistical approaches, including 
quadratic and multiple linear regressions, MBT'5Me-based, and Bayesian calibrations. Altogether, 
these findings highlight the need for developing dedicated calibrations for dryland environments, 
particularly focusing on temperature and precipitation reconstructions tailored to specific sample 
types (e.g., freshwater vs. hypersaline systems).”.

Minor comments :

Line 34: We changed "air" by replacing it with "ambient temperature".

Line 45: We changed "CBT’"  to "CBT5Me".

Line 55: The word "thus" have been changed by "For instance"

Table 2 and Line 192: The "CBT’5Me" indication have been corrected to "CBT5Me" all along the 
manuscript and in the figures as well.



Dear Joseph B. Novak,

On behalf of all co-authors, I would like to warmly thank you for your thorough review and 
constructive feedback. Below, I address your main concern.

Major Comments

Abstract (L4–6): This study does not introduce the Arid Central Asian brGDGT database, as this 
same  dataset  was  analyzed  in  a  recent  publication  by  this  group  in  Paleoceanography  and 
Paleoclimatology (https://doi.org/10.1029/2025PA005214). Same applies for the statement in Lines 
93–94. I think it would be more appropriate to discuss this work as a further exploration of the Arid  
Central Asian brGDGT database.

The current study was submitted in Biogeosciences prior to the study published in October 2025 in 
Paleoceanography  and  Paleoclimatology  (Dugerdil  et  al.,  2025).  Both  are  complementary:  the 
present  study is  thought  to  introduce the Arid Central  Asian brGDGT database and present  its 
response to environmental variables, while Dugerdil et al. (2025) is focusing on new statistical tools 
(mainly machine learning) to develop accurate brGDGT-based climate reconstruction trained from 
the ACADB. This explains why the terms “introduce” and “new” were present in the submitted 
manuscript and can now be adapted.

To make this point  clearer,  we modified in the abstract,  the lines 4-6 with “This study further  
explores the recently compiled Arid Central Asian (ACA) brGDGT surface Data Base, a regional  
dataset comprising 761 surface samples from the drylands of ACA.”.

Then, in the introduction, we modified the presentation of the approach carried in this study by (l.  
93-102): “This study relies on the first  regional database of surface brGDGT samples for arid  
regions, with the objective of determining the principal climatic and environmental factors affecting  
their  distribution.  The  Arid  Central  Asian  brGDGT  Surface  Database  (ACADB)  comprises  
brGDGT assemblages from multiple locations within the region, totalling 761 samples. This dataset  
was  compiled  by  Dugerdil  et  al.  (2025)  to  train  machine  learning  models  for  climate  
reconstructions. The dataset integrates 162 new samples gathered from four ACA countries with  
599  previously  published  records  (Fig.  1).  Dugerdil  et  al.  (2025)  demonstrated  that  machine  
learning calibrations surpassed conventional linear models, indicating that confounding factors  
diminish the brGDGT–temperature correlations. This study evaluates the hypothesis by analysing  
contemporary brGDGT distributions in relation to critical climate parameters, including aridity,  
temperature (both Mean Annual Air Temperature, MAAT, and the seasonal mean temperature of  
Months Above Freezing, MAF), and precipitation, alongside chemical characteristics such as pH,  
salinity, and sample type (soil or lacustrine).”.

“confounding factors”: Throughout the text, the phrase “confounding factors” is used to refer to 
any variable other than temperature. I think a slight reframing of the text would be useful to clarify  
what is of interest here. Specifically, salinity and pH as they relate to brGDGT distributions and 
aridity. Discussing these factors as independent variables of interest rather than confounding factors 
may be a useful way to highlight the importance of the work presented here.

The  main  aims  of  this  study  is  to  assess  the  reliability  of  the  brGDGT to  produce  accurate  
temperature reconstructions. The question of the possibility to use brGDGTs in the past to track 
other factor variations, is secondary. That is why we mainly call these variables as “confounding 
factors”, term widely used by the brGDGT community. However, we agree that we inappropriately 
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use this term in some context, especially when testing the second question. Then, throughout the 
manuscript  we modified the text  by using  controlling factors or  environmental  variables when 
considering the parameters that  may control  the brGDGT distribution,  and  confounding factors  
when focusing on the other environmental variables that impact the relationship between a brGDGT 
index and its primary controlling factor. For instance, the MBT’5Me-temperature relationship is also 
impacted by the salinity in lacustrine sediment, here the salinity is called as  confounding factor. 
Some modification of the text may been founded on lines 248, 441, 457, 461, 527 and 615 for 
instance (see the track-changed version of the manuscript for more details).

