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Abstract 16 

Chemical mechanisms are one of the major sources of bias in chemical transport model 17 

simulations, making their improvement a critical step towards enhancing model performance 18 

and supporting air quality management and research. In this study, a newly developed chemical 19 

mechanism, the Community Regional Atmospheric Chemistry Multiphase Mechanism 20 

(CRACMM), integrated into the Community Multiscale Air Quality (CMAQ) modeling system, 21 

was evaluated through comparison with two traditional chemical mechanisms, CB6r3_ae7 and 22 

Saprc07tic_ae7i, for China. Sensitivity simulations related to precursor reactive organic carbon 23 

(ROC) emissions were conducted to investigate the key driving factors of PM₂.₅ formation. The 24 

results show slight differences in the correlation coefficient (R), mean bias (MB), and 25 

normalized mean bias (NMB) values for the three chemical mechanisms when using the 26 

traditional primary organic aerosol (POA) inventory. However, when using the full volatility 27 

emission inventory, CRACMM shows improvements in R, MB, and NMB values in some 28 

regions. CRACMM predicts higher PM₂.₅ concentrations during spring, summer and autumn, 29 

mainly due to enhanced secondary organic aerosol (SOA) formation driven by increased 30 

precursor emissions. Benzene–toluene–xylene (BTX) species and semi-volatile organic 31 

compound (SVOC) emissions significantly contributed to PM2.5 formation in CRACMM. The 32 

SOA from BTX emissions accounts for nearly 50% of the PM2.5 changes, while intermediate-33 
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volatility organic compounds (IVOC) and SVOCs emissions mainly affect PM2.5 34 

concentrations through SOA formation. These results indicate that CRACMM, when using the 35 

full volatile inventory, can effectively compensate for the underestimation of PM2.5 mass that 36 

may occur with traditional POA treatment, particularly in regions with high photochemical 37 

activity and abundant S/IVOC precursors. 38 

1. Introduction 39 

Exposure to airborne PM2.5 is associated with a variety of harmful health effects (2011; Liu et 40 

al., 2024; Kim et al., 2015) and was reported to cause 4.14 million deaths worldwide annually 41 

(95% confidence interval: 3.45 to 4.80) (Murray et al., 2020). Thus, a better understanding of 42 

the PM2.5 formation mechanism is essential for formulating effective air pollution control 43 

strategies.  44 

The Chemical Transport Models (CTMs) serve as valuable tools for identifying factors 45 

contributing to PM2.5 formation. They can reproduce a series of physical and chemical processes 46 

that atmospheric pollutants undergo after being emitted into the atmosphere, driven by emission 47 

inventory data and meteorological fields. Gas-phase chemical reaction mechanisms are an 48 

essential part of the CTMs. Condensed mechanisms such as the Carbon-Bond (CB) mechanism 49 

(Yarwood et al., 2005; Yarwood et al., 2010) and the Statewide Air Pollution Research Center 50 

(SAPRC) mechanism (Carter, 2010, 1999; Carter, 2000) are widely used in CTMs. In these 51 

mechanisms, various volatile organic compounds (VOCs) are lumped into functional groups.  52 

The CB chemical mechanism has evolved since the 1970s, with CB7 being one of the most 53 

recent versions. The carbon bonds are treated as a reaction unit, grouped by their bonding state, 54 

without explicitly marking their location within the molecule. Aerosol Module 7 (aero7) is the 55 

latest aerosol representation within the CMAQ model, developed by the U.S. Environmental 56 

Protection Agency (EPA). Aero7 improves consistency in representing SOA formation 57 

pathways between the CB- and SAPRC-based chemical mechanisms. It also updates 58 

monoterpene SOA yields from photooxidation, adds uptake of water onto hydrophilic organics, 59 

and includes consumption of inorganic sulfates (SO₄²⁻) when isoprene epoxydiol (IEPOX) 60 

organosulfates are formed (Pye et al., 2013). Furthermore, it enhances computational efficiency 61 

by using a volatility basis set (VBS) to parameterize SOA yields rather than using the Odum 2-62 

product fit (Zhang et al., 2021).  63 
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The SAPRC mechanism was first developed in the 1980s at the University of California, 64 

Riverside. Saprc07tic is one of the most widely used versions (Xie et al., 2013), which 65 

introduces refinements for isoprene chemistry. It is commonly used in regulatory and research 66 

applications requiring a detailed representation of VOCs. Saprc07tic is a detailed, explicit 67 

chemical mechanism that represents the atmospheric oxidation of a large number of VOCs, 68 

providing a more nuanced representation of ozone formation and SOA production. Aero7 and 69 

Aero7i modules contain the same major pathways to SOA, but AERO7i provides more 70 

diagnostic information in terms of IEPOX SOA identification (Pye et al., 2017; Pye et al., 2013), 71 

as well as some additional high-NOx formation pathways to SOA (Pye et al., 2015).  72 

CRACMM (Pye et al., 2023) is a state-of-the-art atmospheric chemistry mechanism and was 73 

introduced with the release of CMAQ version 5.4 in October 2022 by the U.S. EPA. CRACMM 74 

integrates gas-phase and particle-phase reactions, offering a wide-ranging representation of 75 

atmospheric processes and enhanced capabilities for simulating multiphase chemistry in 76 

regional air quality modeling. This approach helps models to more closely replicate 77 

photochemical processes that occur in the atmosphere. CRACMM builds upon the well-78 

established Regional Atmospheric Chemistry Mechanism, version 2 (RACM2) framework 79 

(Goliff et al., 2013) and incorporates enhanced representations of various organic compounds, 80 

particularly monoterpenes and aromatics. Furthermore, CRACMM includes a built-in, 81 

transparent mapping of emissions to mechanism species, ensuring conservation of emitted 82 

carbon while tracking its transformation in products. CB6r3_ae7 and Saprc07tic_ae7i typically 83 

exclude organic species with saturation concentrations (𝐶𝑖∗) in the low-volatility organic 84 

compound (LVOC, 0.3 < 𝐶𝑖∗ µg m-3), SVOC (0.3 ≤ 𝐶𝑖∗< 300 µg m-3) and IVOC (300 ≤ 𝐶𝑖∗< 3  85 

106 µg m-3) ranges, which act as potential precursors to SOA formation (Chang et al., 2022). 86 

SOA precursors beyond traditional, non-oxygenated volatile hydrocarbons such as S/IVOCs, 87 

phenolic compounds, furans, and other oxygenated organic compounds are considered in 88 

CRACMM (Pye et al., 2023). 89 

Some previous studies have compared the model performance using various mechanisms in 90 

CTMs. Luecken et al. (2019) compared CB6r3, CB5TU, and CB5 performances, and found 91 

that CB6r3 performed best in simulating the vertical distribution of peroxyacyl nitrates. 92 

