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Abstract：The commonly used rainfall threshold warning method relies heavily on historical 10 

rainfall and landslide inventory data, which limits its applicability in regions that lack these data. 11 

While physical methods do not rely on landslide inventories to establish warning criteria, the 12 

calculation of the safety factor typically requires considerable time. To address these issues, this 13 

study integrates physical methods, rainfall threshold warning methods, and slope units to develop a 14 

rapid forecasting model for rainfall landslides at a regional scale. A hydrological analysis technique 15 

for slope units based on grid cells was developed to calculate the instability probability of slope 16 

units. Then, each slope unit was analyzed under 20 levels of antecedent effective precipitation and 17 

nearly 200 combinations of rainfall intensity (I) and duration (D) to derive the key fitting parameters 18 

α and β of the I-D curves under various rainfall scenarios. The application results from Fengjie 19 

County indicate that the model runs in less than 12 min, with missing alarm and false alarm rates of 20 

11.8% and 21.1%, respectively, highlighting its excellent potential for practical application. This 21 

study is expected to provide insights for the rapid forecasting of rainfall landslides in the 22 

impoverished mountainous regions of developing countries.   23 
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1   Introduction 1 

Rainfall-induced landslides at a regional scale are among the most common types of natural 2 

hazards worldwide. Reports indicate that in the United States, rainfall-triggered landslides and 3 

secondary hazards result in 25–50 fatalities and economic losses of approximately $2 billion 4 

annually (He et al., 2016). This loss is even more severe in developing countries in the Third World 5 

(Wang et al., 2024; Wang et al., 2021; Wang et al., 2023). In recent years, numerous studies have 6 

indicated that regional landslide forecasting is highly effective for hazard prevention and mitigation. 7 

Researchers have developed various rainfall landslide forecasting models based on statistical and 8 

physical methods (Aristizábal et al., 2016; Baum et al., 2008; Bezak et al., 2016; Bogaard et al., 9 

2018; Cuomo et al., 2021; Liang et al., 2021; Medina et al., 2021; Pinho et al., 2022; Tufano et al., 10 

2021; Wang et al., 2013; Zhang et al., 2021; Zhang et al., 2019). However, there are still several 11 

unresolved issues in regional landslide forecasting, making accurate and efficient warnings a 12 

significant global challenge. 13 

The first major issue is the selection of forecasting methods. The presented statistical 14 

approaches generally depend on historical precipitation and landslide inventory data to construct 15 

the rainfall threshold curves. Recently, researchers proposed different types of rainfall threshold 16 

curves, including I-D, E-D, E-I, IR-AER, I-P, and I-D-MEAR(Brunetti et al., 2010; Hong et al., 17 

2005; Rosi et al., 2020; Zhuang et al., 2014). The I-D curve is the most extensively used among 18 

these types. The I-D curve is typically fitted in either Cartesian coordinates or a double-logarithmic 19 

coordinate system, and the equation of the curve is governed by two key fitting parameters, α and 20 

β, expressed as follows: 21 

I D=                                 (1) 22 

where α and β are derived from the statistical analysis of historical rainfall and landslide data.  23 

Studies indicate that statistical methods are applicable in regions with abundant historical 24 

records of rainfall landslides because these areas can provide sufficient samples for fitting the I-D 25 

curve(Bezak et al., 2016; Hong et al., 2017; Kanungo et al., 2014; Kim et al., 2020; Ma et al., 2015; 26 

Marra, 2018; Pradhan et al., 2018). However, in the poor mountainous regions of the Third World, 27 

many areas that are severely affected by landslides lack professional monitoring devices and rain 28 

gauges, potentially limiting the application of statistical approaches(Zhang et al., 2021; Zhang et al., 29 

2019). In contrast, physical methods typically rely on hydrological and mechanical analyses to 30 
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calculate the safety factors of landslides under different rainfall scenarios, thereby reducing the 1 

reliance on historical rainfall and landslide observation data. In regions where landslide inventory 2 

data are scarce, physical methods could serve as promising alternatives (Zhang et al., 2021; Zhang 3 

et al., 2019). However, physical methods require historical landslide data to validate the accuracy 4 

of the forecasting results, and the safety factor calculation process typically requires a considerable 5 

amount of time. This computational burden increases substantially when considering the stability 6 

analysis of thousands of slopes at the regional scale, making it difficult to ensure the efficiency of 7 

real-time warnings (Zhang et al., 2021). 8 

The second issue pertains to the selection of prediction unit. Clearly defined prediction units 9 

enable residents to identify the specific locations where landslides are likely to occur while also 10 

providing guidance for local governments to develop emergency schemes. However, the I-D 11 

warning curves derived from statistical methods can only provide general trends of hazards within 12 

the region but cannot pinpoint the specific locations of landslide occurrences. Grid cells improve 13 

the clarity of the prediction results to some extent, as the specific locations of each grid within the 14 

area are well defined (Zhang et al., 2021). Researchers have employed grid cells to establish multiple 15 

physical forecasting models such as SHALSTAB (Montgomery et al., 1994), SINMAP(Tarboton et 16 

al., 1970), GEOtop-FS(Rigon et al., 2006), Trigrs(Baum et al., 2008), HIRESSS (Rossi et al., 2013), 17 

H-slider(Liang et al., 2021), SHIA_Landslide (Aristizábal et al., 2016), SLIP(Montrasio et al., 2016), 18 

and FSLAM(Guo et al., 2022). However, the morphology of grid cells does not accurately 19 

characterize the topographical features of natural hillslopes (Domènech et al., 2019; Zhang et al., 20 

