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S1 Snapshots of syntesized observation

Figure S1: Snapshot of synthesized observations of HGET (3 ppm) across mul-
tiple observation footprints.

Figure S2: Snapshot of synthesized observations of UCPI (0.7 ppm) across
multiple observation footprints.
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Figure S3: Snapshot of synthesized observations of UCPI (1.5 ppm) across
multiple observation footprints.

Figure S4: Snapshot of synthesized observations of UCPI (3 ppm) across mul-
tiple observation footprints.

Figure S5: Snapshot of synthesized observations of OCO-3 across multiple ob-
servation footprints.
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S2 Data augmentation

Figure S6: Distribution of major power density in hotspot area and their CO2

emission rate.

Figure S7: The annual global average XCO2 under the SSP1-2.6 scenario.
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Figure S8: Joint distribution of XCO2 and CO2 emission rates.

Table S1: Performance comparison of GHGPSE-Nets trained with and without
data augmentation.

Data augmentation Detection Localization Quantification

Train/eval Test Precision Recall F1-score Meana Mediana Pearson’s R R2 RMSEb MAEb MAPE

• • 0.98 0.95 0.96 61.4 49.7 0.99 0.98 89.9 57.7 0.05
• 0.99 0.09 0.16 310.2 273.5 0.28 -0.68 1072.7 851.3 0.47

a with unit [m]. b with unit [tCO2 hr−1].

S3 Solving 2D Gaussian-kernel-fitting using con-
strained least square method

S3.1 Problem defination

Given a 2-D image I, which modeled as a combination of N two-dimensional
(2-D) Gaussian kernels, we aim to estimate the parameters of these Gaussian

kernels. Assuming a shared standard deviation σ, the estimated image Î is givn
by

Î(x) =

N∑
i=1

aiGi(x;µi), (S1)
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where the pixel location is denoted as x = [x, y]T ; ai denotes the scale of the
i-th kernel with ai ≥ 0; and µi = [µx,i, µy,i]

T denotes the center of the i-th
kernel and is given by ; Gi is the Gaussian function of the i-th kernel, and is
given by

Gi(x;µi) = exp

(
−1

2

(x− µi)
T (x− µi)

σ2

)
. (S2)

Let denote parameter vector as θ = [aT ,µT
x ,µ

T
y ]

T , where a = [a1, a2, . . . , aN ]T ;

µx = [µx,1, µx,2, . . . , µx,N ]T ; and µy = [µy,1, µy,2, . . . , µy,N ]T . Let P denote the
number of pixels, and let xp represent the location of the p-th pixel. Then, we

can estimate the parameter θ by fitting the modeled image Î to observation I
using a constrained least square approach. The cost function is formulated as

L(θ) =
∑P

p=1

(
I(xp)− Î(xp)

)2

s.t.
ai ≥ 0.

(S3)

We can convert the the constrained cost function into a unconstrained func-
tion, which are generally easier to be solved, by introducing the penalty methods.
Eq.S3 can then be formulated as

L(θ) =
P∑

p=1

(
I(xp)− Î(xp)

)2

− λ
∑
i

log(sigmoid(ai)), (S4)

where λ > 0 denotes the penalty coefficient; the sigmoid function is given by

sigmoid(x) =
1

1 + exp(−x)
. (S5)

The parameters θ can be estimated by minimizing the cost function, and is
given by

θ = argmin
θ
L(θ). (S6)

S3.2 Solving the minimizing problem using BFGS algo-
rithm

To solve Eq.S6, we adopt the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,
the most popular quasi-Newton algorithm [3]. The BFGS method benefits from
not requiring expensive second-order derivative calculations, as it approximates
the Hessian to achieve faster convergence. The details of our implementation
using BFGS method to solve Eq.S6 are described in Alg.S1.

The gradient functions are given by

∂L
∂ai

= −2
∑P

p=1(Ip − Îp)Gi(xp)− λ e−ai

1+e−ai
,

∂L
∂µx,i

= −2ai
∑

p(Ip − Îp)Gi(xp)
xp−µx,i

σ2 ,
∂L

∂µy,i
= −2ai

∑
p(Ip − Îp)Gi(xp)

yp−µy,i

σ2 .

