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Abstract. Arctic supraglacial lakes volume changes serve as critical indicators of global temperature fluctuations. Accurate 

lake depth measurements are essential for reliable volume estimation, yet traditional bathymetry methods (e.g., airborne 

LiDAR and shipborne sonar) face significant challenges and high costs in the harsh Arctic environment. This study introduces 10 

a novel approach using ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) and Sentinel-2 data to derive supraglacial lake 

bathymetry. By considering the varying reflectance characteristics across different spectral bands in the water column, we 

conduct a satellite-derived bathymetry (SDB) method based on spectral stratification using the Otsu algorithm (maximum 

between-class variance method). Integrating the spectral stratification method with the classical log-transformed linear 

regression model (Lyzenga model), we perform accurate bathymetric inversion on multispectral satellite imagery. To verify 15 

the effectiveness of the proposed method, we apply it to four representative lakes on the Greenland Ice Sheet (GrIS), using 

ArcticDEM (Arctic Digital Elevation Model) as reference data. Experimental results demonstrate improved accuracy 

compared to the classical Lyzenga model, with reductions in root mean square error (RMSE) and mean absolute error (MAE) 

by up to 13.0% and 14.0%, decreasing from 0.54 m to 0.47 m and from 0.43 m to 0.37 m, respectively. The enhanced accuracy 

and scalability of our approach improve the ability to monitor large-scale volume changes in Arctic supraglacial lakes, 20 

providing valuable insights into their response to climate change. 

1 Introduction 

The Arctic plays a crucial role in maintaining Earth's temperature balance and exhibits heightened sensitivity to global climate 

change (Box et al., 2019; Sand et al., 2016; Schmale et al., 2021). The accelerated melting of Arctic glaciers in recent years, 

driven by global warming, has exerted substantial negative impacts on the global ecological environment (Box et al., 2022; 25 

Lüthje et al., 2006). Greenland Supraglacial Lakes (SGLs) are formed by depressions on the surface of the Greenland Ice Sheet 

(GrIS). Their volume is influenced by factors such as runoff (meltwater, rain, and refreezing) and lake drainage (Leeson et al., 

2015). These changes in water volume within Arctic SGLs are closely linked to ice sheet melting, offering valuable insights 

into regional temperature variations and the ice sheet's response to different climatic factors.(Beckmann and Winkelmann, 

2023). Accurately estimating the volume of these lakes requires detailed bathymetry data, which is particularly challenging to 30 
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obtain due to the harsh climatic conditions in the Arctic. Although conventional bathymetric methods, including bathymetric 

airborne lidar and shipborne sonar, have achieved high levels of maturity and accuracy, their use in polar regions, particularly 

over ice sheets, remains challenging and expensive (Li et al., 2022; Qi et al., 2022; Qi et al., 2024). This limitation significantly 

restricts the acquisition of continuous spatiotemporal volume data for SGLs. With advancements in satellite remote sensing 

technology, satellite-derived bathymetry (SDB) has emerged as a promising method for estimating bathymetry in clear water 35 

areas using multispectral imageries (Ma et al., 2020). Classic bathymetry inversion models, such as the log-transformation 

linear regression model (Lyzenga model) and the log-transformation ratio model (Stumpf model) (Lyzenga, 1978, 1985; 

Stumpf et al., 2003), are widely used in water depth inversion, but their accuracy is constrained by the lack of in-situ depth 

data. 

In recent years, the launch of spaceborne single-photon altimetry satellite ICESat-2 (Ice, Cloud, and Land Elevation Satellite-40 

2) has partially mitigated challenges in obtaining precise measurement data (Albright and Glennie, 2020; Li et al., 2023). 

Numerous studies have integrated multispectral technology with ICESat-2 to conduct bathymetric detection and inversion, 

leveraging both active and passive remote sensing methods. These studies have yielded significant results, primarily in island 

reef areas far from the mainland. For the bathymetry inversion in island reef areas. Cao et al. (2016) developed a high-precision 

bathymetry model for Ganquan Island in the South China Sea by using laser satellite data and optical imagery. This approach 45 

leverages active and passive remote sensing techniques, tailored to the specific characteristics and requirements of shallow 

water bathymetry. Ma et al. (2020) used ICESat-2 data and Sentinel-2 data to retrieve the bathymetry information of the Xisha 