Figure 1 and database composition: There are some inconsistencies in the Figure that make me 
question whether database is entirely composed of sediment/soil samples. Firstly, there are purple 
stars plotted on the map, but these are not shown in the Figure legend. In the case of the Lake 
Baikal basin (where I work), these mark the locations of moss polster brGDGT samples reported in 
previous work by Dugerdil et al. (2021). Similarly, the blue stars within Lake Baikal appear to mark 
suspended particulate matter samples reported by (De Jonge et al., 2015; note that this paper is not  
cited by the authors). Neither of these data types are soil / sediment. Based on these observations in 
the region I am familiar with, I question whether the rest of the database was constructed carefully 
and ask that the authors carefully screen the data or more clearly distinguish between sample types 
in  this  figure  and  in  their  analysis,  particularly  if  different  types  of  lacustrine  (sediment  vs. 
suspended particulate matter) and terrestrial (soil vs. plant tissues) samples are being considered in 
combined datasets. This is especially important to distinguish since the text discussing the new data 
presented in this study communicates a much stricter definition of a lacustrine or soil sample than 
what appears to be the rule in the portion of the database composed of previously published data.  
On a  related note  to  the comment  above,  I  am doubtful  that  Lake Baikal  is  a  useful  point  of 
comparison to the other samples in the ACA database for generating a regional calibration since this 
lake is remarkably different from the much smaller / ephemeral lakes in the rest of the dataset. This  
may merit a bit of text to talk about if you want to include data from Lake Baikal in this analysis.

We want to acknowledge you for this very careful check-up of the data. Actually, you found and 
highlight two errors in our data set process.

First, about the Figure 1 the purple symbol was actually a mistake. This symbol displayed the moss 
polster samples analysed by our research group (In Armenia, Mongolia and the Baikal basin). This 
sample sub-type is among the  soil  samples. We modified the Figure 1 accordingly, by changing 
these purple symbols into red symbols.

Second, you are true that some lacustrine samples are SPM lacustrine samples. After a careful and 
complete check-up of the dataset process, we found that 8 samples were SPM. Mainly the ones 
from the study of De Jonge et al. (2015). The paper were not cited because our data process were 
supposed to removed these SPM samples from the dataset. Actually, a mistake in the R routine was 
responsibles for this mistake. To correct that, the 8 SPMs were fully removed from our study. The 
ACADB size  changed  from 761  to  753,  including  193  lacustrine  samples  instead  of  201.  We 
corrected the Table 1 and Figure 1 by removing these 8 Lake Baikal SPM data.

Afterward, all the data analyses and figures were re-run in order to homogenise the study with this 
cleaned version of the dataset. The results are very similar to the previous version of the manuscript. 
Very small differences appears for the correlation results from Figures 6, 7 and 8. The RDA for 



lacustrine samples also slightly changed (Figure 5E). The results do not change for the MANOVA 
results (Table 3), the 9 and 11 and the equations of the salinity-classes MBT-MAAT calibrations.

We do not found any other problems on the sample type classification of our dataset (e.g., no plant  
tissues or bones). Finally, lacustrine samples from the Lake Baikal are not any more included in the 
dataset.

L119–132: This  section  would  benefit  from  some  supplementary  figures  showing  the 
environmental variables you are discussing, either as maps or histograms. As it stands, this is a 
pretty dense wall of text to get through without any visualization to help the reader understand what 
is being communicated.

Actually this section is already supported by several climographs extracted from sites within the 
ACA and available in Fig. S.1. We added this introducing sentence to guide the reader toward 
graphical representations of the bioclimatic variables from the ACA (l. 124-125): “Temperature and 
precipitation maps for the ACA are provided in Fig. 2 from Dugerdil et al. (2025), and additional  
ACA climographs are shown in Fig. S.1.”.

L142–143: “The chemical  characteristics  of  the ACA surface samples include pH and Electro-
Conductivity  (EC,  Fig.  2,  step 2),  both  measured ex-situ  in  the  laboratory,  even for  lacustrine 
samples.” Was there anything done to make sure that microbial respiration post sample collection 
did not cause the samples to become more acidic during transport? For the lacustrine samples, what 
is the logic that the pH or salinity of the pore water in the sediments is equivalent to the properties  
of the lake water? This is particularly concerning for pH, since the pH of sediment pore waters can  
change substantially (and therefore become different from the overlying water column) in even the 
upper  few  cm  of  the  sediments  (e.g.,  Bachmann  et  al.,  2001;  https://doi.org/10.1016/S0375-
6742(01)00189-3).

We want to thanks you for these accurate concerns. We actually try to limit as much as possible the 
potential  biases  inherent  to  ex-situ  measurement,  mainly by storing the samples  in  freezer  and 
conducting the analyses as soon as possible. We detail this statement in line 149 to 151 “Following 
the  field  campaign,  samples  were  stored at  freezing temperatures  and analysed at  the  earliest  
opportunity  to  minimise  post-sampling  alterations  of  brGDGT  distributions  and  chemical  
properties that may arise from ongoing microbial metabolic activity.”.