2021), resulting in a lack of clear geomorphological significance. In practical applications, a natural 21 

slope can be segmented into a series of grid cells, in which each grid is assigned a different alert 22 

level. This indicates that a high warning level in a grid cell does not mean that the entire slope will 23 

experience a slide.  24 

In contrast, slope units can represent the topographical features of landslides more accurately, 25 

and their boundaries are easily discernible in field environments. Currently, there are various 26 

methods for extracting slope units, including the DEM-based hydrological process analysis 27 

method(Turel et al., 2011), r.slopeunits method(Alvioli et al., 2020), curvature watershed 28 

methods(Yan et al., 2021), MIA-HSU methods(Wang et al., 2019), and multi-scale image 29 

segmentation methods (Huang et al., 2021). In recent years, researchers have developed forecasting 30 
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models utilizing slope units, validating their promising application potential in predicting rainfall-1 

induced landslides (Wang et al., 2023; Zhang et al., 2021).   2 

Addressing the issues outlined in regional landslide forecasting, this study focuses on the 3 

integration of slope units, physical methods, and rainfall parameterized warning techniques to 4 

develop a rapid forecasting model applicable to large areas on a scale of thousands of square 5 

kilometers. Within this model, we no longer pay attention to the positional relationship between the 6 

rainfall data of a landslide and the I-D curve, but concentrate on the key fitting parameters α and β 7 

of the I-D curve for each slope unit. To facilitate this, we developed a rainfall infiltration simulation 8 

technique rooted in grid cells within slope units and subsequently utilized physical methods to 9 

analyze the instability probability for slope units under different rainfall scenarios. For each slope 10 

unit, we designed rainfall scenarios comprising various antecedent rainfall levels combined with 11 

hundreds of rainfall intensity and duration combinations. This allowed us to obtain the key 12 

parameters α and β of the I-D curves for different rainfall scenarios, thereby constructing a database 13 

of parameters α and β under various antecedent precipitation levels. A case study in Fengjie County, 14 

in the Three Gorges Reservoir area, was conducted to validate the reliability of the proposed method. 15 

This research is expected to provide valuable insights for regional landslide forecasting in 16 

impoverished mountainous areas in the developing world.  17 

2  Methodology  18 

2.1 The slope unit extraction method MIA-HSU 19 

In this study, we employed the MIA-HSU method to extract slope units(Wang et al., 2021; 20 

Wang et al., 2019; Wang et al., 2023). In the MIA-HSU method, each HSU(homogeneous slope unit) 21 

is defined as a continuous and homogeneous geomorphological entity. This definition implies that 22 

terrain features related to slope and aspect are uniform within each HSU, with boundaries indicating 23 

transitions in topographical features. The MIA-HSU method consists of two steps. The first step 24 

involves partitioning the Digital Elevation Model (DEM) into small regions with homogeneous 25 

terrain characteristics. In this step, the MIA-HSU method utilizes terrain curvature analysis to 26 

identify ridge and valley regions (Figure 1a) and then extracts the morphological skeleton lines of 27 

ridge and valley areas to characterize topographic relief. Morphological algorithms (such as dilation 28 

and erosion) were used to extract the morphological skeletons of ridges, valleys, and flat areas from 29 

the DEM (Figure 1b), ultimately connecting these skeletons into a closed network (Figure 1c). Thus, 30 
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each small region within the network exhibits uniform geomorphological characteristics. The 1 

second step involves merging small adjacent regions. The MIA-HSU method employs the principal 2 

component analysis (PCA) method to derive fitted planes from localized terrain regions, followed 3 

by the implementation of vector similarity criteria to merge adjacent small regions, thereby 4 

generating HSUs(Figure 1d). 5 

 6 
Figure 1 HSU extraction process: a. the identification of ridge and valley areas; b. the morphological skeleton line 7 

extraction for ridge and valley areas; c. the morphological skeleton closed network; d. HSU extraction result    8 

2.2 The HSU hydrologic simulation technique based on grid cells 9 

（1）The identification for row and column information of grid cell within HSUs 10 

From a geometric perspective, an HSU can be regarded as a spatial polygon that signifies a 11 

landform entity with homogeneous terrain features in the field environment. At the regional scale, 12 

there is obvious heterogeneity in the topography and boundary characteristics among different 13 

HSUs(Wang et al., 2021; Wang et al., 2019; Wang et al., 2023), resulting in the immaturity of 14 

hydrological analysis methods based on slope units. In contrast, hydrological analysis methods 15 

based on grid cells are well-developed. Some researchers have employed grid cells integrated with 16 

an infinite slope model or the limit equilibrium method to conduct regional landslide assessment or 17 

prediction(Gu et al., 2014; Wang et al., 2023; Zhang et al., 2021; Zhuang et al., 2016). In this study, 18 

each HSU was conceptualized as a composition of grid cells with similar microtopographic features, 19 

as illustrated in Figure 2a. For each HSU, we utilized GIS spatial analysis tools to quantify the 20 
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number of grid cells contained within it and their corresponding row and column positional 1 

information, thus establishing a comprehensive database that includes the position information of 2 

the grid cells within each HSU. 3 

 4 
Figure 2 The diagram for HSU-grid cell hydrological connection: a. Grid cells contained within HSU (ri，cj represent 5 

the row and column of grid cells contained within HSU, respectively)  6 

（2）Initial water content assignment of HSUs 7 

After obtaining the grid cell information contained within each HSU, conducting a rainfall 8 

infiltration analysis for these grid cells represents a complex and important task. One issue that 9 

cannot be overlooked is initial moisture content. For landslides in the Three Gorges Reservoir area 10 

of China, the soil typically experiences a prolonged dry winter before the rainy season (May to 11 

