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Abstract

Historical snow mass estimates are key to understanding snowmelt-driven streamflow and climate change impacts on snow

water resources. However, snow mass observations are scarce, and SWE reconstructions rely largely on snow models forced

with meteorological inputs. Ground-based and satellite observations are often used to constrain the typically high uncertainty

of modeled snow mass reconstructions, but their constraining potential is limited in data-scarce regions and prior to the onset5

of satellite monitoring. Here, we suggest using streamflow information as an additional information source to better reconstruct

snow mass. We introduce an inverse hydrological modeling framework that selects realistic snow mass realizations based on

the accuracy of their streamflow response. Before real-world application, we test the framework in two synthetic experiments.

Our results demonstrate that streamflow has the potential to constrain snow mass reconstructions, but that non-uniqueness in

the snow-streamflow relationship and uncertainties in the inverse modelling chain can easily stand in the way. We also show10

that streamflow is most helpful in estimating catchment-aggregated properties of snow mass reconstructions, in particular

catchment-aggregated melt rates. Future work should assess the potential of streamflow-constrained snow mass reconstruction

under real-world conditions and investigate the added value of streamflow when combined with other snow data sources.

1 Introduction

Seasonal snow is essential to hydrology, ecology, tourism, and hydropower in mountainous regions (Beniston et al., 2018). A15

key variable in understanding snow dynamics is snow water equivalent (SWE), which represents the amount of water stored

in the snowpack. Historical SWE estimates are important to understand how snow accumulation and melt have responded to

climate change over the past decades (Gottlieb and Mankin, 2024), and to assess the role of changing snowpack dynamics in

altering streamflow timing, volume, and drought risk (Berghuijs et al., 2014; Gordon et al., 2022; Brunner et al., 2023; Han

et al., 2024; Hou et al., 2025). However, direct observations of SWE from ground stations are often limited due to sparse20
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station networks and the high logistical and physical cost of manual snow surveys (Haberkorn et al., 2019). In addition, spatial

patterns of snowfall and snowmelt are highly heterogeneous (Grünewald et al., 2010; Mooney and Webb, 2025), making it

difficult to generalize available observations. Passive microwave measurements from space provide large-scale SWE estimates,

but at a resolution insufficient for mountainous areas (Luojus et al., 2021). Measurements of other snow properties are more

widespread, such as snow covered area (SCA) (Gascoin et al., 2019) and wet snow maps (Cluzet et al., 2024) from satellites,25

and snow depth (SD) from both satellites (Lievens et al., 2021; Besso et al., 2024) and ground measurements (Fontrodona-Bach

et al., 2023), but their relationship to SWE is indirect; SCA and wet snow measurements provide only binary information on

the presence or the wetness of snow, while SD must be converted to SWE using snow density estimates, which are highly

variable in space and time as well (López-Moreno et al., 2013).

To understand SWE dynamics, numerous studies have performed gridded SWE reconstructions through snow modeling30

constrained by different sources of indirect SWE observations. Mudryk et al. (2024) benchmarked 23 coarse-resolution,

continental-scale SWE products, including snow model outputs—with and without assimilation of indirect snow observa-

tions—and passive microwave retrievals, some of which incorporate in-situ SD observations. While most analyzed products

performed well in capturing SWE climatology and interannual variability over low-relief regions, their performance degraded

substantially in mountainous areas. Several SWE reconstruction methods have been developed specifically for mountain areas.35

Margulis et al. (2016) and Fang et al. (2022) reconstructed gridded SWE in the Western US using a land-surface model com-

bined with remotely sensed fractional SCA maps using batch data assimilation. Fiddes et al. (2019) applied a similar approach

to Switzerland, while additionally including a grid cell clustering scheme in the land-surface model. Also in Switzerland, Mott

et al. (2023) produced gridded SWE reconstructions using two different snow models with forward data assimilation of in-

situ SD observations. Similarly, Broxton et al. (2016, 2019) combined in-situ SWE and SD observations with meteorological40