Then, we discuss your concerns as potential  limitations of the results of the present study. For 
instance, in lines 635 to 637: “Moreover, the present approach is further limited by the ex-situ  
measurement  of  salinity  and pH (Fig.  2).  Ongoing microbial  metabolic  activity  during sample  
transport  and  storage  may  have  altered  in-situ  pH  conditions  prior  to  laboratory  analysis,  
potentially biasing measured values.”.

About  the  lacustrine  samples,  we  only  work,  for  the  new data,  with  lacustrine  core  tops,  for 
brGDGT analysis as well as salinity and pH. Then, the values all come from sediment. We do not  
used pH and salinity measurement from the water column.

3.1.1  brGDGT  concentrations  (L262–269):  Comparing  concentration  measurements  across 
studies is really tricky because there is no authentic brGDGT standard. The C46 internal standard 
(Huguet et al., 2006) is useful for considering relative differences in concentration between samples 
run at the same time, but this method does not control for instrument drift (see Figure 4 of Huguet et 
al.,  2006).  Some work needs  to  be  done to  show whether  the  uncertainties  introduced by this  
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shortcoming of the C46 method pose a problem for the analysis here. Or, at the very least, some text 
needs to be added to acknowledge this shortcoming of the concentration data. The discussion of the 
concentration data here feels somewhat random since they do not appear to be discussed later in the 
text. If they are going to be brought up, it would be interesting to understand if concentration is 
related to any of the indices that describe the brGDGT distributions. For example, we found a 
relationship between brGDGT concentration and IR6Me in lacustrine sediment samples from Lake 
Baikal (Novak et al., 2025).

This constraint regarding the estimation of absolute concentration is entirely accurate. Actually, the 
concentration  data  and  cross-comparison are  derived  solely  from the  samples  analysed  in  our 
laboratory in Lyon. This section utilizes a dataset comprising solely 234 samples from Dugerdil et 
al. (2021a), Cromartie et al. (2025) and Dugerdil et al. (2025). To clarify, we included the following 
text  at  the  beginning  of  the  section  (l.  275-278):  “The  brGDGT absolute  concentrations  are  
estimated using the C46 internal standard method. To avoid biases from instrument drift (Huguet et  
al., 2006), only the samples analysed in the geochemistry laboratory LGLTPE at ENS de Lyon are  
described here. The dataset comprises 234 samples from Armenia, Azerbaijan, China, Mongolia,  
Tajikistan, Russia and Uzbekistan, published in Dugerdil et al. (2021a), Cromartie et al. (2025) and  
Dugerdil et al. (2025).”.

4.2.4 Toward a scale of confounding factor strength (L582–609): This section does not present 
any sort of quantitation of the strength of the confounding factors in the temperature-methylation 
relationship, so the name of this subsection is not appropriate. Rather, this text is a discussion of 
previous work on the topic. Is there maybe a way to tie this discussion in with the previous sections  
a bit more coherently? As it stands, I struggled to understand what the takeaway message of these 
two paragraphs is.

We agree that this section need a thorough reorganisation to better fit its title and its main goal. The  
idea here,  is  to discuss the relative importance of the environmental  variables on the brGDGT 
distribution and its consequence on the reliability of the brGDGT indices as past proxies. In this  
section, we suggest that the ranking of controlling factor at the global scale is not similar in the 
ACA, and in other regional studies. To get there, we included in this section some results from the 
present study in order to suggest a ranking of variable importance for the ACA. This scale is also  
compared to previously published ranking from global and regional studies. The section is currently 
as follow (l. 616-645) “We have shown that brGDGT—environment relationships are influenced by  
several biases linked to confounding factors (Sect. 4.1; Figs. 5, 6, 7 and 8). In addition, interactions  
among these factors further limit proxy applicability (Sect. 4.2). A key next step to improve the  
reliability of brGDGTs as past environmental proxies is to rank the relative importance of these  
controlling  influences.  Although  major  environmental  controlling  factors  have  been  identified  
globally (Naafs et al., 2017a; Dearing Crampton-Flood et al., 2020; Raberg et al., 2022a), their  
dominance hierarchy appears to vary by study region and archive.

