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Abstract.

We present a novel method for surface freeze/thaw (F/T) classification based on L-band brightness temperature (TB), as

measured by the Soil Moisture Active Passive (SMAP) mission, combined with thermodynamic temperature estimates, whether

in situ or derived from near real-time model output. Variations in the cryosphere have significant, lasting impacts on physical,

biological, and social systems, and act as sensitive indicators of climate change. Remote sensing at microwave frequencies is5

uniquely suited for monitoring the cryosphere’s spatial and temporal dynamics. Indeed, SMAP was tasked with providing a

daily classification of the surface F/T state as one of two primary mission goals. Although surface F/T events are extrinsically

driven phenomena, most existing classification algorithms rely on intrinsic thresholds—those derived from single-variable

observables—that may not accurately reflect in situ conditions. Meanwhile, soil physicists have long used a robust framework

to study the relationship between unfrozen water content and sub-freezing temperature, known as the soil freezing characteristic10

curve (SFC). These curves, and to a lesser extent their soil thawing characteristic curve (STC) branches, have been well studied

in laboratory settings using a variety of instruments and methods. These concepts have not been extended to remote sensing

(RS) until now.

The remotely sensed surface freezing characteristic curves (SurFCs) introduced here are the satellite-pixel-scale counterpart

to SFCs. SurFCs are constructed with SMAP TB measurements, which are inversely correlated with water content, along with15

thermodynamic temperature records at two mid-latitude sites. We used in situ temperature data from SMAP core validation

sites near Kenaston, Saskatchewan and Carman, Manitoba, covering a combined total of nine years, alongside modelled tem-

perature estimates from the Goddard Earth Observing System Model, Version 5 Forward Processing product (GEOS-5 FP).

SurFCs constructed with in situ soil temperatures showed a structure like that of SFCs, including analogue thawing branches,

identified as surface thawing characteristic curves (SurTCs). Lastly, we show SurTCs can serve as a tool for identifying extrin-20

sic thresholds—transition points linked to both the system’s physical state and its external drivers —enhancing the realism and
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operational accuracy of satellite-based F/T classification. Overall, the proposed TB
H

min approach improved detection accuracy

by 39.4 % compared to the widely used normalized polarization ratio (NPR) method.

This analysis challenges the prevailing assumption that 0.15 °C is a universal F/T threshold. Instead, we argue that the thresh-

old should be determined from measurements of the system’s physical response and environmental forcing (SurFC/SurTC).25

Although useful, a 0.15 °C classifier is not uniformly applicable across freeze–thaw phenomena or measurement methods.

1 Introduction

Frozen ground is the single largest component of the cryosphere by area, with over one-third of Earth’s land surface undergoing

seasonal transitions between frozen and thawed states (Barry and Gan, 2011). These freeze/thaw (F/T) events critically affect

terrestrial water, carbon, and energy budgets. For example, soil F/T cycles alter key hydrological processes (evaporation,30

runoff, infiltration, soil moisture dynamics, groundwater recharge, and stream flow generation) and influence biogeochemical

and ecological processes such as soil erosion and microbial respiration (Andersland et al., 1996; Andersland and Ladanyi, 1994;

Christensen et al., 2013; He and Dyck, 2013; Koponen and Martikainen, 2004; Öquist et al., 2009; Tilston et al., 2010; Wagner-

Riddle et al., 2017; Flerchinger et al., 2005). Spatiotemporal changes in surface F/T phenomena therefore have important socio-

economic implications for water futures, forest and agricultural productivity, flood risk, and climate feedbacks. However, the35

vast extent of frozen ground, coupled with its prevalence in remote, climatically extreme regions, presents difficulties for

monitoring F/T patterns using traditional in situ measurements (Dunbar et al., 2020; Derksen et al., 2017). These challenges

motivate the use of remote sensing approaches for large-scale F/T monitoring.

Remote sensing (RS) at microwave (µw) frequencies (1−1000 GHz) is uniquely positioned for observing global cryospheric

changes. In this region of the electromagnetic (EM) spectrum, the solar radiation is minimal, allowing passive sensors, like40

radiometers, to detect the Earth’s own thermal emission. These sensors report measurements as brightness temperature (TB),

which is the blackbody temperature required to produce the observed microwave radiance, according to Planck’s law (Ulaby

et al., 1981; Rees, 2001). Because real surfaces are not perfect black bodies, the measured TB depends primarily on two factors:

the material’s physical, or thermodynamic, temperature and the efficiency of its emission, or emissivity (Jones et al., 2010).

Emissivity, in turn, is governed by the dielectric properties of surface materials in our case, soil moisture, ice content, surface45

roughness, and vegetation cover.

At L-band (1−2 GHz, depending on the definition), microwave emission is particularly sensitive to changes in soil moisture

and its F/T state due to the stark contrast in permittivity between liquid H2O (εliquid H2O ∼ 80) and solid ice (εfrozen H2O ∼ 5.

As a result, changes in L-band polarized brightness temperature (TB
P ) indirectly reflect changes in near-surface soil moisture

content and phase state (Schmugge et al., 2002; Rautiainen et al., 2012). Emission with the electric field parallel to the Earth’s50

surface is measured as horizontally polarized brightness temperature (TB
H ), whereas a perpendicular orientation relative to

Earth’s surface yields vertically polarized brightness temperature (vertically polarized brightness temperature (TB
V )), (Ulaby

et al., 1981). These two polarizations respond differently to surface conditions. TB
H is typically more sensitive to surface

roughness and moisture in the uppermost soil layers, while TB
V can better penetrate through shallow vegetation or snow
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cover (Njoku et al., 2003; Royer et al., 2017). The difference between TB
H and TB

V is often quantified by the normalized55

polarization ratio (NPR), defined as

NPR =
|TH

B −TV
B |

TH
B + TV

B

(1)

This ratio accentuates the contrast between frozen and thawed conditions. Even a small amount of liquid water (e.g., during a

snowmelt) will sharply lower the surface emissivity and cause a notable change in NPR (Derksen et al., 2000; Rautiainen et al.,

2012; Roy et al., 2015). Indeed, NPR-based thresholding underpins operational algorithms for detecting snowmelt and soil60

F/T transitions in many F/T detection products, including those from Soil Moisture Active Passive (SMAP) and Soil Moisture

and Ocean Salinity (SMOS) missions (Kim et al., 2017; Entekhabi et al., 2010; Kerr et al., 2017). The main advantage of

using threshold-based polarization ratios like NPR is pragmatic in nature; they provide the highest accuracy for surface F/T

discrimination (Rautiainen et al., 2016; Roy et al., 2015). However, these intrinsic thresholds are not directly tied to the physical

drivers of freezing or thawing.65

Meanwhile, decades of soil physics research have shown that liquid H2O can persist in freezing soils at temperatures as low

as –80 °C, due to capillary, adsorptive, and osmotic forces (Bouyoucos and McCool, 1915; Mousson, 1858). The relationship

between a soil’s unfrozen water content and sub-freezing temperature is known as the soil freezing characteristic curve (SFC)

and is a fundamental property of the physical processes involved in soil moisture F/T phenomena (Ireson et al., 2013). It is

well documented that this relationship exhibits hysteretic behaviour when frozen soil thaws, leading to the definition of the soil70

thawing characteristic curve (STC; Zhou et al., 2019; Hu et al., 2020; Pardo Lara et al., 2021). The SFC paradigm can be used to

understand the transport of heat, H2O, and solutes in frozen soils (Koopmans and Miller, 1966). This versatile tool has also been

used to estimate the hydraulic conductivity function of partially frozen soils (Azmatch et al., 2012) and to investigate water and

solute transport and redistribution in soil during winter (Spaans and Baker, 1996). SFCs have been well studied in laboratory

settings using a variety of instrumentation and methods, including dilatometers, calorimeters, tensiometers, heat capacity, X-75

ray diffraction, nuclear magnetic resonance, and various EM soil moisture probes (Cheng et al., 2014; Koopmans and Miller,

1966; Mavrovic et al., 2021; Pardo Lara et al., 2021, 2020; Tian et al., 2018; Wen et al., 2012; Yoshikawa and Overduin, 2005).

However, the SFC paradigm and the concomitant STC have not yet been applied to remote sensing observations of landscapes.

In this study, we extend the SFC paradigm to satellite-scale observations and evaluate its utility for freeze–thaw classification.

We specifically test four hypothesis:80

1. Remotely sensed TB
P and in situ soil temperature can be used to construct brightness temperature–derived surface

freezing and thawing characteristic curves (TB-SurFCCs and TB-SurTCCs, hereafter SurFCs and SurTCs for brevity) at

the scale of the footprint of passive microwave satellites;

2. Remotely sensed TB and modelled thermodynamic temperature can be used to produce SurFCs and SurTCs at the

satellite scale;85
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3. SurTCs can be used to identify an extrinsic threshold for surface F/T state classification, and

4. In a remote sensing context, SurTCs can serve as a tool for F/T product validation.

We anticipate that incorporating these SurFC/SurTC-based insights will improve F/T detection and validation methods.