data to reconstruct SWE since 1981 in the continental United States. Avanzi et al. (2023) reconstructed SWE in Italy, using a

snow model with data assimilation of both interpolated SD and SCA maps. Finally, Premier et al. (2023) identified periods of

snow accumulation and melt by integrating in-situ SD observations, SCA maps, and snow classification maps from satellite-

based synthetic aperture radar. They then reconstructed SWE accumulation by summing degree-day melt estimates during the

identified melt phases using an empirical melt factor.45

In addition to indirect SWE observations, SWE reconstructions can be constrained by empirical knowledge on recurring

snow patterns. Numerous studies have shown that spatial snow depth distributions can be statistically linked to terrain char-

acteristics such as elevation, slope, and sky view factor (Lehning et al., 2011; Grünewald et al., 2013; Revuelto et al., 2014)

and vegetation features like canopy structure and density (Trujillo et al., 2007; Mazzotti et al., 2019; Helbig et al., 2020).

Helbig and van Herwijnen (2017) derived gridded snow depth estimates from point-scale snow depth measurements using50

terrain properties of each grid cell. Helbig et al. (2021) in turn used similar terrain properties to relate gridded snow depth to

sub-grid fractional snow cover, which is used in snow models to constrain melt rates. Similarly, Mazzotti et al. (2022) used

canopy structure parameters to improve fractional snow cover and SWE estimates in forest sites. Pflug et al. (2021) instead

leveraged interannual similarity in snow patterns to infer snow deposition patterns based on corresponding information from
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better-informed years. Finally, Michel et al. (2023) demonstrated that SWE reconstructions for poorly observed years can be55

constrained by applying bias corrections derived from well-observed years.

Nonetheless, the above sources of information are sometimes insufficient to constrain SWE reconstructions, notably before

the onset of satellite observations or in scarcely monitored regions. An additional, relatively abundant data source that can

inform the temporal and spatial SWE dynamics is streamflow. However, until now it has not been given a lot of attention in

SWE reconstructions. Streamflow represents the integrated hydrological response of a catchment, in terms of both timing and60

volume (Kirchner, 2009). As such, it ought to contain information on the snow melt dynamics and the water balance of the

entire catchment, including the higher elevations which are typically underrepresented in snow and meteorological observations

(Thornton et al., 2021). However, the SWE information in streamflow is indirect and subject to transformation: the melt signal is

delayed and smoothed by processes of water partitioning, storage and transport through the catchment, confounded by rainfall

contributions, and affected by sublimation and evaporation losses. Moreover, streamflow is a one-dimensional, catchment-65

integrated observation, while SWE is a spatially distributed state variable. These complications raise a fundamental question:

to what extent can streamflow observations constrain SWE reconstructions?

Three main approaches have been proposed to retrieve SWE information from streamflow. The first is the mass-curve tech-

nique, which estimates maximum catchment SWE directly from the maximum seasonal deficit between accumulated precip-

itation and streamflow. Schaefli (2016) showed good agreement with the SWE output of a snow model, while Horner et al.70

(2020) found that although interannual variability was well captured, absolute SWE was overestimated due to unaccounted

losses and storage assumptions. A second approach estimates SWE from the difference between total streamflow and baseflow,

as applied by Casson et al. (2018) and Whittaker and Leconte (2022) in large boreal catchments. This method assumes that all

direct runoff in spring originates from snowmelt, an assumption less valid in smaller, more complex basins, and is sensitive

to baseflow separation uncertainty. A third strategy involves inverse hydrological modeling, or "doing hydrology backwards"75

(Kirchner, 2009): Henn et al. (2015, 2018) used Bayesian inversion to infer annual catchment precipitation from streamflow

in snow-dominated Californian basins. However, they did not evaluate SWE directly and did not separate rain from snow,

limiting the applicability of the approach in mixed-phase climates. Also using inverse hydrological modeling, Ruelland (2020)

accurately derived temperature and precipitation gradients, but did not evaluate SWE directly either. All three approaches fo-

cus on seasonal, catchment-integrated SWE estimates and provide little insight into temporal or spatial snowpack dynamics.80

Moreover, they are confounded by key uncertainties—assumptions about catchment storage (Horner et al., 2020), baseflow

separation (Whittaker and Leconte, 2022), and model structure (Henn et al., 2015, 2018), leaving open the question of the

amount and nature of SWE information theoretically embedded in streamflow, and under what conditions it can be used to

constrain SWE reconstructions.