September). Previous research indicates that the residual moisture content of slopes before the rainy 12 

season averages approximately 7% to 8% (Wang et al., 2023). Accordingly, this study categorizes 13 

the initial water content into two components: the residual moisture content (𝜃𝑟𝑒𝑠) and the moisture 14 

content increment caused by antecedent precipitation(𝜃ante). Here, 𝜃𝑟𝑒𝑠 reflects the average moisture 15 

level of the soil prior to the rainy season, while 𝜃ante indicate the increase in moisture content due to 16 

antecedent effective precipitation prior to landslide occurrence.  17 

 In this study, each grid cell is stratified into ten soil layers, each with a thickness of 0.2 m 18 

(Figure 2b). For the Three Gorges Reservoir area, the regional landslides triggered by rainfall were 19 

mainly shallow (with thicknesses of 2-3 m). Therefore, variations in residual moisture content 20 

within the soil depth were disregarded, and the same residual moisture content value was assigned 21 

to each soil layer. Following this, we applied steady-state infiltration theory to simulate the 22 
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distribution of moisture content across the soil layers influenced by antecedent precipitation, thereby 1 

allocating the antecedent rainfall to each soil layer. The calculation for 𝜃ini of each soil layer within 2 

the grid cell is as follows: 3 

                      𝜃ini(k)= 𝜃 ante(k) +𝜃𝑟𝑒𝑠   (k=1,2,3…n)                  (2) 4 

Where n represents the number of soil layers, and here n = 10; 𝜃ini(k) indicates the initial 5 

moisture content of each soil layer; 𝜃ante(k) refers to the moisture change in each soil layer due to 6 

previous precipitation; 𝜃res stands for the residual moisture content in the grid cell. 7 

（3）Rainfall infiltration process simulation of grid cell 8 

After obtaining the initial moisture content distribution, the 1-dimensional Richards infiltration 9 

equation was used to solve the moisture content distribution in the grid cell during the rainfall 10 

infiltration process. 11 
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Where D(θ) represents the value of soil water diffusivity under unsaturated conditions and has13 
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The finite difference scheme outlined above was formulated for numerical simulation of 15 

hydrological processes. The lower boundary, identified as impermeable, is based on the maximum 16 

soil depth of the grid cell. The upper boundary of each grid cell was designated as an infiltration 17 

boundary. When the rainfall intensity I(t) is less than the infiltration capacity of the topsoil, all 18 

precipitation infiltrates into the soil, and no runoff is generated. In this scenario, the infiltration 19 

boundary of precipitation was governed by the following differential equation: 20 

( ) ( ) ( )D K I t
z


 


− + =


                         (4) 21 

When the rainfall intensity exceeded the soil infiltration capacity, the excess portion was 22 

transformed into overland flow. At this point, the rainfall infiltration boundary was governed by the 23 

following equation: 24 

                                  θ=θs                                  (5) 25 

Where θs is the saturated water content of the grid cell. 26 

（4）Soil water content generation of HSU 27 

 Following the calculation of the soil moisture for individual grid cells, the soil water 28 

distribution of the HSU was computed as follows:  29 
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where θHSU(k) represents the moisture content of the kth layer of the HSU, θ(k) denotes the 2 

moisture content of the kth layer in the grid cell. n is the number of soil layers (n = 10). 3 

2.3 HSUprob：the calculation of instability probability of HSUs 4 

(1) Profile extraction 5 

After calculating the soil water content within each HSU, analyzing the stability of HSUs 6 

during the rainfall infiltration process is another important task. At present, the time required to 7 

carry out 3D analysis for each HSU on a large regional scale is too large, so extracting the calculation 8 

profile of the HSU becomes a reasonable selection. Currently, there is no uniform method for 9 

extracting the calculation profile of HSUs. Some reasonable assumptions are summarized as follows: 10 

the position of the profile line should reflect the elevation difference between the front and back 11 

edges of the slope, and the centroid point of the HSUs should be on the calculated profile to ensure 12 

that the soil weight on both sides of the calculated section is relatively uniform, and the areas of the 13 

two sections should be close to each other. 14 

Based on these considerations, we developed a fast extraction algorithm HSU-profil (Wang et 15 

al., 2021; Wang et al., 2023) for HSU profiles at large regional scales, which can be divided into 16 

three steps： 17 

First, the highest elevation point H of the HSU polygon is connected to centroid point C to 18 

obtain line segment L1, which intersects the HSU polygon at point J1 (Figure 3b). Line segment L1 19 

divides the HSU polygon into two parts, and the areas of the two parts, S1 and S2 are calculated  to 20 

obtain the area ratio A= S1/ S2.  21 

Next, the lowest elevation point L and centroid C are connected to form line segment L2, as 22 

shown in Figure 3 b. Determine the intersection point J2 between L2 and the polygon of the slope 23 

unit is determined. At this point, the HSU was divided into two parts by line segment L2, and the 24 

areas of the two parts, S3 and S4, were calculated to obtain the area ratio B=S3/ S4. 25 

Finally, |A| and |B| are compared. A smaller absolute value of A indicates that line segment L1 26 

divides the areas on both sides of the HSU polygon more evenly. In this case, L1 is selected as the 27 

profile line. Otherwise, the line segment L2 was chosen as the profile line. 28 

(2) Calculation of safety factor Fs calculation 29 
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For each HSU, the Monte Carlo method was used to generate a large number of potential 1 

polyline-type slip surfaces (Figure 3c), and the random walk method(Greco, 1996) was employed 2 

to search for the critical slip surface. The infinite slope model was used to calculate the safety factor 3 