The remainder of this paper is organized as follows. Section 2 describes the study sites, data sets and methodology for F/T

classification and analysis. Section 3 presents results, including examples of SurFCs/SurTCs derived from both in situ and90

modelled temperature data. In Section 4, we discuss the implications of these results, compare them with previous studies, and

examine limitations. Finally, Section 5 offers our conclusions and recommendations for future work.

2 Data Sources and Methods

In these sections, we review the SMAP satellite F/T products, ancillary data sets, in situ measurements, and the methods used

to produce and analyze the proposed SurFCs and SurTCs.95

2.1 SMAP data products

Launched in January 2015, the SMAP satellite mission originally provided radar (active) and radiometer (passive) L-band

observations of Earth’s surface. The SMAP spacecraft is in a 685-km circular, sun-synchronous orbit with equator crossings at

about 6 a.m. and 6 p.m. local time with a look angle of 40°. The real-aperture swath width of 1000 km provides global coverage

within 3 days or less equatorward of 35°N/S and 2 days poleward of 55°N/S. The SMAP radar lost its transmitting function in100

July 2015. The radiometer continues to operate, providing L-band radiometer observations in vertical (V) and horizontal (H)

polarizations at 1.41 GHz (Piepmeier et al., 2017). Space-borne radiometers, like SMAP’s passive component, are uniquely

positioned to map large-scale patterns and daily variations in terrestrial F/T cycles state at the temporal and spatial resolution

coverage needed for global land hydrology applications (Entekhabi et al., 2010; Kim et al., 2011). SMAP data are resampled

to a global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0; Brodzik et al., 2012, 2014).105

This study focuses on the descending overpass data at about 6 a.m. local time, a time when the soil and overlying vegetation

temperatures are at near isothermal conditions which allows simplification of the radiative transfer model at the core of the

retrieval algorithm.

2.1.1 Brightness temperature (TB)

In this study, the SMAP TB measurements at a spatial resolution of 362 km2 contained in the SMAP Level 3 Radiometer Global110

Daily 36 km EASE-Grid Freeze/Thaw State Product, Version 3, (L3_FT_P) were analyzed (Xu et al., 2020). The L3_FT_P

product provides a composite of daily estimates of global land surface conditions retrieved by the SMAP passive microwave

radiometer. The TB data are the calibrated, geolocated, time-ordered mean of fore/aft views of the 360° antenna scan processed

within an EASE-Grid 2.0 polar and cylindrical projection format. Note that the L3_FT_P product provides TV,H
B at the Earth’s

surface. The SMAP radiometer provides measurements of TB with better than 1.3 K uncertainty (1-sigma; O’Neill et al.,115

4

https://doi.org/10.5194/egusphere-2025-3630
Preprint. Discussion started: 10 October 2025
c© Author(s) 2025. CC BY 4.0 License.



2021; Piepmeier et al., 2017). Since the TB
P difference across the dynamic range of surface soil moisture can be many tens of

K (≳ 70 K), the L-band radiometer is a highly sensitive indicator of surface soil moisture F/T state. In this study, we focus on

H-polarized TB as it displayed the largest amplitude variations (Lv et al., 2022).

2.1.2 Surface F/T classification

The L3_FT_P provides a daily classification of the F/T state for land areas derived from the mission’s L-band radiometer. The120

F/T classification algorithm is based on the TV,H
B time series response to the change in permittivity of the land surface asso-

ciated with H2O transitioning between solid and liquid phases (Dunbar et al., 2020). While other F/T algorithmic approaches

are possible (for example, moving window; temporal edge detection) these techniques do not fulfill the SMAP data latency

requirement (within 24 hours of acquisition for L2 products and within 50 hours for L3 products). This method examines the

time series progression of the remote sensing signature relative to signatures acquired during seasonal reference frozen and125

thawed states, making it part of the seasonal thresholds algorithm (STA) family. At L-band frequencies, Rautiainen et al. (2014)

showed TB increase at horizontal (TB
H ) and vertical (TB

V ) polarizations while their difference (| TB
V−TB

H |) decreases

when soil moisture freezes. The change in the TB difference is independent of the change in the physical temperature, it de-

pends only on the permittivity and was, therefore, employed in the retrieval algorithm after normalizing it with the sum of the

polarization yielding the NPR, defined earlier in Equation 1.130

The frost factor, FFNPR(t), is then defined for an observation acquired at time t as:

FFNPR(t) =
NPR(t)−NPRFR

NPRTH−NPRFR
(2)

where, NPR(t) is the NPR calculated at time t, for which a F/T classification is sought, and NPRTH and NPRFR are

the reference thawed and frozen NPR values, respectively. Decreases and increases in FFNPR are associated with landscape

freezing and thawing transitions, respectively, with the decrease in FFNPR under frozen conditions the result of small increases135

in the V-pol TB combined with larger increases at H-pol (Rautiainen et al., 2014). A threshold level, ∆, is then defined such

that

FFNPR(t) < ∆ =⇒ frozen (3)

FFNPR(t)≥∆ =⇒ thawed (4)

The threshold can vary between 0 and 1. In other words, the algorithm evenly splits the difference of the frozen and thawed140

references, adding the result to the frozen reference to account for its offset, to define a threshold value for surface F/T dis-

crimination. For SMAP L3_FT_P the parameter ∆ is fixed at 0.5 across the entire F/T domain. We invert Equation 2 to solve

for the NPR at that particular ∆ value. That is to say

NPRthreshold = ∆(NPRTH−NPRFR) +NPRFR (5)

The equations above are run on a grid cell-by-cell basis for unmasked portions of the F/T domain. The output is a binary145

state variable designating frozen or thawed conditions for each unmasked grid cell. Various studies have shown the NPR to
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be preferred over other approaches as it minimizes sensitivity to physical temperature and outperforms other L-band bright-

ness temperature-based approaches (Rautiainen et al., 2014; Roy et al., 2015). The NPR is most effective in areas with low

to moderate vegetation cover, while NPR signal-to-noise is lower in dense vegetation areas (e.g., forests) due to more diffuse

scattering of microwave emissions and reduced differences between TB
H and TB

V (e.g., Wigneron et al., 1995). For lower150

latitudes or conditions where the NPR algorithm requirements are not met, which excludes our study areas, a modified seasonal

thresholds algorithm (MSTA) using the single-channel vertically polarized brightness temperature algorithm (FT-SCV) is em-

ployed. In the FT-SCV algorithm, the measured TB
V is correlated with surface air temperatures, from global weather stations

and reanalysis data, to identify frozen and non-frozen references based on the freezing point of H2O (Kim et al., 2017; Podest

et al., 2014).155

2.1.3 Ancillary SMAP data: GEOS-5 FP Teff

The SMAP L3 Radiometer Global Daily 362 km2 EASE-Grid Soil Moisture, Version 8 product, L3_SM_P, uses ancillary data

including soil temperature information. The Choudhury and Schmugge (1982) two-layer approach for Teff, which combines

estimates of a “surface” temperature and a “deep” temperature using a proportional coefficient, C, dependent on the microwave

wavelength, has been used in all previous SMAP data releases and by other missions with good success (O’neill et al., 2021).160

A modified formulation of the model, Equation 6, resulted in good agreement between the in situ soil moisture data and the

retrieved soil moisture,

Teff = K × [Tsoil 2 + C(Tsoil 1−Tsoil 2)] (6)

where, Tsoil 1 refers to the average soil temperature for the first soil layer (5-15 cm) and Tsoil 2 refers to the average soil tem-

perature for the second soil layer (15-35 cm) of the NASA Global Model and Assimilation Office (GMAO)’s global Numer-165

ical Weather Prediction (NWP) system, the Goddard Earth Observing System Model, Version 5 Forward Processing product

(GEOS-5 FP) land surface model, at their native 0.25 x 0.3125-deg grids. K is a factor included to address the observed bias

between ancillary modelled soil temperature and measured in situ temperature at core validation sites and sparse network sta-

tions. Such structural biases are inevitable given the fact that they are parameterized and the result of numerical models as well

as because the model grids (in the horizontal) are often tens of kilometres which span large heterogeneities in landscape con-170

ditions like slope, aspect, land use, and soil texture. For a microwave wavelength of 21 cm Choudhury and Schmugge (1982)

report that C = 0.246, while O’neill et al. (2021) report K = 1.007 for SMAP.