Here, we present a framework for streamflow-constrained SWE reconstruction that formulates snow inference as an inverse85

hydrological problem. Similar in concept to the inversion approach of Henn et al. (2015, 2018), our method generates a large

ensemble of spatially distributed SWE realizations, propagates them through a distributed hydrological model, and selects a

posterior ensemble based on the match between simulated and observed streamflow. To benchmark the core capabilities of

the inversion, we conduct two synthetic numerical experiments. The first is a fully synthetic experiment, where we eliminate
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all sources of uncertainty to test the theoretical constraining potential of streamflow on SWE. The second is a semi-synthetic90

experiment, where we test how much the constraining potential is reduced under meteorological forcing and snow model uncer-

tainty. In both experiments, we evaluate which SWE metrics are best constrained by the streamflow and how their identifiability

changes across spatial scales.

2 Methodology

2.1 Streamflow-constrained SWE as an inverse problem95

The constraining of SWE reconstructions through streamflow can be framed as an inverse problem, where the known output of a

system (streamflow) is used to infer an unknown internal state (SWE). Prior knowledge on snow physics, topographic controls,

and meteorological inputs reduce the solution space. Still, the inversion remains ill-posed: we aim to retrieve the space-time

evolution of gridded SWE (3-dimensional aspect) from a catchment-integrated streamflow signal (single dimension).

We denote the time series of observed streamflow with Qobs, and the spatio-temporal SWE field as HSWE . In a Bayesian100

framework, we seek the posterior distribution:

P (HSWE |Qobs)∝ P (Qobs |HSWE) ·P (HSWE). (1)

The prior distribution P (HSWE) reflects our initial uncertainty about SWE, and the likelihood P (Qobs |HSWE) quantifies

how well a given SWE realization explains the observed discharge. Since HSWE is not a free variable but the result of snow

model simulations, we rather define P (HSWE) as the result of the finite sampling of the informative prior distributions of105

parameters θ as follows:

H
(i)
SWE = fsnow(M ;θ(i)

meteo,θ
(i)
snow), with θ

(i)
meteo ∼ P (θM ), θ(i)

snow ∼ P (θsnow), (2)

where M is the meteorological forcing (precipitation and temperature), θmeteo are meteorological parameters (e.g., precip-

itation scaling, lapse rates, phase partitioning), and θsnow are snow model parameters controlling melt rates and snowpack

dynamics. Repeating this for i = 1, . . . ,Nprior yields an ensemble that approximates the prior distribution P (HSWE).110

To be able to compute the likelihood, the resulting SWE and the meteorological forcing are passed to a runoff generation

model frunoff :

Q
(i)
sim = frunoff (H(i)

SWE ,M ;θ(i)
meteo,θ

(i)
runoff ), with θ

(i)
runoff ∼ P (θrunoff ) (3)

where Qsim is the simulated streamflow and θrunoff governs surface and subsurface runoff generation, soil storage, and

evaporation. The model thus maps each parameter set Θ = {θM ,θsnow,θrunoff} to a streamflow simulation Qsim, and the115

inverse problem becomes one of estimating the posterior distribution:

P (Θ |Qobs)∝ P (Qobs |Θ) ·P (Θ). (4)
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While it is difficult to compute this posterior distribution analytically, it can be approximated with numerical methods that

generate samples of the posterior distribution, the most popular methods in hydrology being Importance Sampling (Nott et al.,

2012) and Markov Chain Monte Carlo methods (Vrugt, 2016). These methods repeatedly sample parameter sets from their120

prior distributions, use them to run a simulation model, and evaluate their likelihood against observations. Parameters sets with

a high likelihood have more chances of being considered as samples from the posterior (e.g., Vrugt (2016)).