At the global scale, temperature is consistently the primary control, followed by pH, regardless of  
sample type (Raberg et al., 2022a). This general ranking (temperature as primary factor and pH as  
secondary one) holds across environments, but sample type still modifies regression parameters:  
slopes and intercepts differ between soils, peats, and lake sediments (Naafs et al., 2017a, b). Then,  
additional influences depend on specific sample type. For example, seasonal effects are strongest in  
lake-based calibrations (Dang et al., 2018; Martínez-Sosa et al., 2021; Raberg et al., 2021, 2022a).  
Seasonality also affects soil calibrations (Deng et al., 2016; Dearing Crampton-Flood et al., 2020),  



but it has been shown that the monthly temperature fluctuations reported by brGDGT indices were  
similar to the average temperature (Cao et al., 2018), mainly due to the slow turnover of brGDGT  
production and deposit in soil samples (Weijers et al., 2011). Overall, current evidence indicates  
that  temperature and pH dominate brGDGT distributions,  followed by sample type and proxy-
specific modifiers such as seasonality, salinity, and aridity.

Our ACADB data suggest a different ranking of controlling factors for Arid Central Asia, and  
drylands more generally. Based on the MANOVA results (Table 3), salinity emerges as the dominant  
factor after temperature, followed by sample type, pH, and aridity, all contributing significantly to  
brGDGT variance.  However,  this  ranking is  derived from a limited subset  of  samples  because  
salinity  and pH measurements  do  not  cover  the  entire  dataset  (Fig.  5).  Moreover,  the  present  
approach  is  further  limited  by  the  ex-situ  measurement  of  salinity  and  pH (Fig.  2).  Ongoing  
microbial  metabolic  activity  during sample transport  and storage may have altered in-situ  pH  
conditions prior to laboratory analysis, potentially biasing measured values. Nevertheless, the ACA  
ranking clearly differs from the global hierarchy. Previous regional and local studies have likewise  
reported differences from the global-scale rankings. In Chinese soils, pH is the primary control on  
brGDGT distributions, surpassing temperature (Wang et al., 2019). In hyper- to semi-arid settings,  
annual precipitation and aridity become more influential than either pH or temperature (Duan et  
al., 2022). For lacustrine archives on the Tibetan Plateau, salinity is the leading controlling factor  
(Liang  et  al.,  2024).  Such  site-specific  variability  in  factor  importance  supports  the  idea  that  
community  shifts,  rather  than  physiological  plasticity,  primarily  govern  brGDGT responses  to  
environmental  parameters  (Guo  et  al.,  2021).  This  further  underscores  the  need  to  evaluate  
controlling factors at local to regional scales when assessing the applicability of brGDGT-based  
indices.”.

4.3.3 Confounding factors effect  on temperature calibrations (L646–660): Text  needs to be 
added to the methods that explains how lakes were classified into the different “salinity classes.”  
Specifically, the cutoff values for the different classes need to be given and, if they are not taken  
from another publication, justification for these cutoffs should also be provided.

We agree  that  this  methodological  point  needed  clarification.  The  cut-off  values  were  already 
provided in the Supplementary Table S.3 but we forgot to add a cross-reference to this table in the 
manuscript. We added in the Method section, l. 165-167 “The TDS values were used to provide four  
salinity classes (fresh, hyposaline, saline and hypersaline). The cut-off values were derived from  
Rusydi et al. (2018) and refined for the ACADB using a sensitivity analysis (Table S.3).”. We also 
add a reminder in the discussion with (l. 695-696) “Salinity classes were based on a classification  
adapted from Rusydi et al. (2018). The TDS cut-offs were refined using sensitivity analysis and are  
reported in Table S.3.”.

In the current version of the manuscript, we made the difference between  thresholds to describe 
different environmental response of brGDGT in front of continuous environmental variable and 
cut-offs for  the  class  limits,  in  order  to  improve  the  understanding  of  the  salinity  and  aridity  
classification.

Figure 10: This figure design is really confusing to me. What is going on with the z-scores at the 
top of the figure? What do the boxes with lines represent?

It is true that this figure is not very easy to follow. Especially because it presents statistic tests that  
are not commonly used in brGDGT calibration studies. The  z  provided on the upper part of the 



figure are not z-scores but z-statistics produced by a statistical test. This test ensures that both the  
regression slope (a)  and intercept  (b)  for  each class  is  significantly  different  one another.  The 
graphical links from the figure highlight the two groups tested. It is a simpler way to present the two 
groups tested. For instance, the  z-statistic assessing the slope and intercept difference across the 
Fresh water and Hyposaline linear regression is z(a) = 2.7***, z(b) = 1.3.