Fs of each potential slip surface as follows:    4 

s

tan( )tan

tan sin



   

+
= +

b

s

s s

c u
F

D cos
                         (7) 5 

where c is the effective cohesion of the soil, φ is the effective internal friction angle of the soil, 6 

and rs is the average unit weight of soil above the slip surface. φb is related to the matric suction; 7 

when the matric suction is low, it is close to the internal friction angle(Zhang et al., 2018). Ds is the 8 

thickness of the soil layer above the slip surface. us represent the matric suction, which can be 9 

described by the Van Genuchten model(Van Genuchten, 1980): 10 

1

1 ( u )

 
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= =  
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m

r
e n

s r w s

S                          (8) 11 

Where Se represents the saturation degree, θ denotes the soil water content of the HSU, θs and θr are 12 

the saturated and residual water content, respectively. The parameters αw, n and m characterize the 13 

shape of the soil–water characteristic curve, with the relationship n=1−1/m . 14 

 15 

Figure 3 HSU instability probability calculation diagram a. Extraction of HSU boundary points; b. Profile line 16 

extraction of HSU polygon; c. Random search for critical slip surface; d. Enlarged view of the sliding mass for 17 

detailed visualization. 18 

https://doi.org/10.5194/egusphere-2025-3651
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

(3) HSUprob calculation 1 

 According to the saturated-unsaturated rainfall infiltration theory, the mechanical parameters 2 

of the soil (such as cohesion force c(kPa) and internal friction angle φ(°)) are significantly affected 3 

by  soil moisture content fluctuations. The variation in soil mechanical parameters during the 4 

process of rainfall infiltration is very complex, and it is generally acknowledged that dry soil prior 5 

to rainfall infiltration exhibits higher mechanical strength (characterized by elevated parameter 6 

values). As rainwater continues to infiltrate, the soil water content gradually increases, leading to a 7 

decreasing trend in mechanical parameters, such as cohesion and internal friction angle. 8 

Consequently, the mechanical parameters of the soil within each HSU are not fixed, but spatial 9 

uncertainty exists to some extent. In this context, employing probabilistic analysis methods to 10 

calculate the instability probability of an HSU is a more reasonable choice. Probability density 11 

functions (such as normal or uniform distributions) are commonly used to describe the uncertainty 12 

of the geotechnical parameters. The normal distribution is considered suitable for small areas or 13 

watersheds where hydrogeological parameters can be collected in detail, whereas a uniform 14 

distribution is more applicable for larger areas, where it is difficult to acquire detailed 15 

hydromechanical parameters(Wang et al., 2021; Wang et al., 2023). 16 

In this study, we utilized a uniform distribution to simulate the uncertainty of the mechanical 17 

parameters within the HSUs. The soil mechanical parameters in the unsaturated state before rainfall 18 

were taken as the upper bound, while those in the fully saturated state were considered the lower 19 

bound, thereby establishing the upper and lower value boundaries for the mechanical parameters 20 

within the HSU, as indicated in Equations (9) and (10): 21 

,     lower upperc c c                              (9) 22 

,       lower upper                             (10) 23 

where cupper and clower represent the upper and lower bounds of c(kPa), respectively, φupper and 24 

φlower represent the upper and lower bounds of φ(°), respectively. The Monte Carlo method was 25 

employed to randomly select the values within these bounds. The instability probability of the HSU 26 

was calculated using Equation (11).  27 

1= Fs
prob

Sum
HSU

m
                        (11) 28 

where m represents the number of random selections for the mechanical parameters and m 29 
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is set to 500. 1 

2.4 The obtainment of key fitting parameters α and β for I-D curves of HSUs  2 

 In this study, an HSU is regarded as unstable when the value of HSUprob exceeds 50%. Then, 3 

the rainfall intensity and duration data with HSU instability under different rainfall scenarios were 4 

recorded to obtain the key fitting parameters α and β for the I-D curves of each HSU, thereby 5 

establishing a database of parameters α and β. The detailed steps are as follows.  6 

(1) Setting the antecedent effective rainfall levels AER_i(i=1,2,3…n) 7 

The antecedent effective rainfall(AER) has a significant impact on landslide occurrence. 8 

Previous research indicates that in the Three Gorges Reservoir area, the minimum value of AER  9 

before landslide occurrence is 0 mm, whereas the maximum value of AER can exceed 170 10 

mm(Wang et al., 2021). Therefore, 20 different levels of AER ranging from 0 to 200 mm were 11 

established with intervals of 10 mm.  12 

(2) Design of the combination of rainfall intensity (I) and duration(D)  13 

For each antecedent rainfall level, we categorized rainfall intensity (I) into eight levels to 14 

represent the variation from light to heavy rainstorms: 2, 5, 10, 20, 30, 40, 50, and 60 mm/h. The 15 

rainfall duration (D) ranged from 1 to 24 h, with intervals of one hour. Consequently, 192 16 

combinations of I and D were generated for each AER level. 17 

(3) Generation of fitting parameters α、β of the I-D curves 18 

For each combination of rainfall intensity and duration data, the method outlined in Section 19 

2.2 is used to determine the soil water distribution within each HSU, and the corresponding value 20 

of HSUprob was computed using the method described in Section 2.3. If the HSU is unstable, the 21 

corresponding intensity and duration data can serve as data points for fitting the I-D curves. 22 