Both formal and informal methods exist in hydrological parameter inference literature: formal methods use a well-defined

likelihood function based on an assumed error distribution and combine this with the prior to obtain a well-defined posterior

distribution (Kavetski et al., 2006; Renard et al., 2010). Informal methods do not necessitate a formal likelihood function125

and instead obtain a heuristic approximation of the posterior distribution using performance metrics as proxies for likelihood

(Beven and Binley, 1992; Nott et al., 2012).

We opt for an informal approach where we select a fixed percentage of the best-performing members among the prior

ensemble as the heuristic posterior ensemble. This informal approach has the main advantage that the size of the posterior

ensemble remains constant across experiments, which is helpful in assessing whether the posterior ensemble indeed contains130

the most realistic SWE realizations. Section 2.2.5 presents the sampling strategy, while Sect. 2.4 introduces the posterior

ensemble selection and the performance metric used for streamflow evaluation.

Figure 1. Schematic overview of the streamflow-constrained SWE reconstruction framework and the two synthetic numerical experiments. Q

represents streamflow, θ represents the parameters to be sampled, θ∗ represents the reference parameter set, and d represents the streamflow

performance metric. Color-coding is consistent with the remainder of the study, with grey denoting the prior ensemble, green the posterior

ensemble, blue the fully synthetic experiment (FS), and orange the semi-synthetic experiment (SS). See Sect. 2.2 for a detailed explanation

of the workflow.
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2.2 Implementation

Figure 1 illustrates the streamflow-constrained SWE reconstruction framework implemented in this study. Meteorological forc-

ing M (Sect. 2.2.4) is used to drive a snow model fsnow (Sect. 2.2.1), producing gridded SWE and snowmelt estimates. These135

are combined with rainfall inputs and routed through a runoff model frunoff (Sect. 2.2.2) to generate simulated streamflow Q.

For each year, 5000 model realizations are generated by randomly sampling parameter sets from uniform prior distributions

Θ = {θmeteo,θsnow,θsoil} using Latin Hypercube Sampling (Sect. 2.2.5). The resulting prior ensemble of simulated stream-

flow Qsim is compared to observed streamflow Qobs using a performance metric d(Qsim,Qobs), and the top 1% of members

are selected as the heuristic posterior ensemble (Sect. 2.4).140

To test the methodology in a controlled environment, we evaluate it in two synthetic experiments: a fully synthetic case (FS;

Sect. 2.3), which eliminates all modeling chain uncertainty, and a semi-synthetic case (SS), which adds meteorological and

snow model structural uncertainty. The lower panel of Fig. 1 outlines the anticipated challenges for real-world applications,

where additional uncertainty sources, particularly in the runoff model and streamflow observations, further complicate the

inversion process (Sect. 4.2).145

2.2.1 Snow model

We use an enhanced temperature-index snow model that includes both air temperature and potential clear-sky radiation as

melt drivers (Hock, 1999; Argentin et al., 2025). The model is implemented within the hydrological model wflow_sbm (van

Verseveld et al., 2024). Precipitation is partitioned into rainfall and snowfall using a temperature threshold TT and a transition

range as follows:150

Psnow =





P Ta ≤ TT − 1◦C

P ·
(

(TT + 1◦C)−Ta

2◦C

)
TT − 1◦C < Ta < TT + 1◦C

0 Ta ≥ TT + 1◦C

(5)

where P is precipitation and Ta represents air temperature. Psnow is then adjusted using a spatially uniform yearly mul-

tiplicative correction factor SFCF and a linear elevation lapse rate SFCFELEV . TT is defined for each year and applied

uniformly in space and adjusted with an elevation lapse rate TTELEV . SFCF , SFCFELEV , TT , and TTELEV all belong

to meteorological parameters θmeteo used to generate the prior SWE ensemble (Eq. 2 & Table 1). Liquid precipitation is155

calculated as P −Psnow, and is corrected seperately with rainfall correction factor RFCF (Pulka et al., 2024) (Sect. 2.2.4).