To clarify this figure, we added panel names and titles to make sure the reader can understand that  
the z is a z-statistic and not a z-score. We also extend the graphical connector between the two tested 
groups with dashed lines. Finally, we refine the figure caption by “Effect of salinity (i.e., the TDS of  
each  surface  sample)  on  the  linear  relationship  between  temperature  (here  MAAT)  and  the  
MBT'5Me. Panel A shows the results of the z-statistic tests assessing significant differences in slopes  
and intercepts between salinity classes. Panel  B presents linear regressions for fresh, hyposaline,  
saline, and hypersaline classes, based on the full ACADB. For each salinity group, temperature  
calibrations of the form MAAT = a x MBT'5Me + b are proposed (B). The z-statistic method (Clogg  
et al., 1995) evaluates the significance of slope (a) and intercept (b) differences across two classes  
(grey lines link the two classes with their z-statistics on Panel A). The p-values of the z-statistic are  
displayed with *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.”.

Equation 6: This should probably be broken up into sub-equations (i.e., 6.1, 6.2, etc.) since there 
are multiple equations listed here. Also, five regressions are shown in Figure 10, but only three 
equations are given here.  Why? This should be justified in the text or the other two equations 
provided.

Thank you one more time for the advice. We divided the equation section (6) into different sub-
equations. We also added the all five equations of the linear models from Figure 10 (currently it is 
Figure 11). In the previous version of the manuscript, we decided to only show the equations for the 
three best R2, but after tested the significance of each of them, it appears that all have a  p-value 
below 0.001. We added this information in l. 705-706 “All the linear models in Eq. (6) have a p-
value < 0.001 when tested using 20,000-permutation significance tests.”.

Minor Comments

L26: I do not think we can really call brGDGTs a “new” proxy anymore.

True. Corrected.

L29: “…well preserved in lake sediments…” current wording is not grammatical.

The text has been modified.

L30–33: This sentence is written in a confusing way that is not understandable to someone who is  
not familiar with the brGDGT proxy.

This is true. We simplified the idea by spiting this sentence into two sentences (l. 29-34) “The 
number of methyl groups on the aliphatic chain of brGDGT varies with ambient temperature, as  
demonstrated by Weijers et al., (2007) and De Jonge et al., (2014a), allowing their application as  
past  temperature  proxy.  The  correlation  between  temperature  and  the  brGDGT  degree  of  
methylation is evident and linear, as demonstrated by both soil surface samples (De Jonge et al.,  
2014a; Dearing Crampton-Flood et al., 2020) and lacustrine surface sediments (Sun et al., 2011).  
A similar relationship is observed from laboratory experiments and simulations (Naafs et al., 2021;  
Halamka et al., 2023).”.



L33: “The relationship is clear and linear.” I think there are missing words here. It is not clear what 
relationship you are talking about.

See response above.

L34: This sentence would benefit from consolidation.

The prior version indeed over-loaded. We have now (l. 34-37) “The applications of brGDGT-based  
palaeothermometers encompass a diverse range of environments and archives, including tropical to  
Arctic lakes (Perez-Angel et al., 2020; Haggi et al., 2023; Raberg et al., 2022), acidic to alkaline  
lakes (Dang et al., 2016; Yang et al., 2014), freshwater to saline lakes (Dugerdil et al., 2021b;  
Wang et  al.,  2021;  Robles  et  al.,  2022;  So  et  al.,  2023),  and  sediments  from loess–palaeosol  
sequences (Lin et al., 2024).”.

L35: “acidic lakes”

Done.

L38: This statement could use a citation or two as an example.

This is true. We added some references to Duan et al. (2020, 2022) and Chen et al. (2021) for the  
impact of pH and precipitation on the brGDGT distribution.

L55: “pentamethyls” is a bit informal. Here and elsewhere this language should be replaced with 
“pentamethylated brGDGTs,” adapted as appropriate for the molecules discussed in each instance.

The text has been modified here and to all occurrences of the words penta-, tetra- and hexamethyls.

L60: “This leads to a different temperature relationship between brGDGTs in soils and MAAT…”

Done.

L68–69: “…low organic matter content…”

Done.

L85: “Salinity is thought to influence…” is probably more appropriate since there is not (at least to  
my knowledge) a biochemical explanation for why the salinity would cause preferential synthesis of 
different brGDGTs.

Thank you, this wording is more nuanced.

L89: isn’t MLR the typical abbreviation for multiple linear regression?

Actually, it is more logical but the MR abbreviation appears in numerous brGDGT studies such as  
De Jonge et al. (2014a), Chen et al. (2021), Li et al. (2017), Pérez-Angel et al. (2020).

L95: “…totaling 761 samples.”

The text has been modified.

L97: What specific temperature variable(s) are you correlating to?

Done  (l.  99-102)  “The  present  study  tests  this  hypothesis  by  analysing  modern  brGDGT  
distributions against key climate parameters, including aridity, temperature (both Mean Annual Air  
Temperature, MAAT, and the seasonal mean temperature of Months Above Freezing, MAF), and  



precipitation, as well as chemical characteristics such as pH, salinity, and sample type (soil or  
lacustrine).”.