Derwent et al. (2017) found that the condensed mechanisms (including CB6r3) and Master 93 
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Chemical Mechanism version 3.3.1 (MCMv3.3.1) have large differences in predicted hydroxyl 94 

radical (HO·) concentrations and their responses to NOx and VOC reductions. For the SAPRC 95 

mechanism, Kang et al., (2022) evaluated a highly condensed SAPRC chemical mechanism 96 

and found that Saprc07 predicts slightly lower O3 concentrations than the standard fix-97 

parameter version of the Saprc11. CRACMM predictions were compared with RACM2 and 98 

CB6r3 over the northeastern US during summer. The results showed that CRACMM tends to 99 

predict more O3 than CB6r3 but less than RACM2 (Place et al., 2023). However, the PM2.5 100 

predictions by the newly developed CRACMM mechanism and their sensitivities to precursors 101 

have not yet been investigated. In this study, PM2.5 predictions from the CRACMM mechanism 102 

were evaluated with surface observations comprehensively, covering different seasons and 103 

regions. Results derived by CRACMM are compared with two well-established chemical 104 

mechanisms, Saprc07tic_ae7i and CB6r3_ae7. The differences in PM2.5 and SOA drivers 105 

between CRACMM and the two existing mechanisms are further explored. The results of this 106 

study provide a solid foundation for the further application of CRACMM in understanding and 107 

regulating air pollution in China and globally. 108 

2. Methodology 109 

2.1 Model configuration 110 

Model simulations were conducted using CMAQ v5.4 with a horizontal resolution of 36 km × 111 

36 km, covering mainland China (Figure 1). This domain includes five key city clusters with 112 

notable air pollution levels: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl 113 

River Delta (PRD), Fen-Wei Plain (FWP), and Sichuan Basin (SCB). Simulations were carried 114 

out for the months of January, April, July, and October 2021, representing winter, spring, 115 

summer, and autumn, respectively. The model includes 34 vertical layers, with the first layer 116 

located approximately 35 meters above the ground. Each simulation was initialized with a 15-117 

day spin-up period before the start of each month. In addition to CRACMM version 1.0, two 118 

other chemical mechanisms, CB6r3_ae7 and Saprc07tic_ae7i, were included for comparisons, 119 

the number of reactions and gas- and particle-phase species in three different chemical 120 

mechanisms used in CMAQ are shown in Figure S1. All three mechanisms are available in 121 

CMAQ v5.4, with the "m3dry" deposition scheme selected. The initial and boundary conditions 122 
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for CRACMM and Saprc07tic_ae7i were mapped from the seasonal average hemispheric 123 

CMAQ output files distributed through the CMAS Data Warehouse. Meteorological input files 124 

were generated through an offline run of the Weather Research and Forecasting (WRF) model 125 

(https://www.mmm.ucar.edu/models/wrf) version 4.0 with configurations detailed in our 126 

previous studies (Huang et al., 2021a). The archived dataset, including the concentrations and 127 

model performance statistics of PM₂.₅ and its components, model configurations, and the 128 

locations of all observation sites, is available on Zenodo (Su et al., 2025). 129 

 130 

Figure 1. Model domain with five major city clusters (outlined in color), locations of national 131 

monitoring sites (grey diamonds), and six PM2.5 chemical components observation sites (red 132 

stars). 133 

2.2 Emissions  134 

2.2.1 Traditional Emissions Inventory 135 

The 2019 anthropogenic Multi-resolution Emission Inventory for China (MEIC), developed by 136 

Tsinghua University, was utilized in this study (http://www.meicmodel.org). Biogenic 137 

emissions were estimated using the Model of Emissions of Gases and Aerosols from Nature 138 

2.5

https://doi.org/10.5194/egusphere-2025-3627
Preprint. Discussion started: 1 October 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

version 3.2 (MEGANv3.2, https://bai.ess.uci.edu/megan/data-and-code/megan32) (Guenther et 139 

al., 2012). Currently, MEIC supports VOC emission only for both CB6r3_ae7 and 140 

Saprc07tic_ae7i, but not the CRACMM mechanism. Therefore, anthropogenic VOC species 141 

were converted to CRACMM input species using a binary decision tree approach. This 142 

approach distinguishes between one-to-one and non-one-to-one mappings based on chemical 143 

species correspondence from Saprc07tic_ae7i and CB6r3_ae7 to CRACMM. The one-to-one 144 

mappings are further classified into explicit one-to-one (routine A) and lumped one-to-one 145 

(routine B), while the non-one-to-one mappings include many-to-one (routine C) and many-to-146 

many (routine D) cases. In routine A, both Saprc07tic_ae7i and CB6r3_ae7 consist of a few 147 

species that can be mapped directly to CRACMM based on CAS number, e.g., HCHO 148 

(formaldehyde) is mapped to HCHO. In routine B, the mapping is based on lumped species 149 

categories or names. For example, OLE1 (alkenes other than ethene, with kOH < 7 104 ppm-1 150 

min-1) in Saprc07tic_ae7i is mapped to OLI (internal alkenes) in CRACMM, OLE2 (alkenes 151 

with kOH > 7 104 ppm-1 min-1) is mapped to OLT (terminal alkenes), and ONIT is mapped to 152 

RNO3 based on the same name used for organic nitrates. 153 

In routine C, new species could be added to the CRACMM mechanism, such as CSL (Cresols) 154 

and PHEN (Phenol and aromatic diols), which correspond to CRES (phenols and cresols) in 155 

the Saprc07tic_ae7i mechanism. In this case, we use the emission factor ratio to distribute the 156 

species. As MEIC does not provide species-level emission factors, data from the 2017 U.S. 157 

National Emission Inventory (NEI) (Pye et al., 2023) were utilized, which contain over 3,000 158 

species with corresponding emission factors, source sectors, and CRACMM species mappings. 159 

The emission factors are averaged over all sources for different MEIC sectors (mobile sources, 160 

industrial sources, etc.). Another example is that both XYE (P-xylene and less reactive 161 

aromatics) and XYM (M-xylene and more reactive aromatics) are newly introduced species in 162 

the CRACMM mechanism, corresponding to XYL (Xylene and other aromatics) in the 163 

Saprc07tic_ae7i mechanism. According to the 2017 NEI, their ratio is 0.3:0.7. Therefore, 0.3 164 

of XYL in Saprc07tic_ae7i is assigned to XYE in CRACMM, and 0.7 of XYL in 165 

Saprc07tic_ae7i is assigned to XYM in CRACMM.  166 

Routine D is more complicated, but the mapping is still based on the emission factor ratio for 167 

proper mapping. For instance, in CRACMM, GLY represents both glyoxal and glycolaldehyde. 168 
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To construct this species from Saprc07tic_ae7i, GLY (representing glyoxal only) and part of 169 