The SMAP bias correction was factored out of the ancillary effective soil temperature product, as we are interested in the

ground temperature, unaffected by structural biases as captured by the satellite. The GEOS-5 FP geophysical data are derived at

a resolution of 362 km2 and posted on the EASE-Grid 2.0 with 36-km spacing. We utilized the NASA SMAP Level-2 ancillary175

surface temperature from the GEOS-5 FP model. GEOS-5 FP is a global NWP and data assimilation system that produces NRT

surface and soil temperature estimates with approximately 10–12 hour latency, demonstrating operational potential for rapid

F/T state mapping. These temperature fields, derived at ∼0.25°resolution, are used operationally in SMAP retrieval algorithms

as ancillary inputs. In our study, we use archived GEOS-5 FP surface temperature data retrospectively; however, because this
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is an operational forward-processing product—not a delayed reanalysis—our analysis also serves as a proof-of-concept that180

the same approach could support NRT or even short-range forecast applications in F/T mapping. Holmes et al. (2012) found

an RMSE of 1.6 K when comparing GEOS-5 FP Teff to in situ measurements of the Oklahoma Mesonet and this serves as our

uncertainty estimate for the product.

2.2 GlobSnow near-real-time Snow Water Equivalent dataset

To investigate environmentally driven underperformance, we also used snow estimates from the daily GlobSnow Level 3185

snow water equivalent (SWE) version 1.0 product. This product is part of operational near real-time (NRT) snow information

service maintained by the GlobSnow Consortium, coordinated by Finnish Meteorological Institute (FMI) and funded by the

European Space Agency (ESA). The NRT service initiated operations on October 2010. Historical datasets and NRT products

are available for SWE and snow extent over the northern hemisphere, covering all land surface areas with the exception of

mountainous regions and Greenland, to the GlobSnow user community through this website.190

For product version 1.0, the basis for SWE retrieval methodology, presented in (Pulliainen, 2006), is complemented with a

time series melt-detection algorithm (Takala et al., 2009). The two algorithms are combined to produce snow water equivalent

maps incorporated with information on the extent of snow cover on coarse resolution (25 x 25 km grid cells). The passive

microwave observations and weather station observations European Centre for Medium-Range Weather Forecasts (ECMWF)

are collected in an assimilation scheme to produce maps of SWE estimates (in EASE-Grid format).195

This approach was selected by ESA as the baseline method for the Global Snow Monitoring for Climate Research. For

this product,SWE describes the depth of liquid water, in mm, in the snow pack that would be formed if the it completely

melted. The GlobSnow method provides the most reliable existing observation-based (satellite plus in situ) estimates of the

hemispheric-scale snow mass (SWE).

2.3 In situ measurements200

The baseline science mission requirements specific to terrestrial F/T science activities state that SMAP shall provide estimates

of surface binary F/T state for the region north of 45°N latitude, which includes the boreal forest zone, with a mean spatial

classification accuracy of 80% at 3 km spatial resolution and 2-day average intervals. The minimum mission requirement

accuracy is 70%. Validation is defined as the process of assessing by independent means the quality of the data products

derived from the system outputs (Colliander, 2014). SMAP utilizes a wide range of methodologies in validating the mission205

science products, which include in situ networks, other satellite products, and model-based products (Jackson et al., 2012).

As outlined in the SMAP mission calibration and validation plan the accuracy of the SMAP surface F/T product is primarily

determined through comparisons against in situ surface F/T classifications based on temperature measurements discriminated

against a 0.15 °C (Jackson et al., 2012), hereafter referred to as the current “gold standard” F/T test.

The highest priority in situ resources for SMAP F/T cal/val are the CVSs (Derksen et al., 2017). These sites provide in situ210

observations that can be used to estimate soil moisture F/T, among others, at the spatial resolution of the SMAP geophysical

data products. Ideally, these sites include reference air temperature (2 m height), as well as vegetation (stem and canopy) and
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surface (<5 cm depth) soil temperature measurements with high temporal fidelity (daily or better) sampling and representa-

tion over the observed range of climate, terrain, land cover and vegetation biomass conditions. The SMAP validation plan

identifies five potential CVSs for SMAP surface F/T product. These include the Kenaston Soil Moisture Network (KSMN) in215

Saskatchewan, Canada (Tetlock et al., 2019) and Real-Time In-Situ Soil Monitoring for Agriculture (RISMA) network within

Manitoba, Canada (Bhuiyan et al., 2018; Rowlandson et al., 2018) as shown in Figure 1. The KSMN and RISMA network are

dense networks that provide multiple sampling sites within a spatial domain matching SMAP’s product pixel footprint. These

sites are within flat agricultural landscapes underlaid by mineral soil, making them a unique testing ground for the construction

of SurFCs at the satellite scale. For our study, at the KSMN, soil temperature at 2.5 cm in depth was measured with Campbell220

Scientific T109 thermistors, which have an uncertainty of ±0.2 °C according to the manufacturer. The air temperature at 2 m

was measured with Campbell Scientific HMP45C temperature probes with an uncertainty, dependent on temperature, of up to

±0.5 °C in the ranges seen. In situ soil temperature measurements at a depth of 5 cm come from Stevens HydraProbe (HP) II

SDI-12 sensors horizontally installed into the soil profile at a depth 5 cm (CVS standard depth) which have an instrumental

uncertainty of ±0.5 °C (Pardo Lara et al., 2020, 2021). To investigate the environmentally driven underperformance observed225

in the results, we also examined precipitation measurements (in mm) collected at all RISMA stations using a Hydrological

Services TB4 tipping bucket rain gauge mounted at a height of 2.5 m.
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SK1 SK2

SK4
SK3

MB1

MB2

Figure 1. Map of the Saskatchewan and Manitoba study areas. Black dots mark SMAP pixel centroids, and red dots mark in situ network

stations (KSMN in Saskatchewan and RISMA in Manitoba), which together define the core validation sites for this study.
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Table 1: List of SMAP pixels and the soil moisture network stations located within them, along with their coordinates, available

instrumentation, and soil texture. Instruments include the Stevens HydraProbe (HP), Campbell Scientific T109 thermistors

(T109), and Campbell Scientific HMP45C temperature/relative humidity probes (HMP45C).

SMAP Pixel Network Latitude Longitude Instruments Sand Silt Clay

SK1 (Centroid) 51.638 −106.618

KSMN 51.449 −106.496 1 HP, T109, HMP45C 25.4 56.3 18.2

51.416 −106.450 1 HP 26.0 51.0 23.0

51.427 −106.472 1 HP 13.8 57.0 29.2

51.420 −106.472 1 HP 30.2 51.3 18.5

51.428 −106.543 1 HP 31.8 46.1 22.1

SK2 (Centroid) 51.189 −106.618

KSMN 51.368 −106.449 1 HP 37.0 41.0 22.0

51.371 −106.496 1 HP 34.0 50.0 16.0

51.387 −106.499 1 HP 42.0 41.0 17.0

51.387 −106.520 1 HP 39.0 44.0 17.0

51.397 −106.449 1 HP 26.6 55.7 17.7

51.390 −106.449 1 HP 26.0 50.0 24.0

51.358 −106.506 1 HP 50.0 32.0 18.0

SK3 (Centroid) 51.638 −106.245

KSMN 51.416 −106.418 1 HP 29.0 49.0 22.0

51.426 −106.426 1 HP, T109, HMP45C 26.8 51.4 21.8

51.417 −106.418 1 HP 20.0 43.0 37.0

51.437 −106.426 1 HP, T109, HMP45C 12.7 70.1 17.2

51.442 −106.426 1 HP 24.6 59.5 15.9

SK4 (Centroid) 51.189 −106.245

KSMN 51.382 −106.416 1 HP 26.2 60.5 13.3

51.373 −106.425 1 HP 28.6 57.3 14.1

51.378 −106.426 1 HP 28.0 59.0 13.0

51.396 −106.426 1 HP 31.0 46.0 23.0

51.390 −106.426 1 HP 15.7 52.0 32.3

Continued on next page
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Table 1 (continued).

