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The paper presents a graph neural network model to surrogate the node and edge hydraulic 

variables in a sewer system. 

 

On a small case study in Virginia, USA, the model shows almost perfect performance across 

most predicted metrics. 

 

Despite the paper being in a decent state, I have several major concerns regarding the novelty of 

the paper. 

We thank the reviewer for the time and care invested in this review. Your comments have been 

valuable in prompting us to clarify the presentation of our contributions, to strengthen the empirical 

support for some components of the model, and to prepare concrete revisions that will improve the 

manuscript. 

That said, we must respectfully disagree with the conclusion that our work lacks novelty. We 

recognize, however, that aspects of our manuscript did not clearly articulate the scope and 

implications of our contributions, which may have contributed to this perception. Across the five 

major concerns, the review frames our contributions as incremental variations of existing 

approaches. However, as our detailed responses demonstrate, the novelty is not technical tinkering 

but a re-formulation of the problem itself: developing a rainfall-driven, end-to-end surrogate for 

stormwater systems that enables applications outside the reach of prior runoff-driven or hydraulics-

only models. First, unlike runoff-driven surrogates, our rainfall-driven design unifies hydrologic 

and hydraulic processes, eliminating reliance on external models and enabling applications that 

partial surrogates cannot support. Second, our heterogeneous graph formulation is a structural 

innovation that mirrors the physical distinction between subcatchment nodes and routing nodes, 

preserving hydrologic integrity and enabling localized interventions such as LID optimization. 

Third, our physics-guided learning strategy, including the stability loss and pushforward 

formulation, provides a principled way to balance accuracy and robustness during autoregressive 

rollout, going beyond existing multi-step losses by explicitly detaching gradients to enforce error 

recovery.  

Taken together, along with the other clarifications and revisions outlined in this response, these 

elements demonstrate that our framework is not a minor variation of existing models but a distinct 

step forward. Its novelty lies as much in scope and application as in architecture, creating new 

system-level capabilities, such as integrated flood modeling and infrastructure optimization, that 

cannot be achieved with partial surrogates.  

With this context, we address each of your comments in detail below. Our responses clarify where 

our approach differs substantively from prior work, explain the rationale for our design choices, 

and outline the specific revisions we will make to improve clarity and rigor. 

The authors claim that the paper has 5 main novelties, but they are either not novel or the results 

are not validated enough, as I justify hereafter. 

1) The model converts rainfall to hydraulic variables at junctions and conduits. There already 

exists a paper that models both node and edge variables (Garzon et al., 2024b), despite your paper 

predicts different variables. The main difference consists in directly taking rainfall as an input 

rather than the runoff generated by a hydrological model. However, this introduces other issues 

that are not discussed in the paper, such as including all of the hydrological characteristics of each 

catchment in the proper training of the model. 
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The reviewer characterizes our contribution as “taking rainfall as input,” which downplays the 

substantive distinction between a runoff-driven surrogate and a rainfall-driven surrogate. Prior 

GNN-based studies emulate only the hydraulic routing given pre-computed runoff; they therefore 

remain dependent on a separate hydrologic model and do not remove a major computational and 

operational bottleneck. Our model, in contrast, is end-to-end. That is, it emulates the complete 

rainfall-to-hydraulics transformation within a single framework. These are fundamentally different 

problem formulations, and reducing our contribution to a minor input change misrepresents the 

novelty of our proposed end-to-end approach.  

This end-to-end design is important because it enables capabilities unavailable to runoff-driven 

surrogates: (i) direct coupling with forecast rainfall for real-time operations without invoking a 

hydrologic pre-processor; (ii) explicit sensitivity to subcatchment attributes (imperviousness, 

slope, storage, connectivity), which allows evaluation of land-use and LID interventions; and (iii) 

modular integration with inundation surrogates to support rainfall-to-pipe-to-surface digital twins. 

We do not quite understand the reviewer’s point that using rainfall “introduces other issues”. Our 

framework encodes hydrologic heterogeneity. Static catchment features are explicitly included as 

node attributes and propagated through the graph, so the model learns rainfall–runoff responses 

conditioned on local characteristics. This eliminates the need for an external hydrologic model and 

calibration, increasing portability rather than reducing it. 

To make this distinction clear, we will add: (a) expand the related work and methodology sections 

to clearly contrast runoff-driven surrogates with our end-to-end formulation; and (b) explicitly 

describe the static hydrologic features included in the model. These clarifications reinforce that 

our contribution is not a minor variation but an end-to-end surrogate aimed at broader, real-world 

applications. 

2) Use of a heterogeneous GNN: despite using two different types of nodes, i) there is no clear 

indication of what changes from the GNN perspective other than having different input values, ii) 

there is no comparison with a baseline to justify the need of heterogeneous nodes, and iii) there is 

no analysis showing that this representation "enables structured hydrologic representation". 

The reviewer questions the value of introducing heterogeneous node types and suggests there is 

“no clear indication” of what changes beyond input values. This characterization overlooks both 

the structural and functional importance of the design. Our heterogeneous formulation is not a 

superficial modification; it enforces a separation between hydrologic and hydraulic processes that 

a homogeneous architecture cannot capture. 