Islands and Aklin Island in the South China Sea. Thomas et al. (2021) also used Sentinel-2 and ICESat-2 data, combined with 

the Lyzenga model, Stumpf model, and support vector machine model, to derive bathymetry maps of Florida, Crete, and 

Bermuda, Zhao et al. (2024) proposed a seafloor substrate in coral reef areas into sandy and coral, based on the Depth Invariant 50 

Index (DII) and conduct bathymetry inversion based an adaptive log-ratio model. In addition, Chu et al. (2023) considered the 

penetration limit bathymetry in different bands of multispectral imagery and proposed a satellite-derived bathymetry method 

based on spectral stratification, which was successfully applied to the long line reefs in the Nansha area of China and Buck 

Island in the United States Virgin Islands, improving the inversion accuracy to a certain extent. For the bathymetry inversion 

in Arctic regions, Lin et al. (2012) used multibeam bathymetric data and Landsat TM data to invert the bathymetry of lakes in 55 

the Arctic Alaska Coastal Plain. Moussavi et al. (2016) utilized the stereoscopic imaging capability of Worldview-2 data to 

estimate and validate the bathymetry of SGLs of the GrIS, achieving high accuracy. Melling et al. (2024) used Sentinel-2 data 

to construct Radiative Transfer Equations (RTE) for different bands and validated them by combining ICESat-2 and 

ArcticDEM (Arctic Digital Elevation Model) data. Fricker et al. (2021) introduced ICESat-2 data to estimate the meltwater 

depth of the Antarctic ice sheet and Greenland, providing a reference for polar water depth inversion. Datta and Wouters (2021) 60 

proposed the Watta algorithm, which focused on studying the drainage situation of arctic lakes by utilizing ICESat-2 data and 

multispectral data. Lv et al. (2024) used the Stumpf model, combined with ICESat-2 and Sentinel-2 imagery, to invert the 

bathymetry of some SGLs on the GrIS from 2019 to 2023. 
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The method of SDB using a combination of active and passive remote sensing has been widely applied in the open ocean and 

island reefs, but it has been rarely utilized for inverting the bathymetry of polar SGLs. Moreover, the traditional SDB models 65 

(e.g., Lyzenga model and Stumpf model) applied to polar SGL generally do not consider the reflectance diversities of the water 

column across different bands (i.e., red band, green band, blue band, and near-infrared band), which limits their accuracy. 

Inspired by the spectral stratification bathymetric inversion method applied by Chu et al. (2023) on offshore islands and reefs, 

we propose a new SDB method for Arctic SGLs based on spectral stratification, aiming to improve the accuracy of active-

passive remote sensing bathymetric inversion models for Arctic SGL depths. This method divides multispectral imagery into 70 

red, green, blue, and near-infrared layers using the Otsu algorithm for constructing a spectral stratified inversion model. The 

Lyzenga model is then applied, using ICESat-2 lake bottom photons as training samples, to derive bathymetry for each band. 

The results are validated against high-resolution ArcticDEM data. This study provides a new solution for accurately monitoring 

the Arctic SGL volumes and offers effective technical support for predicting Arctic glacier melt and global climate change.  

The manuscript is organized as follows: Section 2 describes the study areas and data sources. Section 3 explains the proposed 75 

method. Section 4 presents the experimental results. Section 5 discusses the findings in detail. Finally, the conclusion 

summarizes the manuscript. 

2 Study area and data 

2.1 Study area 

The study area is located in the southwest of the GrIS in the Arctic, the second-largest ice sheet in the world, surpassed only 80 

by the Antarctic Ice Sheet. However, the GrIS is more fragile and sensitive to temperature changes than the Antarctic Ice Sheet 

(Robinson et al., 2012). This region contains numerous shallow SGLs with clear water, providing a good condition for 

bathymetry retrieval using ICESat-2 laser altimetry and multispectral remote sensing imagery (Feng et al., 2024; Lv et al., 

2024). Four Arctic SGLs are selected for research and analysis, as depicted in Figure. 1. For convenience, these lakes are 

referred to as Lake A, Lake B, Lake C, and Lake D. The study aimed to verify the feasibility of the bathymetric inversion 85 

model using these four lakes. Subsequently, the bathymetry data obtained by the proposed method was used to calculate the 

volume information of these four lakes. 
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Figure. 1 Overview of the study area and typical lakes. The background consists of Sentinel-2 multispectral imagery depicting the 90 
study area and the four lakes. Yellow, red, blue, and green lines represent ICESat-2 tracks traversing these four lakes, respectively. 
The black points indicate ICESat-2 raw photon data. 