SMAP Pixel Network Latitude Longitude Instruments Sand Silt Clay

MB1 (Centroid) 49.867 −98.029

RISMA 49.679 −97.960 3 HP 3.7 24.6 71.7

49.666 −98.008 3 HP 78.3 9.2 12.5

49.753 −97.982 3 HP 3.6 33.2 63.2

49.695 −98.024 3 HP 81.3 6.0 12.7

MB2 (Centroid) 49.434 −98.029

RISMA 49.562 −98.019 3 HP 78.8 10.1 11.1

49.493 −97.934 3 HP 44.9 20.8 34.3

49.520 −97.956 3 HP 47.1 21.1 31.8

49.636 −97.988 3 HP 90.4 0.2 9.4

2.4 Methods

The signature acquired at thermal microwave frequencies represents a sampling of the aggregate landscape (relative) permittiv-

ity and structural characteristics (shapes, sizes, and spatial arrangement; Entekhabi et al., 2010; McDonald and Kimball, 2005).230

In terms of permittivity, there is a large contrast between liquid (εr ∼ 80) and frozen H2O (εr ∼ 5). As soil moisture freezes,

the molecules become bound in a crystal lattice, impeding their free rotation, increasing in volume and decreasing their density,

and increasing the porosity of the soil, thus reducing the permittivity. However, low permittivities are not uniquely associated

with frozen soil, dry soil has similar permittivity values to frozen soil. Indeed, if there is no soil moisture, there is practically

no electrically observable change between frozen and thawed soil moisture states.235

At present, partially due to a lack of appropriate permittivity models, the identification of surface H2O F/T state of the upper

soil layer is conducted with the use of the empirical models for TB registered by remote sensing satellites (Rautiainen et al.,

2016; Xu et al., 2016). Thus far, methods have primarily relied on passive microwave radiometry in the L-, K-, and Ka-bands

to infer surface F/T state through their sensitivity to changes in the soil permittivity. In this section we discuss the construction

of SurFCs and SurTCs using TB measurements as a proxy for water content, how to identify a data-driven dynamic threshold240

for surface F/T classification, and present statistical approaches for comparing the binary classification stemming from this

threshold against other methods.

2.4.1 Constructing SurFCs and separating SurTCs

The datasets were temporally and spatially collocated with the corresponding SMAP observations and pixels, based on prox-

imity and Euclidean distance, respectively. The in situ measurement frequency was 30 minutes or less, meaning the time245
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difference between the SMAP overpass and selected measurement was approximately 15 minutes. When data was available

from multiple stations within the SMAP pixel, we averaged multiple measurements and calculated the standard deviation to

capture some of the field variability. When this deviation was larger than the network’s instrumental uncertainty (±0.5 °C) the

former was used as the measurement uncertainty. Similar to Dunbar et al. (2020) and Salmabadi et al. (Under Review), only

data acquired at temperatures ≤ 5 °C were included for these analyses.250

The SurFC was constructed by plotting the remotely sensed TB
H and NPR values in the ordinate against the in situ or

forecast temperature of choice (i.e., air temperature or soil temperature) in the abscissa. We chose the horizontally polarized

TB due to its greater dynamic range, attributed to the difference in the reflection and transmission of EM radiation at the air-

surface interface for each polarization and possible impedance matching along with refraction effects (Rautiainen et al., 2014).

However, since there is a negative correlation between TB and soil moisture content, the shape of the SurFC is a reflection on255

the x-axis of the more familiar SFC. To compensate for this, the SurFCs are transformed by inverting the y-axis. The plotted

values were connected temporally, to give a sense of the progression around regions of interest.

2.4.2 Data-driven surface freeze/thaw (F/T) threshold

We propose the dip in TB , captured by the minimum TB
H , as a relatively simple, yet efficient surface F/T classification feature

since it corresponds to a wet snow signal during the seasonal snow melt.260

The diurnal amplitude variation (DAV) in brightness temperature between the morning and the evening overpasses is a

method for snowmelt detection, originally developed with coarser resolution passive microwave products in a glaciated envi-

ronments (Ramage and Isacks, 2002). DAV is smaller during both the coldest winter months and snow-off periods than during

melt events. Notably, DAV continues to increase with more cycles of melt-refreeze, due to continued snowpack metamorphism.

Therefore, refreezing causes the brightness temperature to drop below the previous cold, dry state due to enhanced scattering265

from grain metamorphism (Johnson et al., 2020).

During the seasonal melt in snow dominated watersheds, the higher emissivity from liquid water near the snow surface

rapidly increases the observed passive microwave TB . Melt and freeze cycles cause snow grain size to increase, which further

attenuates the passive microwave signal, causing much lower TB values for a refrozen snowpack as opposed to a dry winter

snowpack that has never melted (Burke et al., 1984). Studies have also shown that increased stream discharge either coincides270

with or directly follows the end of the high DAV period in snow-dominated watersheds (Kopczynski et al., 2008; Ramage et al.,

2006; Vuyovich and Jacobs, 2011).

Since the TB of a wet snow pack drops below that of a dry winter snowpack and grain metamorphism associated with F/T

events causes it to drop below the previous state, we attribute the minimum TB to the wet snow signal associated with the

spring melt. Therefore, when a snowpack is present, we link the scene featuring the minimum TB
H to the seasonal snow melt275

and concomitant soil moisture state change.

We constrain the search to a thermodynamic temperature window of ± 5 °C to scope out the relevant phenomena, as

done in the FT-SCV SMAP surface F/T algorithm (Dunbar et al., 2020). Once the minimum TB
H value is found within that

temperature range, the associated temperature is considered the F/T discriminator. As discussed more in-depth in Section 4.4, a
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data-driven threshold is desirable given the measurement mismatch between the SMAP radiometer and the average temperature280

measurements at 5 cm in depth, as well as other confounding factors such as freezing point depression.

2.4.3 Classification statistics

In essence, surface F/T classification can be reduced to the question, “is the soil moisture frozen?” Where the null hypothesis

is that the soil moisture is not frozen and a “gold standard” classification methodology is the reference. Type I errors are false

positives, where the scene is identified as frozen when it is not. Type II errors are false negatives, where the scene is not285

identified as frozen when it is, in fact, frozen. We report the freezing scene prevalence (proportion of times a pixel is found

to be frozen), the accuracy, the recall or sensitivity (proportion of times the classification is correct for frozen pixels), and the

precision (how often the model gets the prediction right).

The F1-score is also provided which measures a classifier’s accuracy by taking the harmonic mean of the precision and

the recall, allowing us to consider the so-called positive predictions (false negatives, false positives, and true positives) in one290

statistic. The F1-score assumes that both variables are drawn from the same distribution and thus have the same expected

prevalence. The precision and the F1-score are intrinsically unidirectional, aiming to assess the deductive effectiveness of

predictions in the direction proposed by a rule, theory, or classifier. We also highlight the negative likelihood ratio (LR−),

which is defined as how many times more likely a false negative (Type II error) is than a true negative classification, based on

in situ measurements. This last statistic is calculated by dividing the false negative rate by the true negative rate.295

In short, statistical measures of the performance of a classification test included overall accuracy and per-pixel precision,

recall, LR−, and F1-score. The statistical equations for these metrics are as follows:

Overall Accuracy = TP + TN/(TP + FP + TN + FN) (7)

Precision = TP/(TP + FP ) (8)

Recall = TP/(TP + FN) (9)300

F1-score = 2×Precision×Recall/(Precision + Recall) (10)

LR− = FNrate/TNrate = [FN/(FN + TP )]/[TN/(TN + FP )] (11)

where, TP are true positives (correct hit), FP false positives (false alarm), FN false negatives (miss), and TN are true

negatives (correct no alarm). F1-score is the harmonic mean of precision and recall.

3 Results305

In this section we present the results from applying our methods on the curated data set.

3.1 SurFCs and SurTCs from in situ temperature sources

There are six SMAP pixels encompassing the University of Guelph/Environment and Climate Change Canada soil monitoring

stations at the KSMN. Four of those pixels were analyzed by Pardo Lara et al. (2020) and are included in the present study. We
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display sample data collected from September 1 to May 30 from the SMAP pixels centred at 51.64°N, 106.62°W (SK1) and310

51.64°N, 106.24°W (SK3) for 2017-18 and 2015-16, respectively, in Figures 2 and 4. These pixels, SK1 and SK3 feature the

most complete suite of measurements captured by the KSMN, in particular air temperature at 2 m, as well as soil temperature

at 2.5 cm and 5 cm.

Following the methods outlined in Section 2.4, Figures 3 and 5 display SurFCs and SurTCs branches where TB
H is plotted

against various in situ temperature sources (i.e., air temperature, soil temperature at 2.5 cm depth, soil temperature at 5 cm315

depth) for SK1 and SK3. For comparison, we have included similar curves derived using NPR plotted against those same

temperature sources. Shaded in red, we show the region where a ‘thawed’ classification is expected based on a 0.15 °C thresh-

old—the gold standard for validation. The region shaded in blue shows where a ‘frozen’ classification is expected on the NPR

or TB
H

min thresholds for that pixel. It follows that measurements falling in the purple shaded region, where red and blue

shaded regions overlap, are Type I errors—false positives. Measurements in the unshaded region are then Type II errors—false320

negatives.