Melt occurs when air temperature exceeds TT , following:

M(t) =





(m + rj ∗ Ipot)(Ta(t)−TT ) if Ta(t) > TT

0 otherwise
(6)
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where M is the melt rate (mm d−1), m is the melt factor (mm d−1 ◦C−1), rj is the radiation factor for snow or ice (mm d−1 ◦C−1 m2 W−1)

and Ipot is the potential clear-sky direct solar radiation (W m−2). We calculated Ipot for each grid cell based on the formula by160

Hock (1999) using the HydroBricks Python package (Horton and Argentin, 2024).

Meltwater is retained within the snowpack until it exceeds a calibratable water holding capacity (WHC) fraction of the total

snow mass (default: 0.1), after which drainage occurs. Liquid water may refreeze within the snowpack when Ta < TT . Snow

density evolution and rain-on-snow thermodynamics are not represented.

To represent sub-grid variability in snow depletion, we apply a fractional snow-covered area (fSCA) parameterization based165

on Essery and Pomeroy (2004) and Magnusson et al. (2014):

fSCA(t) = tanh
(

1.26 · SWESIM (t)
CV ·SWEMAX

)
(7)

where SWESIM is the simulated average SWE in the grid cell at time t, CV is the coefficient of variation, and SWEMAX is

the pre-melt seasonal maximum SWE.

To account for snow redistribution by wind and gravity, we implement a mass wasting scheme adapted from Frey and170

Holzmann (2015). Snow is redistributed to downhill cells if three precalibrated criteria are met: (i) SWE exceeds 500 mm, (ii)

wet snow to dry snow ratio does not exceed 0.001 , and (iii) slope exceeds 0.3:

MW = min
(

0.5,
slope

5.67

)
·min

(
1.0,

SWE

10000

)
·MWF ·1criteria met (8)

where MW is the mass wasting per grid cell, 1criteria met is a binary mask indicating whether the redistribution conditions are

satisfied, and MWF is a mass wasting factor with a precalibrated value of 0.5. mhock, rhock, WHC, and CV are retained as175

snow model parameters θsnow used to generate the prior SWE ensemble ( Eq. 2 and Table 1).

2.2.2 Runoff model

wflow_sbm (v0.7.1; van Verseveld et al., 2024) is an open-source, medium-complexity distributed hydrological model. While

we adapted the wflow_sbm snow model (Sect. 2.2.1), we kept the runoff model intact. Each grid cell contains a vertically

stratified soil column with up to four unsaturated layers and one saturated layer, allowing for dynamic water table movement.180

Soil hydraulic properties are inferred from global soil texture maps using pedotransfer functions (Imhoff et al., 2020).

For channel, overland, and lateral subsurface flow, the model uses the kinematic wave approach (van Verseveld et al., 2024).

wflow_sbm uses globally available soil, vegetation, and terrain datasets, which are preprocessed using HydroMT (Eilander

et al., 2023) (Table A1), and operates on a regular grid set to 1 arcsecond resolution (approximately 900 m × 700 m at 40◦

latitude). We run wflow_sbm through the eWaterCycle hydrological modeling platform (Hut et al., 2022).185

2.2.3 Test case: the Dischma catchment

The Dischma catchment (Fig. 2) in Switzerland spans 42.9 km2 with elevations ranging from 1595 to 3180 m a.s.l. (mean: 2372

m). The catchment is predominantly alpine, with minimal forest cover (∼3%) and limited glacier extent (<1%). Beside cattle

grazing, anthropogenic disturbances are negligible. Precipitation is fairly evenly distributed throughout the year, with roughly

7
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Figure 2. Digitial elevation model and delineation of the Dischma catchment, located in the eastern Swiss alps. The regular model grid has

a resolution of 1x1 arcsecond.

half falling as snow. Average annual discharge is 1240 mm/year. The catchment has featured in numerous snow hydrological190

studies (Berghuijs et al., 2025; Brauchli et al., 2017; Comola et al., 2015; Schaefli, 2016), is actively monitored by the Swiss

Federal Institute for Forest, Snow and Landscape Research (SLF; Magnusson et al., 2024), and is part of the CAMELS-CH

dataset (Höge et al., 2023).