2.2 Study data 

2.2.1 Sentinel-2 multispectral imagery 

The Sentinel-2 satellite, a medium-resolution multispectral satellite launched by the European Space Agency (ESA), is a 95 

critical component of its Earth observation mission. The Sentinel-2 system comprises three satellites (i.e., Sentinel-2A, 
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Sentinel-2B, and Sentinel-2C) which were launched on June 23, 2015, March 7, 2017, and September 5, 2024, respectively 

(Ma et al., 2020). The Sentinel-2 satellite features 13 bands covering visible light, near-infrared, and shortwave infrared bands, 

with some bands having a resolution of up to 10 m (Hedley et al., 2018). Sentinel-2 imagery spans a width of up to 290 km 

and a single satellite revisit period of 10 days. In this study, Sentinel-2 imagery of lakes A, B, C, and D investigated was 100 

obtained on July 4, 2020, July 4, 2020, July 17, 2022, and July 15, 2021, respectively. The Sentinel-2 multispectral imagery 

can be downloaded for free from the Internet (https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-

data/sentinel-2). 

2.2.2 ICESat-2 single-photon LiDAR data 

The ICESat-2 satellite orbits at an altitude of approximately 500 km with an inclination of 92°, observing the Earth’s surface 105 

between latitudes 88°S and 88°N. The platform is equipped with the Advanced Topographic Laser Altimeter System (ATLAS) 

single photon lidar and auxiliary system, which determines the distance between the spacecraft and the Earth’s surface by 

measuring the round-trip time of photons (Markus et al., 2017). The ICESat-2/ATLAS laser emits laser pulses with a 

wavelength of 532 nm and a width of 1.5 ns at a frequency of 10 kHz, forming overlapping light spots along the Earth’s surface 

with an orbital spacing of approximately 0.7 m (Magruder et al., 2021). The left and right points of each pair of beams are 110 

approximately 90 m apart in the transverse track direction and approximately 2.5 km apart along the track direction. Paired 

tracks are approximately 3.3 km apart in the transverse track direction (Neumann et al., 2021). The ICESat-2 data acquisition 

dates used in this study were July 6, 2020, July 6, 2020, July 14, 2022, and July 15, 2021, respectively. The ICESat-2 data can 

be obtained freely from the Internet (https://search.earthdata.nasa.gov/). This study utilized ICESat-2 data intercepted from 

Sentinel-2 data as training data and assumed a lake water depth of 0 m at the edges of the ICESat-2 tracks. Please note that 115 

this study assumes that the depth at the intersection of the ICESat-2 track and the lake's land-water boundary is 0 m. 

2.2.3 ArcticDEM data 

ArcticDEM can be obtained for free from the Polar Geospatial Center at the University of Minnesota in the United States 

(https://www.pgc.umn.edu/data/arcticdem/), and has the characteristics of a large coverage area and high spatial resolution. It 

covers all land areas above 60° north latitude, with a spatial resolution of up to 2 m, and has significant reference value for 120 

topographic research in the Arctic region (Melling et al., 2024). The high-resolution Arctic digital elevation model ArcticDEM 

data is extracted and output as strip-shaped DEM data by SETSM (Surface Extraction with TIN based Search space 

Minimization), preserving the time information of the original data and allowing users to service data for research and analysis 

as needed (Morin et al., 2016). It should be pointed out that the ArcticDEM data used in this study were obtained on May 11, 

2020, April 20, 2022, and March 12, 2021. 125 
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Table 1: Acquisition dates of the data used in the study 

Study Area 
Multispectral Imagery 

(Sentinel-2) 

Training Data 

(ICESat-2) 

Validation Data 

(ArcticDEM) 

Southwest Greenland 

Ice-sheet 

Lake A 04/07/2020 06/07/2020 11/05/2020 

Lake B 04/07/2020 06/07/2020 11/05/2020 

Lake C 17/07/2022 14/07/2022 20/04/2022 

Lake D 15/07/2021 15/07/2021 12/03/2021 

3 Methodology 

To address the challenges and the limitations of traditional bathymetric methods, which do not consider the varying 130 

penetration of electromagnetic waves of different wavelengths into water, this study combines single-photon LiDAR 

ICESat-2 data with multispectral imageries from Sentinel-2. Using the Otsu algorithm (Otsu, 1975), spectral stratification of 

the multispectral images is performed based on the reflectance differences at various water depths across different bands. 

