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Abstract. Wintertime low temperatures and snow cover usually diminish the friction coefficient of asphalt pavements, thereby 

elevating accident and congestion risks. Road surface temperature (RST) is an important parameter for maintaining traffic safety 

under extreme winter weather conditions, as it helps predict road icing events. Aiming to enhance the precision and robustness 

of RST prediction, this paper introduces a forecasting framework combining optimized Long Short-Term Memory (LSTM) 

architectures with a stacking-based ensemble strategy. Two improved LSTMs are constructed: (1) KNN-LSTM, integrating K-20 

nearest neighbors to capture local spatiotemporal similarity patterns, and (2) Attention-BiLSTM, employing bidirectional 

temporal modeling with dynamic attention weighting mechanisms. These models function as base learners in the stacking 

ensemble, with Bayesian ridge regression utilized as the meta-learner to consolidate their predictions. The proposed hybrid 

model was trained and validated using minute-resolution winter meteorological data (2020-2024) collected from a station 

located on the Longhai Railway Bridge in Jiangsu, China. Experimental results show that the KNN-LSTM and Attention-25 

BiLSTM models exhibit complementary advantages in capturing localized and global temporal features. The ensemble model 

demonstrates superior performance over individual models, achieving a 1-hour MAE of 0.074, MSE of 0.010, and MAPE of 

46.7 % with a significant reduction compared with the best-performing single model. Under extended prediction horizons (3-

hour and 6-hour), including low-temperature below 0 °C conditions and typical weather backgrounds, the ensemble model 

sustains high prediction accuracy and stability. These findings underscore the efficacy of integrating local pattern extraction 30 

with attention-based mechanisms via ensemble learning, thereby enhancing RST prediction. This study presents a scalable and 

adaptable framework for intelligent road weather management systems, offering practical insights for operational deployment. 
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1 Introduction 

Road surface temperature is a critical parameter in both road safety and routine maintenance, as it directly affects pavement 

conditions and traffic efficiency (Horne, J. E., 1991; Shao and Lister, 1996). The intensification of climate change has led to 35 

more frequent extreme weather events, increasing the complexity of RST variation during winter due to amplified temperature 

fluctuations. The continuously changing winter conditions affect road maintenance operations and increase the risk of traffic 

accidents (Andersson and Chapman, 2011). Studies have shown a clear warming trend in northern China during winter, while 

certain southern regions have experienced colder conditions (Zhou et al., 2014), resulting in significant north-south disparities 

that pose new challenges for road management. In addition, shifts in precipitation patterns further complicate RST forecasting 40 

by altering surface thermal dynamics (Crevier and Delage, 2001). 

The advent of Long Short-Term Memory networks marked a turning point, leveraging their capacity to model sequential data 

and long-term dependencies (Hochreiter and Schmidhuber, 1997). Subsequently, Gers et al. (2000) introduced the forget gate, 

enabling LSTM to "reset" its internal state and better retain long-sequence information. They further introduced peephole 

connections, allowing the gating mechanism to directly access cell state information, significantly improving model 45 

performance. In temperature-related prediction fields, LSTM has been applied to urban temperature forecasting and industrial 

temperature monitoring, effectively capturing long-term dependencies and improving prediction accuracy. For instance, Chen 

et al. (2023) proposed a real-time bridge temperature prediction method based on LSTM and ground meteorological data. 

Experimental results showed that the absolute prediction error of the LSTM model was within 2 °C, demonstrating good 

engineering applicability. Hou et al. (2021) investigated an LSTM recurrent neural network-based temperature prediction 50 

method for switchgear equipment, with prediction accuracy significantly higher than traditional BP neural networks and RNN 

models, indicating that LSTM has high stability and accuracy in industrial equipment temperature monitoring. Yan et al. (2024) 

proposed a temperature prediction model combining convolutional neural networks and long short-term memory LSTM for 

real-time global temperature prediction, validating that the CNN-LSTM model has higher accuracy and generalization 

capability when processing complex meteorological data. 55 

The field of RST forecasting has also witnessed substantial advancements, evolving from traditional statistical models to 

sophisticated deep learning techniques. Early approaches, such as linear regression and basic time-series analyses, struggled to 

capture the nonlinear and temporally dependent nature of RST data (Chapman et al., 2001). The emergence of machine learning 

and deep learning methods has provided new solutions to overcome these limitations. Nowrin and Kwon (2022) applied artificial 

neural networks to predict RST using data from Road Weather Information System (RWIS) stations, highlighting the sensitivity 60 

of prediction accuracy to forecast horizons and geographical features. In the same period, regional implementations showed 

promising results, as demonstrated by Xie et al. (2023) in Hunan Province, where logistic regression paired with thermal 

mapping enabled an RST-based icing warning system with enhanced spatial resolution. Dai et al. (2023) optimized a 

multidimensional LSTM model by integrating meteorological cumulative effects and temperature periodicity through a sliding 

window approach. Compared to Random Forest (RF) and Backpropagation (BP) neural networks, the LSTM-based RST hourly 65 
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prediction model demonstrated significant advantages in both accuracy and stability, proving the strong generalization 

capability and robustness of LSTM in complex heat transfer processes. Most recently, hybrid models have shown exceptional 

performance in complex geographical conditions. Zhang et al. (2024) developed a hybrid RF-LSTM model specifically 

designed to address the challenging climatic conditions in high-altitude mountainous areas. By integrating feature selection via 

the random forest algorithm with time-series modeling using LSTM, the proposed model achieves a prediction accuracy of 70 

99.13 %, maintaining prediction errors within ± 0.5 °C. These results demonstrate strong robustness and transferability of the 

model, particularly in mountainous regions. The research outcomes presented above indicate that deep learning techniques, 

especially improved models based on LSTM, have achieved notable technological advancements and possess substantial 

potential for practical application in predicting road surface temperatures. 