2.2.4 Meteorological forcing

Meteorological forcing data are obtained from MeteoSwiss and consist of gridded daily temperature (TabsD) and precipitation195

(RhiresD) estimates at 2 km × 2 km spatial resolution (MeteoSwiss, Federal Office of Meteorology and Climatology (2024),

version 2.0). Both are based on station observations and use interpolation methods that account for topographic effects. The

RhiresD dataset is known to suffer from gauge undercatch inherited from the station data (Magnusson et al., 2014). For the

Dischma catchment, mean estimated precipitation across all grid cells is 1029 mm/year (1998–2022), which is in contradiction

with observed streamflow of 1229 mm/year over the same period.200

TabsD and RhiresD were downscaled to the 1 arcsecond model grid using area-weighted regridding with ESMValTool

(Eyring et al., 2020). TabsD was first adjusted to sea level using a fixed lapse rate of 6.5 ◦C km−1 before regridding, and

then reprojected back to the original terrain elevation. Potential and actual evapotranspiration were estimated using the semi-
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empirical method of de Bruin et al. (2016), which relies on shortwave radiation and near-surface air temperature. Alongside

snowfall correction factors SFCF and SFCFELEV (Sect. 2.2.1), a flat seasonal rainfall correction factor RFCF is also205

applied to the MeteoSwiss forcing to allow for seasonal rainfall bias correction (Eq. 3 & Table 1).

Table 1. Overview of meteorological and snow model parameters used in the synthetic experiments. For details on the synthetic true param-

eter values, see Sect. 2.3.

Parameter Class Description Unit Prior range Synthetic true value θ∗

SFCF θmeteo Snowfall correction factor – 0.9–1.5 1.0–1.4

SFCFELEV θmeteo Elevation scaling of snowfall – 0.7–1.3 1.0

RFCF θmeteo Rainfall correction factor – 0.7–1.3 1.0

TT θmeteo Rain–snow temperature threshold ◦C −1 to 1 0.0

TTELEV θmeteo Elevation scaling of TT – −2 to 2 0.0

MHOCK θsnow Degree-day melt factor mm ◦C−1 d−1 1–4 2.5

RHOCK θsnow Radiation multiplier mm W−1 m2 ◦C−1 d−1 0.005–0.04 0.025

WHC θsnow Snowpack water holding capacity – 0.1–0.4 0.25

CV θsnow Snow cover depletion curve shape – 0.1–0.5 0.3

2.2.5 Sampling strategy

As defined in Sect. 2.1, each parameter set Θ consists of meteorological parameters (θmeteo), snow model parameters (θsnow),

and runoff model parameters (θrunoff ) (Eq. 2 and 3). We restrict our analysis to synthetic experiments with complete knowl-

edge of the runoff model structure and parameters. Consequently, θrunoff is not subject to calibration and is fixed at default210

values as defined in the wflow_sbm documentation (Imhoff et al., 2020; van Verseveld et al., 2024) (Table B1). To generate

the prior SWE and streamflow ensemble, we thus only sample from meteorological and snow model parameters θmeteo and

θsnow (Table 1). Note that his approach is unsuitable when including θrunoff , whose values likely vary little between years. A

two-step sampling is then more suited, separating constant and annually varying parameters (Henn et al., 2015).

For each year, 5000 parameter combinations are sampled from the joint prior parameter distributions of the 9 retained215

parameters using Latin Hypercube Sampling (LHS) (McKay et al., 2000) using the SPOTPY Python package (Houska et al.,

2015). While 5000 samples do not densely populate the prior parameter space, it is considered adequate for this study, as

increasing the number of samples did not alter the results. We do not use an actual optimization algorithm or a Markov Chain

Monte Carlo sampling algorithm since the objective of our study is to explore the information content of streamflow for SWE

inference by efficiently exploring the full parameter space rather than identifying the posterior distribution.220
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2.3 Synthetic numerical experiment design

To evaluate the constraining potential of streamflow for SWE reconstruction, we perform two synthetic experiments, both use

the same prior ensemble of 5000 parameters described above.

