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Summary

This study develops a machine-learning based approach to detect MCSs trained on a referenced
dataset produced by a traditional Tb threshold-based method. The authors compared their results
against other generic ML-based methods to show their algorithm performs better than generic
ML methods, and it performs substantially faster than the traditional methods. Some
climatological comparisons of MCS statistics were also performed against the reference dataset
over the U.S. and Asia to show agreements.

I think it is a worthwhile effort to explore ML techniques as an alternative to traditional
physically-based methods to identify MCSs. One obvious advantage is the computational
efficiency of ML-based methods, as the study demonstrates. Unsupervised ML-based methods
trained on existing reliable MCS datasets that can reproduce salient features of the physically-
based MCS tracking algorithms offers the community new tools to study MCSs. To that end, I
support such efforts to be pursued and published.

However, there are several major issues in the current study that prevents me from
recommending publication at the current stage:

e The traditional Tb-only MCS identification method used as reference in this study has
been shown to overestimate MCSs in the mid-latitude because large cold clouds can
be produced by different weather systems other than MCSs (e.g., extratropical
cyclones, fronts), particularly during the cold and transition seasons. Recent studies
have addressed some of those biases by incorporating precipitation data along with
Tb to reduce false MCS identification in the mid-latitudes (Feng et al. 2021; Prein et
al. 2024). The authors have cited some of these studies, but did not pursue such more
advanced methodology to produce reference/training datasets for their ML approach.

e There are several global MCS tracking datasets available (Feng et al. 2021; Prein et
al. 2023; Rajagopal et al. 2023), some used both Tb and precipitation data to detect
MCSs (Feng et al. 2021; Prein et al. 2023). The authors should compare their results
directly with these established datasets to quantify the performance of the ML
approach. In addition, recent studies have compared multiple MCS tracking
algorithms and documented their impacts on MCS statistics (Prein et al. 2024; Feng et
al. 2025). These studies should be referenced and discussed in the context of the
choice of the reference dataset used.

e One of the overlooked aspects of MCS identification in this study is the temporal
dimension. Besides identifying a cloud system with low Tb and large area,
physically-based MCS algorithms also require persistence of the cloud systems
meeting the size (area) and intensity (Tb) criteria (i.e., systems must maintain the size
and intensity for longer than several hours). Further, traditional tracking algorithms



connect the individual cloud systems in time to obtain lifecycle information for each
system, thus providing information of their initiation location, timing, growth rates,
movement and trajectories. These aspects are critically important to understanding the
mechanisms of MCS development (e.g., Roca et al. 2017; Elsaesser et al. 2022; Chen
et al. 2023; Barton et al. 2025), and is also used to perform process evaluations of
MCSs in numerical models (e.g., Zhang et al. 2021; Dong et al. 2023, 2025; Feng et
al. 2023; Prein et al. 2024; Cui et al. 2024). Based on what was presented, it does not
look like the ML method provide such temporal evolution of individual systems,
which is a severe drawback compared to traditional methods. The authors should
discuss this limitation, explain why it is not considered, and whether it would be
pursued in future works.

e Because the ML method also did not train on a dataset that already include temporal
information of MCSs, the identification purely based on snapshots may differ
substantially from established tracking datasets. I strongly recommend the authors
compare their ML-based MCS dataset with one of those established datasets
mentioned above. In fact, one of the coauthors have developed long-term global MCS
tracking dataset before (Huang et al. 2018), why is that not used for the training?

In addition, the motivation of developing an ML-based method could be further strengthened.
Currently, the only argument why an ML method is superior is computational performance.
However, majority of the applications for MCS tracking algorithms are in research, where high
computational efficiency is welcomed but not a deal breaker. The authors argue their approach
could be used in real-time monitoring of MCSs, but it is not clear to me what actual advantage
would such an algorithm provide in operational forecasting. I do see a potential application to
research though, because virtually all existing MCS algorithms require reasonably high temporal
resolution to track MCSs (i.e., no less than 3 hourly), this often hinders applying these traditional
tracking algorithms to model outputs that do not provide sufficient temporal resolution data, e.g.,
HighResMIP (Haarsma et al. 2016). If an ML-based method trained on tracked MCS data can
accurately identify MCSs based only on snapshots, that will allow it to be applied to datasets
with insufficient temporal outputs and yet still reliably identify MCSs, hence achieving a goal
that traditional methods cannot.

Additional comments

1. Section 3.1, Dataset details: the authors did not mention the time resolution of the ISCCP
dataset and also did not provide which version of the IMERG data was used. They also
did not mention how the IMERG dataset was matched with the ISCCP data since they
have different spatiotemporal resolutions.

2. Evaluation issues:

a. Itisunclear why only specific years/periods were selected to validate the
performance in different regions: U.S. (Mar-Aug 2021), Asia (all seasons in
2018), global (all seasons in 2021). Why not consistently evaluate the climatology
of all years used in the study (2011-2023) for more robust statistics?

b. Fig. 6: the global scale is too small to see details of individual MCSs, only the
largest (coldest) clouds are visible.



c. Fig. 7: How is the number of MCSs calculated? Given that no tracking in time is
performed. How is individual MCS objects per time step aggregated to number of
systems? Also, the exact months should be listed in the caption as “warm season”
is ambiguous.

d. Fig. 8: larger different in the cold season over Tibetan Plateau may be related to
non-MCSs misidentified based on Tb-only. There are some ring-like artifacts not
mentioned (seem to have boundary ~90°E), is that related to stitching artifacts of
Tb between two geostationary satellites in the ISCCP data?

e. Fig. 9: why only validate for 1 year when the study include data from 2011-2023?
The global results should be directly compared with established MCS datasets as I
mentioned in my major comments. There are also large discontinuities of MCS
numbers at ~30°W and ~90°E that were not discussed.
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