Ensemble learning techniques, notably stacking, a layered method introduced by Wolpert (1992), have emerged as powerful 75 

tools for improving model generalization by achieving model fusion through hierarchical training of base learners and meta-

learners In subsequent research, Ledezma et al. (2010) proposed a genetic algorithm-based stacking optimization framework 

(GA-Stacking), which significantly improved classification task accuracy through dynamic adjustment of base model weights. 

The advantages of stacking became further pronounced in time series prediction, as demonstrated by Assaad et al. (2008), who 

combined Boosting with recurrent neural networks and improved long-term prediction stability through stacking ensemble 80 

strategies. Building upon these foundations, Zheng et al. (2023) integrated the GBDT algorithm with stacking strategies, 

enhancing the accuracy and stability of short-term power load forecasting through multi-level ensemble optimization. 

In recent years, the combination of deep learning methods with ensemble strategies has emerged as a prominent research 

trend. LSTM, owing to its excellent temporal modeling capabilities, is frequently incorporated as a base learner in ensemble 

frameworks. Yang et al. (2010) proposed a weighted clustering ensemble-based approach for time series data modeling, 85 

reducing prediction errors by fusing multiple LSTM sub-models. Subsequently, Yang et al. (2022) developed a short-term wind 

power prediction model based on Attention-GRU wind speed correction and stacking multi-algorithm fusion, significantly 

improving both the accuracy and generalization capability of wind power forecasting. Furthermore, the introduction of attention 

mechanisms has further optimized ensemble effects, as exemplified by Guo et al. (2013), who combined attention mechanisms 

with stacking in medical image analysis to enhance feature selection precision. 90 

Meteorological data is characterized by strong temporal dependencies and substantial noise interference, causing traditional 

single models to frequently encounter overfitting or underfitting problems. Ensemble learning has emerged as an effective 

solution to address such challenges by integrating the advantages of multiple models. Subramanian et al. (2011) employed 

ensemble models to analyze multi-source time series data, successfully predicting mortality rates in heart failure patients and 

validating the potential of ensemble methods in complex temporal modeling. Similarly, Li et al. (2024) established a 95 

meteorological factor-based corn yield prediction model by analyzing the importance of meteorological factors and utilizing 

three ensemble learning methods: LightGBM, bagging, and stacking. The results demonstrated that the stacking model exhibited 

optimal performance in terms of both prediction accuracy and robustness, effectively leveraging the characteristics and 

advantages of individual base learners. 
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This study proposes a winter road surface temperature prediction model based on improved LSTMs and stacking integration. 100 

The approach enhances feature selection through the incorporation of the K-nearest neighbors algorithm, strengthens temporal 

feature extraction using an attention mechanism, and designs an efficient meta-learner fusion strategy to improve prediction 

accuracy and model robustness. The model is trained and validated using RST and meteorological data from a road weather 

station in Jiangsu Province. After data preprocessing and variable correlation analysis, we design the model architecture to 

capture RST periodicity and the lag effects of meteorological inputs. Our approach provides a scalable and adaptive framework 105 

for RST forecasting and supports the development of early-warning systems in cold-region road management. 

2 Methodology 

Fig. 1 illustrates the working mechanism of the improved LSTM-stacking ensemble model for winter road surface temperature 

prediction, structured into three distinct stages: data processing and feature extraction, model training, and predictive 

performance evaluation. In the first stage, historical meteorological data relevant to road surface temperature are acquired. The 110 

data undergo a series of quality control steps, including cleaning, outlier removal, and missing value imputation. Once the data 

is processed, five variables that most accurately reflect the characteristics of winter road surface temperature variations are 

selected as model inputs based on the Spearman rank correlation coefficient. A feature matrix is constructed, with each feature 

representing the relevant meteorological parameters and their historical corresponding values. This stage ensures the preparation 

of high-quality data for the subsequent modeling phase. The second stage focuses on the training of the constructed improved 115 

LSTM-stacking ensemble model. Improved LSTMs serve as base learners in this ensemble approach: the KNN-LSTM 

integrates the K-nearest neighbors algorithm with the sequential modeling capability of LSTM to capture local similarity 

patterns, whereas the Attention-BiLSTM incorporates a bidirectional temporal modeling structure along with an attention 

mechanism to effectively identify critical temporal features. The Bayesian ridge regression model functions as a meta-learner, 

integrating the outputs from the base models and performing further optimization to generate the final RST prediction. In the 120 

final stage, a comprehensive evaluation of the improved LSTM-stacking ensemble model is performed by comparing it with 

LSTM, KNN-LSTM, and Attention-BiLSTM. Model performance is assessed using multiple metrics, including prediction 

accuracy, stability, and adaptability under varying prediction horizons, extreme temperature scenarios, and typical weather 

conditions. Each of the above steps is described in detail below. 
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Figure 1: Overview of the improved LSTM-stacking ensemble model for winter road surface temperature prediction. 

2.1 KNN-LSTM 

The KNN-LSTM model combines the strengths of KNN (Cover and Hart, 1967) and LSTM networks to enhance predictive 

accuracy by integrating similarity-based feature augmentation with temporal sequence modeling. Originally proposed by Luo 

et al. (2019) for traffic flow prediction, this approach is extended here for wintertime road surface temperature forecasting. The 130 

modeling process is outlined below: 

For a given target time step 𝑡, the input meteorological feature vector is denoted as: 𝑋𝑡 = (𝑋𝑡,1, 𝑋𝑡,2, … , 𝑋𝑡,𝑛), where 𝑛 is the 

feature dimension, and each component 𝑋𝑡,𝑗 corresponds to the value of the 𝑗-th feature at time 𝑡. Let 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛) 

be the 𝑖-th historical sample in the training set, where 𝑖 = 1,2, … ,𝑀  and 𝑀  is the total number of training samples. The 

similarity between the input vector 𝑋𝑡 and a historical vector  𝑋𝑖 is calculated using the Euclidean distance: 135 