Subsequently, a power function was utilized to fit these data points to obtain the key fitting 23 

parameters α and β of the I-D curve. As presented above, the fitting parameters α and β for the I-D 24 

curve of each HSU can be generated, thereby establishing a database for α and β at different AER 25 

levels. 26 

2.5 Warning Mode 27 

 In practical applications, the antecedent effective rainfall(AER), rainfall intensity (I), and  28 

duration (D) for each HSU can be computed using Quantitative Precipitation Estimation (QPE) and 29 

Quantitative Precipitation Forecasting (QPF) products provided by the meteorological department 30 
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(Wang et al., 2021). Next, we analyzed the relationship between the actual value of AER and the 20 1 

levels of AER documented in the database, thereby determining the level that is closest to the 2 

antecedent effective rainfall data of the HSU. The α and β values corresponding to this level were 3 

retrieved from the database for the following assessments.  4 

  (1) If I≥αDβ, the data point (I, D) is above the warning curve; thus, the warning should be 5 

released.  6 

(2) Conversely, if I＜αDβ, it signifies that the data point (I, D) is below the warning curve; 7 

therefore, no warning should be issued. 8 

The programming languages Fortran 95 and Python 3.1 were employed to compile the 9 

algorithms outlined in Sections 2.1-2.5, and the overall flowchart of the warning mode is depicted 10 

in Figure 4. 11 

 12 

Figure 4  The flow chart of the fast warning mode based on parameter α and β database 13 

3   Study area and data  14 

3.1  Study area and slope unit data  15 

Fengjie County is situated in the eastern region of the Three Gorges Reservoir area, with 16 

geographical coordinates ranging from 109°1'17″ " to 109°45'58" East and 30°29'19" to 31°22'33"″ 17 

North, covering a total area of 4087 km². The region has a subtropical humid monsoon climate with 18 
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an annual average rainfall of 1,500–2,000 mm. The rainy season occurs from May to September, 1 

accounting for 70% of the annual precipitation. The terrain is primarily mountainous and the 2 

Yangtze River flows across the region from west to east. Geological hazards, such as landslides, 3 

debris flows, and collapses, are widely distributed in Fengjie County, with rainfall landslides posing 4 

the most significant threat. Based on the 7m DEM of Fengjie (Figure 5a), the MIA-HSU method 5 

was employed to extract the slope units, resulting in the identification of 17,547 HSUs(Figures 5 b 6 

and c).  Histograms of the slope gradient and area distribution of the HSUs are presented in Figure 7 

5d-e. As shown in Figure 5d, the slope gradients of the HSUs follow a normal distribution, with 8 

85.4% of the slopes falling within the range of 10° to 30°.  Figure 5e illustrates that the average 9 

area of the HSUs is 0.23 km², with 53.9% of the slope units having an area less than 0.25 km². 10 

Because the sliding depth of shallow landslides typically ranges from 2 m to 3 m, the majority of 11 

HSUs can be classified as small-to medium-scale landslides (with volumes under 500,000 m³). 12 

 13 

Figure 5 Division of HSUs in Fengjie County a. Fengjie DEM; b and c. Extraction results for selected regions: 14 

Enlarged View; d. Histogram of slope distribution of HSUs; e. Histogram of area distribution of HSUs.  15 

3.2  Soil mechanical parameter c (kPa) and φ (°) data of HSUs 16 

The rainfall-triggered shallow landslides within the study area are mainly composed of 17 

quaternary clay and silt, which are classified as fine-grained soils(Wang et al., 2021; Wang et al., 18 

2023).  Field investigations indicate that the sliding soil is fully or even oversaturated, with some 19 

soil mass transitioning into mudflow during the sliding process. The laboratory moisture content 20 

tests revealed that the soil water content under these conditions approached or exceeded the liquid 21 

limit. To obtain detailed soil mechanical parameters under different moisture states, we conducted 22 
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extensive field sampling across Fengjie County, resulting in 312 sampling points, as depicted in 1 

Figure 6f. For each sampling point, direct laboratory shear tests were performed to derive the soil 2 

mechanical parameters c (kPa) and φ (°) at the liquid and plastic limits, respectively. Subsequently, 3 

ArcGIS spatial analysis tools were utilized to generate distribution maps of c (kPa) and φ (°) under 4 

plastic and liquid limit moisture conditions, as shown in Figures 6g-j.   5 

 6 

Figure 6 State of Landslide Soil Before and After Rainfall (a. Soil approaching plastic limit moisture content before 7 

rainfall; b. Soil approaching plastic limit moisture content before rainfall; c. Soil in a fluid state after rainfall; d. Soil 8 

in a fluid state after rainfall; e. Fully saturated and liquefied soil after rainfall; f. Soil sampling locations; g. c (kPa) 9 

at plastic limit moisture content; h. φ (°) at plastic limit moisture content; i. c (kPa) at liquid limit moisture content; 10 

j. φ (°) at liquid limit moisture content.) 11 

3.3 Rainfall data   12 

Rainfall data sources include Quantitative Precipitation Forecasting (QPF) products and 13 

Quantitative Precipitation Estimation (QPE) products. The QPF product obtained from the local 14 

government of Fengjie County is typically utilized to forecast future rainfall at a regional scale, 15 

which can provide rainfall forecast products for the next hour. QPE data are applied to estimate 16 

historical regional rainfall at a regional scale and are essential for determining the antecedent 17 

effective rainfall (AER), which can be computed as follows: 18 
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1

n
n

i

i

AER a R
=

=                                (12) 1 

Where AER is the antecedent effective rainfall, a is the attenuation coefficient, which is equal 2 

to 0.84, based on the research of the Fengjie count (Wang et al., 2021), n is the number of days 3 

before the landslide occurs.  4 

4 Case Study: Rainfall-induced landslides of 31 August, 2014 5 

From August 30–31, 2014, Fengjie experienced continuous heavy rainfall, triggering a series 6 

of landslide hazards that resulted in over 30 fatalities and an economic loss of 580 million yuan. 7 