From a modeling standpoint, using distinct node types with distinct feature spaces prevents 

information dilution. In a homogeneous network, hydrologic descriptors (imperviousness, slope, 

storage) would have to be artificially assigned to all nodes, forcing meaningless zero-padding for 

routing-only junctions and outfalls. These non-physical inputs would be propagated through 

message passing, contaminating the learned functions and blurring the distinction between runoff 

generation and hydraulic routing. The heterogeneous structure avoids this by restricting hydrologic 

features to subcatchment nodes, yielding a cleaner and more physically coherent learning task. 

This is precisely what we mean by “structured hydrologic representation”: the graph is designed 

to mirror the underlying processes, not just the topology. 

From an application perspective, the heterogenous design aligns with how stormwater systems 

are represented in established models such as SWMM, where only a subset of nodes are linked to 
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subcatchments. This matters for decision-support use cases. For example, when evaluating LID 

strategies, changing imperviousness or storage should affect only the relevant subcatchment nodes, 

not be smeared across the entire graph. A homogeneous architecture would treat these localized 

interventions as global noise, undermining the model’s utility. Our approach ensures that physical 

integrity and local interpretability are preserved. 

To underscore this point, we will revise both the introduction and methodology sections to make 

this rationale explicit, clearly framing the heterogeneous formulation as a design that reflects the 

dual hydrologic–hydraulic processes and preserves localized interpretability for decision-support 

applications. 

3) Physics-guided constraints: penalizing negative values doesn't enforce/constrain them to be 

positive. There is also no ablation on whether this component actually improves the model's 

performance. 

The central physics-guided element in our framework is the differential consistency loss, which 

enforces relational hydraulic constraints by preserving depth and inflow differences across 

connected nodes. This embeds the physics of flow routing directly into the training objective and 

is particularly well suited to an end-to-end rainfall-to-hydraulics surrogate. This relational 

constraint goes beyond the localized feasibility checks used in prior GNN-based studies and 

represents the distinctive physics-guided contribution of our work. 

Alongside this, we include a soft penalty on negative values. It is correct that our penalty does not 

enforce positivity, but that is intentional: we wanted the penalty to serve as a gentle guide toward 

feasible outputs while maintaining smooth gradients and stable optimization. In contrast, hard 

enforcement strategies, such as clamping or ReLU activations, guarantee non-negativity but 

introduce abrupt, non-differentiable operations that disrupt gradient flow, often leading to the well-

known dying ReLU problem and destabilizing learning (Lu et al., 2020). Our formulation 

integrates seamlessly into the loss function, providing stability without sacrificing physical 

plausibility. 

To strengthen clarity, we will revise the manuscript to (a) clearly distinguish between the 

differential consistency loss (the main physics-guided component) and the soft penalty, (b) explain 

why soft guidance was chosen over hard enforcement, and (c) provide a comparison showing 

performance with and without these terms. Together, these clarifications will underscore that our 

physics-guided formulation is not incidental, but a principled and impactful design choice. 

4) Autoregressive forecasting structure: this same approach has been presented in previous papers 

(e.g., Bentivoglio et al. 2023, Garzon et al. 2024). 

Where our contribution lies is in how the autoregressive structure is integrated into our broader 

framework. In particular, coupling autoregression with our stability-oriented training strategy 

enables multi-step prediction within an end-to-end rainfall-to-hydraulics surrogate. This design 

ensures that errors do not accumulate unchecked over long horizons, which is essential for practical 

deployment in stormwater applications. 

To make this clear, we will update the manuscript to frame autoregression not as a standalone 

novelty but as a necessary component of a stable, application-ready architecture. 
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5) Pushforward trick: the version presented here is equivalent in terms of equations to the 

autoregressive approaches mentioned above. The pushforward trick, as described in Brandstetter 

et al. 2022, is implemented in a different way from the one here in this paper. Even if it was, there 

is again no analysis on whether this component benefits the training procedure. 

We recognize we did not fully describe key implementation details, which created the impression 

that our approach is equivalent to prior work. Our pushforward method is an adversarial strategy 

designed to address distribution shift by training the model on its own realistically flawed 

predictions. At each step, we introduce these predictions back into the sequence and cut the 

backpropagation gradient from the initial prediction, which forces the model to learn robustness 

and error recovery rather than simply minimizing one-step errors. This property, often referred to 

as zero-stability, is central to achieving reliable long-horizon performance. In our implementation, 

the stability loss is applied across three time steps, which provides stronger regularization and error 

recovery capacity than a single-step formulation.  

This design shares the underlying logic of the pushforward trick introduced by Brandstetter et al. 

(2022), but our implementation extends it by applying the loss across multiple steps rather than 

only the immediate next step. That distinction makes the method more effective for stormwater 

applications where multi-step stability is critical. 

It is also important to clarify how our approach differs from curriculum learning strategies. 

Curriculum methods typically extend the prediction horizon during training, with gradients 

propagated through the entire trajectory to minimize accumulated error. By contrast, our 

pushforward strategy introduces perturbations at each step while blocking gradients from flowing 

through the initial prediction. This ensures the model learns to recover from errors rather than 

simply avoid them. This principle is fundamentally different from the multi-step-ahead loss of 

Bentivoglio et al. (2023), which propagates gradients through all time steps, as their own 

description confirms. 