The classification threshold based on NPR values leads to a bisection around a value at the abscissa, dividing the NPR-T

phase space into quadrants (FP , TN , TP , FN ) in conjunction with the “gold standard” test threshold at 0.15 °C. However,

by identifying the temperature at which the TB
H

min occurs as our observation threshold, we divide the TB
H -T phase space

into thirds, eliminating one type of error (Type I or II). The remaining error type depends on the observed threshold’s relation325

to the “gold standard” discriminator of 0.15 °C.

The remotely sensed TB
H plotted against in situ temperatures display a structure similar to that of SFCs when using tem-

perature measurements at depths of 2.5 and 5 cm—the latter being the standard depth for soil moisture validation sites and

SMAP products. In the case of air temperature measurements, the structure is harder to discern as it is unstable around the

freezing/melting temperature; this is most visible on Figure 5a. The data-driven thresholds for surface F/T classification are330

within 1.5°C of the 0.15 °C “gold standard test” threshold assumed for SMAP validation.

Figures 3d-e and 5d-e show the current SMAP classification and validation results using NPR. There is an increase in Type

II errors when validating NPR observations, which is greatest when validating against air temperature and decreases with

measurement depth.
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3.2 SurFCs and SurTCs from in situ and GEOS-5 FP soil temperature estimates335

We extend the methodology to a different geography by using in situ data from the RISMA network stations in Manitoba.

This network is instrumented as a core validation site (CVS) which, as a standard, provide soil temperature at a depth of 5 cm.

We display the data collected from September 1 to May 30 from the SMAP pixels centred at 49.87 °N, 98.03°W (MB1) and

49.43°N, 98.03°W (MB2) for 2019-20 and 2016-17, respectively, in Figures 6 and 8.

Figures 7 and 9 display SurFCs and SurTCs constructed using in situ soil temperatures and predictions from the GEOS-5340

FP product. These pixels, MB1 and MB2, are instrumented for measuring soil temperature and permittivity at a depth of 5 cm.

Again, for comparison, we have included similar curves derived using NPR plotted against those same temperature sources.

As before, shaded in red we show the region where a ‘thawed’ classification is expected based on a 0.15 °C threshold. The

region shaded in blue shows where a ‘frozen’ classification is expected on the TB
H

min or NPR thresholds for that pixel. Thus,

the NPR plots below, Figures 7 (c-d) and 9 (c-d), can also be interpreted as a graphical confusion matrix.345

As before, the remotely sensed TB
H plotted against the in situ temperatures display a structure similar to that of SFCs

including hysteretic thawing branches STCs. In the case of GEOS-5 FP predictions, the structure is visible, but less clearly.

Both data-driven thresholds for surface F/T classification are within ±0.1 °C of the 0.15 °C threshold assumed for the SMAP

validation. On the other hand, the current SMAP classification validated against in situ and the GEOS-5 FP forecast product

can be seen in the NPR figures. Again, Figures 8 (b) and 9 (b) display similar structures to the SFCs, including hysteretic350

thawing branches (STCs).
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3.3 SurTCs for surface F/T classification

The results presented so far show an improvement in the classification accuracy when considering the relationship between

TB
H and thermodynamic temperature as opposed to relative changes on the difference of the acquired TB

H and TB
V signa-

tures. Indeed, we created a surface F/T classification product based on TB
H

min and GEOS-5 FP forecast surface temperature.355

This product was compared against the “gold standard” classification product—a 0.15 °C threshold—applied to the available

in situ temperature measurements (5 cm in depth in this case). The resulting accuracy, F1-score, and LR− statistics are shown

below in Figures 10, 11, and 12.

Figure 10. Accuracy for the proposed TB
H

min (light grey) and current NPR (dark grey) F/T classification methods, by SMAP pixel and year.

Both methods were validated against in situ temperature measurement acquired 5 cm below the surface, which were classified as frozen when

the temperature was below 0.15 °C for (a) the KSMN in Saskatchewan (SK1-SK4) and (b) RISMA Network stations in Manitoba (MB1 and

MB2).

Across both Manitoba and Saskatchewan datasets, the TB
H

min approach outperformed NPR in detecting freeze/thaw state.

For MB, mean accuracy improved from 0.683 to 0.911 (+33.4 %), and mean F1 from 0.746 to 0.944 (+26.5 %). For SK,360

improvements were larger, with accuracy increasing from 0.633 to 0.930 (+46.9 %) and F1 from 0.644 to 0.947 (+47.0 %).

Combined, these gains amounted to a +39.8 % increase in accuracy and +36.0 % in F1.

Across both Manitoba and Saskatchewan datasets, the TB
H

min approach consistently outperformed NPR in detecting F/T

state. For MB, mean accuracy improved from 0.68 to 0.91 (+33.4 %), and mean F1 from 0.75 to 0.94 (+25 %). For SK, im-

provements were larger, with accuracy increasing from 0.63 to 0.93 (+47.6 %) and F1 from 0.64 to 0.95 (+48.4 %). Combined,365

these gains amounted to a +39.4 % increase in accuracy and +36.2 % in F1.

Equally notable are the reductions in false-negative rate, captured by LR−. For MB, LR− decreased from 0.46 to 0.002

(–99.6 %), effectively eliminating thaw-state omissions. For SK, LR− fell from 0.52 to 0.09 (–82.7 %), an order-of-magnitude

improvement. These gains were accompanied by reduced variability across years and sites: standard deviations in accuracy and
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Figure 11. F1 score for the proposed TB
H

min method (light grey) and the current NPR method (dark grey) by SMAP pixel and year.

Both methods were validated against in situ soil temperatures at 5 cm depth, classified as frozen when below 0.15 °C: (a) the KSMN in

Saskatchewan (SK1–SK4) and (b) the RISMA Network in Manitoba (MB1 and MB2).

Figure 12. Negative likelihood ratio (LR−) for the proposed TB
H

min method (light grey) and the current NPR method (dark grey) by SMAP

pixel and year. Both methods were validated against in situ soil temperatures at 5 cm depth, classified as frozen when below 0.15 °C: (a) the

KSMN in Saskatchewan (SK1–SK4) and (b) the RISMA Network in Manitoba (MB1 and MB2).

F1 for TB
H

min were roughly half those of NPR, and LR− variability was reduced by more than an order of magnitude in MB.370

Together, these results indicate that TB
H

min can be more accurate, stable and operationally reliable across diverse mid-latitude

agricultural landscapes.
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Table 2. Freeze–thaw classification performance for NPR and TB
H

min across Manitoba (MB) and Saskatchewan (SK). Values are mean

(SD). Changes are relative to NPR.

Dataset Accuracy F1-score LR− Change (%)

NPR TB
H

min NPR TB
H

min NPR TB
H

min Accuracy F1 LR−

MB 0.68 (0.12) 0.91 (0.06) 0.75 (0.11) 0.94 (0.04) 0.46 (0.22) 0.002 (0.006) +33.8 +25.3 −99.6

SK 0.63 (0.12) 0.93 (0.04) 0.64 (0.17) 0.95 (0.04) 0.52 (0.19) 0.09 (0.07) +47.6 +48.4 −82.7

Combined 0.66 (0.12) 0.92 (0.05) 0.69 (0.15) 0.94 (0.04) 0.49 (0.20) 0.05 (0.07) +39.4 +36.2 −89.8

Notes. NPR: normalized polarization ratio (SMAP baseline). TB
H

min: threshold derived from the minimum horizontally polarized brightness temperature.

LR−: negative likelihood ratio (FN rate / TN rate).

3.3.1 Classification under-performance in winter 2020-21

There was one year in which the proposed TB
H

min classification relatively underperformed compared to other years, and

approached the minimum accuracy threshold of 80%. This occurred at pixels MB1 and MB2 during the 2020-21 winter. To375

understand this change in behaviour, time series complemented with GlobSnow SWE and network rainfall measurements as

well SurFCs of the corresponding scene are found on Figures 13, and 14.