2.3.1 Experiment 1: Fully synthetic (FS)

The first is an “inverse crime” experiment (Wirgin, 2004): we generate synthetic SWE and streamflow using the same snow and225

runoff model structures as those used for inversion, ensuring consistency between forward and inverse models. In doing so, we

aim to quantify the theoretical potential of streamflow-constrained SWE inversion by eliminating any model structural error

or observation uncertainty. The synthetic true parameters θ∗ used to generate synthetic SWE (SWEref,FS) are given in Table

1. The snowfall correction factor oscillates over all years between 1 and 1.4, with annual changes of 0.1. This mimics the full

potential extent of seasonal meteorological forcing bias. For the remaining parameters, θ∗ is set to the midpoint between the230

lower and upper prior bounds. Because LHS ensures uniform coverage of each parameter’s range, the median of the sampled

parameter set Θ will approximate θ∗. Consequently, the ensemble mean of the resulting prior SWE simulations SWEprior is

expected to roughly approximate the reference simulation SWEref,FS .

2.3.2 Experiment 2: Semi-Synthetic (SS)

The second experiment is a Semi-Synthetic experiment, where we use the OSHD temperature-index SWE reanalysis product235

(Mott et al., 2023; Mott, 2023) as the synthetic SWE reference SWEref,SS . This product combines a temperature-index snow

model with data assimilation of in-situ snow depth observations for both snowfall and SWE state correction. It is available

for all of Switzerland since 1998 at 1 km resolution. Although the underlying meteorological forcing is comparable to that

used in this study, the combination of an alternative model structure and assimilation-induced SWE corrections introduces

both snow model and meteorological deviations relative to the base snow model and forcing. This introduces artificial snow-240

related uncertainty in the inversion, thereby making it closer to real-world conditions (Fig. 1). The semi-synthetic experiment

thus allows us to examine the degradation in inversion performance when realistic discrepancies exist between the “true” and

assumed snow processes. To establish the coupling between OSHD and wflow_sbm, the OSHD output is first resampled to

the wflow_sbm grid and then inserted in the wflow_sbm model by modifying the meteorological forcing: all snowfall events

(i.e., when Tair < 0◦C) are removed, air temperature is capped at a minimum of 0◦C, and OSHD-derived snowmelt is added245

as liquid precipitation. This enables integration without altering the wflow_sbm source code. While this method introduces

some physical inconsistencies, such as the omission of refreezing in the soil, these effects are deemed negligible. The runoff

model and streamflow observations remain free of uncertainty, isolating the impact of snow-related uncertainties. RFCF is

not dictated by OSHD and is still inferred, with the true RFCF (RFCF ∗) set to 1. The rainfall correction is applied only to

the RhiresD forcing, not to the OSHD-derived snowmelt implemented as rainfall.250
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2.4 Posterior ensemble selection

We use the Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) as the streamflow performance metric to quantify

agreement between model output and observations (denoted as EQ−NSE) . An NSE of 1 indicates perfect agreement, while an

NSE of 0 implies no improvement over using the observed mean as a predictor. We calculate NSE over the snowmelt season

(March to July) to focus on snowmelt-driven discharge. Although NSE can give inflated values in catchments with strong255

seasonality, such as the Dischma (Schaefli and Gupta, 2007), our focus is on relative differences in NSE, reflecting variations

in squared error magnitudes.