In our revision, we will (a) describe the implementation of the pushforward trick with sufficient 

technical detail to avoid ambiguity, and (b) include results comparing training with and without 

the pushforward component to demonstrate its contribution to stability. 

One of the novelties of the paper but is not mentioned here is the estimation of flood volumes 

directly from the predicted hydraulic variables, but it does not justify the paper being published on 

its own. 

We thank the reviewer for this constructive comment. We will highlight this point as we thoroughly 

and carefully revise and clarify the contributions of our work. 

I think that the paper would have to go through a large series of modifications for it to be novel 

enough to justify its publication. 

Because of these concerns, I have to recommend rejection. 

General comments: 

Introduction: 

You mention as main knowledge gap the use of runoff rather than rainfall as a node input.  
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Despite it being true that you could gain a bit more speed-up from emulating that part as well, you 

also end up in a new challenge where your model has now to generalize also over different 

hydrological parameters that can be simply disregarded as an input for the GNN model otherwise. 

I didn't see in the experiments any results on how your model would behave for changes in the 

hydrological characteristics of the node catchments. 

This limitation seems to be missing as well from the model limitations later on. 

Moreover, there is a paper from Garzon et al. (2024b) that already includes edge-level features.  

You should at least compare how you models differ and clarify that there are already examples 

tackling this gap in the introduction. 

We respectfully note that our contribution is not limited to “taking rainfall as an input” but to 

developing a fully an end-to-end, rainfall-driven surrogate. As explained in our response to your 

Comment 1 above, this represents a fundamentally different problem formulation from runoff-

driven surrogates. Prior models emulate only the hydraulic routing once runoff is pre-computed; 

our framework directly couples rainfall, hydrologic characteristics, and hydraulic states in a single 

surrogate. 

A key aspect of our design is the inclusion of hydrological parameters (imperviousness, slope, soil 

type, catchment area, etc.) as node features. This is intentional: these descriptors allow the network 

to learn how rainfall interacts with physical catchment properties to produce runoff. By encoding 

this information directly, the model can condition rainfall–runoff transformation on local 

characteristics, which is essential for eventual transferability across systems with different 

hydrologic settings. Ignoring these descriptors might reduce inputs, but it would come at the 

expense of physical realism and the ability to generalize beyond a single study area. 

The reviewer suggests that using rainfall inputs introduces a new challenge for transferability, but 

this issue is not unique to our framework. Any surrogate, whether rainfall-driven or runoff-driven, 

must be retrained or adapted when applied to a new catchment, since both rely on catchment-

specific attributes. Within the study area used in our study, these parameters (e.g., imperviousness, 

soil type, catchment area) are fixed and do not vary across rainfall events, so variability cannot be 

tested in this dataset. Their importance emerges only when transferring to new study areas, which 

is a natural next step beyond this proof-of-concept study. We will revise the manuscript to make 

this clear and to emphasize that transferability is a broader challenge for surrogate modeling, not 

a limitation introduced by the end-to-end design.  

Finally, with respect to Garzon et al. (2024b), we agree that the introduction can better situate our 

study in relation to existing work. We will revise the introduction to clarify how our framework 

differs in scope (end-to-end rainfall-to-hydraulics rather than runoff-to-hydraulics), structure 

(heterogeneous node design), and application value (supporting decision-relevant tasks such as 

LID optimization and integration with inundation surrogates). 

Section 2: 

I don't see the point in having a background section as it currently is.  

Consider removing it and integrating it directly in the methodology, since there are already some 

overlaps in the GNN part and the part on SWMM does not seem to be relevant for the rest of the 

paper. 
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We understand the reviewer’s perspective on the structure of the background section. While we 

believe it is useful to provide context on both GNNs and SWMM, we agree that this material can 

be streamlined. In the revision, we will integrate the essential details directly into the methodology 

and remove overlaps to improve flow and conciseness. 

Section 3: 

Figure 1: 

The whole figure needs to be re-designed as it is quite confusing in the current state. 

For instance, x_1, x_4, etc. are not defined anywhere in the figure;  

What should be a vector \textbf{x}_1 is written as a scalar; 

These vectors (e.g., x_1) seem to have the same input repeated (x_1^1 present twice, same in the 

others), though I suppose it has different features; 

The message-passing block could be better referenced to the "GN Block" you have above 

"Aggregation"; 

You define both \hat{y}_i and \hat{y}_{ij} which seems to indicate the same variable, even if you 

are referring to two different outputs; 

From the figure, it also seems like the decoded node features are given as input to the edge decoder: 

is it the case? This was not clear in the rest of the paper. 

The colouring of the cells inside the figure may seem to help showing that the features are mixing 

but it also create more confusion, especially after the first mixing. 

There is a variable called h_{selected} that appears only in the figure and is unclear. 

The caption of the figure should also better explain what is happening in the figure, clarifying the 

different variables. 