(S7)

5



Algorithm S1 BFGS Method

Require: Initial parameters θ0, loss function L(θ), gradient function ∇L(θ),
maximum iterations K, tolerance thresholds ϵ1, ϵ2

Ensure: Optimal parameters θ∗
1: Initialize k ← 0
2: while k < K do
3: Compute descent direction: dk ← −B−1

k ∇L(θk)
4: Set step size according to Wolfe conditions: αk ← minαL(θk + αdk)
5: Compute step: sk ← αkdk

6: Update parameters: θk+1 ← θk + sk
7: if |θk+1 − θk| < ϵ1 or |∇L(θk+1)| < ϵ2 then
8: break
9: end if

10: Compute gradient variation: yk ← ∇L(θk+1)−∇L(θk)
11: Update Hessian approximation:

Bk+1 ← Bk +
yky

T
k

yT
k sk

− Bksks
T
kBk

sTkBksk

12: Increment iteration: k ← k + 1
13: end while

The step size update in step-4 of Alg.S1 is based on Wolfe conditions, where
the step size should follow the Armijo rule and curvature rule, given by

i.L(θk + αdk) ≤ L(θk) + c1αkd
T
k∇L(θk),

ii.− dT
k∇L(θk + αdk) ≤ −c2dT

k∇L(θk).
(S8)

where 0 < c1 < c2 < 1, and their typical values for quasi-Newton method can
be c1 = 10−4, c2 = 0.9 [3]. For simplicity, we implement this process using the
bisectional-backtracking algorithm.
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S4 Evaluation for WRF-GHG simulation using
IGRA radiosonde data

Figure S9: Temperature residual(TWRF−GHG − TIGRA) profile comparison be-
tween WRF-GHG and IGRA radiosonde at Baoshan [1].

Figure S10: Wind speed residual(UWRF−GHG − UIGRA) profile comparison be-
tween WRF-GHG and IGRA radiosonde at Baoshan.

Figure S11: Wind direction residual(θWRF−GHG − θIGRA) profile comparison
between WRF-GHG and IGRA radiosonde at Baoshan.
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S5 Evaluation for WRF-GHG simulation using
OCO-3 XCO2 measurements

Figure S12: WRF-GHG simulated (a) and OCO-3 observed [4] (b) XCO2 at
OCO-3 observation points. The circle, diamond, and triangular markers repre-
sent samples on Feb 20, Feb 24, and Apr 23, 2020, respectively. The basemap
is from ESRI.

Figure S13: WRF-GHG simulated XCO2 and residuals between WRF-GHG
simulations and OCO-3 observations for (a) Feb 20 and (b) Apr 23, 2020. The
major deviations mostly lie downwind of major emission sources, including the
metropolitan area in the center and heavy industrial regions to the north near
the Yangtze River.
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S6 Examples of XCO2 observations from inde-
pendent datasets and the corresponding pre-
dicted heatmaps.

(a) (b)

(c) (d)

Figure S14: Comparison of OCO-3 XCO2 observations (left column of each
subfigure) and predicted emission heatmaps (right column). Yellow circles indi-
cate true emission sources (power plants), and white triangles indicate detected
sources. (a–c) Correct detections with visible plumes near the power plants. (d)
False positive case: there is no observable plume near the power plant, and the
model detects a plume-shaped structure on the left.
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(a) (b)

(c) (d)

Figure S15: Comparison of synthetic XCO2 observations from SMARTCARB
datasets [2] (left column of each subfigure) and predicted emission heatmaps
(right column). Yellow circles represent true emission sources (power plants),
and white triangles represent detected sources. (a–b) Correct detections with
visible plumes near the power plants. (c) False positive case: a plume-shaped
structure without a true source is detected. (d) Another false positive case,
where a companion plume-shaped structure is observable and detected, possibly
caused by emissions entering the free troposphere with a wind direction different
from that in the planetary boundary layer.
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