The stratified spectral layers are then combined with the ICESat-2 bathymetric data to construct an optimized Lyzenga 

model for each spectral layer. The detailed workflow is illustrated in Figure. 2. 135 
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Figure. 2 The workflow of the proposed SDB method. 

3.1 Data processing 

3.1.1 Pre-processing of multispectral imagery 

The Sentinel-2 data provided by the ESA is divided into L1C and L2A levels. The L1C level data product is a geometric 140 

precision correction radiographic product that has not undergone radiometric correction. L2A products are products that 

undergo radiation correction processing based on L1C. L1C radiation correction can be processed using the Sen2Cor plugin 
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provided by the ESA to convert L1C level data into L2A level data for radiation correction. The water column was extracted 

from multispectral imagery using water-land separation methods, i.e., the Normalized Difference Water Index (NDWI) (Eq. 

(1)) and threshold-based grayscale segmentation (McFeeters, 1996). 145 

Green NIR
NDWI

Green NIR





    (1) 

where Green represents the reflectance at the green band, and NIR represents the reflectance at the near-infrared band. 

Since the multispectral imagery obtained contained partially unmelted ice cover on the acquisition date, a mask was applied 

to the ice cover on the lake to ensure the accuracy of the study during the water column extraction process. 

3.1.2 ICESat-2 bathymetric photons processing 150 

The ICESat-2 single photon data is subject to a large amount of noise information in the solar background imagery, so noise 

photon removal processing is required. In this study, we used the density based spatial clustering algorithm DBSCAN (Density 

Based Spatial Clustering of Applications with Noise) to segment point cloud data into surface photon data and underwater 

photon data, to remove noise and obtain the required underwater photon data (Ma et al., 2020). Figure. 3 shows four ICESat-

2 data tracks used for four lakes. Due to the fact that the ICESat-2 ATL03 data did not consider the deviation of laser 155 

propagation caused by different refractive indices between air and water columns, it was necessary to perform refraction 

correction on the underwater photons. Finally, more accurate bathymetric photons were obtained for constructing a bathymetry 

inversion model. The refraction correction model used in this study was the Parrish 2019 model (Parrish et al., 2019). Since 

the surface of Arctic SGLs is usually calm, the study did not consider the effects of waves and tidal phenomena on photons, 

the equation of the refraction correction was expressed as: 160 

   1 2
1 21 tan sin

2 cD R
 

 
       
   

         (2) 

where D is the corrected bathymetry, θ1 is the laser incidence angle, θ2 is the laser refraction angle, and Rc is the corrected laser 

transmission distance derived from Snell’s Law. 
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Figure. 3 Extraction and correction of ICESat-2 bathymetry photons for four lakes. (a) Data track for Lake A on 06/07/2020. (b) 
Data track for Lake B on 06/07/2020. (c) Data track for Lake C on 14/07/2022. (d) Data track for Lake D on 15/07/2021.The black 165 
points represent the ICESat-2 ATL03 raw data photons, the blue points represent the lake surface photons, the red points represent 
the lake floor photons without refraction correction, and the green points represent the corrected lake floor photons, which can be 
used to construct the bathymetry inversion model. 

It should be noticed that Arctic SGLs are typically dynamic, with their size and shape exhibiting significant changes over short 

periods. Therefore, The ICESat-2 and Sentinel-2 data used for Arctic SGL bathymetry inversion should be acquired 170 

simultaneously whenever possible. If temporal discrepancies between the data sources result in spatial misalignment of lake 

features in ICESat-2 photon and Sentinel-2 imagery, a vertical adjustment of ICESat-2 photon can be applied. This adjustment 

ensures that the depth value of the photon at the lake boundaries is set to 0 m, thereby mitigating systematic errors caused by 

temporal mismatches between datasets. 