Based on the daily QPE data for August 15-31, the effective precipitation for the 15 days prior to 8 

the landslide hazards is shown in Figure 7. As illustrated in Figure 7, the maximum precipitation 9 

during this period was 179.10 mm, which occurred in the northwestern region of the area. The 10 

hourly QPF data for August 31 are presented in Figure 8 a-l. As illustrated in Figure 8 a-d, the 11 

rainfall was minimal from 00:00 to 08:00, with a maximum cumulative rainfall of 12.2 mm 08:00. 12 

As shown in Figures 8e-g, rainfall began to increase rapidly at 10:00, reaching a maximum 13 

cumulative precipitation of 92.40 mm by 14:00 in the northwestern region of Fengjie County. 14 

Figures 8 h-l indicate that from 16:00 to 24:00, the cumulative rainfall remained constant, 15 

suggesting that the rainfall process had ceased. 16 

 17 

Figure 7 Precipitation Data Processing (Effective Precipitation from August 15 to August 30, 2014) 18 
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 1 

Figure 8 Radar forecast precipitation data for 2014/08/31 (a. 2:00; b. 4:00; c. 6:00; d. 8:00; e. 10:00; f. 12:00; g. 2 

14:00; h. 16:00; i. 18:00; j. 20:00; k. 22:00; l. 24:00) 3 

 The Land and Resources Bureau of Fengjie County provided data on landslide points 4 

triggered by rainfall on August 31.  This heavy precipitation triggered 583 landslides, which were 5 

mainly distributed in the northwestern region (as indicated by the red and green solid points in 6 

Figure 9). This study utilized the QPE (Figure 7) and QPF data (Figures 8 a-l) as inputs to forecast 7 

landslide hazards for August 31.  8 

The landslide forecast results from 02:00 to 24:00 are shown in Figures 9(a-l). It can be seen 9 

from Figures 8 and 9 that there is a good correlation between the spatial distribution of unstable 10 

HSUs and rainfall characteristics. As presented in Figures 9a-d, at the beginning of the rainfall 11 

process (before 8:00), the majority of the HSUs remained stable owing to the minimal rainfall. 12 

Unstable HSUs began to emerge in the northwestern region starting at 10:00, coinciding with the 13 
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rapid increase in rainfall. Additionally, as the rainfall progressed, the number of unstable HSUs 1 

increased swiftly and spread towards the central and southern regions (Figures 9f-g). Notably, many 2 

unstable slope units appeared within several hours after heavy rainfall ceased. Figures 9h-l reveal 3 

that from 16:00 to 24:00, although the heavy rainfall essentially ended, the number of unstable HSUs 4 

continued to rise because of the moisture infiltration of the saturated top soil, reaching a total of 5 

3,987 at 24:00. 6 

 7 

Figure 9 Prediction results at 02:00 to 24:00 (a. 2:00; b. 4:00; c. 6:00; d. 8:00; e. 10:00; f. 12:00; g. 14:00; h. 16:00; 8 

i. 18:00; j. 20:00; k. 22:00; l. 24:00) 9 

This study employs the Receiver Operating Characteristic (ROC) method to analyze the 10 

predictive performance of the HSU(Fawcett, 2006). For physically model-based slope units, the 11 

ROC method describes the following four possible states using a contingency table: 12 

○1 True Positive (TP): HSU contain landslide points and exhibit instability;  13 

○2 True Negative (TN): HSU does not contain landslide points and does not exhibit instability; 14 
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○3 False Positive (FP): HSU does not contain landslide points but exhibits instability; 1 

○4 False Negative (FN): HSU contains landslide points but does not exhibit instability. 2 

According to GIS spatial statistics, 583 landslides triggered by rainfall on August 31 were 3 

contained within 425 HSUs. In this study, these HSUs are taken as benchmark values for the 4 

calculation of TP, TN, FP, and FN, and the missing alarm rate (MAR) and false alarm rate (FPR) 5 

can be calculated as follows:  6 

MAR =100%×FN /425                         (13) 7 

                          FPR= 100%×FP / (FP + TN )                     (14) 8 

The detailed forecast results for–02-24h are shown in Table 1. As shown in columns 7-8 of 9 

Table 1, with increasing rainfall duration, the Missing Alarm Rate (MAR) gradually decreases, 10 

while the False Positive Rate (FPR) gradually increases. Taking the result of 24h as an example, the 11 

MAR of 24h is 11.8% and the FPR is 21.1%, indicating that the prediction result can satisfy the 12 

requirement of early warning practice.  13 

Table 1 Analysis of Forecast Results for the 831 Case Study 14 

Forecasting  

hour(h) 

Unstable  

HSUs 

TP TN FP FN MAR (%) FPR (%) 