𝑑(𝑋𝑡 , 𝑋𝑖) = √∑ (𝑋𝑡𝑗 − 𝑋𝑖𝑗)²
𝑛
𝑗=1  ,          (1) 

The 𝐾 nearest neighbors with the smallest Euclidean distances are selected to form a similarity set {𝑋𝑖}𝑖=1
𝐾 , where each 𝑋𝑖 

denotes the input feature vector of the 𝑖-th nearest historical sample. A similarity feature vector 𝐹𝑡  is then constructed by 

inverse-distance weighted averaging of the 𝐾 neighbors: 

𝐹𝑡 =
∑

1

𝑑(𝑋𝑡,𝑋𝑖)
𝑋𝑖

𝐾
𝑖=1

∑
1

𝑑(𝑋𝑡,𝑋𝑖)𝑖

𝐾
𝑖=1

 ,           (2) 140 

https://doi.org/10.5194/egusphere-2025-3638
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

where 𝑑(𝑋𝑡 , 𝑋𝑖)𝑖  is the Euclidean distance between the current input 𝑋𝑡  and the 𝑖-th neighbor 𝑋𝑖 . The resulting vector 𝐹𝑡 

represents the mean of the most similar historical patterns, weighted by proximity. 

The original input vector 𝑋𝑡 and the similarity-enhanced vector 𝐹𝑡 are then concatenated along the feature dimension to form 

an augmented 2𝑛-dimensional feature vector: 𝑋𝑡,𝑎𝑢𝑔 = (𝑋𝑡 , 𝐹𝑡) = (𝑋𝑡,1, 𝑋𝑡,2, ⋯ , 𝑋𝑡,𝑛, 𝐹𝑡,1, 𝐹𝑡,2, ⋯ , 𝐹𝑡,𝑛). To capture temporal 

dependencies, a sliding window of size 𝑇 is applied to the augmented input sequence, producing a 3D tensor for LSTM input: 145 

𝑋𝑙𝑠𝑡𝑚 ∈ 𝑅𝑀×𝑇×2𝑛. 

The augmented sequence 𝑋𝑙𝑠𝑡𝑚 is then passed into an LSTM network, which models temporal dependencies through its gated 

architecture. After processing 𝑇 time steps, the hidden state at the final time step ℎ𝑡,𝑇, is extracted. This hidden state captures 

the long-term dependencies embedded in the input sequence and serves as a compact representation of the temporal dynamics 

of the system. 150 

The final hidden state ℎ𝑡,𝑇 is passed through a fully connected output layer to generate the predicted road surface temperature: 

𝑦̂𝑘𝑛𝑛 = 𝑊0 ⋅ ℎ𝑡,𝑇 + 𝑏0 ,           (3) 

where 𝑊0 is the weight vector and 𝑏0 is the bias term. The output 𝑦̂𝑘𝑛𝑛 is the predicted road surface temperature at time 𝑡 + 1. 

After each prediction, the value of 𝐾 is incremented by 1, and the next most similar sample is considered for augmentation. 

The loop continues until the value of 𝐾 reaches 𝑀, the total number of training samples. A schematic overview of the complete 155 

KNN-LSTM architecture is provided in Fig. 2. 

 

Figure 2: Architecture of the KNN-LSTM model. 
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2.2 Attention-BiLSTM 

The Attention-BiLSTM model integrates Bidirectional Long Short-Term Memory networks with a self-attention mechanism 160 

(Bahdanau et al., 2014), enabling the network to simultaneously capture temporal dependencies in both forward and backward 

directions and assign adaptive importance to different time steps. As proposed by Zhou Wenye et al. (2019), the Attention-

BiLSTM architecture enhances the traditional LSTM by assigning varying weights to different time steps, allowing the model 

to focus more effectively on key information within the input sequence. The model structure, illustrated in Fig. 3, proceeds as 

follows: 165 

Let the sliding window size be 𝑇 , and the input sequence at time 𝑡  is specifically represented as: 𝑋 =

(𝑋𝑡−𝑇+1, 𝑋𝑡−𝑇+2, … , 𝑋𝑡)
𝑇, 𝑋𝑡 = (𝑋𝑡,1, 𝑋𝑡,2, … , 𝑋𝑡,𝑛), where 𝑛 is the feature dimension. First, a bidirectional LSTM is used to 

extract temporal features from the input sequence (Schuster and Paliwal, 1997). The forward LSTM processes the sequence 

from past to future, while the backward LSTM captures future-to-past dependencies. At time step 𝑡, the output state ℎ𝑡,𝑖
⃗⃗ ⃗⃗  ⃗ of the 

𝑖-th input vector in the forward layer is computed using the input sequence 𝑋, while the output state ℎ𝑡,𝑖
⃐⃗ ⃗⃗ ⃗⃗  of the backward layer 170 

is computed using the reversed form of 𝑋, denoted as (𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑇+1)
𝑇. The output of the BiLSTM layer at time 𝑡 is 

represented as ℎ𝑡 = (ℎ𝑡,1, ℎ𝑡,2, … , ℎ𝑡,𝑇)
𝑇, where ℎ𝑡,𝑖 contains both the forward state ℎ𝑡,𝑖

⃗⃗ ⃗⃗  ⃗ and the backward state ℎ𝑡,𝑖
⃐⃗ ⃗⃗ ⃗⃗ . 

For each time step, the attention mechanism calculates an attention score 𝛼𝑡,𝑖, reflecting the importance of each hidden state 

ℎ𝑡 for the final prediction. The attention score is computed using a dot-product similarity function: 

𝛼𝑡,𝑖 =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑖))

𝛴𝑘=1
𝑇 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑘))

 ,          (4) 175 

where the 𝑠𝑐𝑜𝑟𝑒 function measures the similarity between the current time step 𝑡 and each of the previous time steps using the 

dot product between the hidden states.  