L112: What does “the data location was randomly selected” mean?

It  means that  we randomly choose the coordinates of  the sampling sites  within the Azerbaijan 
borders. This approach is important in ecological sampling, to ensure that the sampling strategy is 
more representative of the ecological gradient. When sampling locations are chosen by the analysis 
on the field, the sampling is more likely uneven (e.g., on the field researchers may prefer select  
clear and known environments rather than ecotone or under-studied environments). We explain this 
point better in the manuscript with (l. 116-118): “Prior to the field campaign, sample locations were  
defined using a randomized selection procedure within a GIS framework to enhance the bioclimatic  
and ecological representativeness of the dataset (Bunting et al., 2013).”.

L138: core tops rather than “top cores”

The text has been modified here and to all other occurrences.

L193–197: The justification for not looking at DC or DC’ does not make a lot of sense to me. 
Should not all of the indices be considered?

The paper is already full of indices and statistical analysis. We therefore really have to make a  
choice. Moreover, the majority of the ACA studies are using CBT-derived indices, mainly by habits. 
DC may probably be more interesting, but we choose to postpone its analysis for further studies, 
and to focus first on already settled and well-known indices.

L256: “the size of the data is high” this reads a bit awkwardly. How about, “since the number of  
samples is large.”

True. Corrected.

2.5 Database compilations: If you are going to include Lake Baikal data, the database is missing 
recently published surface sediment samples from Lake Baikal (Novak et al., 2025).

This dataset may not be part of this study (see response to major concerns above  Figure 1 and 
database concerns). The data from the Lake Baikal are not any more included in the ACADB.

Figure 3: Some text is needed in the figure caption discussing how the bounds of the box and 
whisker plots are defined.

That  point  is  truly important.  The Figure 3 caption has been detailed with “The hinges of  the  
boxplots  reprsent  the  25th percentile  (Q1)  and 75th percentile  (Q3),  the  central  horizontal  line  
indicates the median, and the whiskers extend to the most extreme data points that lie within 1.5 x  
the  inter-quartile  range (i.e.,  Q3 − Q1).  Data points  exceeding the  whiskers  are  classified  as  
outliers  and are  omitted from this  representation.  The compounds with  the  lowest  abundances  
(mean value below 5%) are highlighted in panels A1, A2, B1 and B2.”.

3.1.2 brGDGT fractional abundances: More figure callouts are needed in this section. Figure 3 is 
rather complicated, so it would be helpful to guide the reader through each of the panels.

This is true. The paragraph has been modified accordingly (l. 286-291) “The brGDGT distribution  
is described from soil (Fig. 3A) and lacustrine samples (Fig. 3B). FAs with the lowest abundances  
(i.e., mean values below 5%) are presented in panels A1-B2. Concerning FAs in soil samples, the  



prevalent compounds are IIa' (mean value ca. 30%), IIIa' (ca. 22%), Ia (ca. 14%), IIa (ca. 10%)  
and IIIa (ca. 6%, Fig. 3A). In lacustrine samples, the distribution is dominated by IIIa' (ca. 19%),  
IIa' (ca. 16%), Ia (ca. 12%), IIa (ca. 10%) and IIIa (ca. 9%, Fig. 3B). In contrast, compounds such  
as IIIb, IIIb', IIIb'', IIIc, IIIc', IIb'', IIc, and IIc' are rare in both soil and lacustrine samples, with  
average abundances ranging from 1% to 2% (Fig. 3A1-B2).”.

L276: “The 7-methyl isomers are more abundant in lacustrine…”

Done.

L277: If you are talking about Figure 3, these are box and whisker plots, not histograms.

True, thank you !

L256–282: The language here needs to be tightened up. When talking about the data,  “trends” 
would imply some sort of regression exercise that generated an estimate of slope. Here, it is more 
important to talk about differences in the median values in the sample sets separated by aridity class  
(which is what the box and whisker plots are showing). This could be coupled with significance 
tests in differences of the mean.

Yes  that  is  definitely  true.  We  decided  to  reformulate  this  paragraph  without  adding  variance 
analyses such as MANOVA and Tukey tests here, in order to not overload this section, only aiming 
to describe the data distribution and the primary observation that the aridity may be a controlling 
factor of the brGDGT distribution. The new version of the text (l. 293-300) is as follow: “For both 
sample  types,  the  boxplots  reveal  that  brGDGT distributions  vary  across  the  different  aridity  
classes,  with median FAs shifting toward higher values  with drier  aridity  classes:  median IIIa  
increases in the humid class, while IIIa' and IIIa'' are higher in the arid and hyper-arid classes. A  
similar median shift is observed between IIc and IIc'. Additionally, IIa increases with wetter aridity  
classes,  while  the IIa'  distribution remains largely insensitive to changes in aridity  classes for  
lacustrine but decrease with higher humidity for soil samples. Compounds Ia, Ib and Ic exhibit  
discernible variations between aridity classes, although the observed shifts are not unequivocal.  
Finally, aridity control is less evident in other low-abundance compounds, including the IIIb, IIIc,  
and IIb, and all 7-methyl isomers.”.