3.2 Spectral stratification for multispectral imagery based on Otsu algorithm 175 

The spectral stratification method used in this study employed the Otsu algorithm, which does not require input parameters 

(Otsu, 1975). By utilizing the penetration characteristics and reflectance differences of water across various spectral bands, 

multispectral images of water stratified into four layers: near-infrared band, red band, blue band, and green band. Specifically, 

the Otsu algorithm was first applied to determine the water extraction threshold in the near-infrared band layer. Subsequently, 

water in the near-infrared band was masked, and the same method was used to extract water in the red band. Next, both the 180 

near-infrared and red bands were masked to perform threshold segmentation for extracting water in the green band. Finally, 

by masking the extracted near-infrared, red, and green bands, water in the blue band was obtained, thereby achieving spectral 

stratification of satellite-derived multispectral images (Figure. 4). 

https://doi.org/10.5194/egusphere-2025-364
Preprint. Discussion started: 21 February 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

 

Figure. 4 Binarized segmentation and spectral stratification of the Lake A 185 

3.3 Spectral stratified bathymetry inversion model 

Lyzenga's log-transformed linear regression model links spectral data to bathymetry using the log sum of water reflectance 

differences from deep-water values (Lyzenga, 1978, 1985). This study constructed a spectral stratified bathymetry inversion 

model based on the traditional Lyzenga model. By leveraging the varying penetration abilities of electromagnetic waves in 

water, satellite-derived multispectral images were segmented into different layers, and a bathymetry inversion model was 190 

established combining the traditional Lyzenga model. Owing to the relatively small lake surface area of the near-infrared layer 

and the red layer and the insufficiency of ICESat-2 bathymetry training photons in this study, the near-infrared layer, the red 

layer, and the green layer were combined for processing. In other words, Arctic SGLs were divided into green and blue layers 

for bathymetry inversion, the expression was: 

   0
1

ln
N

g gi i i
i

Z a a L L 


         (3) 195 

   0
1

ln
N

b bi i i
i

Z a a L L 


         (4) 

where 𝑍 was the predicted bathymetry result, ag0 and agi were the corresponding parameters of the green light layer, ab0 and 

abi were the corresponding parameters of the blue light layer, L(λi) was the reflectance value of the i-th band, and L(λ∞) was 

the reflectance of the deep-water zone in the i-th band. 
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3.4 Evaluation metrics 200 

The bathymetric information derived from the above two bathymetry inversion models was validated and analysed using the 

ArcticDEM data as the reference. The coefficient of determination (R2), root mean square error (RMSE), and mean absolute 

error (MAE) between the two datasets were calculated to quantitatively validate the effectiveness of the proposed method 

(Hodson, 2022). The formulas for these metrics are as follows: 

 
 

2 1

1

ˆ
n

i
i
n

i
i

h h
R

h h













    (5) 205 

 2

1

ˆ
n

i i
i

h h
RMSE

n






    (6) 

1 ˆ
i iMAE h h

n
      (7) 

where ˆ
ih is the predicted water depth, and hi is the ArcticDEM-derived validation water depth. 

4 Result and analysis 

Utilizing the datasets detailed in Section 2 and the bathymetry inversion methods outlined in Section 3, this section performed 210 

bathymetry inversion for Lakes A, B, C, and D. Additionally, the accuracy of the inversion results was validated and compared 

using ArcticDEM data. Section 4.1 and Section 4.2 presented both qualitative and quantitative evaluations of the bathymetry 

inversion results obtained from the Lyzenga model and the spectral stratified model to assess the feasibility and accuracy of 

the spectral stratified bathymetry inversion model. 

4.1 Qualitative analysis 215 

To verify the effectiveness of the proposed method, we employed both the traditional Lyzenga model (without spectral 

stratification) and the spectral stratified method to derive the bathymetric information of Lakes A, B, C, and D. The accuracy 

of bathymetric inversion was compared and analysed using ArcticDEM as benchmark data.  

The Lyzenga model and the spectral stratified model were applied to the four lakes in the study area, and the bathymetry 

inversion results were shown in Figure. 5. In this study, the bathymetry inversion results of the green and blue layers were 220 

combined to determine the overall lake depth. It should be pointed out that the study excluded areas covered by unmelted ice 

sheets on the lakes. Consequently, Figure. 5 shows some regions without bathymetry data. 
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(a)

 
(b)

 
(c)

 
(d)
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Figure. 5 Lake bathymetry inversion results using the Lyzenga model and the spectral stratified model. (a) Sentinel-2 imagery and 
bathymetry results for Lake A using the Lyzenga model and the spectral stratified model. (b) Sentinel-2 imagery and bathymetry 225 
results for Lake B using the Lyzenga model and the spectral stratified model. (c) Sentinel-2 imagery and bathymetry results for 
Lake C using the Lyzenga model and the spectral stratified model. (d) Sentinel-2 imagery and bathymetry results for Lake D using 
the Lyzenga model and the spectral stratified model. 