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 , ℎ𝑖) = ℎ𝑡 ∙ ℎ𝑖 ,           (5) 

The weighted context vector 𝑐𝑡 is then obtained by summing the weighted hidden states: 

𝑐𝑡 = ∑ 𝛼𝑡,𝑖ℎ𝑡,𝑖
𝑇

𝑖=1
 ,            (6) 180 

This context vector 𝑐𝑡 is subsequently used in predicting the future RST. The hidden state ℎ𝑡 and the context vector 𝑐𝑡 are 

combined to generate the final output. This combined vector is passed through a fully connected layer to yield the final 

temperature prediction: 

𝑦̂𝑎𝑡𝑡 = 𝑊0[ℎ𝑡 , 𝑐𝑡] + 𝑏0 ,           (7) 

where 𝑊0 is the weight matrix of the fully connected layer, and 𝑏0 is the bias term. 185 
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Figure 3: Architecture of the Attention-BiLSTM model. Here, 𝒉𝒕,𝒊
⃗⃗⃗⃗⃗⃗  is the forward hidden state at time step 𝒕 for the 𝒊-th input vector, 

𝒉𝒕,𝒊
⃐⃗ ⃗⃗⃗⃗⃗ is the backward hidden state at time step t for the 𝒊-th input vector, 𝒉𝒕,𝒊 is the combined output of the forward and backward 

hidden states, 𝜶𝒕,𝒊 is the attention weight at time step t for the i-th input vector. 

2.3 Stacking ensemble learning strategy 190 

Stacking is a hierarchical ensemble learning method designed to enhance prediction performance through the integration of 

outputs from multiple individual models. In contrast to bagging and boosting, which rely on parallel or sequential resampling 

strategies, stacking adopts a multi-layer architecture consisting of base learners in the first layer and a meta-learner in the second 

layer. As illustrated in Fig. 4, this layered structure enables stacking to effectively handle complex learning tasks, making it 

particularly suitable for applications requiring the combination of diverse model capabilities. 195 
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Figure 4: Hierarchical structure of stacking. 

In the stacking framework, base learners and meta-learner have clear roles and collaborate to make predictions. Base learners, 

located in the first layer, directly process the raw input and generate preliminary prediction results. To enhance model diversity, 

models with structurally different characteristics are typically chosen, which extract feature information from various 200 

perspectives. Such diversity is crucial for enhancing the effectiveness and generalization ability of the stacking ensemble. 

The meta-learner, located in the second layer, is responsible for integrating the outputs of the base models and learning the 

mapping relationship between them and the true values. During training, the meta-model uses the results of cross-validation 

from the base learners as input for supervised learning, thus capturing the complementarity between the models. Through this 

hierarchical collaboration mechanism, stacking effectively combines the advantages of multiple models, enhancing the accuracy 205 

and stability of predictions. 

2.4 Construction of the improved LSTM-stacking ensemble model 

The selection of appropriate base learners and a suitable meta-learner is essential for enhancing the predictive performance of 

stacking-based ensemble models. In this study, KNN-LSTM and Attention-BiLSTM are selected as base learners. Both models 

are variants of the LSTM network and are capable of effectively modeling nonlinear characteristics and capturing long-term 210 

dependencies inherent in time series data. The KNN-LSTM model integrates the local search capability of the K-nearest 
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neighbor algorithm with the temporal modeling capacity of the LSTM network to identify local patterns. Meanwhile, the 

Attention-BiLSTM model incorporates an attention mechanism, which dynamically assigns temporal weights, thereby 

facilitating the extraction of critical temporal features. Together, these two base learners provide comprehensive prediction 

information from complementary perspectives, forming a robust foundation for the ensemble approach. 215 

Given that the predictions from KNN-LSTM and Attention-BiLSTM already encapsulate complex data patterns, the role of 

the meta-learner becomes to model the combination of these predictions in a way that minimizes the final prediction error. In 

this study, we select Bayesian ridge regression as the meta-learner due to its ability to handle multicollinearity between the 

predictions from the base models and its regularization properties, which help prevent overfitting. Bayesian ridge regression 

works by performing a weighted sum of the predictions from both base learners, with the weights determined through 220 

optimization. This allows the model to assign different contributions to each base learner based on the specific data scenario, 

reflecting their relative strengths and weaknesses. The Bayesian nature of the model also provides a probabilistic framework, 

enabling it to model uncertainty in the predictions from the base learners and incorporate this uncertainty into the final ensemble 

prediction. This flexibility ensures that the final model not only produces accurate predictions but also accounts for the inherent 

variability present in the outputs of the base models. The structural overview of the proposed improved LSTM-stacking 225 

ensemble model is presented in Fig. 5. 

 

Figure 5: Architecture of the improved LSTM-stacking ensemble model. 
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3 Experimental details 

3.1 Data and preprocessing 230 

This study focuses on a segment of the Longhai Railway Bridge situated within the northwest inland plain of Jiangsu Province, 

China. The region falls within the typical warm temperate semi-humid monsoon climate zone. The topography is primarily flat 

and expansive, which facilitates the horizontal distribution and transmission of meteorological factors. The data used in this 

study were collected from a minute-level observational meteorological station located to the west of the Longhai Railway Bridge 

in Jiangsu Province, at coordinates (34.30ºN, 117.04ºE). The dataset spans four periods: December 2020 to February 2021, 235 

December 2021 to February 2022, December 2022 to February 2023, and December 2023 to February 2024. During this period, 

infrared remote sensing sensors collected data every 5 minutes, recording ground-level meteorological variables including 

visibility, air temperature, relative humidity, rainfall, wind speed, wind direction, and RST, with a total of over 100,000 data 

points collected. Due to missing data, solar radiation was not considered in this study. After data cleaning, imputation, and 

outlier handling, the meteorological factors and RST data were resampled at hourly intervals, resulting in a refined dataset of 240 

8,544 samples for modeling. A detailed summary of the dataset is provided in Table 1. 

Table 1: Summary of the dataset. 