I would recommend a simpler design, removing all MLP figures, colored shapes, and case-specific 

names (x_1 or x_14). If you want to leave the latter, consider adding a reference graph with the 

corresponding node and edge names. 

Thank you for the detailed and constructive feedback on Figure 1. We will completely redesign 

the figure to address all of your comments and improve its clarity. The new design will be a 

simplified schematic that uses generic, consistent notation, such as clarifying vector components 

with proper boldface type, and removes confusing elements. 

You noted the notation ŷᵢ and ŷᵢⱼ was unclear; our intent was to define two distinct outputs for node-

level and edge-level predictions, respectively. The revised figure will make this separation visually 

explicit with clearer labeling. Regarding the decoder, you asked if decoded node features are used 

as input to the edge decoder. This is not the case, and we will make this clearer in the revised 

figure. Our model conceptually uses separate decoding paths: final node embeddings are mapped 

to node predictions, and final edge embeddings are mapped to edge predictions. The redesigned 

figure will clearly illustrate these two distinct pathways to accurately represent the model's 

architecture. 

line 181: you start defining static and dynamic features without having them introduced before.  
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You also include xy coordinates as inputs: can you expand more on the implications on 

transferability of this approach to other case studies? (similarly for example to what is done in 

Garzon et al. 2024) 

We will revise Section 3.1 to introduce and clearly define the two categories of input features 

(static vs. dynamic) before listing them. 

Regarding the use of x–y coordinates: these are included to help the network capture spatial 

relationships and hydraulic gradients between connected nodes, not to tie the model to a specific 

coordinate system. In practice, the inputs for any new case study would be derived from system 

schematics (pipe geometry, node elevations, subcatchment properties) and organized in a SWMM-

compatible format that preserves connectivity. The x–y information therefore acts as a relational 

feature that enhances learning, rather than a barrier to transferability. 

That said, rigorous testing of cross-watershed transferability was beyond the scope of this proof-

of-concept study. We will explicitly acknowledge this limitation in the revised manuscript and 

expand the discussion to highlight what would be needed for generalization to other systems, such 

as multi-catchment training across diverse hydrologic and spatial settings.  

line 186: is there a reason why you chose 3 time steps as a input history? How is this related to 

"support multi-step autoregressive prediction"? You can predict autoregressively even without 

multiple input time steps in theory. 

Yes, the autoregression can in principle be performed with a single historical step. However, in 

practice, the choice of input window size involves a trade-off between providing enough temporal 

context and avoiding overfitting on long histories. Prior work (Pfaff et al., 2021, Sanchez-Gonzalez 

et al., 2020) shows that small windows of 2–3 steps are effective for capturing short-term dynamics 

without introducing spurious long-range correlations. 

Our approach aligns with this principle. A single input step provides only the instantaneous state 

of the system. For stormwater dynamics, this is insufficient because runoff generation and 

hydraulic response depend not just on current rainfall but also on short-term accumulation and 

recent flow conditions. By providing three historical steps, the model can capture this trend and 

momentum, which are essential for correctly representing how rainfall translates into runoff and 

routing. At the same time, limiting the window to three avoids the risk of overfitting that arises 

with longer histories. 

Our choice of a three-time-step window therefore serves two purposes. First, it provides the 

minimal temporal context needed to capture accumulation effects and short-term system 

momentum, which cannot be represented with a single input step. Second, it aligns with our 

pushforward training strategy: the model predicts at time t using the true, observed data from t−2 

and t−1, then shifts into autoregressive mode where t+1, t+2, and t+3 are generated recursively 

from its own, previously generated outputs. As illustrated in Figure 4-b, this method deliberately 

forces the model to learn from its own "noisy" predictions while gradients are detached from the 

initial step, which stabilizes optimization. The three-step choice is therefore not arbitrary but 

reflects both physical and methodological considerations. 

We will revise the manuscript to make this rationale explicit so the connection between input 

window length, physical dynamics, and the pushforward strategy is clear. 

line 185: how do you calculate the node inflow? is it determined by the predicted edge flows? 
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The dynamic input features for our model are sourced from SWMM simulations across diverse 

storm events. Among these features, 'inflow' refers to the Total Inflow, which represents the 

combined flow into a node from surface runoff (Lateral Inflow), and all connected upstream 

conduits. We will revise the manuscript to clarify this point. 

line 194: with "globally normalized" do you mean that you create a single scaler for all variables 

or do you have one for each variable? 

By “globally normalized” we mean that each variable (e.g., junction depth, conduit flow) is 

normalized separately using statistics computed across all events in the dataset. This ensures 

comparability across events while removing scale disparities and stabilizing the learning process. 

We will revise the manuscript to clarify this point. 

Figure 2 and line 198: 

It seems that your model predicts in one go the following three time steps, but in the figure's caption 

it seems like you first predict t+1, then t+2, and so on. Which of the two is it? And if it's the first, 

why, again, choosing 3 as a number of time steps? 

Figure 3 seems to clarify this issue as it shows that you do the second. Please change the rest of 

the paper clarifying that your model predicts only one step into the future, meaning that it's not 

limited to only 3 steps ahead. 

Since your model can predict any number of future time steps, why do you limit your predictions 

to the same size as the input time steps? 

