
We are grateful for your careful review and valuable suggestions. We have carefully addressed each comment and made 

corresponding revisions to improve the manuscript. Below are our point-by-point responses: 

1. Weather Impact Discussion 

Reviewer's Comment: 

"The discussion on the impact of weather conditions on RST is insufficient and needs to be strengthened." 

Response: 

We have substantially strengthened the theoretical foundation by incorporating relevant research achievements 

demonstrating weather condition impacts on RST prediction. For example, Feng and Feng (2012) demonstrated that RST 

prediction accuracy varies significantly across three weather conditions (sunny, cloudy, and overcast), establishing that weather 

heterogeneity is a critical factor. Similarly, Darghiasi et al. (2023) emphasized that weather condition variability dominates 

RST prediction performance for winter maintenance applications. Zamanian et al. (2024) further validated that models face 

substantial challenges in capturing temperature dynamics under precipitation-dominated regimes. These studies collectively 

establish the theoretical basis that weather conditions fundamentally influence RST prediction through alterations in energy 

balance components (solar radiation, evaporative cooling, convective heat transfer). 

Manuscript Revisions: 

(1) Added literature discussion in Introduction citing Feng and Feng (2012), Darghiasi et al. (2023), and Zamanian et al. (2024). 

(2) Added Figures 14 presenting SHAP interpretability analysis. 

(3) Integrated physical mechanism explanations throughout Section 4.3. 

2. Data Quality and Temporal Resolution Processing 

Reviewer's Comment: 

"In fact, this study uses hourly data for analysis. A detailed description of data quality and characteristics should be 

provided. Additionally, how does the authors' method of converting minute-level data to hourly data differ from that used by 

meteorological departments?" 

Response: 

We have expanded Section 3.1 to provide comprehensive data quality control procedures and temporal aggregation 

methodology: 

a) Raw Data Collection: Infrared remote sensing sensors collected data at 5-minute intervals from December 2020 to February 

2024, recording seven near-surface meteorological variables (visibility, air temperature, relative humidity, precipitation, 

wind speed, wind direction, RST), totaling over 100,000 data points. 

b) Quality Control Steps: Data underwent rigorous cleaning, and missing value imputation using advanced interpolation 

techniques 

c) Temporal Aggregation: After quality control, meteorological factors and RST data were resampled to hourly resolution. 

We have explicitly described the aggregation approach, which aligns with standard meteorological practice: Precipitation 

is calculated as hourly total accumulation. All other variables are omputed as hourly averages to mitigate impacts of transient 

anomalies and short-term random fluctuations. This refinement resulted in a final dataset of 8,664 samples for model 

development. This methodology is consistent with operational meteorological department procedures. The China 

Meteorological Administration's "Grade of Highway Traffic High-Impact Weather Warning" (QX/T 414-2018) specifies 

similar temporal aggregation protocols for road weather observations. Our approach of using hourly averages for continuous 

variables and hourly totals for precipitation follows these established standards. 

Distinction Between Transportation Meteorological Stations and Conventional Meteorological Stations: 

Conventional meteorological stations are typically distributed to represent regional climate characteristics, positioned in 

open areas away from infrastructure to minimize anthropogenic influences on atmospheric observations 

Transportation meteorological stations (such as our M9393 station) are specifically deployed on critical transportation 

infrastructure (highways, bridges, tunnels) to monitor road-specific microclimate conditions directly relevant to traffic safety. 

These stations are strategically located at locations prone to hazardous conditions (elevated bridge decks, shaded sections, high-

altitude segments) 

This deployment difference means that while the hourly aggregation algorithms are identical, the spatial representativeness 



and application context differ fundamentally. Our station network focuses on operationally critical locations for winter road 

maintenance rather than regional climate monitoring, making the data particularly relevant for transportation safety applications. 

Data Distribution Characteristics: Table 2 now provides comprehensive statistical summaries including mean, standard 

deviation, minimum, and maximum values for all variables. The RST distribution spans -12.99°C to 26.53°C with mean of 3.72°

C and standard deviation of 5.59°C, demonstrating substantial temperature variability across the four winter periods. The 1,338 

sub-zero temperature samples (15.4% of test set) ensure adequate representation of critical low-temperature regimes. 