Variable Description Mean 
Standard 

deviation 
Min Max 

Visibility 
Maximum distance (m) that a person with normal vision 

can recognize the target. 
7942.28 3355.89 56.00 30000.00 

Air temperature 
Temperature (°C) indicated by a thermometer exposed to 

the air but sheltered from direct sunlight. 
2.08 5.29 -15.15 23.79 

Relative humidity 
Ratio (%) of actual water vapor pressure to saturation 

water vapor pressure. 
55.97 24.14 1.76 100.00 

Rainfall 
Depth (mm) to which rainwater accumulates on the 

surface in 1-hour. 
0.01 0.12 0.00 4.60 

Wind speed Rate (m·s-1) at which air is moving. 1.89 1.19 0.30 8.72 

Wind direction Direction (º) from which the wind is coming. 175.31 78.63 4.50 350.00 

RST 
Road surface temperature (°C) indicated by the infrared 

remote sensor. 
3.72 5.59 -12.99 26.52 

3.2 Feature extraction 

Due to the material properties of asphalt pavement, its temperature is primarily driven by meteorological factors, exhibiting 

significant periodic lag variations. This is a complex, nonlinear heat transfer process (Chen et al., 2019). Fig. 6 illustrates the 245 

daily periodic variation of RST. The fluctuation in RST ranges from approximately 5 °C to 10 °C daily, with a strong correlation 

observed at the same time each day. Considering that RST is influenced both by the periodic rhythm driven by the day-night 

cycle and by random fluctuations caused by meteorological disturbances, this study incorporates historical RST data into the 

prediction model to simulate its periodicity. 
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 250 

Figure 6: Periodic variation of road surface temperature. T represents a period, with time corresponding to one day. 

To reduce model complexity and improve prediction accuracy, Spearman rank correlation coefficients (Spearman, 1961) 

were used to quantify the monotonic relationships between meteorological variables and winter RST. This nonparametric metric 

ranges from -1 to 1 and is suitable for assessing non-linear dependencies. It is calculated as: 

𝜌 = 1 −
6𝛴 ⅆ𝑖

2

𝑛(𝑛2−1)
 ,           (8) 255 

where 𝑑𝑖 is the rank difference between paired observations, and 𝑛 is the number of samples. 

As illustrated in Fig. 7, air temperature had the strongest positive correlation with RST, with a correlation coefficient of 0.93. 

Wind speed and precipitation also displayed moderate positive correlations of 0.29 and 0.27, respectively. In contrast, relative 

humidity was negatively correlated with RST, with a coefficient of -0.25, likely due to its dampening effect on evaporative 

cooling. Visibility and wind direction showed weak correlations, both below 0.2. Based on these findings, the five selected 260 
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predictors for the model were air temperature, relative humidity, precipitation, wind speed, and lagged RST.

 

Figure 7: Spearman correlation coefficient plot between RST and various meteorological factors. 

3.3 Optimization 

3.3.1 Sliding window size 265 

The sliding window method is employed to construct input variables and prediction targets for the model, and the selection of 

the window size directly influences the ability of the model to capture temperature periodicity and lag effects of meteorological 

variables. By comparing the performance of the models under various window sizes, the results indicate that when the sliding 

window size is set to 24 hours, the KNN-LSTM and Attention-BiLSTM models both achieve optimal performance based on all 

evaluation metrics. Specifically, at the 24-hour window, the MAE and MAPE of the KNN-LSTM model are 0.093 and 61.3 %, 270 

respectively, while the Attention-BiLSTM model yields an MAE of 0.093 and a MAPE of 54.7 %. Both models attain a MSE 
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of 0.015. Consequently, this study selects a 24-hour sliding window size as the best choice to balance accuracy and 

computational cost. 

Table 2: Impact of sliding window size on errors 

Window size Model MAE MSE MAPE (%) 

6-hour 
KNN-LSTM 0.106 0.019 85.2 

Attention-BiLSTM 0.114 0.022 51.0 

24-hour 
KNN-LSTM 0.093 0.015 61.3 

Attention-BiLSTM 0.093 0.015 54.7 

48-hour 
KNN-LSTM 0.094 0.016 68.8 

Attention-BiLSTM 0.097 0.016 74.1 

72-hour 
KNN-LSTM 0.098 0.017 69.1 

Attention-BiLSTM 0.114 0.022 71.2 

3.3.2 𝑲 value 275 

In the KNN-LSTM model, the parameter 𝐾 determines the number of historical samples utilized for constructing similarity-

based features, thereby directly influencing the capability of the model to capture local patterns. A smaller value of 𝐾 may lead 

to overfitting, as the model becomes excessively dependent on local information, whereas a larger value of K could obscure 

important details and diminish the sensitivity of the predictions. To identify the optimal value of K, cross-validation is conducted 

to evaluate the MAE of the model on the validation dataset across different values of 𝐾. As shown in Fig. 8, the MAE decreases 280 

progressively with an increasing K, reaching its lowest value at 𝐾 = 15, after which it stabilizes. This suggests that setting 𝐾 

to 15 achieves an effective balance between prediction accuracy and stability, ensuring robustness while mitigating the risk of 

overfitting.  
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Figure 8: The effect of K value on MAE 285 

3.3.3 Training 

The dataset was divided into training and testing subsets. The training subset comprised data collected from December 1, 2020, 

to February 28, 2023, whereas the testing subset included data collected from December 1, 2023, to February 29, 2024. Prior 

to being input into the model, all variables were standardized using the Z-score normalization method to accelerate model 

convergence and mitigate the influence of differing measurement units among input variables on the computational complexity 290 

of the model: 

𝑋𝑠𝑐𝑎𝑙𝑒ⅆ =
𝑋−𝜇

𝜎
 ,            (9) 

where 𝑋𝑠𝑐𝑎𝑙𝑒ⅆ is the newly standardized data.  