SurFCs derived from the MB1 pixel TB
H (a-b) and NPR (c-d) in the winter of 2020-2021. The TB

H and NPR are plotted

against soil temperature at a depth of 5 cm (a, c; n=4) and the GEOS-5 FP assimilated prediction temperature (mean of 0

and 10 cm layers) for the pixel surface (b, d). The 0.15 °C threshold for soil temperatures—the gold standard classifier—is380

shown in the vertical red shading. The classifier based on the temperature at the minimum TB
H is shown as the vertical blue

shading. Lastly, the NPR based classifier is shown as the horizontal blue shading. Thus, the blue shading shows the observations

classified as frozen using both techniques and the red shading shows the gold standard classification (0.15 °C). Note the TB
H

observations are connected temporally to highlight the time evolution seen in the thaw process

The scene reached a minimum TB
H at 167.8 K on May 22, 2021, while the soil temperature was at 9.0 °C, which is outside385

of the±5 °C search window for scoping relevant phenomena. Within that window, we see a TB
H

min reaches a value of 214.1 K

at a, relatively warm, thermodynamic temperature of 4.1 °C on May 3, 2021 - 18 days after the last 0 °C reading. With the

complementing rainfall data from the network, it is notable that these spikes in TB
H are associated with heavy precipitation

events. On May 2, there was a rainfall event totalling 4.2±1.5 mm. From May 19 to May 22 a total of 42±21 mm of rain fell

with 37±21 mm falling on the last day.390

Soil temperature measurements reach temperatures above 0 °C for the first time that year on March 21, 2021, with a fluc-

tuation around that value from March 21 until May 1, 2021. We interpret this time frame as a the zero-curtain period. during

which TB
H

min reaches a value of 229.0 K at on April 22, 2021 at a thermodynamic temperature of 1.6 °C. This is consistent

with the GlobSnow estimate for the snowpack, which goes to 0 mm on April 26, 2021.
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The only visible peaks around the 0.15 °C transition temperature belong to the SurFC freezing branch, with a TB
H

min value395

of 218.3 K on October 31, 2020 at a thermodynamic temperature of 1.0 °C and TB
H

min value of 218.6 K on December 10,

2020 at a thermodynamic temperature of 0 °C. These results are indicative of a relative reduction in the snowpack during the

seasonal thaw, compared to other years.

Indeed, one of the top weather stories for 2021 was an extraordinary drought with widespread, severe and long lasting

dryness. According to ECCC, “the seeds of this drought were sown months, if not seasons, before 2021. Across much of400

the west, fields through winter 2020-21 were brown for more days than they were white with snow. Southern Manitoba was

Canada’s epicentre for drought, especially in the Red River Valley and the Interlake region. Winnipeg had its two driest

back-to-back years in over a century." These two regions abut our study area. As well, according Manitoba’s Department of

Environment and Climate Change Drought Monitor for May 2021 reported well below normal winter precipitation, which

resulted in insufficient spring runoff. In the context of the proposed TB
H

min classification, it shows one of the limitations of405

the method is that in years with a very reduced snowpack, heavy rainfall events may be confounded with transition thresholds.
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4 Discussion

In Sections 3.1 and 3.2, our results show that (1) remotely sensed TB and in situ soil temperature can be used to produce

SurFCs and SurTCs (SFCs and STCs at the satellite scale). In Section 3.2, we show (2) remotely sensed TB and modelled

thermodynamic temperature can be used to produce SurFCs and SurTCs at the satellite scale. In Section 3.3, we demonstrate410

how (3) these SurTCs can be used to identify an extrinsic data-driven threshold for soil moisture F/T state classification. Lastly,

in Section 3.3 we present how (4) SurTCs can serve as a tool for surface F/T classification in a remote sensing context, and we

also explored their limitations. Current detection and validation methodologies can be improved by taking these findings into

consideration.

4.1 Similarities and differences between SFCs and SurFCs415

Our results confirm that plotting satellite brightness temperature against surface temperature produces curves analogous to

SFCs. The key features that define an SFC—namely, (i) the initial water content at full thaw, (ii) the bulk freezing/melting

point, and (iii) the residual (unfreezable) water content at low temperatures—can also be identified in the satellite-derived

SurFC curves. In particular, the distinct dip in TB
H as the landscape transitions from frozen to thawed (or vice versa) is

qualitatively similar to the drop in unfrozen water content in an SFC curve (Élise Devoie et al., 2022).420

One important difference between laboratory-measured SFCs and our satellite SurFCs is the origin of the water contributing

to the signal. In controlled soil experiments, changes in unfrozen water content are due solely to soil moisture freezing or

thawing. In contrast, our SurFC curves at the landscape scale often capture the influence of snowmelt in addition to soil water.

When spring arrives, a surge of liquid water at the surface can come from melting snowpack; this increase in liquid water

strongly affects TB
H even if the soil beneath is still partially frozen. Thus, the satellite SurFC is best interpreted as a combined425

freeze–thaw curve for the soil–snow system in that pixel. Despite this difference, the overall hysteretic pattern (with distinct

freezing and thawing branches) is evident in TB
H–temperature space, especially when using near-surface soil temperatures

(e.g., at 5 cm depth) as the thermodynamic reference.

As seen in our time series and SurFC figures , i.e., Figures 2-9, these transition events occur at TB
H minima (and NPR

maxima). We based our analysis on SMAP TB
H because it showed the largest dynamic range in response to F/T transitions430

and is known to be more sensitive to snow (Leduc-Leballeur et al., 2017; Rautiainen et al., 2014). TB
H drops as the landscape

warms and wets, capturing the melting water. On the other hand, NPR combines information from both polarizations as an

index and introduces additional uncertainty. In contrast to NPR, TB
H provides a cleaner, absolute signal more directly linked

to liquid H2O. The resemblance of TB
H–temperature curves to traditional SFCs, especially around the critical 0.15 °C region,

suggests that we can leverage this behaviour to define a data-driven F/T threshold that is tied to actual phase-change dynamics435

rather than a predefined constant.
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4.2 The case against intrinsic thresholds for F/T classification

Classification of the surface F/T essentially asks whether H2O in the landscape has undergone a phase change (liquid↔ solid).

Physically, freezing and thawing are non-linear first-order transition, defined by the associated latent heat and abrupt changes

in entropy. These discontinuities within an evolution are generally marked by critical points in and the notion of complexity440

is at the heart of the subject (Brunet, 1967). However, applying a threshold-based approach requires correctly identifying the

relevant threshold for the system of interest. A key distinction in threshold types is whether they are intrinsic or extrinsic to the

system’s driving forces.

Many existing satellite F/T classification algorithms rely on intrinsic thresholds. These thresholds are derived from a single

observable (or sensor) that indicates a change without direct reference to external conditions. Examples include fixed cutoffs445

on indices like NPR and on TB such as the FT-SCV or DAV methods, which look for anomalies or variance changes in the

microwave measurements themselves (Rautiainen et al., 2016; Kim et al., 2019; Lv et al., 2022). Intrinsic thresholds are adept

at detecting shifts within the observation domain (e.g., a sudden drop in TB or spike in NPR), but they do not explicitly link

those shifts to the environmental driver, that is, the cooling or warming that causes the freezing or thawing.

In contrast, an extrinsic threshold takes the external forcing into account, typically as air or soil temperature, when deter-450

mining the F/T state. Following Brunet’s framework (Brunet, 1967), soil moisture F/T transitions are best characterized as

extrinsic, oscillatory change-of-state phenomena. “Extrinsic” in this context means that the transition is controlled by an out-

side variable (temperature) that gradually pushes the system to a tipping point. In the case of soil F/T, the soil cools or warms

under the influence of air temperature until a phase change is triggered in the soil water. By plotting TB
H against temperature

and identifying where the thawing curve turns, we tie the classification directly to the physical driver of thaw (heat input) and455

the system’s response (radiometric change). Our findings support the use of these extrinsic thresholds.

In practical terms, this means moving beyond single-sensor logic. Techniques that rely solely on microwave observations

risk misidentifying the F/T state when the microwave signal is confounded by factors like dry mineral soil or sensing depth

issues. By incorporating a coincident temperature measurement, whether from in situ sensors or a model, we anchor the

microwave signal to real thermodynamic conditions. This two-variable approach (microwave TB plus temperature) transforms460

the classification problem from a binary yes/no test into analyzing a curve or relationship, which provides more nuance. In

essence, extrinsic thresholds offer a more physics-based and robust criterion for F/T discrimination, as they require consistency

between what we observe (the radiometric signal) and what we expect from the environment (the presence of freezing or

thawing temperatures).