Manuscript Revisions: 

(1) Expanded Section 3.1 with detailed three-stage data processing description. 

(2) Enhanced Table 2 with unit specifications. 

(3) Referenced Figures 5-6 for data distribution visualization. 

3. Methodology Presentation Balance 

Reviewer's Comment: 

"The manuscript devotes substantial space to introducing methodologies. For mature methods, the focus should be on 

citations and brief descriptions, with emphasis on the application value and innovative points of these methods in this study." 

Response: 

We appreciate this constructive suggestion. We wish to clarify that while our models build upon established LSTM and 

attention mechanism foundations, our proposed KNN-LSTM and BiLSTM-MHA architectures incorporate substantial 

innovations beyond existing frameworks. We have restructured Section 2 to more explicitly emphasize these contributions. 

KNN-LSTM Innovations (Section 2.1): 

Our KNN-LSTM differs from the original Luo et al. (2019) traffic flow prediction model in three key aspects: 

a) Adaptive Sampling Mechanism (Equation 1): We developed a computationally efficient sampling strategy for large-scale 

meteorological datasets (reducing complexity from 𝑂(𝑀 · 𝑁) to 𝑂(𝛼𝑀 · 𝑁)), which was not present in the original 

framework. 

b) Distance Normalization (Equation 3): We introduced min-max scaling for numerical stability when handling 

heterogeneous meteorological variables with different scales, addressing a specific challenge in multi-variable weather 

prediction. 

c) Domain Adaptation: We extended the framework from traffic flow (characterized by spatial network dependencies) to 

meteorological time series (characterized by physical process coupling), requiring reformulation of similarity metrics for 

weather pattern recognition. 

BiLSTM-MHA Innovations (Section 2.2): 

Our BiLSTM-MHA architecture advances beyond conventional single-head attention approaches through: 

a) Multi-Head Self-Attention (Equations 10-14): Replaces traditional single-head attention with Transformer-inspired multi-

head mechanism, enabling parallel learning of diverse temporal patterns (short-term fluctuations, long-term trends, periodic 

cycles). 

b) Residual Connections and Layer Normalization (Equations 11-12): Integrates training stability mechanisms absent in basic 

BiLSTM-attention models, addressing gradient vanishing in deep temporal architectures. 

c) Global Average Pooling (Equation 13): Employs temporal information aggregation superior to final-state extraction or 

concatenation-based approaches, providing position-invariant representation. 

Section 2.3 emphasizes the ensemble design rationale: 

a) Base learner complementarity: KNN-LSTM captures regime-specific behaviors through local similarity patterns, while 

BiLSTM-MHA extracts global dependencies through attention-based weighting 

b) Meta-learner advantages: Bayesian Ridge Regression provides three critical capabilities for winter road maintenance: (1) 

multicollinearity handling between correlated predictions, (2) automatic regularization strength determination, (3) 

probabilistic uncertainty quantification for risk-sensitive applications 

Manuscript Revisions: 

(1) Clearly distinguished between adopted components (basic LSTM, attention mechanism) and our novel contributions 

(adaptive sampling, multi-head integration, domain-specific adaptations). 



(2) Condensed standard mathematical formulations with appropriate citations, expanding discussion of application-specific 

design choices. 

4. Observation Site Characterization 

Reviewer's Comment: 

"A comprehensive introduction to the observation site is required: is it a station on a highway bridge or a regular road 

surface? The impact of surface latent heat on RST varies significantly between these two settings, and this should be clearly 

clarified." 

Response: 

The meteorological station M9393 is situated on the Longhai Railway Bridge in the northwest inland plain of Jiangsu 

Province, China (34.30°N, 117.04°E). This is specifically an elevated bridge deck observation site, not a ground-level road 

surface station. 

Unlike ground-level pavements with semi-infinite substrate providing thermal buffering, bridge decks experience heat 

exchange from both top (atmospheric interface) and bottom (underside exposed to ambient air) surfaces. Absence of Ground 

Latent Heat Flux: Ground-level pavements benefit from geothermal heat flux and soil moisture-related latent heat processes 

that moderate temperature extremes. Elevated bridge structures lack this subsurface thermal reservoir. The limited thermal mass 

of bridge structures compared to ground-backed pavements results in more rapid temperature responses to meteorological 

forcing, making bridges typically the first locations to develop ice during cold weather events. 