As shown in Figure. 5, the SDB inversion methods utilizing both active and passive remote sensing can achieve the bathymetry 

of Arctic SGLs. The bathymetric results inverted by the traditional Lyzeng model and the spectral stratified method were 230 

generally consistent; however, discrepancies were observed in certain regions, underscoring the reliability and feasibility of 

the spectral stratified model. It should be noted that the ArcticDEM data only contains spatial information of the lake bottom, 

and lacks water surface elevation information when obtaining bathymetry benchmark data. Therefore, in this study, the edge 

position of the ArcticDEM lake was determined using ICESat-2 data, with this elevation serving as the water surface elevation. 

Additionally, there was a temporal discrepancy of two to four months between the ArcticDEM data and the Sentinel-2 data in 235 

this study. However, the sediment in the lakes of the experimental area primarily consists of bedrock, a type of material that 

remains stable and does not undergo significant changes over short periods. Consequently, it is feasible to use the ArcticDEM 

as validation data in this study (Melling et al., 2024).  

4.2 Quantitative analysis 

To quantitatively and visually demonstrate the performance of the method, the validation results of the SDB using the 240 

traditional Lyzenga model and the spectrally stratified Lyzenga model are presented in Figure. 6. 

(a)
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(b)

(c)

(d)

Figure. 6 Comparison of bathymetric inversion results using the Lyzenga model and spectral stratified Lyzenga model for four lakes. 
(a) Lake A bathymetry validation. (b) Lake B bathymetry validation. (c) Lake C bathymetry validation. (d) Lake D bathymetry 
validation. The point represents the ArcticDEM validation points, the black dashed line indicates the 1:1 line, and the red solid line 
represents the data fitting line 245 
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To visually demonstrate the improvement in the bathymetric inversion accuracy achieved by the spectral stratification method, 

we selected Lake A as a case study to compare the traditional Lyzenga model with the spectral stratified Lyzenga model. Based 

on the bathymetric inversion results shown in Figure. 5, the study examines the differences in depth inversion results between 

the two methods. In areas where relatively obvious discrepancies are observed, ArcticDEM data is used for accuracy validation, 

as illustrated in Figure. 7. 250 

(a) (b)

(c)

Figure. 7 Comparison of the bathymetric maps using the Lyzenga model and the spectral stratified model with the Lake A. (a) The 
depth inversion results derived from the Lyzenga model. (b) The depth inversion results are derived from the spectral stratified 
model. The red box highlights areas with relatively notable differences in depth inversion between the two models. (c) A detailed 
view of the water area within the red box. 

A qualitative analysis of the bathymetric inversion results for Lake A indicates that the discrepancies between the Lyzenga 255 

model and the spectral stratified model are primarily concentrated in the 2-6 m range, with more pronounced differences at the 

transitions between different spectral layers. 
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(a) (b)

 
Figure. 8 Comparison of accuracy using the ArcticDEM data with the Lyzenga model and the spectral stratification model of Lake 
A. (a) The Lyzenga model. (b) The spectral stratified model. The black dashed line indicates the 1:1 line, and the red solid line 
represents the data fitting line. 260 

According to Figure. 6, R2 is relatively high, all of which could reach 0.9 or above, proving that the Lyzenga model is rational 

for application in these Arctic SGLs. Specifically, the RMSE of the bathymetry inversion for Lake A decreased from 0.54 m 

to 0.47 m, and the MAE decreased from 0.43 m to 0.37 m, with reductions of 13.0% and 14.0%, respectively. For Lake B, the 

RMSE and MAE of the spectral stratified bathymetry inversion accuracy values were 0.61 m and 0.46 m, respectively, with 

decreases of 9.0% and 13.2%. In the case of Lake C, the RMSE reduced to 0.50 m, with reductions of 7.4%. For Lake D, the 265 

RMSE reduced to 0.72 m and MAE reduced to 0.52 m, which the RMSE decreased by 5.3% and MAE decreased by 8.8%. 