02 22 7 17097 25 418 98.4  0.1  

04 23 3 17102 20 422 99.3  0.1  

06 23 3 17102 20 422 99.3  0.1  

08 24 2 17100 22 423 99.5  0.1  

10 127 27 17022 100 398 93.6  0.6  

12 540 116 16698 424 309 72.7  2.5  

14 1370 231 15983 1139 194 45.6  6.7  

16 1737 289 15674 1448 136 32.0  8.5  

18 2388 327 15061 2061 98 23.1  12.0  

20 2986 354 14490 2632 71 16.7  15.4  

22 3494 364 13992 3130 61 14.4  18.3  

24 3987 375 13510 3612 50 11.8  21.1  

According to the ROC method, the precision and accuracy of the prediction results were 15 

calculated as follows:  16 

Precision=TPR/( TPR+FPR)                          (15) 17 

Accurancy=(TP+TN)/(TP+FN+TN+FP)                  (16) 18 

Table 2 provide the calculation results of precision and accuracy at 24h. As shown, the 19 

precision of the forecasting results is 80.7%, with an accurancy value of 79.1%, indicating the 20 

proposed warning mode has satisfactory comprehensive forecasting performance.  21 

 22 
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Table 2 Calculation Results of Precision and Accuracy at the 24th Hour 1 

Forecasting  

hour(h) 

Unstable  

HSUs 

TP TN FP FN Precision(%) Accurancy(%) 

24 3987 375 13510 3612 50 80.7  79.1  

5  Discussion 2 

5.1 The discussion on the computational efficiency  3 

For emergency warnings during the rainy season, the swift release of warning information is 4 

crucial for local authorities to develop emergency plans and to evacuate residents from landslide-5 

prone areas. Therefore, local governments not only seek satisfactory accuracy in the warning model 6 

but also require minimal time. To evaluate the computational efficiency of the proposed model, a 7 

standard laptop was utilized to execute the forecast for landslide hazards on August 31. The device 8 

specifications and computation times are presented in Table 3. As shown in Table 3, for the regional 9 

scale covering several thousand square kilometers, the prediction model can rapidly complete real-10 

time warnings for the next 24 h within 12 min, indicating that its computational efficiency can 11 

satisfy the requirements of emergency warning. 12 

Table 3 Analysis of computational efficiency of the prediction model 13 

Area

（m2） 

Number of 

HSU  
CPU System Equipment name Memory 

Run 

time 

4080 17547 
Intel(R) 

Core i7 

Windows 64-bit 

operating system 

ThinkPad P15 

Workstation 
16G <12min  

5.2 Further Analysis of Prediction Performance 14 

Using the 24-hour prediction results as an example, we randomly selected seven HSUs with 15 

false alarms for further analysis(Table 4). Columns 3–5 of Table 4 present the effective antecedent 16 

rainfall AER of these HSUs, the AER levels assigned by the database, and the relative errors, 17 

respectively. As shown in Column 5, the relative error ranges from 0.7% to 6.3%, indicating that the 18 

20 levels of the AER designed in the database can accurately reflect the effective antecedent rainfall 19 

characteristics of the HSUs. The average rainfall intensity, duration, and cumulative rainfall data at 20 

24:00 are shown in Columns 6–8. As seen in Column 6, the cumulative rainfall for the seven HSUs 21 

ranges from 12 mm to 29.8 mm, with average rainfall intensities range from 0.5 mm/h to 1.25 mm/h, 22 

which can be classified as light to moderate rain type. The instability probability (HSUprob) of these 23 

HSUs was calculated to investigate the causes of false positives. As shown in Column 9, among the 24 

seven HSUs with false alarms, five had an instability probability of less than 50%, indicating that 25 
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these HSUs did not experience instability during the rainfall process. Therefore, we cautiously 1 

conclude that although the prediction model exhibits preferable operational efficiency, it may 2 

increase the false-positive rate to some extent. 3 

Table 4 The selected HSUs that report false alarms at 24:00 4 

Numb

er of 

HSUs 

Slope 

gradient 

(°) 

AER assignment 

Daily 

accumulated 

rainfall 

(mm) 

Duration 

(h) 

Rainfall 

intensity I

（mm/h） 

HSUprob Actual 

AER 

(mm) 

AER 

levels 

assigned 

by the 

database 

(mm) 

Relative 

error  

6172 19.4 74.6 70 6.2% 24.2 24 1.0 0.88 

8561 26.5 70.9 70 1.3% 12.2 24 0.5 0.19 

6066 26.7 83.1 80 3.7% 29.8 24 1.25 0.65 

8535 25.9 68.6 70 2.0% 10.9 24 0.45 0.18 

13108 40.3 74.1 70 5.5% 15.4 24 0.64 0.29 

8297 23.4 70.5 70 0.7% 12.0 24 0.5 0.14 

12966 38.3 74.7 70 6.3% 14.6 24 0.61 0.25 

To investigate the potential for reducing the false-alarm rate, we selected four HSUs from Table 5 

4 for further analysis. Figures 10 a-d presented the I-D curves and cumulative precipitation 6 

distribution histograms for these HSUs. 7 

For each HSU, the QPF data from 00:00 to 24:00 were discretized into 12 sets of rainfall 8 

intensity and duration data points at 2-hour intervals (represented by black and red solid dots). The 9 

black solid dots positioned below the I-D curve indicate that the HSU is stable at that moment, 10 

whereas the red solid dots located above the curve signify false alarms at the current forecasting 11 

hour. As shown in Figures 10a-d, the red false alarm points for the four HSUs are all situated very 12 

close to the I-D curve, nearly tangent to it. This proximity suggests that slight spatial adjustments 13 

to these points could alter the forecast results. Another important issue is that some of the black 14 

solid dots correspond to a cumulative rainfall of 0 mm, indicating that the rainfall process had not 15 

yet begun. Therefore, it is necessary to adjust the spatial positions of data points I and D based on 16 

the actual initiation time of the rainfall process, thereby facilitating an in-depth investigation of the 17 

causes of the false alarms. 18 
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 1 