To achieve optimal predictive performance of the improved LSTM-stacking ensemble model for winter road surface 

temperature prediction, several important parameters are carefully tuned in this study. Within the LSTM architecture, the first 295 

and second layers of the KNN-LSTM model contain 64 and 32 units, respectively, whereas the corresponding layers of the 

Attention-BiLSTM model consist of 128 and 64 units, respectively, in order to attain superior predictive accuracy. The Adam 

optimizer is selected with a learning rate of 0.001, and early stopping is implemented to terminate training when the validation 

loss shows no improvement for 20 consecutive epochs. To mitigate the vanishing gradient issue, the tanh and ReLU activation 

functions are utilized within different layers of the model. During the training phase, the batch size is set at 32 with a maximum 300 

epoch number of 50. Additionally, to reduce the risk of overfitting, a dropout rate of 0.2 and L2 regularization are applied 

following the LSTM layers. The MSE loss function is adopted to optimize the parameters of the model. These strategies 

effectively enhance the generalization capability of the model and improve predictive performance when applied to unseen data. 

3.4 Evaluation 

In this study, multiple evaluation metrics are employed to comprehensively evaluate the predictive performance of the models, 305 

including the mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and coefficient 

of determination (R²). 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1  ,           (10) 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛

𝑖=1
 ,           (11) 

MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100

𝑛

𝑖=1
 ,          (12) 310 

R² = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)2
𝑛
𝑖=1

 ,           (13) 
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where 𝑦𝑖 is the observed value, 𝑦̂𝑖 is the predicted value, 𝑦̅ is the mean of the observed values, and 𝑛 is the total number of 

samples. 

4 Results 

4.1 Winter RST prediction at different time intervals 315 

4.1.1 Model fitting performance 

An improved LSTM-stacking ensemble model incorporating KNN-LSTM and Attention-LSTM as base learners with a 

Bayesian ridge regression meta-learner was developed for winter RST prediction. Model performance in RST forecasting 

demonstrates significant variability in response to different prediction intervals. This study systematically investigates the 

generalization capabilities and relative merits of various algorithms at multiple temporal resolutions (1-, 3-, and 6-hour intervals), 320 

with special focus on the long-term predictive performance advantages of the ensemble model The density scatter plots in Fig. 

9 are analyzed through both cross-temporal horizontal and cross-model vertical perspectives to evaluate predictive accuracy, 

goodness-of-fit metrics, and density distribution patterns. 

Horizontally, across different time intervals, all models demonstrate superior performance for shorter prediction intervals. In 

the 1-hour predictions, observed and predicted values exhibit close alignment, with scatter points concentrated near the ideal 325 

𝑦 = 𝑥 line and yellow-indicated high-density regions reflecting a strong model fit. As the prediction interval extends to 3 and 

6 hours, the scatter points exhibit progressive dispersion, characterized by larger errors, more outliers, and reduced high-density 

areas, while blue-indicated low-density regions become dominant, leading to a noticeable decline in predictive performance. 

This suggests that models are more effective at capturing short-term temperature variations , while accuracy and stability 

decrease in longer-term predictions, as further corroborated by the sparsening of density distribution. 330 

Vertically, across different models, the LSTM-stacking ensemble model demonstrates consistent superiority across all 

temporal intervals. For 1-hour, 3-hour, and 6-hour predictions, its scatter points exhibit the most compact clustering, with high-

density regions concentrated near the ideal 𝑦 = 𝑥 line, achieving an R² value of 0.992 for the 1-hour interval. Even in 6-hour 

predictions, the ensemble model effectively preserves temperature trends, maintaining an R² value of 0.766 with a relatively 

concentrated density distribution. Comparatively, the conventional LSTM model demonstrates the weakest fitting performance, 335 

particularly for the 6-hour interval, where its scatter points show the broadest dispersion, low-density regions predominate, and 

the R² value drops to 0.638, indicating substantially reduced predictive accuracy. 

Furthermore, density distribution analysis reveals that scatter points exhibit progressive dispersion at elevated temperatures, 

characterized by a gradual transition from high-density to low-density regions as temperature increases. This indicates a 

systematic increase in prediction errors and enhanced error variability under high-temperature conditions. This trend becomes 340 

particularly evident in 6-hour predictions, where the number of outliers in the high-temperature range rises markedly, 
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accompanied by a pronounced reduction in density across all four models. This phenomenon may be attributed to the more 

complex variations in RST under high-temperature conditions. 

 

 345 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 9: Density scatter plots of predicted versus observed winter RST across 1-hour (a, d, g, j), 3-hour (b, e, h, k), and 6-hour (c, f, 

i, l) forecasting intervals. Here, colors indicate the density distribution, with yellow representing high-density regions and blue 

representing low-density regions. The term "Ensemble" in panels (i), (k), and (l), as well as subsequent figures, refers to the proposed 350 
improved LSTM-stacking ensemble model. 

4.1.2 Sensitivity analysis 

Taking January 2024 as a case study, Fig. 10 illustrates time-series comparisons of winter RST predictions generated by 

different models across multiple prediction intervals. For 1-hour forecasts, all algorithms demonstrate effective trend capture 

capabilities. Notably, during phases characterized by pronounced or periodic thermal oscillations, exemplified by the period 355 

spanning January 7-13, models exhibit rapid responsiveness to transient temperature variations, with predicted values 

maintaining close alignment with observed RST data. 

Compared to the 1-hour forecasts, the 3-hour prediction trajectories exhibit smoother characteristics while sustaining 

satisfactory predictive performance. However, during phases marked by relatively stable or stochastic temperature fluctuations, 

exemplified by midday and nighttime periods spanning January 16-20, the prediction deviations in individual models tend to 360 

amplify. Conversely, the prediction trajectory of the LSTM-stacking ensemble model demonstrates closer alignment with 

observed winter RST values, exhibiting enhanced adaptive capacity under such conditions. 