In other works, the two characteristics are independent (e.g., Bentivoglio et al. 2023, Garzon et al. 

2024). 

Yes, our model is a one-step-ahead predictor that is applied recursively to generate multi-step 

forecasts. Figure 3 correctly illustrates this autoregressive process. We agree that this point was 

not made clearly enough in the manuscript, and we will revise the methodology to state explicitly 

that the model predicts one step at a time, not multiple steps in a single forward pass. 

The confusion in Figure 2 arises from how the pushforward training strategy was visualized. The 

three-step window shown there reflects the training configuration used to implement the 

pushforward trick, not the model’s inherent prediction capability. We will revise the figures and 

captions so they consistently illustrate the autoregressive structure and avoid this ambiguity. 

Regarding the prediction horizon: in our implementation, the number of past input steps and the 

forecast horizon are independent hyperparameters. In practice, we found a horizon of three steps 

yielded the best validation performance during hyperparameter tuning, but the framework is not 

restricted to this configuration. The model is flexible to accommodate different input histories and 

forecast horizons depending on the application. 

line 197: maybe add a reference to Fig. 2, otherwise it was unclear to me how you combine static 

and dynamic features. 

Thanks for your comment. We will clarify more on that and also reference Figure 2. 

Figure 3: 

Part a is could be a bit clearer: you can for example clarify what are the inputs and outputs since 

so far they might look the same. 



9 
 

You should also better show which inputs are taken from ground-truth simulations and which ones 

are predicted by your model, as the update in the red box seems to show that you use ground-truth 

data as input. 

This figure seems to also indicate that there are no overlaps between training windows from t-p to 

t+p. This decreases by a factor p the number of training samples, making the training faster but 

potentially less effective. Please add some justification for this choice. 

Part b: same comment regarding the coloring of ground-truth data as before. 

Thank you for your detailed feedback on Figure 3. We will make sure to clarify the figures in the 

revised version to make this process unambiguous. 

Regarding the training windows, our training methodology does employ overlapping windows. 

We use a sliding window approach to generate training samples, which maximizes the use of the 

available simulation data. We will explicitly clarify this in the manuscript and ensure the revised 

figures accurately reflect this process. 

Section 3.2: 

While it is true that there are no hydraulic paper that consider the pushforward trick, there are other 

papers that you cite that deal with the same problem using directly a multi-step-ahead loss that 

generalizes the pushforward trick to multiple time steps ahead (Bentivoglio et al. 2023, Garzon et 

al. 2024). 

Indeed, Eq. 9 is identical to that of Bentivoglio et al. 2023 and Garzon et al. 2024, so please clarify 

your novelty claims. 

Moreover, in the original paper from Brandstetter et al. 2022, the gradients were cut after the first 

time step, but it seems you are not doing that. 

The reviewer is correct that Brandstetter et al. (2022) cut gradients after the first step, and our 

implementation follows the same principle. During the autoregressive rollout in training, gradients 

are detached after the initial prediction so that the model is trained to recover from its own 

imperfect outputs rather than simply backpropagating through a perfect trajectory. This was not 

made explicit in the manuscript, and we will revise the methods section to state this clearly. 

While Equation 9 is formally identical to the loss functions in Bentivoglio et al. (2023) and Garzon 

et al. (2024), it is crucial to distinguish between their multi-step-ahead loss and our pushforward 

approach. A multi-step loss (e.g., Bentivoglio et al., 2023; Garzón et al., 2024) propagates gradients 

through the entire horizon to minimize accumulated error, teaching trajectory perfection. The 

pushforward trick instead introduces distribution shift deliberately by feeding back noisy 

predictions while cutting gradients after the first step, thereby enforcing robustness and error 

recovery (zero-stability). Although both aim to address long-horizon stability, they rely on 

different principles.  

We will revise the manuscript to make these distinctions explicit so that the novelty of our 

formulation is clear. 

Eq 9 and 10: you are missing the underscript _v on both variables y. Also mention at some point 

that these are mean squared errors. 

The reviewer is correct that the subscripts were missing; we will add the “_v” to the y variables in 

both equations and explicitly state that they represent mean squared errors. 
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Eq. 10: if you are always predicting your outputs based on ground-truth data, is this equivalent to 

a one-step-ahead loss accumulated over multiple time steps? 

The review is correct that Equation 10 can be interpreted as a one-step-ahead loss accumulated 

over multiple steps. We believe this question arises because such a formulation resembles 

curriculum or multi-step loss accumulation strategies used in prior work. Our framework, however, 

differs in how the two loss terms are structured and how gradients are handled. 

Real loss (𝐿𝑟𝑒𝑎𝑙, 𝐹𝑖𝑔. 4𝑎): At each step, the model predicts the next state using ground-truth 

observations as inputs (e.g., depth and inflow at t−1 and t to predict t+1). This is repeated 

recursively for three future steps (t+1, t+2, t+3). At each step, the prediction is compared directly 

against the corresponding ground-truth state, and the mean squared errors across all three steps are 

averaged to define 𝐿𝑟𝑒𝑎𝑙. This ensures the network learns to reproduce the true dynamics under 

perfect input conditions. 