L292–293: What do you mean by the aridity effect? This is not clear from the text.

We mean that for soil, the sample distribution along the ternary plots is different across the aridity 
classes. And this observation is mitigated for lacustrine samples. The sentence has been refined with 
(l. 310-311) “For lacustrine samples, the distribution across aridity classes appears less contrasted  
than for soil samples.”.

L304: I would not say this is a “clear aridity gradient” since there is substantial overlap between the 
distributions plotted on the upper axes of the plots in Figure 5. This result is, perhaps, suggestive of  
an aridity gradient.

This is true that the data do not support a clear statement. We slightly nuanced the sentence by (l.  
321-326) “About the distribution of aridity classes over this multivariate space (highlighted by the  
upper and lateral sample densities in Fig. 5A and B), the data distribution suggest that an aridity  
gradient can be superimposed on the isomer gradient (...)”.

3.2.1: Some text explaining why this analysis was done and what the VIF value means would be 
really useful to guide the reader through this dense section of the text.



The justification of the choice of statistical analyses is already presented in the Method section.  
However,  a  reminder  is  indeed  useful  here,  especially  because  we  present  the  RDA and  VIF 
analyses  from  different  dataset  (climate  data  and  brGDGT/climate  data).  Then,  we  add  an 
introductory sentence in l. 334-339 as “The selection of bioclimatic parameters that can be reliably  
reconstructed from fossil proxies is essential (Salonen et al., 2019). To evaluate this, we conducted  
(1) a multivariate analysis on  worldclim2.1 data extracted at the ACADB sampling locations, to  
identify the primary and secondary bioclimatic gradients and their main parameter contributors,  
and (2) a Variance Inflation Factor (VIF) analysis to quantify multicollinearity within the brGDGT-
bioclimate multi-variate space of the ACADB. The goal is to confirm which bioclimatic parameters  
are the most informative and ensure they are as statistically independent as possible, in order to  
minimize biased climate reconstructions.”.

L341–345: Figure callouts are needed here.

True, we add cross-references to Figure 5D and E to clarify when we consider soil and lacustrine 
samples in this section.

L364:  The meaning of the “*” needs to be explained, or the p-value can just be written as p <<  
0.001 or however else is appropriate for each relationship.

The meaning of the “*” is given in caption of the Figure 6 which is described in this paragraph. 
However, it is better to give in the plain text, their meaning here. Done with (l. 387-388) “The R2 

(*** indicates p-value < 0.001) are given for each relationship and for both subsets of sample type  
(i.e., soil and lacustrine samples).”.

L361–372: Is  there a  figure associated with these tests  and statements (presumably Figure 6)? 
Callouts are needed.

Yes, it is associated to the Figure 6. The first call-out were already present on line 362. We add one  
call-out later on l. 394 with “Comparing the ACADB to the WDB in Fig. 6”.

L372:  Is  there  a  figure or  statistical  test  (preferably both)  you can point  to  that  indicates  that 
“hyper-arid samples often have extreme values” ?

This sentence was only based on graphical observations from Fig. 6, then, since we did not perform 
a  particular  test  to  validate  this  statement,  we  prefer  remove  it  on  the  revised  version  of  the 
manuscript.

L384–386: I think you mean “…there is a strong correlation between…”

No exactly, we mean that the CBT’-IR6Me and CBT’-IR′6+7Me relationships are more similar in term 
of slope and correlation for soil than lacustrine samples. This idea has been refined as follow (l.  
410-412): “Finally, the CBT’-IR6Me and CBT’-IR′6+7Me  relationships are more similar in term of  
slope and correlation for soil than lacustrine samples (R2 of 0.87*** and 0.80*** for soil, 0.80***  
and 0.13*** for lacustrine, respectively in Fig. 7G and H).”.

L428–429: The  confounding  factor  in  relation  to  what?  Estimating  MAAT  from  one  of  the 
methylation indices?

Yes exactly, as we generally consider the brGDGT to be a proxy of MAAT. The beginning of this 
paragraph has been modified as follow (l. 454-460) “Comparing the ACADB results with other  
studies,  the  question  of  the  relative  importance  of  the  confounding  factor  on  brGDGT  



palaeothermometer applications from drylands is raised. The effects of the confounding factors on  
the past temperature estimation (…)”.

