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We sincerely thank the editor and reviewers for the valuable comments and suggestions.
Our detailed point-by-point responses to reviewer #2 are given as follows, where the reviewer’s
comments are in blue italics and our responses are in normal text.

Point-by-point Response
This work applies deep learning to satellite snapshots of CO2, performing point source detec-
tion, localisation and quantification. As the authors identify, most work in this area focuses on
plume identification or source location, without performing quantification directly.

We appreciate your recognition of our work. Indeed, most existing studies focus on plume
detection and the source localization are often performed mannully based on the detected
plumes. The quantification process and plume detection are often treated as separate processes.
This issue becomes significant when considering large volume of moderate satellite observa-
tions, where each pixel covers a broad area. Such data requires both precise localization and
efficient processing.

The authors present an innovative solution, where a CNN is trained to identify sources as
hotspots, which then get detected and quantified using a statistical Gaussian Kernel fitting
method.

We thank the reviewer for the summary of our work. You pointed out the key components of
our approach, including the CNN-based hotspot identification and the Gaussian Kernel fitting
for quantification. Though, it is worth noting that the Gaussian kernel fitting is based on least
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squares fitting rather than statistical fitting. This offers better precision than traditional Non-
Maximum Suppression (NMS) method, as demonstrate in Fig. 6. We estimate the source
parameters by minimizing the residuals between the UNet-predicted heatmap and the Gaussian
kernel model.

The choice of Gaussian kernel is rather empirical and is selected for several reasons. (1)
To represent point objects in a CNN-generated heatmap, a smooth 2D function is necessary.
Directly using delta functions, such as one-hot binary masks, results in sparse gradients and
poor convergence. (2) The Gaussian kernel function has a simple mathematical form and is
used by previous studies to represent object size and location [Law and Deng, 2019]. (3) The
form of Gaussian kernel is aligned with the point source parameters, where the center and peak
value have physical meanings.

The authors also introduce a greenhouse-specific augmentation method, varying the linear
coefficients for each source, that presents a valuable contribution to the area of GHG+deep
learning.

We appreciate the reviewer’s commnets. It is worth noting that the augmentation method
is directly inspired by that used in Dumont Le Brazidec et al. [2024]. Here, we generalize
the problem in a linear combination and write it into a clear mathematical form. Furthermore,
we also use statistical analysis to decide the linear coefficient ranges, instead of empirically
defined. We suppose this form of GHG-specific data augmentation method can be intuitive and
useful for future studies. For example, as we mentioned in the manuscript, the noise term can
be more complex than naive Gaussian noise. Future studies may consider adding instrument-
specific/scene-specific noise patterns into the augmentation process.

Clarifications required:
The datasets used should be summarised more cohesively, as at the moment it is hard to follow
1) what regions, areas and time periods are covered for each dataset 2) the number of samples
in each dataset 3) whether the test datasets were augmented. The number of samples added in
the augmentation needs to be specified.

Thank you for your constructive suggestions. We agree that a clear summary of the dataset
generation process is important for better clarification, as the entire generation process is rather
complicated. We will improve the description of the datasets in the revised manuscript. Tem-
porally, we would answer your questions as follows:
(1) The XCO2 data before augmentation is generated by WRF-GHG simulations. We generated
a XCO2 snapshot for each tracer channel every hour. Based on the synthetic XCO2 snapshots,
we further generated instrument-specific datasets (HGET, HGET-3ppm, UCPI, etc.). So, in a
nutshell, the regions and time periods covered by each dataset are the same as those of the WRF-
GHG simulations, which are described in detail in Section 2.1.1. Further details, including
source codes, configuration files, initial conditions, boundary conditions and emissions files,
are provided in a Zenodo repository (https://zenodo.org/records/17337441).
(2) The number of XCO2 snapshots before augmentation is 2,400. For each instrument sce-
nario, we generated 24,000 samples using the method described in Section 2.1.2, with data
augmentation (Section 2.1.3) from the original snapshots. Each dataset is divided into training,
validation, and testing sets in a 3:1:1 ratio (Section 2.2.3).
(3) The data augmentation is performed before the construction of datasets, due to efficiency
consideration and simplicity. Therefore, the test datasets are also augmented. Actually, all
the datasets used in this study are generated with data augmentation, except for the control
group’s training stage at the beginning of Section "Generalization evaluation using SMART-
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CARB dataset and OCO-3 observation".

The architecture of the model needs to be outlined more clearly, including how it was tuned,
the learning rate, loss functions etc.

Thank you for your comments. The general architecture of the model is described in Sec-
tion 2.2.1 and the training setups are described in Section 2.2.3. We will further improve the
description of the model training process. Specifically, we used the Adam optimizer, with
an initial learning rate of 0.001, which is a classical choice in deep learning tasks. The loss
function is the Mean Squared Error (MSE) between the predicted heatmap and the ground truth
heatmap, as described in Section 2.2.3. Further details of the model can be referred to a Zenodo
repository (https://zenodo.org/records/16751293).