When the prediction interval is extended to 6 hours, the attenuated amplitude of the prediction trajectories indicates a 

compromised capacity of models to track transient thermal variations. Within this interval, the conventional LSTM model 

demonstrates significantly amplified prediction errors, particularly during phases of pronounced nocturnal thermal oscillations, 365 

where deviations reach their maximum magnitude. Conversely, the LSTM-stacking ensemble model maintains robust stability 

across all temporal scales, effectively suppressing the error fluctuations inherent in individual models while delivering superior 

predictive accuracy. 

(j) (l) (k) 
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Figure 10: Time-series plots of winter RST predictions across 1-hour (a), 3-hour (b), 6-hour (c) forecasting intervals. 370 

4.1.3. Error distribution analysis 

With respect to quantitative error metrics, the LSTM-stacking ensemble model consistently exhibits superior performance. 

Across all temporal scales and evaluated error metrics, the ensemble framework surpasses all individual models. For 1-hour 

forecasts, the model achieves a MAE of 0.074, a MSE of 0.010, and a MAPE of 46.7 %, corresponding to reductions of 20.4 %, 

33.3 %, and 14.6 % relative to the best-performing single model. At the 3-hour prediction interval, the error magnitude of the 375 

(a) 

(b) 

(c) 
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ensemble model escalates, recording aMAE of 0.229, a MSE of 0.102, and a MAPE of 125.9 %, while maintaining superior 

performance over individual models. The performance of KNN-LSTM and Attention-BiLSTM models at the 3-hour prediction 

interval demonstrates comparable efficacy, with both variants outperforming the conventional LSTM model. Moving to the 6-

hour forecasting interval, all models exhibit a pronounced degradation in predictive performance. At this extended interval, the 

improved LSTM-stacking ensemble model achieves a MAE of 0.380, marking a 19.8 % improvement over the LSTM model. 380 

The model registers a MSE of 0.270, equivalent to 77.8 % of the value observed for the Attention-BiLSTM variant. The MAPE 

reaches 187.3 %, reflecting a 24.8 % reduction relative to the second-best model. In contrast, the MAPE of the LSTM model 

escalates to 310.2 %, representing a 344.9 % increase compared to its 1-hour forecast value. 

Table 3: Performance evaluation across 1-hour, 3-hour, 6-hour forecasting intervals. 

Time Index LSTM KNN-LSTM Attention-BiLSTM Ensemble 

1-hour 

MAE 0.100 0.093 0.093 0.074 

MSE 0.021 0.015 0.015 0.010 

MAPE (%) 69.7 61.3 54.7 46.7 

3-hour 

MAE 0.313 0.258 0.278 0.229 

MSE 0.228 0.127 0.144 0.102 

MAPE (%) 180.9 144.9 192.9 125.9 

6-hour 

MAE 0.474 0.414 0.418 0.380 

MSE 0.474 0.364 0.347 0.270 

MAPE (%) 310.2 200.7 249.2 187.3 

Fig. 11 illustrates the error distributions derived from observed- predicted RST differentials, comparing model performance 385 

across 1-hour, 3-hour, and 6-hour forecasting intervals. At the 1-hour horizon, all models demonstrate relatively concentrated 

error distributions. The LSTM-stacking ensemble model achieves the narrowest error range spanning from -0.564 °C to 

0.619 °C, marking a 29.3 % reduction relative to the baseline LSTM. Furthermore, it exhibits the smallest bias, with a mean 

error approaching 0 °C and a median of -0.002 °C, both approaching the theoretical optimum. In contrast, KNN-LSTM and 

Attention-BiLSTM demonstrate negative biases, indicating systematic overestimation of low-temperature risks. 390 

At the 3-hour horizon, the LSTM-stacking ensemble model maintains the tightest error distribution spanning 3.021 °C, with 

its maximum positive error reaching 2.108 °C showing a 3.4 % reduction relative to Attention-BiLSTM, and its minimum 

negative error constrained at -0.913 °C demonstrating a 23.9 % improvement over KNN-LSTM. In the 6-hour forecast, the error 

range of the ensemble model is mitigated by 34.4 % compared to the LSTM. Its upper error bound reaching 3.189 °C is 37.1 % 

lower than that of LSTM, and it is the only model limiting negative errors within -1.4 °C, effectively suppressing the -2.492 °C 395 

prediction risk observed in Attention-BiLSTM under extreme cold conditions. 

The LSTM model exhibits consistently inferior performance across all forecasting horizons, with a particularly concerning 

positive error spike of 5.066 °C observed in the 6-hour forecast, which may result in significant underestimation of RST values.. 

(c) 
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For short-term alerts, the LSTM-stacking ensemble model achieves near-zero bias control. In medium-term forecasts, prudent 

consideration is warranted due to the systematic overestimation of low-temperature conditions inherent in the KNN-LSTM 400 

variant. For long-term prediction, the error outliers of Attention-BiLSTM demand careful attention. The experimental results 

demonstrate that by strategically integrating the boundary control strength of KNN-LSTM with the mean stability of Attention-

BiLSTM, the LSTM-stacking ensemble model provides an optimal solution for road temperature forecasting across multiple 

temporal scales. 

 405 

Figure 11: Error distribution between predicted and observed winter RST values across 1-hour (a), 3-hour (b), 6-hour (c) forecasting 

intervals. 

4.2 Winter RST prediction under sub-zero conditions 

In the domain of winter traffic meteorology, special emphasis is placed on predictive performance under extreme sub-zero RST 

conditions. According to the expressway traffic meteorology, RST values below 0 °C are defined as critical low-temperature 410 

conditions (CMA, 2018), which may significantly compromise the operational efficiency and safety of expressway networks. 

A curated dataset of 1,338 extreme low-temperature samples meeting the RST < 0 °C criterion was specifically extracted from 

the test set. Model performance under these conditions is assessed through quantitative metrics presented in Table 4 and 

validated via temporal evolution patterns depicted in Fig. 12. 