Validation results for the red box region of Lake A indicate that the spectral stratified method achieves higher accuracy than 

the traditional Lyzenga model too, with the RMSE reduced from 0.67 m to 0.47 m, a decrease of 29.9%, and the MAE reduced 

from 0.59 m to 0.39 m, a decrease of 33.9%, as shown in Figure. 8. For the points with significant absolute errors in the 

validation results, this may be related to anomalies in pixel reflectance values caused by errors during the radiometric correction 270 

of the multispectral imagery data. The validation results further demonstrate the effectiveness of the spectral stratification 

method in improving bathymetric inversion accuracy. In summary, the experimental results demonstrate that the spectral 

stratified method utilized in the study effectively improves the accuracy of bathymetry inversion for Arctic SGLs. 

5 Discussion 

5.1 Estimation of lake volume 275 

This study extended the application of the spectral stratified method for bathymetry inversion mentioned above, using the 

spectral stratified model to derive the bathymetry results and fit the surface of the lake bottom. To facilitate the assessment of 
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volume changes in Arctic SGLs, the volumes of lakes A, B, C, and D were derived through the 3D reconstruction method, as 

shown in Figure. 9. 

(a) (b)

(c) (d)

 
Figure. 9 Volume estimation of spectral stratification bathymetry and 3D reconstruction of Lakes A, B, C, and D.(a) Lake A 3D 280 
reconstruction and volume estimation. (b) Lake B 3D reconstruction and volume estimation. (c) Lake C 3D reconstruction and 
volume estimation. (d) Lake D 3D reconstruction and volume estimation. 

As shown in Figure. 9, the volumes of Lake A, B, C, and D were 9.46ൈ106 m3, 3.57ൈ106 m3, 3.48ൈ106 m3, and 1.65ൈ107 m3. 

Compared to the low temporal resolution of ArcticDEM data, the method of calculating lake volume using bathymetry 

information obtained by the study approach is more effective and better meets the needs of long-term accurate monitoring of 285 

lake volume. It has reference value for studying the volume changes of lakes above arctic glaciers and their relationship with 

climate-influencing factors. 
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5.2 Challenges and limitations of the spectral stratification method 

While the spectral stratification-based method enhances the accuracy of bathymetric inversion compared to traditional 

approaches, such as the Lyzenga model, several limitations need attention. First, the method's accuracy is constrained by the 290 

number and distribution of ICESat-2 training samples. Due to the limited amount of strip-shaped data, there were not enough 

training samples, which hindered further improvement in model accuracy. Additionally, in some regions of shallow Arctic 

SGLs, where bathymetric variations are minimal, the impact of spectral penetration differences is limited, resulting in only 

marginal improvements in accuracy. Secondly, the dynamic nature of Arctic SGLs, which experience significant 

morphological changes over short periods, poses a challenge when combining ICESat-2 and Sentinel-2 data for bathymetric 295 

inversion. To achieve accurate results, the temporal synchronization of these data sets is critical, which places higher demands 

on data acquisition and availability. As a result, there is a limited pool of suitable ICESat-2 and Sentinel-2 data for conducting 

effective spectral bathymetric inversion in these lakes. 

6 Conclusion 

The study employed the spectral stratification method and the Otsu algorithm to determine reflectance thresholds across 300 

different bands, segmenting the lake's multispectral satellite imagery into distinct spectral layers. Subsequently, both the 

traditional Lyzenga model and the spectral stratified Lyzenga model were utilized to invert the lake's bathymetry, with 

ArcticDEM used for accuracy validation. The main conclusions are as follows: 

(1) For cases with minimal spatial discrepancies between ICESat-2 lake bottom photons and multispectral imagery, vertical 

adjustments can be made to the ICESat-2 photons so that corresponding photons at the lake’s edge indicate a depth of 0 m.  305 

(2) Integrating the spectral stratification algorithm into the SDB method improves inversion accuracy, with the most significant 

improvement observed for Lake A, where RMSE and MAE were reduced by 13.0% and 14.0%, respectively. 

(3) The spectral stratified SDB method requires high-quality data, with limited datasets suitable for SDB. For small, shallow 

polar SGLs, the optimization of inversion accuracy through spectral stratification is not significant, limiting improvements in 

inversion precision. Despite some limitations, the spectral stratified SDB method can effectively enhance the accuracy of SDB 310 

for polar SGLs, providing more timely and precise depth estimates. This approach offers valuable data support for studies of 

polar SGLs where in-situ depth measurements are challenging and serves as a reference for research on environmental changes 

in polar regions. 
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