Stability loss (𝐿𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐹𝑖𝑔. 4𝑏): In this phase, we deliberately introduce noisy inputs to mimic 

inference-time conditions. First, the model uses observed states at t−2 and t−1 to predict the state 

at t. After this first step, the model’s own predictions are recursively fed back as inputs: for 

example, the pair consisting of t-1 and the predicted t (t−1, 𝑡̂) is used to predict t+1; then, the pair 

consisting of (𝑡̂, 𝑡̂+1), both model predictions, is used to predict t+2; and so on. At each rollout 

step, the predicted state is compared directly against the corresponding ground-truth state, and the 

mean squared errors across the rollout horizon are averaged to define 𝐿𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦. Importantly, 

gradients are detached after the first step, so the model does not backpropagate through the entire 

trajectory. This forces the model to learn how to recover from its own imperfect outputs, rather 

than only minimizing accumulated error through a perfect rollout. 

Together, these two losses balance accuracy and robustness. 𝐿𝑟𝑒𝑎𝑙 ensures the model aligns closely 

with true system dynamics under ideal inputs, while 𝐿𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 explicitly prepares it for 

autoregressive deployment by training it to handle noisy, imperfect inputs. This gradient-handling 

strategy distinguishes our pushforward approach from prior multi-step loss accumulation methods 

(e.g., Bentivoglio et al., 2023), which propagate gradients through the entire horizon to enforce 

trajectory perfection rather than error recovery. 

We will revise the manuscript to clarify this distinction so that the complementary roles of 𝐿𝑟𝑒𝑎𝑙 

and 𝐿𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 are unambiguous. 

Figure 4:  

As for the previous figures, it would be to have a legend that clarifies what each color represents, 

mainly to highlight which outputs are predicted and which ones are ground-truth. 

Also, the top figure includes 3 previous input time steps while figure a and b only 2. 

It might make the figure easier to understand if you compressed all static and dynamic features 

that are always ground-truth into a single block of a more transparent shade. 

We appreciate this detailed feedback. As clarified in earlier responses, our model consistently uses 

a two-step input history for its predictions. The discrepancy in Figure 4 reflects the visualization 

of the pushforward training setup rather than the model’s actual prediction process. The model 

begins with two observed inputs (t−2 and t−1) to predict the current state at time t, and then 

proceeds autoregressively, feeding its own predictions back as inputs.  
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In the revision, we will update Figure 4 to eliminate this ambiguity. Specifically, we will (a) add a 

clear legend distinguishing predicted vs. ground-truth values, (b) correct the input history to 

consistently reflect the two-step design, and (c) compress static and ground-truth dynamic features 

into a single block to simplify interpretation. 

Section 3.3: 

This section and 3.2 should be merged for clarity as they both deal with a loss function. 

We will revise the manuscript to merge the two sections.  

line 239: penalty term: penalising negative values doesn't "ensure that your model respects 

hydraulic feasibility", it just helps skewing the results to that direction. 

We agree with the reviewer’s observation that the penalty functions as a soft constraint, guiding 

predictions toward physical plausibility rather than strictly enforcing feasibility. As noted in our 

response to Major Comment 3, this was a deliberate design choice to preserve smooth optimization 

while still biasing the model toward feasible outputs. In the revision, we will update the text to 

replace “ensure” with a more accurate term such as “promote” or “encourage,” so that the 

manuscript reflects this behavior precisely. 

Some other works, like Palmitessa et al. (2022), directly use a ReLU activation to guarantee that 

there are no negative values. Did you also try out this approach? Does the presence of this loss 

term improve the results? 

We did not implement the hard constraint approach described by Palitessa et al. (2022). This 

guarantees feasibility, but applying a similar hard clipping (e.g., ReLU) directly to network outputs 

has a significant drawback: whenever a prediction is negative, the output is forced to zero and the 

gradient vanishes. The model therefore receives no corrective signal, making it unable to learn 

how to avoid producing non-physical predictions. In contrast, our penalty loss acts as a soft 

constraint. It provides a constant, non-zero gradient whenever the prediction is negative, which 

continuously nudges the network toward feasible values while still allowing the optimization 

process to converge smoothly. We opted for this approach because it provides a more stable and 

informative learning signal, which is especially important in an end-to-end rainfall-to-hydraulics 

surrogate where robustness depends on recursive predictions. 

We will clarify this rationale in the revised manuscript so the distinction between hard and soft 

enforcement strategies is explicit. 

line 247: please use the same notation on flows, inflows, etc. throughout the paper. I think using 

these symbols (also in the rest of Section 3) makes it clearer to identify which variables you are 

considering. 

We will revise the manuscript to ensure consistent notation.  

 

Eq 13: If you decide to keep the penalty term, with a valid justification, please define it before 

mentioning it in the loss function. 