L454: “attenuation” is not the right word to use. Weakening is probably what you mean.

True. Corrected.

L475: typo here.

True. Corrected.

L500: Again, a confounding factor for what?

In this case, we agree that it is more relevant to defined the salinity as a controlling factor than a  
confounding factor as we are focusing on the relationships between salinity and isomer ratios. The 
paragraph has been modified accordingly.

L512–514: “These thresholds of salinity classes are attenuated…” I do not really understand what 
you mean here. What thresholds do you mean? I do not see any in the Figure that is referenced. I  
understand that you are talking about the difference in the correlation strength to salinity of IR6Me 
vs. IR6+7Me, but the language here is hard to follow.

This is  true.  We detected these thresholds by sensitivity analysis,  now added as supplementary 
figure S.6. We therefore modified the text following (l. 538-544): “IR6Me is well correlated with  
salinity for low salinity values, particularly in lacustrine samples (i.e., mainly fresh-water lakes,  
Fig. 8A and Wang et al. 2021b), while IR7Me is more significant for higher salinity ranges (Fig. 8B).  
Below TDS values of ca. 1,000 mg.L-1, the IR6Me-salinity relationship shows lower data dispersion  
that above this threshold (Fig. S.6A). For the IR7Me index, a saturation effect due to low 7-methyls  
isomer mitigate the IR7Me-salinity relationship, below TDS values of ca. 11,000 mg.L-1 (Fig. S.6B).  
The different IR response to salinity below and above these salinity thresholds (TDS in [1,000;  
11,000] mg.L-1 in Fig. 8A and B) is attenuated when both 6- and 7-methyls are included in the ratio  
over 5-methyls (i.e., IR6+7Me and IR'6+7Me indices, Fig. 8C and D).”.

L526–527: What is a “correlation disruption”?

The wording was in fact not appropriate. We refine the sentence by (l. 557-559): “Particularly,  
panels (A) and (B) from Fig. 7, show that the cyclisation indices exhibit a piecewise, dual-slope  
response across a threshold, indicating a non-linear, threshold-dependent relationship rather than a  
single unified pH control.”.

L528: “global Chinese soils” seems self-contradictory.

Here we want to emphasize the fact that this dataset is from the whole Chinese area, including both 
samples from arid and humid environments. The sentence has been refined as follow (l. 560-561):  
“At the Chinese soils scale, including samples from arid and humid environments, (…)”.

L562: What is a “not recalibrated temperature reconstruction” ?

Here  we  just  want  to  insist  on  the  classical  linear  calibration  for  brGDGT-based  temperature 
reconstruction. However, it  sounds useless. The sentence has been refined as (l.  594-595) “The 
salinity effect on temperature reconstruction may result in a temperature over estimation of more  
than 2°C (Liang et al., 2024)”.

L564: “over-representation” Also, not really sure what you mean here.



True, it is better to use the same wording that in previous sections. This “over-representation” has 
been replaced by “average fractional abundance”.

L615:  “constrained” is not the correct word to use here. I think you mean “led” but you should 
make sure of that.

True, corrected.

L643: What is a “locally recalibrated global calibration” ?

Here it just means, regional calibration. The sentence was changed to (l. 685-686) “Using a local or  
regional calibration (Dugerdil et al., 2021a; Chen et al., 2021), generally reduces this offset.”.

L644-645: Could some of this not be because of the typically different seasonality of brGDGT and 
pollen temperatures? As in,  brGDGTs typically are a proxy of MAAT or MAF while pollen is 
typically  mean temperature  of  the  warmest  month  or  mean temperature  of  the  coldest  month? 
Temperature change is expected to have a different magnitude across different seasons from climate 
model simulations and modern observations (Feldl and Merlis, 2021, is an example from the high 
latitudes).

Actually, whatever the climate parameter reconstructed, the pollen-based climate reconstructions 
always  have  smaller  temperature  variation  reconstructed  along  the  Holocene  (Dugerdil  et  al., 
2021b). I guess here, it is more because of the different statistics and models used to reconstruct 
temperature from pollen and brGDGTs rather than a real seasonal effect. Mainly, the simple linear 
relationships commonly used for brGDGT reconstructions are more sensitive than multi-variate and 
nonlinear space-for-time approaches used in pollen studies.

L664–665: I do not think “lead” is communicating your intended meaning in this sentence, but I  
cannot figure out what you are trying to say so I cannot suggest a better word.

True. Maybe “develop” or “train” is a better word. We rephrase the whole sentence by (l. 714-715) 
“Developing calibrations for  specific  sediment  types  can help reduce biases  in  brGDGT-based  
climate reconstructions, but some challenges remain.”.

L695: Rather than “mitigated” I think you mean “limited.”

True. Corrected.