CCHO (glycolaldehyde and acetaldehyde) are mapped, such that GLY in CRACMM 170 

corresponds to GLY + CCHO × 0.25 in Saprc07tic_ae7i. Similarly, ACD (acetaldehyde) in 171 

CRACMM corresponds to CCHO  0.75 in Saprc07tic_ae7i. For species lumped from multiple 172 

species, only those with larger emission factors are considered. Table S1 outlines the 173 

correspondence relationships for major species with substantial emissions. Since it is 174 

challenging to compare VOC emissions in different mechanisms due to the lumping rules, we 175 

only conducted an overall comparison of total emissions, as shown in Table S2.  176 

2.2.2 POA Emissions 177 

Two POA inventories were employed in this study: a traditional POA emissions inventory and 178 

a full volatility inventory. CRACMM, Saprc07tic_ae7i, and CB6r3_ae7 all use the same dataset 179 

for the traditional POA emissions inventory. This inventory applies a VBS profile based on 180 

Woody et al. (2016) and Robinson et al. (2007), treating POA as semi-volatile with 𝐶𝑖∗ values 181 

ranging from 10⁻² to 10³ μg/m³. The detailed species of POA included in each mechanism are 182 

listed in Table S3.  183 

In contrast, the full volatility inventory distributes POA emissions across a wider range of 184 

volatility bins. Laboratory experiments have demonstrated that L/S/IVOC emissions, which are 185 

largely absent in the traditional POA inventory, contribute to SOA formation much more 186 

efficiently than VOCs, owing to their lower volatility. To capture these processes, the full 187 

volatile inventory developed by Chang et al. (2022) was used, with species mapped from the 188 

two-dimensional VBS (2D-VBS) mechanism to CRACMM based on their 𝐶𝑖∗ and O:C values. 189 

Since neither Saprc07tic_ae7i nor CB6r3_ae7 includes a representation of full volatile POA, 190 

only CRACMM can utilize this comprehensive inventory. The methodology outlined by Chang 191 

et al. (2022) includes emissions from various sources, along with their corresponding profiles, 192 

volatility ranges, and emission amounts. For traditional POA inventory, the POA emission 193 

amount was 2840 kt/y, while the new full volatile emission inventory includes emissions of 194 

LVOC (1,342 kt/y), SVOC (1,169 kt/y), and IVOC (3,939 kt/y), resulting in a total of 6,450 195 

kt/y. The new inventory fills a gap of 3,610 kt/y in L/S/IVOC emissions that were absent from 196 

the traditional inventory. To thoroughly evaluate CRACMM and compare it with CB6r3_ae7 197 

and Saprc07tic_ae7i, four simulation scenarios were designed, as shown in Table 1. 198 
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Additionally, the empirical representation of anthropogenic SOA source (pcSOA) (Murphy et 199 

al., 2017) was turned off in CB6r3_ae7 and Saprc07tic_ae7i, as pcSOA is deprecated in 200 

CRACMM.  201 

Table 1. Description of simulation scenarios and their emissions 202 

Scenarios  Mechanisms POA emission inventory Anthropogenic + 

Biogenic emission 

inventory 

 

1 CB6r3_ae7 Traditional POA inventory MEIC+MEGAN  

2 Saprc07tic_ae7i Traditional POA inventory MEIC+MEGAN  

3 CRACMM Traditional POA inventory MEIC+MEGAN  

4 CRACMM Full volatile inventory MEIC+MEGAN  

2.3 Observational data and model performance evaluation 203 

Hourly concentrations of PM2.5 at national monitoring stations were obtained from the China 204 

National Environmental Monitoring Centre (http://air.cnemc.cn:18007), which were then used 205 

to evaluate model performance. Field observational data of PM2.5 chemical components 206 

including NO3
- (nitrate), SO4

2-, NH4
+ (ammonium), OC (organic carbon), and EC (elemental 207 

carbon) at six super monitoring station sites were collected, as detailed in Figure 1 and Table 208 

S4. Missing observation periods were excluded from the analysis. Model performance was 209 

assessed using well-established statistical metrics, including the R, MB, NMB, root mean 210 

square error (RMSE), normalized mean error (NME), and index of agreement (IOA). The 211 

equations for calculating these metrics can be found in our previous study (Wang et al., 2024; 212 

Huang et al., 2021a). 213 

3. Results and discussion 214 

3.1 Overview of CMAQ-CRACMM model performance evaluation on PM2.5 215 

Figure 2 depicts the spatial distribution of observed (dots) and simulated PM2.5 concentrations 216 

for January, April, July, and October 2021, based on the CRACMM model with the full volatile 217 

inventory. In January (Figure 2a), PM2.5 concentrations range from 5 to over 100 μg/m³, with 218 

the highest values concentrated in the North China Plain (NCP) and parts of the SCB. These 219 

elevated levels are primarily driven by relatively higher anthropogenic emissions and stagnant 220 

https://doi.org/10.5194/egusphere-2025-3627
Preprint. Discussion started: 1 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

meteorological conditions typical of winter. In April (Figure 2b), concentrations have 221 

significantly decreased, ranging from 5 to 40 μg/m³, with the most notable reductions observed 222 

in northern regions. During July (Figure 2c), PM2.5 concentrations were at their lowest, typically 223 

ranging from 0 to 40 μg/m³. This decline is mainly attributable to the increased precipitation 224 

and the associated washout of pollutants. In addition, higher planetary boundary layer (PBL) 225 

heights during the warm season, coupled with enhanced atmospheric mixing and dilution, 226 

further contributed to the decrease in PM2.5 concentrations. In October (Figure 2d), PM2.5 227 

concentrations rise again, ranging from 5 to 60 μg/m³, with the highest concentrations observed 228 

in the NCP and along the eastern coastal regions, which is attributed to the heating in later 229 

autumn and unfavorable meteorological conditions. Overall, monthly variations in PM2.5 230 

concentrations are primarily driven by meteorological conditions and the distribution of 231 

emission sources.  232 

 233 

Figure 2. Monthly average PM2.5 concentrations predicted (raster) by CRACMM and observed 234 

(dots) in 2021 using the full volatility emission inventory. 235 

The performance of the CMAQ model in simulating hourly PM2.5 concentrations was evaluated 236 

by comparing the model outputs with observations from national monitoring sites. In January, 237 