We will add the following formal mathematical definition for the penalty loss, 𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦, before it 

appears in the total loss function: 
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𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆𝑑 ∑ 𝑅𝑒𝐿𝑈(−

𝑖 𝜖 𝑉

𝑑̂𝑖) + 𝜆𝑐 ∑ 𝑅𝑒𝐿𝑈(−

(𝑖,𝑗) 𝜖 𝐸

𝑑̂𝑖𝑗)  

where 𝑉 is the set of nodes, 𝐸 is the set of edges, 𝑑̂𝑖 is the predicted depth at node 𝑖, is the predicted 

depth in conduit (𝑖, 𝑗), 𝜆𝑑 and 𝜆𝑐 are weighting coefficients controlling the penalty strength, and 

𝑅𝑒𝐿𝑈(⋅) is the Rectified Linear Unit function, which penalizes only non-physical negative depth 

predictions. 

line 250: you seem to imply that in validation the loss is given by the base term, which comprises 

both ground-truth and predicted inputs. 

Is this the case or are you only considering the "stability" term? 

Yes, that is correct. During validation, we compute the base loss, which combines the Real Loss 

(calculated with ground-truth inputs) and the Stability Loss (calculated with predicted inputs). We 

will revise the manuscript to make this point explicit so there is no ambiguity. 

line 260: why do you also measure the Pearson correlation? 

We included the Pearson correlation (r) because it measures an aspect of performance that is not 

captured by RMSE or NSE. While RMSE quantifies absolute error and NSE evaluates the model's 

accuracy relative to the observed mean, Pearson's r specifically measures the trend agreement and 

timing of the predictions relative to the observations. 

Consider, for example, a case where the model correctly tracks the rise and fall of a flood 

hydrograph but systematically over- or underestimates flow magnitudes. In such a scenario, RMSE 

and NSE would penalize the model heavily for magnitude errors, even though the temporal 

dynamics are captured very well. Pearson’s r, by contrast, would still be close to 1, reflecting that 

the model successfully reproduces the timing and shape of the hydrograph. This highlights the 

added value of including r, since it provides insight into temporal agreement that cannot be 

disentangled from magnitude errors using RMSE or NSE alone. 

This distinction is also illustrated in Figure 15, where certain locations show high correlation (r) 

even when NSE is low, emphasizing how r complements RMSE and NSE in evaluating model 

performance. 

  

Section 4: 

line 285: why did you consider this coastal case study if you then have to adapt the real conditions 

(pipes with sea water) to a simplified version? Doesn't the model work with presence of water in 

the system? 

The coastal case study was selected because it provided a realistic and complex network that could 

serve as a high-fidelity testbed. In this initial study, we deliberately simplified the SWMM 

simulation by excluding tidal backflow effects so that the focus remained on the core research 

challenge: demonstrating that a GNN can learn both rainfall-runoff generation and network routing 

directly from rainfall inputs. 

This simplification should not be interpreted as a limitation of the GNN's ability. The GNN learns 

the dynamics that are represented in its training data. Extending the framework to include boundary 

conditions such as tidal influence is straightforward once the end-to-end rainfall-to-hydraulics 



13 
 

surrogate has been established. We will clarify this rationale in the manuscript and note explicitly 

that incorporating tidal forcing is an important direction for future work. 

Figure 5:  

It would help to have an elevation map as well to visualize the slope of the sewer system. 

We will modify Figure 5 to include an elevation layer to help visualize the system's topography 

and slope. 

It seems that all SWMM nodes are flooded according to Waze. How did you calibrate the SWMM 

model then based on these observations (lines 288-289)? 

To calibrate SWMM against Waze flood observations, we iteratively adjusted pipe sizes in tidally 

influenced areas using elevation data, achieving a reasonable match with reported flooded nodes. 

Although the real system frequently floods due to combined rainfall and tide, this baseline model 

(of resized pipes) was intended as a simplified yet representative test case for GNN development.  

It also seems like there are some disconnected parts in your system. Is it an error in the map or do 

you model separate parts? 

Yes, this is an error in the map, and we will correct and modify it in the revised version. 

lines 291-293: What does this sensitivity anlaysis mean? Is this the variability of the static 

catchment attributes accross all SWMM nodes? 

Sensitivity analysis of static catchment attributes (e.g., subcatchment width) confirmed that modest 

perturbations did not meaningfully alter model outcomes (flooded nodes), which is important 

given the ungauged nature of the watershed and reliance on binary flood validation via Waze. 

Finally, only individual rainfall events were simulated, so no consecutive or antecedent rainfall 

conditions were considered. 

line 298: "each event was scaled by factors of 1.2, 1.4, or 1.6." How did you choose which ones to 

scale with which factor? The final number of events is 300 but you start with 85 events. 

Our goal in scaling rainfall events was to enrich the dataset with more intense rainfall scenarios 

and to expand the sample size to 300 events. We began with 85 original events. To create the 

remaining 215 augmented events, we applied multiplicative scaling factors of 1.2, 1.4, and 1.6. 

From the full set of 255 possible augmentations (85 events × 3 scaling factors), we randomly 

selected 215 unique combinations of (event, scaling factor). The final dataset therefore consists of 

85 original events plus 215 augmented events. 

Moreover, it would be useful to show the variability in hyetographs between training, valiation, 

and testing, as, based on the basically perfect results, it looks like there might be some overlap 

between them. 