It is not clear to me if the resolution of the model was kept constant across the different instru-
ments, or adapted to each instrument.

Thank you for your question. As we described in Section 2.1.2, the resolution of the XCO2

data follows the instrument pixel size and image size. We currently focus on building a single-
instrument-specific model, instead of a general model that can adapt to different instruments.
For each instrument scenario, the models are trained the evaluated using different datasets. We
suppose a further clarification of the dataset generation process will help to understand this
point. We will improve the description in the revised manuscript.

Is it possible that the significantly lower skill on the SMARTCARB dataset is due to a different
transport model?

That’s an insightful point. The SMARTCARB dataset is generated using the COSMO-
GHG model (Kuhlmann et al. [2019]), which is different from the WRF-GHG model used in
our training dataset. The different transport models may lead to different plume shapes and
distributions as discussed by Brunner et al. [2023]. We treat the emission sources as ground
sources, and the plumes are mostly confined near the ground. This is slightly different from
the elevated sources used in the SMARTCARB dataset [Brunner et al., 2019, Kuhlmann et al.,
2019]. Our model may underestimate the plumes entering the higher altitudes, as we discussed
in the manuscript. We also found a false positive case where a plume structure that may have
escaped the boundary layer was identified as an independent plume (shown in Fig. S15). Sim-
ilarly, other biases among different transport models may also contribute to the performance
degradation. However, further analysis is difficult and seems beyond the scope of this study.
Further investigations may be needed to fully understand these biases, and they are currently
less discussed in the GHG remote sensing community. We will extend the discussion in the
revised manuscript.

Would other inputs to the CNN, like the wind direction or the location of known sources,
improve predictive skill?

Thank you for your suggestions. This point is also raised by Reviewer #1, and thus we
share the same response here. Currently, GHGPSE-Net does not require the 2D wind field as
input and performs source extraction solely using XCO2 observations. Indeed, additional input
to the model, such as wind field, NO2 concentration, will enhance the model performance,
as demonstrated by Kuhlmann et al. [2020] and Dumont Le Brazidec et al. [2024]. Additional
input, such as cloud cover, surface type and land-ocean mask, may be helpful to perform quality
control. However, the inclusion of additional input will increase the model complexity and
make the analysis more difficult. In this initial study, we focus on developing a basic framework
for GHG point source extraction using only XCO2 observations. Future work will explore the
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inclusion of additional inputs and improve its real-world applications. We will further clarify
this point in the "Discussions and Conclusion" section.

The Gaussian kernel fitting is demonstrated to improve when the kernel size is the same as
the instrument pixel size, for the one instrument tested. Do you expect performance to improve
for other instruments when the same process is applied? It is not clear what kernel size you
applied for evaluation for each instrument.

That’s an accurate understanding. The kernel size achieves optimal performance in a mod-
erate size. As the kernel that is too wide tends to blur local features, making the kernel fitting
less accurate. In contrast, a kernel that is too narrow tends to bring in overly localized gradients,
hindering parameter updates in the training. The initial experiment using HGET shows that the
optimal kernel size is close to the instrument pixel size. We suppose this conclusion can be
generalized to other instruments, as similar forms and reasons also apply to other instruments.
Moreover, it is worth noting that the optimal kernel size may not exactly match the instrument
pixel size, as other factors such as instrument noise, scene complexity may also affect the opti-
mal kernel size. The complexity of the deep learning model further makes theoretical analysis
difficult. However, as the core goal of this work is to demonstrate the feasibility of using a
point-detection neural network for GHG point source extraction, further large-scale controlled
experiments for the choice of kernel size can be rather petty and make the literature redundant.

Regarding the kernel size (σ value) used for other instruments, we used a kernel size of 0.5
km for the baseline HGET scenario and HGET-3ppm scenario. For the UCPI and UCPI-3ppm
scenarios, we used a kernel size of 2 km. For the OCO-3 scenario, we used a kernel size of 2.25
km. A controlled experiment using varying kernel sizes is only applied to the HGET scenario.

Typos and minor corrections:
Figure 5 shows, from the text, two days with large absolute errors. Clarify in the caption/figure
labelling that these two days are not representative of the usual error distribution.

Thank you for your constructive suggestion. We will add it to the caption in the next
revision. It is worth noting that these errors are mostly observed downwind of the city center
of Shanghai and heavy industrial areas near the Yangtze River. We’ve attached a spatial map
of the errors in Fig. S13, which may help to understand the error distribution. We will further
clarify this point in the revision.

Line 39 (“and The new generation. . . ”)
Thank you for pointing out this typo. We will correct it in the revised manuscript.

Line 151: areas (not area)
Thank you for pointing out this typo. We will correct it in the revised manuscript.

L342
Thank you for pointing out this typo. "The" should be "the", and we will correct it.

Supplement S3.1, title: Definition (not defination)
Thank you for pointing out this typo. We will correct it in the revised manuscript.
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