CRACMM exhibited generally high R values in Northern China, indicating strong agreement 238 
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between observed and simulated PM2.5 levels. In contrast, lower R values were observed in 239 

southern regions. The model demonstrated a negative bias across most areas (Figure 4a), 240 

suggesting a general underestimation of PM2.5 concentrations, except in the YRD and SCB 241 

regions, where positive biases are observed at many sites. This discrepancy is likely due, in part, 242 

to the frequent dust storm events in January of that year. Although both observations and model 243 

outputs from the major dust episodes on January 13–14 were excluded to minimize their 244 

influence on the monthly evaluation, the missing of dust emissions, the complex meteorological 245 

conditions associated with persistent northern dust layers may have contributed to an 246 

underestimation of PM2.5 concentrations by up to 30 µg/m³ in northern regions. Nevertheless, 247 

the model still achieves high R values in the BTH, YRD, and FWP regions. 248 

Results for April (Figures 3b and 4b) show generally strong correlations in the eastern regions, 249 

while several monitoring sites in the south exhibit lower R values. Compared to January, the 250 

MB is less pronounced. April also experiences dust storm events. In July, R values decline 251 

across all regions relative to January and April, and most stations exhibit relatively small MB 252 

values (Figures 3c and 4c). The strong influence of temperature and solar radiation on 253 

photochemical processes during summer may result in more pronounced diurnal variations in 254 

chemical composition, making the simulation of chemical processes more challenging. 255 

Moreover, the chemical mechanisms may inadequately capture non-linear interactions and the 256 

influence of SOA, further reducing the correlation. Additionally, synoptic-scale variations can 257 

also affect the spatial distribution and concentration of key atmospheric species. R values are 258 

improved in October (Figures 3d and 4d), with 90% of the sites achieving R values of 0.8 and 259 

the MB is around 10 µg/m³ with higher evaluation in SCB and BTH regions. Overall, 260 

wintertime observed peaks generally underestimated and lower summertime observed values 261 

generally captured. The model demonstrates strong performance in January and October, 262 

characterized by higher correlations and smaller biases. However, it had weaker performance 263 

in April and July with lower correlations. 264 

 265 
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 266 

Figure 3. R values between predicted and observed PM2.5 concentrations using CRACMM with 267 

the full volatile emission inventory for January, April, July, and October of 2021. 268 

Figures S2 and S3 compare the R and MB values between CRACMM (with the full-volatile 269 

inventory) and CB6r3_ae7 (with the traditional inventory). In January, CRACMM 270 

demonstrates notable improvements in R values at several sites in the PRD and YRD regions, 271 

with increases ranging from 0.2 to 0.4 (Figure S2a), while changes at most other sites remain 272 

relatively minor. Regarding MB, the most pronounced differences also occur in January: some 273 

locations in the BTH and YRD regions show higher MB values—up to 10 µg/m³—with 274 

CRACMM, whereas other regions display reduced MB values (Figure S3a). In April (Figures 275 

S2b and S3b), CRACMM achieves higher R values at certain sites in the YRD, while slightly 276 

lower correlations are observed in the PRD compared to CB6r3_ae7. MB values remain 277 

elevated in the SCB and parts of the YRD region for CRACMM. For July (Figures S2c and 278 

S3c), R values from CRACMM are generally comparable to those from CB6r3_ae7. However, 279 

MB values tend to decrease across most regions, indicating a potential improvement in bias 280 

(a) Jan. (b) Apr.

(d) Oct.(c) Jul.
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performance during summer. In October, CRACMM shows moderate increases in R values—281 

by approximately 0.1 at most sites (Figure S2d). MB values are lower in the PRD region but 282 

higher in the FWP region compared to CB6r3_ae7 (Figure S3d). 283 

In evaluating the CMAQ model’s performance for hourly PM2.5 concentrations, CRACMM 284 

generally shows good correlations with observed data in January and October. However, 285 

discrepancies arise in April and July, likely due to complex meteorological and chemical 286 

conditions such as dust storms and increased photochemical activity. The model tends to 287 

underestimate peak PM2.5 concentrations during winter but captures lower summer 288 

concentrations more accurately. Comparisons between CRACMM (with the full-volatile 289 

inventory) and CB6r3_ae7 (using the traditional inventory) highlight improvements in R values 290 

in the PRD and parts of the YRD regions in January for CRACMM, although performance 291 

declines in July. 292 

 293 

Figure 4. The MB values between predicted and observed PM2.5 concentrations using 294 

CRACMM with full volatile inventory for January, April, July, and October of 2021. 295 

(a) Jan. (b) Apr.

(d ) Oct.(c) Jul.
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PM2.5 components in six selected cities using CRACMM with the full volatile inventory were 296 

evaluated. The data of certain cities have been used in previous studies(Wang et al., 2024). 297 

Details for the selected cities are provided in Table S4, Tables S5-S8 present the statistical 298 

performance of PM2.5 components—including NO₃⁻, SO₄²⁻, NH₄⁺, OC, and EC—across four 299 

months. Figures S7-S10 demonstrate that CRACMM effectively captured the overall peaks and 300 

troughs of observed PM2.5 concentrations in January. The model also successfully simulated the 301 

heavy pollution period from January 20th to 25th in Taiyuan, with results similar to our previous 302 

study (Wang et al., 2024). The three ions were well simulated in both Changzhou and Pudong 303 

in the YRD region, particularly in Changzhou, where the overall trends of OC and EC showed 304 

strong consistency with observations. However, for EC in Pudong, the model struggled to 305 

capture the hourly peak values accurately. 306 

Table 2．Monthly averaged metrics of PM2.5 evaluation and the number of monitoring sites. 307 

Months R IOA NMB NME No. 

January 0.46 0.61 -18.58% 43.23% 1388 

April 0.41 0.52 -29.07% 47.39% 1402 

July 0.36 0.49 -32.39% 42.59% 1309 

October 0.68 0.72 -11.48% 44.95 1358 

Recommend 

 benchmark 
>0.60 >0.70 <±45% <±55% / 

As shown in Table 2, based on observations from over 1,300 monitoring sites across China for 308 

CRACMM, the correlation metrics (R and IOA) met the recommended benchmark (Huang et 309 

al., 2021b) in October, while they fell short of the benchmark in January, April, and July. In 310 

contrast, the bias metrics (NMB and NME) satisfied the recommended benchmark across all 311 

four representative months, indicating that the model performed well in controlling overall bias. 312 

The evaluation metrics for different regions and months are provided in Tables S9–S12. 313 

The heatmaps in Figure S4 illustrate the variations in R values across the five key regions—314 

YRD, SCB, PRD, FWP, and BTH—for the three chemical mechanisms over four representative 315 

months (January, April, July, and October). Corresponding heatmaps for MB and NMB are 316 

presented in Figures S5 and S6, respectively.  317 

In the YRD region, all mechanisms show relatively stable R values across the four months 318 

(Figure S4). The CRACMM simulation using the traditional inventory consistently results in 319 

lower MB (Figure S5) and NMB (Figure S6) values compared to CB6r3_ae7 and 320 
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Saprc07tic_ae7i throughout the year. When the full volatile inventory is incorporated, MB 321 

improves in April and July but worsens in January and October. Similarly, NMB values indicate 322 

higher modeled concentrations in all four months with the full volatile inventory compared to 323 

the traditional one. This trend is consistent with Figures S5, and 5, where the YRD region shows 324 

higher modeled concentrations from CRACMM using the full volatile inventory than from both 325 