4.3 The case against using air temperature as the extrinsic reference465

If extrinsic thresholds are the goal, we must choose an appropriate temperature variable as the reference. A straightforward

candidate is air temperature, since it is an external driver of surface F/T and is widely measured. In fact, some current F/T

products use air temperature in this way (Kim et al., 2017). However, our analysis reveals significant limitations in using 1 m

air temperature to determine the surface F/T state.
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Air temperature does not necessarily reflect the actual thermal state of the soil surface, especially under conditions like snow470

cover. Snow acts as an insulator, creating a thermal lag between the air above and the soil beneath. A sunny day might push

air temperature above freezing even while the soil remains frozen, or vice versa at night. In general, factors such as thermal

buffering, vertical decoupling, and small-scale heterogeneity can cause the soil’s F/T status to deviate from what air temperature

alone would suggest (Williamson et al., 2018; Rowlandson et al., 2018; Lv et al., 2022). In our data, plotting TB
H against air

temperature yielded a much more scattered and less interpretable curve than using soil temperature. The expected hysteresis475

(separate freezing and thawing branches) was equivocal when air temperature was the reference, particularly in snow-affected

sites (see Figure 5a for example). This led to ambiguity in classification: there were instances where the microwave signal

(NPR) indicated a frozen condition, yet the air temperature hovered just above 0 °C, creating a false impression of thaw if air

temperature alone were used as the criterion. These kinds of mismatches manifest as increased Type II errors (missed detections

of freeze) when air temperature is used for validation.480

By contrast, using soil temperature (particularly at a shallow depth like 2.5 or 5 cm) as the extrinsic variable provided a much

clearer indication of the phase state of the surface water. In our study, TB
H plotted against in situ soil temperature produced

well-formed SurFCs/SurTCs with clear inflection points. Even the GEOS-5 FP modelled soil temperature, while not perfect,

yielded a discernible characteristic curve that aligned with the in situ measurements (Figures 7–9). We, therefore, conclude

that near-surface soil temperature is a superior extrinsic reference for F/T classification in these environments. After an initial485

comparison (Section 3.1) demonstrated air temperature’s limitations, we omitted air temperature from further threshold analysis

and focused on soil-based temperature data (either in situ or model-derived). This choice improved the consistency and physical

interpretability of the F/T classification, especially in seasons or locations with snow involvement.

4.4 The case for data-driven surface F/T extrinsic thresholds

Our results show that a classification threshold derived from the TB
H

min method outperforms the standard NPR-based approach490

for detecting F/T state. Across two mid-latitude agricultural regions, the TB
H

min method improved mean classification accuracy

by 39% (increasing from 66% to 92%) and mean F1-score by 36%, relative to the baseline NPR method. Equally important,

the method dramatically reduced the false-negative rate. The negative likelihood ratio (NLR) dropped by roughly an order

of magnitude (82–99% reduction) compared to NPR. The TB
H

min approach also proved more stable across years and sites.

Interannual and inter-site variability in accuracy and F1 were about half that of NPR.495

This improved consistency reinforces a key point: surface freeze/thaw thresholds should not be universally fixed at 0.15 °C

(the traditionally assumed value for validation) without a physical basis. In our study, for instance, air temperature, soil tem-

perature, and radiometric signals each couple to the actual phase-change process in different ways, and each is subject to

influences like soil thermal buffering, freezing-point depression in situ, and local heterogeneity. By empirically deriving the

threshold from the system’s own response (the SurTC), the TB
H

min method avoids reliance on an arbitrary cutoff. It thus500

mitigates location-specific biases and adapts to local conditions, providing a more robust basis for large-scale freeze–thaw

monitoring where environmental conditions can vary widely.
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5 Conclusions

This study demonstrates that extrinsic thresholds—derived from paired measurements of environmental forcing (soil temper-

ature) and system response (TB
H )—provide an operationally viable, physics-based framework for surface F/T classification.505

While intrinsic thresholds (e.g., the “gold standard” 0.15 °C rule or fixed NPR values) rely on sensor-specific behaviour,

extrinsic thresholds are causally anchored in real-world environmental dynamics, improving both accuracy and interpretability.

Our SurFC framework formalizes this dual-measurement strategy, revealing consistent and physically meaningful F/T transi-

tions even under confounding conditions such as melt events or transitional thaw phases. By linking remotely sensed L-band TB

with thermodynamic temperature—, sourced from in situ observations or forecast estimates from GEOS-5 FP—, we demon-510

strate that satellite-scale F/T detection can be redefined around data-driven, extrinsic thresholds rather than intrinsic, single

sensor-derived metrics.

In this study we show that (1) remotely sensed TB and in situ soil temperature can be used to produce SurFCs—a novel

remote sensing analogue to lab-based SFCs. These curves effectively capture transition dynamics at the satellite footprint

scale. (2) Forecast-based temperature from GEOS-5 FP can substitute in situ temperature, making the method viable for near-515

real-time applications. (3) SurTCs can be used to empirically identify extrinsic thresholds, defined at TB
H

min relative to soil

temperature. This minimizes reliance on somewhat arbitrary cutoffs (e.g., 0.15 °C) and anchors classification in observable

environmental interactions. (4) SurFCs serve as a powerful interpretive and classification tool, offering more transparency into

the F/T process and supporting validation of existing F/T products.

More generally, we found that NPR-based classification methods, which rely on internal signal variability, are poorly suited520

for snow-influenced hydrologies where snowmelt dominated the L-band signature. Because they depend solely on internal

variability, such methods struggle with these highly dynamic transitions governed by external forcing. Algorithms based only

on TB
P variation attempt to identify a surface transition without referencing its environmental cause. As a result, they contain

little physical information about the process itself.

By contrast, the SurFC framework introduces a temperature dimension to F/T detection, grounding classification in environ-525

mental cause rather than relative signal changes. This requires rejecting the default assumption that 0.15 °C is the universal F/T

threshold. Instead, we argue that the F/T threshold should emerge from empirical data, in our case we identified that the tem-

perature at which TB
H

min occurs can help identify an actual transition in surface state. This approach improves interpretability

and enables better control over classification errors by anchoring transitions in measurable physical phenomena.

Our classification method, based on identifying the thermodynamic temperature corresponding to TB
H

min, outperformed the530

NPR method against a 0 °C reference benchmark in all years and metrics analyzed (i.e., Accuracy, F1-score, LR−). However,

during the 2020–21 winter at MB1 and MB2, which had low snowpack, classification performance dropped below 80%.

Ancillary data (GlobSnow SWE, KSMN rainfall, and drought monitor reports) confirm that this dip was likely due to reduced

winter snowpack followed by significant rain events, which confounded the TB
H

min classification algorithm.

This work strengthens the case for scalable, data-driven approaches to F/T monitoring. By anchoring surface state clas-535

sification in extrinsic thresholds, it advances a framework that is more responsive to environmental complexity and suitable
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for integration into operational remote sensing workflows. As a result, these findings support both improved scientific under-

standing and more realistic input data for downstream applications, such as cryospheric modelling, water balance studies, and

agricultural or land-use decision tools.

Future research should (1) extend the method to finer spatial resolutions (e.g., SMAP Enhanced product or airborne L-band540

data); (2) investigate the use of SurFCs to disambiguate F/T transitions from dry-down or desiccation; and (3) explore appli-

cations in water resource forecasting, climate adaptation, and cold-region hydrology, where accurate phase-state classification

has direct policy relevance.

Data availability. An archived dataset containing Kenaston Soil Moisture Network (KSMN) observations, including additional soil prop-

erty measurements, is available from the Federated Research Data Repository (FRDR), doi:10.20383/101.0200 The Real-Time In-Situ545

Soil Monitoring for Agriculture (RISMA) dataset is available from Agriculture and Agri-Food Canada via the Agriculture Data Portal

(https://agrifood.aquaticinformatics.net/Data/Export) and is maintained as a continuously updated operational dataset without a persistent

DOI. The SMAP freeze/thaw product is available from NASA NSIDC: Xu et al. (2023), doi:10.5067/LQQ5I3QVGFTU. The SMAP soil

moisture product is available from NASA NSIDC: ONeill et al. (2023), doi:10.5067/K7Y2D8QQVZ4L. The GlobSnow snow water equiv-

alent product is described by Takala et al. (2011), doi:10.1016/j.rse.2011.08.014, and is available from the Finnish Meteorological Institute550

(https://www.globsnow.info/index.php?page=Data). All metrics used in this study are provided in the Appendix.

34

https://doi.org/10.5194/egusphere-2025-3630
Preprint. Discussion started: 10 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Table A1: Classification results and summary statistics by network, pixel, year, predictor, and reference response. Values are counts and metrics per row.