We will add a new figure or table to the manuscript to address this. It will compare the statistical 

properties of the hyetographs across the training and testing sets to demonstrate their variability 

and confirm the independence of the test set. 

lines 367-372: these are a repetition of the training details that to me mostly add confusion, as it 

seemed that now your model was predicting only 3 steps ahead into the future (line 368), while in 

line 373 it seems that you don't use any ground-truth. Please clarify in case it's the latter. 
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You are correct that the text as written blurs two separate procedures. We will revise the manuscript 

to make this distinction explicit.  

The first paragraph (lines 367-372) describes the training process. The model is trained with a 

sliding-window approach. It repeatedly receives a 3-step history of ground-truth data and is trained 

to predict the next 3 ground-truth steps. This teaches the network short-term dynamics under ideal 

input conditions. 

The second paragraph (starting line 373) explains the inference (or testing) phase. Once trained, 

the model is initialized with the first 3 observed time steps. From there, it operates autoregressively,  

predicting one step at a time and feeding its own outputs back as inputs. This process can be 

continued for any forecast horizon. In inference, ground-truth hydraulic states are not used beyond 

initialization; rainfall remains the only external input at each future step. 

Figure 3 depicts this distinction, and we will revise the text to more explicitly separate training 

from inference so there is no ambiguity about how predictions are generated. 

In the results section, do you consider dry-period events for the simulations? If so, can you tell 

how much they affect the NSE values? 

We did not explicitly separate wet and dry periods during training or evaluation. Instead, the model 

was trained on sliding windows with shuffled mini-batches, ensuring that both low-flow and active 

periods were naturally included. Evaluation was conducted over full events using standard 

autoregressive rollout. 

For context, the regime-splitting approach referenced in prior work relies on a 1 mm rainfall depth 

threshold over a 9-step window, with rebalanced sampling between wet and dry regimes. Our 

history length is shorter (3 steps rather than 9), so such explicit stratification was not necessary in 

our setup. 

For clarity, we will note this in the revised manuscript and emphasize that the reported NSE values 

reflect model performance across entire events, without regime-specific stratification. 

Section 5.3: 

Why do you test the flooding performance only on a single test scenario? 

The flood performance analysis focused on a single, high-intensity storm, which we selected as a 

representative event to rigorously test the model's flood detection capabilities under challenging 

conditions. We note, however, that results for multiple rainfall events are already included in other 

sections of the manuscript. For the sake of brevity, we initially presented only one scenario here, 

but in the revised version we can add complementary results summarizing flood detection metrics 

(CSI, precision, and recall) across several additional storm events from our test set to demonstrate 

that the model's strong performance is consistent. 

Figure 13: 

It should include a comparison with the ground-truth flooded nodes according to SWMM, which 

you compare against. 

We will modify Figure 13 to include a direct comparison with the ground-truth flooded nodes from 

the SWMM simulation. 
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lines 468-469: please add a reference for this claim. 

We will revise the manuscript to support this claim with references from the broader GNN 

literature (e.g., Horie and Mitsume, 2022).  

Section 5.3.2: 

This section on limitations doesn't address one important limitation that you introduce with your 

approach, i.e., the range of hydrological parameters that you now should be modelling in place of 

SWMM. 

It would be also useful to add some insights on the transferability of this model to other case 

studies. This is an important observation, and we will expand the limitations section to discuss it 

explicitly. 

In a stormwater system, hydrological parameters (e.g., subcatchment area, slope, imperviousness) 

are fixed once the model is calibrated and do not vary across rainfall events within the same 

catchment. Therefore, in the present study, these parameters remain constant across simulations. 

Their importance emerges when considering transferability to other catchments, where hydrologic 

properties differ. However, this issue is not unique to an end-to-end surrogate. Even runoff-driven 

surrogates that emulate the hydraulic routing component are not directly transferable without 

retraining on new catchment data. Transferability is therefore a broader challenge for data-driven 

surrogates not a limitation created by our end-to-end formulation. 

We will revise the manuscript to make this point clear and to emphasize that improving 

generalizability requires training on data spanning multiple catchments with diverse hydrological 

parameters. Such a strategy would enable the model to capture transferable relationships between 

catchment properties and hydraulic response, rather than fitting a single system in isolation. 

Section 5: 

At some point of the paper, you should point out the computational times needed for the model to 

train and test, since one of the main drivers of your research is speed. 

We will add a new subsection to the "Results" section detailing the computational performance of 

our model. This will include the total training time, the average inference time per storm, and a 

direct speed-up factor compared to the SWMM model. 

Section 6: 

Please remove the whole section as it does not add any relevant information to the paper. 

It also resembles a lot the interactive dashboard provided by Garzon et al. (2024) 

(https://github.com/alextremo0205/SWMM_GNN_Repository_Paper_version). 

We will remove Section 6 from the manuscript.  

Other comments: 

line 95: there is a reference error 

Thank you for raising this issue. We will fix this in the revised manuscript. 

line 382: please reference fig 10 and then 11, and not viceversa. 

Thank you for raising this issue. We will fix this in the revised manuscript. 

https://github.com/alextremo0205/SWMM_GNN_Repository_Paper_version
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