CB6r3_ae7 and Saprc07tic_ae7i across all months. 326 

In the SCB region, R values remain relatively consistent across the three mechanisms (Figure 327 

S4a–c). A slight improvement is observed in July, where R increases from 0.22 with the 328 

traditional inventory to 0.27 with the full volatile inventory (Figure S4d). However, in October, 329 

R decreases from 0.62 to 0.56 after switching to the full volatile inventory. The increase in R 330 

value in July suggests that the traditional inventory may underestimate key precursors (e.g., 331 

S/IVOCs), while the full-volatility inventory better captures these species active at higher 332 

temperatures, improving model–observation agreement. In contrast, the October decrease in R 333 

may reflect uncertainties in representing some gas- or particle-phase organics under cooler 334 

conditions. Regarding MB, CRACMM generally shows reduced values in most months when 335 

using the traditional inventory, except for April. With the full volatile inventory, MB decreases 336 

further in October, while slight increases are observed in the other months. The trends in NMB 337 

follow a similar pattern to those in MB. It could be due to overestimation of certain 338 

intermediate- or low-volatility species under specific conditions. 339 

In the PRD region, CRACMM exhibits notable performance improvements in January. As 340 

shown in Figures S4a–c, the R value increases from 0.20 with CB6r3_ae7 and Saprc07tic_ae7i 341 

to 0.35 when using CRACMM with the traditional POA inventory. When the full volatile 342 

inventory is applied (Figure S4d), the R value further increases to 0.50. Concurrently, the MB 343 

improves significantly, decreasing from –19.6 µg/m³ to –11.8 µg/m³, and the NMB is reduced 344 

from –43% to –26%. These results indicate that CRACMM, particularly with the full volatile 345 

inventory, achieves both higher correlation and lower bias for PM2.5 simulations in the PRD 346 

region during January. Under the traditional POA inventory, CRACMM tends to underestimate 347 

PM2.5 concentrations in PRD during January (Figure S3a). However, after switching to the full 348 

volatile inventory, simulated concentrations exceed those predicted by CB6r3_ae7 (Figure 5a), 349 

primarily due to increased contributions from SOA (Figure 8b). In comparison, during April 350 
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and July, the CRACMM simulations using the traditional emissions inventory showed lower R 351 

values than those of CB6r3_ae7 and Saprc07tic_ae7i, and the correlation further declined when 352 

using the full-volatility emissions inventory. Although CRACMM features a more 353 

comprehensive design for gas-phase oxidation mechanisms, the intense photochemical activity 354 

in July and the rapid oxidation of high concentrations of IVOC precursors may have introduced 355 

more complex SOA formation pathways and product distributions, thereby increasing modeling 356 

uncertainties and weakening the agreement with observations. By October, model performance 357 

had improved. Across all months, CRACMM combined with the full-volatility emissions 358 

inventory consistently outperformed the other mechanisms in terms of MB and NMB, 359 

highlighting the critical role of this inventory in addressing the underestimation of PM₂.₅ 360 

associated with traditional POA treatment. 361 

In the FWP region, both the R (Figure S4a–c) and MB (Figure S5a–c) values show minimal 362 

variation across the three mechanisms, indicating limited sensitivity to the chemical mechanism 363 

alone. However, notable changes in MB and NMB are observed with the incorporation of the 364 

full volatile inventory in April, July and October, which align with the higher PM2.5 365 

concentrations shown in Figure 5, compared to CB6r3_ae7. In April and July, MB values shift 366 

from -12.7 µg/m³ and -5.6 µg/m³ to -2.4 µg/m³ and 1.2 µg/m³, respectively, with NMB showing 367 

a similar trend. These changes suggest an improvement in model agreement when the full 368 

volatile inventory is employed. In contrast, both MB and NMB increase in October, indicating 369 

that the full volatile inventory leads to higher simulated concentrations during this month. 370 

In the BTH region, The R (Figure S4a–c) and MB (Figure S5a–c) values remain largely 371 

consistent across the three mechanisms. CRACMM with the traditional POA inventory shows 372 

a decrease in R values from 0.44 to 0.38 compared to CB6r3_ae7 in July. After incorporating 373 

the full volatile inventory, the R in BTH experiences a more significant drop, falling to 0.24. 374 

Notably, MB and NMB indicate that the modeled results are lower for CRACMM with the 375 

traditional POA inventory in January, while they are higher in the other months. Additionally, 376 

BTH exhibited the highest IVOC emissions in the inventory (Chang et al., 2022), and 377 

uncertainties in emission estimates may have further contributed to this result. 378 

Overall, the differences in R and MB values across the three chemical mechanisms are 379 

relatively small when the traditional POA inventory is used. However, for CRACMM, the MB 380 
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in January indicates a stronger underestimation, primarily due to differences in POA (as shown 381 

in Figure 8a), leading to lower modeled concentrations compared to CB6r3_ae7 and 382 

Saprc07tic_ae7i. With the incorporation of the full volatile inventory, the MB shifts toward 383 

higher modeled concentrations in the subsequent three months. Notably, more pronounced 384 

differences are observed in January in the PRD region and in July in the BTH region. 385 

3.2 Comparisons of model predicted PM2.5 between CRACMM and other mechanisms 386 

Figures 5 and 6 illustrate the differences in model outputs between CRACMM with full volatile 387 

inventory and CB6r3_ae7, as well as between CRACMM and Saprc07tic_ae7i. In January, 388 

CRACMM predicts lower PM2.5 concentrations across central and northern China compared to 389 

both CB6r3_ae7 (Figure 5a) and Saprc07tic_ae7i (Figure 6a), with the differences—up to 10 390 

µg/m³—observed in central and north of China. While CRACMM simulates higher PM₂.₅ 391 

concentrations in the PRD and YRD regions. For the remaining months—April, July, and 392 

October—CRACMM with full volatile inventory generally predicts higher PM₂.₅ levels than 393 

the other two mechanisms (Figures 5b–d, Figures 6b–d). When CRACMM and CB6r3_ae7 are 394 

configured with the traditional POA inventory, as shown in Figure S11, the differences of PM2.5 395 

concentrations are reduced in April, July, and October compared with full volatile POA 396 

inventory. But CRACMM still predicts lower PM₂.₅ levels than CB6r3_ae7 in January. A likely 397 

explanation is that the lower photochemical activity leads to reduced SOA formation, as the 398 

enhanced SOA pathways are less active during the winter months.  399 
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 400 