Network Pixel Year Predictor Reference P N True pos. True neg. False pos. False neg. Accuracy F1-score LR−

RISMA 1 2015–16 TB
H

min TSoil 5 cm 87 31 87 20 11 0 0.907 0.941 0.000

RISMA 1 2015–16 NPR TSoil 5 cm 87 31 48 29 2 39 0.653 0.701 0.467

RISMA 2 2015–16 TB
H

min TSoil 5 cm 80 34 80 25 9 0 0.921 0.947 0.000

RISMA 2 2015–16 NPR TSoil 5 cm 80 34 33 26 8 47 0.518 0.545 0.730

RISMA 1 2016–17 TB
H

min TSoil 5 cm 67 44 67 29 15 0 0.865 0.899 0.000

RISMA 1 2016–17 NPR TSoil 5 cm 67 44 55 36 8 12 0.820 0.846 0.205

RISMA 2 2016–17 TB
H

min TSoil 5 cm 67 44 67 41 3 0 0.973 0.978 0.000

RISMA 2 2016–17 NPR TSoil 5 cm 67 44 50 35 9 17 0.766 0.794 0.299

RISMA 1 2017–18 TB
H

min TSoil 5 cm 102 15 102 4 11 0 0.906 0.949 0.000

RISMA 1 2017–18 NPR TSoil 5 cm 102 15 76 11 4 26 0.744 0.835 0.268

RISMA 2 2017–18 TB
H

min TSoil 5 cm 101 18 101 7 11 0 0.908 0.948 0.000

RISMA 2 2017–18 NPR TSoil 5 cm 101 18 50 11 7 51 0.513 0.633 0.576

RISMA 1 2018–19 TB
H

min TSoil 5 cm 99 37 99 25 12 0 0.912 0.943 0.000

RISMA 1 2018–19 NPR TSoil 5 cm 99 37 82 34 3 17 0.853 0.891 0.178

RISMA 2 2018–19 TB
H

min TSoil 5 cm 96 38 96 31 7 0 0.948 0.965 0.000

RISMA 2 2018–19 NPR TSoil 5 cm 96 38 77 33 5 19 0.821 0.865 0.211

RISMA 1 2019–20 TB
H

min TSoil 5 cm 108 21 107 21 0 1 0.992 0.995 0.009

RISMA 1 2019–20 NPR TSoil 5 cm 108 21 55 21 0 53 0.589 0.675 0.491

RISMA 2 2019–20 TB
H

min TSoil 5 cm 104 30 102 30 0 2 0.985 0.990 0.019

RISMA 2 2019–20 NPR TSoil 5 cm 104 30 56 30 0 48 0.642 0.700 0.462

RISMA 1 2020–21 TB
H

min TSoil 5 cm 99 31 99 7 24 0 0.815 0.892 0.000

RISMA 1 2020–21 NPR TSoil 5 cm 99 31 72 19 12 27 0.700 0.787 0.318

RISMA 2 2020–21 TB
H

min TSoil 5 cm 99 33 99 6 27 0 0.795 0.880 0.000

RISMA 2 2020–21 NPR TSoil 5 cm 99 33 59 18 15 40 0.583 0.682 0.507

KSMN 1 2015–16 TB
H

min TAir 1 m 91 38 91 3 35 0 0.729 0.839 0.000

KSMN 1 2015–16 TB
H

min TSoil 2.5 cm 87 36 69 36 0 18 0.854 0.885 0.207

KSMN 1 2015–16 TB
H

min TSoil 5 cm 84 39 78 39 0 6 0.951 0.963 0.071

KSMN 1 2015–16 NPR TAir 1 m 91 38 40 36 2 51 0.589 0.602 0.588

KSMN 1 2015–16 NPR TSoil 2.5 cm 87 36 42 36 0 45 0.634 0.651 0.517

KSMN 1 2015–16 NPR TSoil 5 cm 84 39 42 39 0 42 0.659 0.667 0.500

KSMN 2 2015–16 TB
H

min TSoil 5 cm 84 37 74 37 0 10 0.917 0.937 0.119

KSMN 2 2015–16 NPR TSoil 5 cm 84 37 51 37 0 33 0.727 0.756 0.393

KSMN 3 2015–16 TB
H

min TAir 1 m 99 32 99 10 22 0 0.832 0.900 0.000

KSMN 3 2015–16 TB
H

min TSoil 2.5 cm 94 35 89 35 0 5 0.961 0.973 0.053

KSMN 3 2015–16 TB
H

min TSoil 5 cm 88 37 74 37 0 14 0.888 0.914 0.159

KSMN 3 2015–16 NPR TAir 1 m 99 32 45 31 1 54 0.580 0.621 0.558

KSMN 3 2015–16 NPR TSoil 2.5 cm 94 35 46 35 0 48 0.628 0.657 0.511

Continued on next page
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Table A1 (continued).

Network Pixel Year Predictor Reference P N True pos. True neg. False pos. False neg. Accuracy F1-score LR−

KSMN 3 2015–16 NPR TSoil 5 cm 88 37 46 37 0 42 0.664 0.687 0.477

KSMN 4 2015–16 TB
H

min TSoil 5 cm 88 35 76 35 0 12 0.902 0.927 0.136

KSMN 4 2015–16 NPR TSoil 5 cm 88 35 56 35 0 32 0.740 0.778 0.364

KSMN 1 2016–17 TB
H

min TAir 1 m 86 27 86 13 14 0 0.876 0.925 0.000

KSMN 1 2016–17 TB
H

min TSoil 2.5 cm 86 26 86 18 8 0 0.929 0.956 0.000

KSMN 1 2016–17 TB
H

min TSoil 5 cm 89 39 77 39 0 12 0.906 0.928 0.135

KSMN 1 2016–17 NPR TAir 1 m 86 27 19 27 0 67 0.407 0.362 0.779

KSMN 1 2016–17 NPR TSoil 2.5 cm 86 26 19 26 0 67 0.402 0.362 0.779

KSMN 1 2016–17 NPR TSoil 5 cm 89 39 19 37 2 70 0.438 0.345 0.869

KSMN 2 2016–17 TB
H

min TSoil 5 cm 89 41 80 41 0 9 0.931 0.947 0.101

KSMN 2 2016–17 NPR TSoil 5 cm 89 41 27 39 2 62 0.508 0.458 0.748

KSMN 3 2016–17 TB
H

min TAir 1 m 96 32 96 19 13 0 0.898 0.937 0.000

KSMN 3 2016–17 TB
H

min TSoil 2.5 cm 87 38 87 29 9 0 0.928 0.951 0.000

KSMN 3 2016–17 TB
H

min TSoil 5 cm 88 39 72 39 0 16 0.874 0.900 0.182

KSMN 3 2016–17 NPR TAir 1 m 96 32 31 32 0 65 0.492 0.488 0.677

KSMN 3 2016–17 NPR TSoil 2.5 cm 87 38 29 36 2 58 0.520 0.492 0.713

KSMN 3 2016–17 NPR TSoil 5 cm 88 39 29 37 2 59 0.520 0.487 0.717

KSMN 4 2016–17 TB
H

min TSoil 5 cm 86 43 70 43 0 16 0.876 0.897 0.186

KSMN 4 2016–17 NPR TSoil 5 cm 86 43 27 41 2 59 0.527 0.470 0.737

KSMN 1 2017–18 TB
H

min TAir 1 m 109 25 109 1 24 0 0.821 0.901 0.000

KSMN 1 2017–18 TB
H

min TSoil 2.5 cm 101 29 101 14 15 0 0.885 0.931 0.000

KSMN 1 2017–18 TB
H

min TSoil 5 cm 100 26 100 20 6 0 0.952 0.971 0.000

KSMN 1 2017–18 NPR TAir 1 m 109 25 68 23 2 41 0.679 0.760 0.387

KSMN 1 2017–18 NPR TSoil 2.5 cm 101 29 67 26 3 34 0.715 0.784 0.352

KSMN 1 2017–18 NPR TSoil 5 cm 100 26 68 24 2 32 0.730 0.800 0.329

KSMN 2 2017–18 TB
H

min TSoil 5 cm 101 28 101 25 3 0 0.977 0.985 0.000

KSMN 2 2017–18 NPR TSoil 5 cm 101 28 51 26 2 50 0.597 0.662 0.514

KSMN 3 2017–18 TB
H

min TAir 1 m 109 25 109 3 22 0 0.836 0.908 0.000

KSMN 3 2017–18 TB
H

min TSoil 2.5 cm 106 24 106 13 11 0 0.915 0.951 0.000

KSMN 3 2017–18 TB
H

min TSoil 5 cm 104 22 104 21 1 0 0.992 0.995 0.000

KSMN 3 2017–18 NPR TAir 1 m 109 25 84 22 3 25 0.791 0.857 0.238

KSMN 3 2017–18 NPR TSoil 2.5 cm 106 24 86 24 0 20 0.846 0.896 0.189

KSMN 3 2017–18 NPR TSoil 5 cm 104 22 85 21 1 19 0.841 0.895 0.185

KSMN 4 2017–18 TB
H

min TSoil 5 cm 102 26 102 25 1 0 0.992 0.995 0.000

KSMN 4 2017–18 NPR TSoil 5 cm 102 26 60 23 3 42 0.648 0.727 0.432

Notes. NPR = normalized polarization ratio; TB
H

min = threshold at the minimum horizontally polarized brightness temperature. Reference responses: TAir 1 m

(1 m air temperature); TSoil 5 cm (soil temperature at 5 cm depth); TSoil 2.5 cm (soil temperature at 2.5 cm depth); THPT 5 cm (HydraProbe soil temperature at
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5 cm depth); TGEOS-5 FP (GEOS-5 FP effective soil temperature ancillary). P = positives; N = negatives; LR− = negative likelihood ratio (FN rate / TN

rate).555
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