Table 4: Prediction performance under sub-zero RST conditions. 415 

Model Index 1-hour 3-hour 6-hour 

LSTM 

MAE 0.090 0.245 0.362 

MSE 0.014 0.118 0.211 

MAPE (%) 42.3 162.6 238.3 

KNN-LSTM 

MAE 0.084 0.228 0.353 

MSE 0.012 0.092 0.185 

MAPE (%) 40.1 134.3 194.8 

Attention-BiLSTM MAE 0.088 0.234 0.348 

(a) (b) (c) 
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MSE 0.012 0.092 0.209 

MAPE (%) 41.9 191.0 247.3 

Ensemble 

MAE 0.068 0.186 0.317 

MSE 0.008 0.058 0.153 

MAPE (%) 35.0 94.5 186.7 

 

 

Figure 12: Winter RST prediction under low-temperature conditions across 1-hour (a), 3-hour (b), and 6-hour (c) forecasting 

intervals. 

(b) 

(a) 

(c) 
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As presented in Table 4, the LSTM-stacking ensemble model consistently outperforms individual variants across all error 420 

metrics under low-temperature conditions. For the 1-hour forecast horizon, the ensemble achieves the lowest MAE of 0.068, 

MSE of 0.008, and MAPE of 35.0 %, demonstrating relative improvements of 24.4 %, 42.9 %, and 17.2 %, respectively, 

compared to baseline LSTM. This performance advantage escalates at longer horizons: the 3-hour forecast interval reduces the 

mean absolute percentage error (MAPE) to 94.5 %, markedly lower than the corresponding values of 162.6 % obtained by the 

LSTM model and 191.0 % obtained by the Attention-BiLSTM model. Even at 6-hour intervals with performance degradation, 425 

the ensemble maintains the lowest MSE value of 0.153 and MAPE value of 186.7 %, preserving operational robustness amid 

increasing uncertainty. 

The performance trends observed in Table 4 are further corroborated by Figure 12, where temporal evolution analysis 

demonstrates that the LSTM-stacking ensemble model precisely captures the amplitude and phasing of RST peaks and troughs, 

particularly during abrupt cold transitions. In contrast, the baseline LSTM exhibits significant deviations and temporal lag 430 

during low-temperature extremes, while KNN-LSTM and Attention-BiLSTM demonstrate pronounced tendencies toward over-

smoothing or overreaction to short-term fluctuations. By synergizing the complementary strengths of constituent models, the 

ensemble framework achieves superior alignment with observational data and exhibits enhanced operational resilience under 

extreme low-temperature conditions. 

4.3 Winter RST prediction under representative synoptic conditions 435 

Historical meteorological and precipitation data were retrieved to identify two representative winter periods: stable synoptic 

conditions February 8-10, 2024 and overcast/rainy conditions February 23-25, 2024. The RST prediction performance of 

various models under these contrasting weather conditions was systematically analyzed. As shown in Fig. 13, under stable 

synoptic conditions, the presence of stable weather and strong solar radiation leads to more pronounced temperature fluctuations 

with clear periodic trends. Forecasting models demonstrate relatively high predictive accuracy during these stable periods, 440 

particularly over short time intervals, yielding smaller error margins. Conversely, during overcast and rainy conditions, 

increased relative humidity and precipitation induce more subtle, stochastic RST variations that lack clear periodicity. The 

models demonstrate constrained adaptability to such stochastic fluctuations, resulting in diminished predictive fidelity. This 

phenomenon becomes particularly pronounced during heavy precipitation events, where elevated temperature variability 

induces more substantial forecast deviations. 445 

In summary, the disparity in model performance under clear versus rainy conditions underscores the meteorological 

sensitivity of winter RST dynamics. Specifically, under precipitation-dominated regimes, all models encounter significant 

challenges in maintaining both adaptability and predictive accuracy. The LSTM-stacking ensemble framework exhibits superior 

performance in these complex scenarios, underscoring its robust predictive capacity when confronted with non-stationary, and 

irregular thermal variations. 450 
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Figure 13: Winter RST prediction across and rainy and stable synoptic conditions across 1-hour (a, d), 3-hour (b, e), and 6-hour (c, 

f) forecasting intervals. 

5 Conclusion 455 

This study focuses on winter RST time-series prediction through the development of an optimized LSTM model and a stacking-

based ensemble strategy, thereby establishing a novel forecasting framework that has been empirically validated. Through 

systematic model development and optimization in this research, the following key conclusions emerge: 

The KNN-LSTM variant enhances the capability of the model to recognize short-term climate patterns by incorporating 

similar historical samples. Meanwhile, the Attention-BiLSTM incorporates an attention-based temporal weighting mechanism, 460 

significantly improving responsiveness to critical temperature transitions. Compared to traditional LSTM, these two improved 

models demonstrate superior error mitigation and enhanced fitting performance, thereby confirming their efficacy in temporal 

modeling tasks. By integrating KNN-LSTM and Attention-BiLSTM models and using Bayesian ridge regression as a fusion 

technique, the improved LSTM-stacking ensemble model achieves superior error reduction and improved predictive alignment 

(a) (b) 

(d) 

(c) 

(f) (e) 
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across multiple forecast horizons. In experiments replicating sub-zero RST regimes (< 0 °C) and representative synoptic 465 

conditions, the improved LSTM-stacking ensemble model exhibits diminished prediction errors and enhanced operational 

stability relative to individual model baselines. However, during overcast and rainy weather, elevated RST stochasticity induced 

diminished predictive performance across all models relative to stable synoptic conditions. This implies that future models must 

demonstrate superior adaptability to RST fluctuations, particularly under non-stationary climate conditions. 

Future research may introduce data from additional observation stations to bolster model generalizability and spatial 470 

representativeness. The next step will focus on characterizing the spatiotemporal variation patterns of RST across different 

regions and elucidating their underlying mechanistic drivers. Additionally, transfer learning methodologies can be integrated to 

develop a spatially transferable LSTM prediction framework, thereby enhancing cross-regional predictive performance under 

diverse climatic regimes and generating more robust and spatially generalized research outcomes. 
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