Figure 5. Differences in model-predicted PM2.5 concentrations between CRACMM（ full 401 

volatile inventory) and CB6r3_ae7. 402 

 403 

Figure 6. Differences in model-predicted PM2.5 concentrations between CRACMM（ full 404 

volatile inventory) and Saprc07tic_ae7i. 405 
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3.3 Comparisons of model predicted PM2.5 chemical components between CRACMM 406 

and other mechanisms 407 

Analysis of Figures 5, 6, and S11 indicates that the most significant differences among the 408 

model simulations occur in January and October, whereas the discrepancies between chemical 409 

mechanisms are substantially smaller in April and July—likely due to the overall lower 410 

pollutant concentrations during these months, which may reduce the sensitivity to mechanistic 411 

differences. Consequently, the subsequent analysis focuses on a detailed comparison of PM2.5 412 

component variations between CRACMM and CB6r3_ae7 for January and October. 413 

3.3.1 Inorganic aerosol 414 

SO₄²⁻, NO₃⁻, and NH₄⁺ are the dominant secondary inorganic components in PM2.5. Nitrogen 415 

dioxide (NO₂) and sulfur dioxide (SO₂) can fully dissolve into cloud water or aerosol liquid 416 

phases and subsequently oxidize to form nitrate and sulfate. Ammonium salts are produced 417 

through the neutralization reactions of these acidic species with atmospheric ammonia (NH₃). 418 

EC primarily originates from the incomplete combustion of carbonaceous fuels, especially 419 

under oxygen-limited conditions. It is commonly emitted from sources such as vehicle exhaust, 420 

industrial combustion, and biomass burning. From a chemical mechanism perspective, 421 

CRACMM retains the inorganic chemistry framework of RACM2 but incorporates updated 422 

rate constants for several reactions. Specifically, the rate expressions for 26 inorganic reactions 423 

were revised in CRACMM compared to RACM2 (Pye et al., 2023). Overall, differences in 424 

inorganic component predictions among CRACMM, CB6r3_ae7, and Saprc07tic_ae7i are 425 

relatively minor. As shown in Figure 7, predicted concentrations of major inorganic species in 426 

January and October are comparable between CRACMM and CB6r3_ae7, with differences 427 

ranging from −1 to 1 µg/m³ for EC and SO₄²⁻, and −5 to 5 µg/m³ for NH₄⁺ and NO₃⁻. These 428 

results suggest that the variation in simulated inorganic aerosol concentrations is only 429 

marginally affected by differences in the inorganic chemistry schemes. 430 
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 431 

Figure 7. Differences in model-predicted PM2.5 components—(a)EC, (b)SO4
2-, (c)NH4

+, 432 

(d)NO3
- for January, and (e)EC, (f)SO4

2-, (g)NH4
+, (h)NO3

- for October—between CRACMM 433 

(with full volatile inventory) and CB6r3_ae7. Figures (a–d) share the same scale, as do figures 434 

(e–h). 435 

3.3.2 Organic aerosol 436 

In January, CB6r3_ae7 consistently predicts higher POA concentrations than CRACMM under 437 

both the traditional and full-volatile inventory configurations, with the most pronounced 438 

differences occurring in east China (Figure 8a and Figure S12a). In CRACMM, POA aging is 439 

represented using a modified 2D-VBS framework (Murphy et al., 2017), where 𝐶𝑖∗ range from 440 

10⁻² to 10³ µg/m³. A significant portion of the alkane-like L/SVOC mass contributing to ambient 441 

OA comes from the direct emissions of low-volatility species (e.g., AROCN2ALK, 442 

AROCN1ALK, AROCP0ALK, AROCP1ALK, AROCP2ALK, AROCP3ALK) and their 443 

oxidation products (e.g., ROCN2OXY2, ROCP0OXY2, ROCP1OXY1, ROCP2OXY2, 444 

ROCP3OXY2). By contrast, CB6r3_ae7 adopts a semi-volatile POA approach in which 445 

primary emissions (e.g., LVPO1, SVPO1–3, IVPO1) and their oxidation products (e.g., 446 

(LVOO1, LVOO2, SVOO1, SVOO2, SVOO3) partition between gas and particle phases across 447 

a 𝐶𝑖
∗ range of 10⁻¹ to 10³ µg/m³. This framework aligns with the 1.5D-VBS scheme proposed 448 

by Koo et al. (2014). Details of the POA species and their properties are provided in Table S3. 449 

The most significant differences in simulated POA concentrations occur in January, likely due 450 

to enhanced partitioning of SVOC to the particle phase under low wintertime temperatures. 451 

Additionally, differences in multigenerational oxidation aging and volatility treatment between 452 
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the two mechanisms contribute to the simulation discrepancies. In October, although POA 453 

concentrations in CRACMM remain lower than in CB6r3_ae7, the difference is less 454 

pronounced compared to January for both POA inventory (Figures 8e and S12e). 455 

To better understand the drivers of SOA formation in the two mechanisms, we analyzed the 456 

spatial distribution of SOA concentrations under both traditional and full-volatile POA 457 

inventories. In January, CRACMM predicts higher SOA levels in the BTH and parts of the SCB 458 

regions compared to CB6r3_ae7 when using the traditional POA inventory (Figure S12b). 459 

Under the full-volatile inventory, CRACMM also shows increased SOA concentrations in the 460 

YRD and PRD regions (Figure 8b). These increases correspond with high IVOC emissions in 461 

BTH and YRD, consistent with the spatial patterns reported by Chang et al.  (2022), although 462 

their data reflect monthly averages across January and July. The SOA enhancement in YRD and 463 

PRD under the full-volatile inventory highlights the critical role of IVOC emissions in these 464 

areas. In CB6r3_ae7, SOA is primarily formed from the oxidation of traditional VOC sources, 465 

such as isoprene, monoterpenes, sesquiterpenes, benzene, toluene, xylene, alkanes, and PAHs 466 

(Carlton et al., 2010; Pye and Pouliot, 2012). 467 

In contrast, CRACMM incorporates additional SOA precursor systems, including phenol and 468 

aromatic diols, pinon aldehyde, oxygenated IVOCs, furanone, and other compounds. As a result, 469 

in regions with elevated anthropogenic emissions, CRACMM generally simulates higher SOA 470 

concentrations. However, in the SCB region, SOA levels remain lower, possibly due to the 471 

reduced reactivity of these new precursors under the lower ambient temperatures typical of this 472 

region. In terms of overall OA concentrations, CRACMM generally predicts lower values than 473 

CB6r3_ae7 across most regions, except for some part of YRD region (Figure 8c and Figure 474 

S12c). The spatial distribution of OC is similar to that of OA, with CRACMM also showing 475 

lower concentrations than CB6r3_ae7 (Figure 8d and Figure S12d). 476 

In October (Figures 8f–h and S12f–h), SOA remains the dominant contributor to the differences 477 

in PM2.5 concentrations. Under the full-volatile inventory, CRACMM predicts significantly 478 

higher SOA concentrations compared to CB6r3_ae7 (Figure 8f), resulting in elevated OA levels 479 