We selected this bridge location precisely because elevated structures represent the most challenging and operationally 

critical scenario for winter RST prediction and ice formation. Accurate prediction at such locations has high practical value for 

transportation safety management, as bridge icing occurs earlier than ground-level pavement icing under identical 

meteorological conditions (Song et al., 2023). 

The bridge deck surface consists of standard asphalt pavement, consistent with modern highway construction practices in 

China. The critical thermal difference lies not in surface material composition but in the underlying structural configuration 

(elevated vs. ground-supported). 

5. Insufficient Citation and Comparative Analysis 

Reviewer's Comment: 

"There are almost no references cited to support the analysis in the main text. Relevant research achievements in the field 

should be supplemented as theoretical support to enhance the scientific rigor and credibility of the discussion, especially 

comparative analyses with other RST forecasting methods and results." 

Response: 

We have substantially strengthened the literature integration throughout the manuscript: 

Enhanced Introduction: Section 1 now provides comprehensive literature review organized into four categories: 

a) Physics-based models (Hermansson, 2004; Schindler et al., 2004; Saliko et al., 2023; Chen et al., 2019; Minhoto et al., 

2005) 

b) Statistical/empirical models (Diefenderfer et al., 2006; Yin et al., 2019; Kršmanc et al., 2013; Li et al., 2018). 

c) Machine learning approaches (Kebede et al., 2024; Molavi et al., 2022; Milad et al., 2021; Qiu et al., 2020). 

d) Deep learning methods (Tabrizi et al., 2021; Zhang et al., 2023; Li et al., 2022; Bai et al., 2022; Dai et al., 2023). 

Table 1 summarizes the indicators predicted in previous studies, the deep learning models used, the factors considered, 

and the dataset sizes used. 

Table 1: Comparison of different RST prediction models. 

References Model Metrics Features Data sizes Time interval 

Tabrizi et al. 

(2021) 
CNN-LSTM 

MAE, RMSE, MAPE, R², 

NSE 
RST, AT, Year, Month 10895 1h 

Milad et al. (2021) Bi-LSTM MAE, MSE, MAPE, R² RST, AT, Depth, Time 7200 1h 

Bai et al. (2022) Att-BiLSTM MAE, MSE, MAPE 
RST, V, AT, RH, WD, 

WS, P 
4344 1h 

Dai et al. (2023) GRU, LSTM MAE, MSE, MAPE RST, V, AT, RH, P, WS, 8640 1h 



WD 

Zhang et al. 

(2024) 
RF-LSTM 

MAE, MSE, RMSE, 

MAPE 

RST, AT, RH, WS, WD, 

P et al. 
- 10min 

Our paper ILES MAE, RMSE, MAPE, R² 
RST, V, AT, RH, P, WS, 

WD 
8664 1h 

Results Section Citations: We have integrated citations throughout Section 4 to contextualize findings: 

Section 4.2 cites Song et al. (2023) for sub-zero temperature forecasting importance and Zahra et al. (2024) for cold 

transition prediction challenges 

Section 4.3 cites Feng and Feng (2012), Darghiasi et al. (2023), Zamanian et al. (2024), and Wang et al. (2023) to support 

weather condition impact analyses. 

Systematic Benchmarking: Table 4 now compares ILES against eight models, including recent hybrid architectures: 

CNN-LSTM (Tabrizi et al., 2021): ILES achieves 8.13% lower MAE at 1-hour horizon. 

RF and XGBoost (Darghiasi et al., 2025; Kebede et al., 2024): ILES demonstrates 28.82% and 34.68% lower MAE 

respectively. 

Table 4: Performance evaluation across 1-, 3-, and 6-hour forecasting intervals. 