Figure 10 The I-D Curves of HSUs before the adjustment of rainfall process (a. 8535; b. 8561; c. 6066; d. 13108) 2 

In this study, an HSU with number 8535 is taken as an example to illustrate the process of 3 

adjusting the spatial positions of data points I and D. As shown in Table 5, the rainfall process for 4 

this HSU started at 12:00 and ended at 24:00 with a duration of 12 h. The start time of rainfall was 5 

used as the starting point to recalculate the rainfall intensity during the rainfall process, as indicated 6 

in the text highlighted with a yellow background in Table 5. The adjusted average rainfall intensity 7 

was significantly higher than the values prior to adjustment. This means that the adjustment of the 8 

rainfall process led to notable changes in the spatial locations of the data points I and D. As shown 9 

in Figure 11a, after updating the positions of data points I and D, the HSU does not exhibit any false 10 

alarms. Figures 11b-d present the updated forecast results for the other three HSUs after the 11 

adjustment. As shown in Figure 11a-d, following the adjustments, three out of these four HSUs were 12 

able to release accurate results. Therefore, we advise that practical warning applications should 13 

consider the influence of the difference in rainfall processes of HSUs on the prediction results. 14 

Table 5 Rainfall process adjustment for HSU with number of 8535 15 

Time 
2:0

0 

4:0

0 

6:0

0 

8:0

0 

10:0

0 

12:0

0 

14:0

0 

16:0

0 

18:0

0 

20:0

0 

22:0

0 

24:0

0 

Accumulated 

rainfall(mm) 
0 0 0 0 0 0.3 3.3 10.7 10.9 10.9 10.9 10.9 

Before 

adjustment 

I(mm/

h) 
0 0 0 0 0 0 0.2 0.7 0.6 0.5 0.5 0.5 

https://doi.org/10.5194/egusphere-2025-3651
Preprint. Discussion started: 18 September 2025
c© Author(s) 2025. CC BY 4.0 License.



22 
 

D (h) 2 4 6 8 10 12 14 16 18 20 22 24 

After 

adjustment 

I(mm/

h) 
/ 0 1.6 2.7 1.8 1.3 1.1 0.9 

D (h) / 0 2 4 6 8 10 12 

 1 

 2 

Figure 11 The I-D Curves of HSUs after the adjustment of rainfall process (a. 8535; b. 8561; c. 6066; d. 13108)  3 

6 Conclusion 4 

Currently, the operational forecasting of rainfall-induced landslides over regional scales of 5 

thousands of square kilometers faces significant challenges. Conventional physical and statistical 6 

approaches have shown limitations in terms of achieving satisfactory results. This study utilized 7 

HSU as a basis to integrate physical models and rainfall threshold methods for a warning model 8 

applicable to large-scale regions. The warning model employs HSU as a prediction unit to improve 9 

the clarity of the warning results, physical methods are utilized to develop the warning criteria, 10 

thereby reducing the overreliance on historical observational data, and a database of rainfall 11 

parameters across different rainfall scenarios is constructed, which enhances the efficiency and 12 

applicability of the warning model. The prediction performance was validated through a case study 13 

of “8.31” rainfall landslides in Fengjie County. The conclusions are as follows.  14 
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(1) A rainfall-triggered landslide warning model was established by integrating HSUs, physical 1 

approaches, and rainfall parameters.  Initially, a grid-based HSU hydrological analysis technique 2 

was established to determine the soil moisture content distribution within the HSUs during different 3 

rainfall hours.  Subsequently, computer graphics algorithms, random search techniques, and 4 

infinite slope models were used to develop a regional-scale HSU stability analysis method. Soil 5 

mechanics parameters at the limit of water content and probability density functions were used to 6 

describe the spatial uncertainty of the soil mechanical parameters within the HSU during rainfall 7 

infiltration, allowing for the calculation of the instability probability of the HSU.  Different rainfall 8 

scenarios were simulated to derive rainfall intensity I and duration D data that can trigger HSU 9 

instability, thereby constructing early warning curves for the rainfall thresholds of the HSU. 10 

(2) A database for the I-D curve fitting parameters α and β across various AER levels was 11 

established. This database includes α and β data for 17,547 HSUs across 20 AER levels, amounting 12 

to a total of 350,940 records, thus offering substantial data support for rainfall-induced landslide 13 

predictions in Fengjie County. In practical applications, it is sufficient to quickly issue warning 14 

information by assessing the relationship between the values of I and αDβ, thereby reducing the time 15 

required to calculate the safety factors using conventional physical models. The calculation 16 

efficiency test indicates that the warning mode can perform forecasts for thousands of kilometers 17 

within a runtime of less than 12 min, thereby meeting the operational needs for real-time warnings 18 

over large regional scales. 19 

(3) The case study indicates that the distribution trends of unstable HSUs align well with 20 

rainfall characteristics. As the rainfall duration increased, the missing alarm rate (MAR) gradually 21 

decreased, while the false alarm rate (FAR) continued to increase. Taking the 24-hour forecast 22 

results as an example, the missing alarm rate was 11.8%, while the false alarm rate was 21.1%. ROC 23 

analysis revealed that the accuracy of the forecast result at this moment was 80.7%, with a precision 24 

of 79.1%, reflecting satisfactory overall forecasting performance. Further discussion of the false 25 

alarm rate suggests that adjusting the spatial locations of rainfall intensity and duration data points 26 

based on the rainfall characteristics of each HSU may be conducive to reducing false alarm rates.  27 

 28 

 29 

 30 

 31 
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