(Figure 8g). The spatial pattern of OC concentrations (Figure 8h) closely resembles that of OA. 480 

When the traditional POA inventory is applied, the differences in SOA, OC, and OA 481 

concentrations between the two mechanisms are minimal (Figures S12f–h). The most 482 
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pronounced increases with the full-volatile inventory are observed in the YRD, PRD, and SCB 483 

regions, attributable to the inclusion of a more comprehensive set of SOA precursors. 484 

 485 

Figure 8. Differences in model-predicted PM2.5 components—(a) POA, (b) SOA, (c) OA, and 486 

(d) OC for January, and (e) POA, (f) SOA, (g) OA, and (h) OC for October—between 487 

CRACMM (with full volatile inventory) and CB6r3_ae7. Figures (a–d) share the same scale, 488 

as do figures (e–h). 489 

Overall, in January, the primary differences between CRACMM and CB6r3_ae7 stem from 490 

lower POA concentrations in CRACMM, primarily due to semi-volatile partitioning and 491 

reduced aging of semi-volatile POA species at lower temperatures. SOA concentrations are 492 

elevated in eastern China but reduced over the SCB, reflecting both the slower oxidation of 493 

additional SOA precursors under winter conditions in the SCB and the greater availability of 494 

these precursors in the eastern region. In October, the key differences in model predictions are 495 

primarily driven by the POA inventory used. The full-volatility inventory yields higher SOA 496 

concentrations than the traditional inventory, largely due to the inclusion of L/S/IVOCs, which 497 

are efficient SOA precursors. 498 

3.4 Sensitivity study on PM2.5 and SOA responses to changes of precursors 499 

In this section, CMAQ simulations with emission perturbations are conducted to identify the 500 

key drivers of PM2.5 formation in January, when PM2.5 concentrations are notably high. A series 501 

of emission sensitivity simulations were performed within CMAQ to assess the role of 502 

precursor ROC systems in PM2.5 formation using CRACMM with the full volatile inventory 503 

across China. These sensitivity simulations involved running zeroed emission scenarios for 504 
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January (i.e., setting emissions of a specific chemical class or sector to zero) to examine how 505 

PM2.5 concentrations respond to changes in emissions. A subset of these sensitivity simulations 506 

was also conducted using the CB6r3_ae7 and Saprc07tic_ae7i mechanisms. A detailed list of 507 

all the zeroed emission simulations is provided in Tables 3 and S13. Due to the non-linear nature 508 

of PM2.5 production in response to ROC perturbations, these simulations offer an initial 509 

evaluation of how PM2.5 formation responds to reduced ROC emissions, providing valuable 510 

insights into how chemical systems behave under varying emission conditions in the three 511 

mechanisms. 512 

Table 3. List of emission reductions relative to the base simulations in CMAQ-CRACMM. 513 

Chemical Mechanism Emission Reduction 

CRACMM Benzene, toluene and xylene-like emissions set to zero 

CRACMM Biogenic-ROC emissions set to zero 

CRACMM IVOC emissions set to zero 

CRACMM SVOC emissions set to zero 

CRACMM HC10 zero out (decane and species of similar reactivity) 

Figure 9 shows domain-wide differences in average PM2.5 concentrations between the base 514 

CRACMM simulation and a series of zeroed emission simulations. A similar spatial pattern in 515 

PM2.5 response was observed for zeroed biogenic and HC10 emissions (Figures S13a, c in 516 

percentage and Figures 9a, c in concentration), with CRACMM predicting a modest 1% change 517 

in PM2.5 and less than 3 µg/m³ in many parts of China. This can be attributed to the low SOA 518 

yield by mass (0.09 g/g) for HC10 compounds (Pye et al., 2023), and the generally low winter 519 

emissions of biogenic ROC, as shown in previous studies (Pye et al., 2023). Zeroing BTX 520 

emissions resulted in average PM2.5 concentration changes of -20% to 0% (Figure S13b) and -521 

10 to 0 µg/m³ (Figure 9b), particularly in the YRD and BTH regions, where BTX emissions are 522 

highest. The high PM2.5 formation potential of BTX compounds is attributed to their overall 523 

emission abundance and high SOA yield by mass (~0.5 g/g). Moreover, ozone levels in urban 524 

areas with significant BTX emissions also decrease in the BTX zero-out scenario (Figure S14). 525 

This effect is particularly evident in the PRD region, where the reduction reaches up to 10 µg/m³. 526 

This aligns with the findings of Place et al. (2023). One factor is the removal of BTX emissions, 527 

which serve as precursors for SOA formation. The second factor is that zeroing BTX emissions 528 

leads to a decrease in O₃, which weakens atmospheric oxidizing capacity and reduces SOA 529 
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formation. However, it is important to note that Place’s study was conducted in summer. 530 

 531 

Figure 9. Changes in PM2.5 concentrations between each zero-out scenario and its 532 

corresponding base simulation: (a) biogenic ROC emission, (b) BTX emission, (c) HC10 533 

emission, (d) SVOC emission, and (e) IVOC emission with CRACMM. 534 

 535 

Figure 10. Changes in SOA concentrations between each zero-out scenario and its 536 

corresponding base simulation: (a) BTX emissions, (b) SVOC emissions, (c) IVOC emissions 537 

with CRACMM, (d) BTX emissions with CB6r3_ae7, (e) zeroed BTX emissions with 538 

Saprc07tic_ae6. 539 

As shown in Figures 10a, d, and e, the impact of zeroing BTX species on SOA formation for 540 

the three mechanisms accounts for only approximately 50% of the total PM2.5 change observed 541 
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in Figures 9b, S16a and c. This suggests that the changes in PM2.5 concentrations resulting from 542 

the removal of BTX emissions are not solely due to SOA formation but may also involve other 543 

pathways or chemical processes. In contrast, the influence of S/IVOC species on PM₂.₅ 544 

concentrations in the CRACMM mechanism is primarily driven by SOA formation. This 545 

conclusion is supported by the spatial distribution and concentration differences shown in 546 

Figures 9d, e, and Figures 10b, c, which exhibit nearly identical patterns. These similarities 547 

indicate that the effects of S/IVOC emissions on PM2.5 are mainly driven by SOA production. 548 

The largest PM2.5 response was observed when emissions from SVOC sources were excluded 549 

from the simulation (Figure S13d), primarily because SVOCs have the highest yield, exceeding 550 