Model 

1-hour 3-hour 6-hour 

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) 

RF 0.524 0.780 45.11 1.416 1.976 128.86 2.261 3.293 212.46 

XGB 0.571 0.893 41.94 1.357 1.887 129.54 2.159 3.146 211.85 

LSTM 0.453 0.636 46.90 1.453 2.198 130.01 2.366 3.452 251.24 

BiLSTM 0.422 0.572 42.83 1.414 2.056 144.70 2.252 3.092 254.60 

CNN-LSTM 0.406 0.567 39.46 1.399 1.399 157.10 2.154 2.921 235.35 

KNN-LSTM 0.389 0.536 38.08 1.285 1.927 114.25 2.259 2.923 227.92 

BiLSTM-MHA 0.393 0.545 41.40 1.517 1.993 129.88 2.194 2.822 275.45 

ILES 0.373 0.521 37.97 1.291 1.808 113.38 2.094 2.688 243.97 

Detailed quantitative comparisons are provided in Section 4.1 with explicit percentage improvements. 

Comparative Literature Context: Table 1 positions our work against five recent studies, comparing metrics, features, 

dataset sizes, and temporal resolutions. This contextualization demonstrates that our ILES framework advances the state-of-

the-art through ensemble integration of complementary architectures. 

Manuscript Revisions: 

(1) Added 30+ citations throughout Introduction (Section 1) to establish theoretical foundation. 

(2) Integrated 15+ citations in Results (Section 4) to support analytical findings. 

(3) Expanded Table 1 with detailed comparison to recent RST prediction studies. 

(4) Enhanced Discussion in Section 4.1 with explicit comparative analysis against benchmark models. 

6. Insufficient Analysis of Critical Weather Conditions 

Reviewer's Comment: 

"For RST prediction, forecasting under low-temperature and overcast/rainy conditions is particularly critical. However, 

the manuscript provides insufficient analysis of RST prediction results under these weather conditions. More relevant analyses 

should be added, along with physical mechanism explanations for how weather conditions influence prediction performance." 

Response: 

We have incorporated SHAP (SHapley Additive exPlanations) analysis to quantify weather variable contributions under 

different conditions (Joo et al., 2023). Figure 14 demonstrates that: Air temperature contributes 38.09% under general conditions, 



consistent with heat conduction principles. Under precipitation conditions (Figure 14b,d), humidity and precipitation 

contributions increase significantly, with red points (high values) concentrated on negative SHAP values, indicating enhanced 

evaporative cooling effects. This mechanistic insight validates the model's ability to adaptively weight meteorological factors 

based on current weather regimes. 

  

  

Figure 14: Global (a, c) and precipitation event (b, d) feature importance of variables and SHAP results. 

We have added explicit mechanistic discussion throughout Section 4.3: "The red points of relative humidity and 

precipitation are mainly concentrated on the left side (negative values), indicating that high humidity and precipitation events 

exert a significant cooling effect on the road surface. This may be associated with the enhanced evaporative cooling effect under 

high-humidity conditions and the thermal properties of precipitation events."; "This mechanistic insight validates the ability of 

our model to adaptively weight different information sources based on current weather conditions.". 

 

Minor Comments 

Data Table Significance and Quality Control Details 

Reviewer's Comment: 

"The descriptions of data in Table 1 are of little significance, as they only cover conventional meteorological variables. More 

attention should be paid to data distribution and quality control details." 

Response: 

Figures 5-6 now provide visual representation of RST temporal characteristics: 

Figure 5 demonstrates daily periodic variation with 5-15°C diurnal range. Figure 6 presents 24-hour diurnal variation curve 

with 95% confidence intervals, explicitly quantifying temperature dispersion patterns. 

 

Summary 

We have substantially strengthened the manuscript to address all reviewer concerns: 

a) Weather Impact Analysis: Added Sections 4.2-4.3 with dedicated evaluation under sub-zero and precipitation conditions. 

b) Data Quality Documentation: Expanded Section 3.1 with comprehensive quality control procedures and temporal 

aggregation methodology. 

c) Methodology Balance: Restructured Section 2 to emphasize innovation while streamlining mature method descriptions. 

d) Site Characterization: Enhanced Section 3.1 to explicitly identify bridge deck observation characteristics and thermal 

implications. 

(

c) 

(

d) 

(a) (b) 

(c) (d) 



e) Literature Integration: Added 45+ citations throughout manuscript with systematic comparative analysis. 

f) Physical Mechanisms: Integrated SHAP analysis and mechanistic interpretations throughout Results section. 

These revisions substantially enhance the manuscript's scientific rigor, practical relevance, and reproducibility. 