1.0 g/g. The percentage changes in PM2.5 range from −40% to 0%, with a concentration 551 

reduction of more than −10 µg/m³ (Figure 9d), particularly in the YRD region, where SVOC 552 

emissions are substantial. For IVOCs, the reduction is about −5% across much of China, except 553 

in the western regions where IVOC emissions are very low (Figure S13e), resulting in a 554 

reduction of less than −5 µg/m³ (Figure 9e). 555 

A similar ΔPM₂.₅ response in percentage (Figure S15) and concentration change (Figure S16) 556 

was observed when biogenic and BTX emissions were zeroed in simulations using 557 

CB6r3_ae7_ae7 and Saprc07tic_ae7i. However, the CRACMM simulation with zeroed 558 

biogenic emissions (Figure 9a) showed a more pronounced and widespread decrease in PM2.5 559 

compared to both CB6r3_ae7_ae7 and Saprc07tic_ae7i. This difference can be attributed to the 560 

inclusion of new S/IVOC species in MEGAN, which are not accounted for in the other two 561 

mechanisms. Additionally, zeroing BTX emissions had a greater impact in CB6r3_ae7, 562 

particularly in central China, compared to Saprc07tic_ae7i and CRACMM. A possible reason 563 

for this is that CRACMM reduces the number of lumped species in BTX and enhances the 564 

representation of aromatic IVOC species, such as single-ring aromatics log₁₀(𝐶𝑖∗) ≈5 565 

(ROCP5ARO) and log₁₀(𝐶𝑖∗) ≈6 (ROCP6ARO). These species are included in CB6r3_ae7 566 

under categories like m-xylene and other more reactive aromatics (XYM), as well as less 567 

reactive aromatics (XYE). As a result, CRACMM incorporates fewer species in BTX emissions 568 

compared to CB6r3_ae7. 569 

3.5 Uncertainty Analysis and limitations 570 

3.5.1 Limitations of VOC Speciation Mapping 571 
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In the speciation mapping process, explicit species were directly mapped across the CRACMM, 572 

CB6r3_ae7, and Saprc07tic_ae7i mechanisms, as these species are explicitly represented and 573 

therefore allow for one-to-one mapping. Consequently, their spatial distributions were assumed 574 

to be identical across the three mechanisms, and uncertainties associated with their emission 575 

estimates were considered negligible. In contrast, lumped species present greater complexity 576 

due to differences in the VOC species included within each lumped mechanism species. Given 577 

that a direct one-to-one mapping between lumped species is not feasible, the mapping was 578 

performed by matching the dominant lumped VOC species across mechanisms based on their 579 

relative emission magnitudes. Overall, CRACMM incorporates a more comprehensive set of 580 

VOC species than either CB6r3_ae7 or Saprc07tic_ae7i. The total mapped emissions associated 581 

with each mechanism-specific inventory are summarized in Table S2. Nevertheless, 582 

uncertainties remain due to regional differences in emission profiles. In particular, the total 583 

emissions and source sector distributions of VOC species in Chinese emission inventories may 584 

differ from those represented in the NEI. Such discrepancies introduce additional uncertainty 585 

into the speciation mapping process. 586 

3.5.2 Uncertainty in Mapping L/S/IVOC Emissions 587 

For L/S/IVOCs, the 2D-VBS framework was applied to aggregate predicted products into a 588 

reduced set of 15 representative CRACMM mechanism species. These representative species 589 

span a wide range of saturation concentrations (𝐶𝑖*) from 10-2 to 10⁶ µg m-3 and O:C ratios (n𝑂: 590 

n𝐶) from 0.1 to 0.8. The original 2D-VBS inventory is structured along a two-dimensional grid 591 

defined by log₁₀(𝐶𝑖*) and O:C ratio. During the mapping process to CRACMM, if a species in 592 

the 2D-VBS inventory could not be directly assigned to a CRACMM species, it was reassigned 593 

to the most proximate species in log₁₀(𝐶𝑖*) and/or O:C ratio. This reassignment process, while 594 

necessary, inevitably introduces additional uncertainty. The L/S/IVOC emission inventory used 595 

in this study is based on the work of Chang et al (Chang et al., 2022). For uncertainties 596 

associated with this inventory, readers are referred to the analysis by Chang et al., which 597 

discusses uncertainties related to emission factors, species classification, and spatial 598 

distribution. 599 

4. Conclusions 600 
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This study introduces the newly mapped VOC and POA inventories (both traditional and full 601 

volatile) for CRACMM and presents the first comprehensive evaluation of PM2.5 predictions 602 

using the newly developed CRACMM chemical mechanism. The performance of CRACMM 603 

with CB6r3_ae7, and Saprc07tic_ae7i are compared, and results demonstrate that CMAQ with 604 

CRACMM provides reliable predictions of PM2.5 and its components across China during the 605 

months of January, April, July, and October 2021, although there are discrepancies in some 606 

complex regions. 607 

In conclusion, the comparison of the three chemical mechanisms using the traditional POA 608 

inventory reveals that differences in R and MB values are generally small. However, with the 609 

replacement of the full volatile inventory, CRACMM tends to predict lower PM2.5 610 

concentrations in January across most regions of China except PRD and YRD. In the other 611 

months, CRACMM predicts higher concentrations than CB6r3_ae7 and Saprc07tic_ae7i when 612 

the full volatile inventory is incorporated. The differences in PM2.5 concentrations in January, 613 

are primarily attributed to lower POA concentrations, which are influenced by semi-volatile 614 

partitioning and reduced aging of semi-volatile POA species under lower temperatures. In 615 

contrast, CRACMM simulates elevated SOA concentrations in eastern China due to enhanced 616 

precursor availability, while reduced SOA formation is observed in the SCB, where winter 617 

conditions slow the oxidation of precursors. The inclusion of the full volatile inventory in 618 

CRACMM results in higher SOA concentrations in October, driven by increased precursor 619 

availability. Overall, CRACMM demonstrates improved performance in terms of R and MB, 620 

particularly in January and October for the PRD region, but performs less well in April and 621 

July, particularly in the BTH region, compared to CB6r3_ae7. Additionally, CRACMM with 622 

the full volatile inventory increase in simulated PM2.5 concentrations, resulting in smaller 623 

deviations from observation across many regions, highlighting the importance of including 624 

S/IVOC emissions in the chemical mechanism. Emission perturbation simulations using 625 

CMAQ further emphasize the significant role of various emission species, particularly BTX 626 

and SVOC, in driving PM2.5 formation. The SOA contribution from BTX emissions accounts 627 

for nearly 50% of the PM2.5 changes, while S/IVOC emissions primarily influence PM2.5 628 

through SOA formation. BTX emissions had a more significant impact in CB6r3_ae7, 629 

particularly in central China, partly due to the fewer VOC species included in the lumped BTX 630 
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of the CRACMM mechanism. Future assessments of O₃ predictions with CRACMM will offer 631 

additional constraints on the gas and aerosol chemistry that contributes to PM2.5 formation. 632 

Data availability. The model simulation is based on the CMAQ v5.4 developed by the U.S. 633 
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