We adopt a rank-based heuristic posterior selection. All prior ensemble members are evaluated against observed streamflow

using NSE, and the top 1% are selected as the posterior ensemble, yielding a posterior size of Nposterior = 50. The quality of

this posterior ensemble is then evaluated on different SWE metrics (Sect. 2.5).260

2.5 Posterior SWE evaluation

2.5.1 SWE metrics and scales

We evaluate SWE reconstructions using a set of performance metrics that target different physical properties of the seasonal

snowpack. We follow the concept of the “snow triangle” metrics from Trujillo and Molotch (2014) and Rhoades et al. (2018),

with modifications. Unlike Rhoades et al. (2018), who reduce snowfall and melt to seasonal means, we use the full daily time265

series of snowfall and melt rates to better evaluate temporal dynamics and individual events. For snow accumulation, we use

the total seasonal snow accumulation, rather than peak SWE volume, to reflect the total snow contribution to the catchment

water balance. Several timing metrics, such as date of peak SWE and melt season length, are omitted as their information is

assumed to be embedded in other metrics. Each performance metric E is computed annually at two spatial scales:

– Catchment-aggregated (AGG): EAGG metrics are calculated from the spatially averaged SWE time series across the270

catchment.

– Distributed (GRID): EGRID metrics are computed per grid cell and averaged over space.

This allows assessment of whether streamflow informs the spatial structure or only the integrated behavior of the snowpack.

Such multi-scale evaluation is enabled by full spatio-temporal availability of the reference SWE.

Each performance metric matches the nature of the evaluated variable (Table 2). For the evaluation of time series such as275

melt and snowfall, we use the NSE (Sect. 2.4) in AGG mode, and the grid-mean NSE in GRID mode. For total accumulation,

we use Absolute Percentage Error (APE) in AGG mode:

EAccumulation
AGG = APE =

∣∣∣∣
Accumulationsim−Accumulationobs

Accumulationobs,

∣∣∣∣ · 100 (9)
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and the Mean Absolute Percentage Error (MAPE) in GRID mode:

EAccumulation
GRID = MAPE =

1
n

n∑

i=1

∣∣∣∣
Accumulationsim,i−Accumulationobs,i

Accumulationobs,i,

∣∣∣∣ · 100 (10)280

where i denotes individual grid cells. For timing metrics evaluating SWE onset and melt-out dates, we use Absolute Error

(AE) in AGG mode:

E
Melt−out/Onset
AGG = AE = |Tsim−Tobs| (11)

and Mean Absolute Error (MAE) in GRID mode:

E
Melt−out/Onset
GRID = MAE =

1
n

n∑

i=1

|Tsim,i−Tobs,i| (12)285

where Tsim and Tobs are the simulated and observed event dates (in day-of-year).

Table 2. Overview of SWE performance metrics used to evaluate the streamflow-derived posterior SWE ensemble. Error types are given for

catchment-aggregated (AGG) and distributed (GRID) modes.

Metric Description Error Type (AGG/GRID)

EMelt NSE of daily snowmelt time series (−dSWE/dt) NSE / grid-mean NSE

ESnowfall NSE of daily snowfall time series (+dSWE/dt) NSE / grid-mean NSE

EOnset First day SWE exceeds 10% of seasonal max AE / MAE

EMelt−out First day SWE drops below 10% of seasonal max AE / MAE

EAccumulation Total snowfall (or melt) over season APE / MAPE

2.5.2 Posterior rank evaluation

To assess how well streamflow constrains SWE, we apply a rank-based diagnostic. All 5000 prior members are ranked on each

performance metric. We then identify the ranks of the 50 posterior ensemble members in this list and compute their median

rank, denoted Rpost,median.290

If streamflow perfectly selects the best SWE scenarios, we expect Rpost,median = 25, corresponding to the median of 50

samples (rounded down from 25.5). Conversely, if streamflow offers no useful constraint, posterior members will be randomly

distributed throughout the prior, and Rpost,median=2500, corresponding to the median rank among 5000 samples (rounded

down from 2500.5). A median rank significantly higher than 2500 would suggest streamflow-based selection degrades perfor-

mance for that metric. Note that this rank-based summary neglects the distribution shape of posterior ranks, focusing solely on295

the median.
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3 Results

3.1 Posterior parameter ensembles

Figure 3. Annual posterior parameter ensembles for the FS and SS experiments, expressed relative to the normalized prior range. θM

and θsnow represent the meteorological and snow model parameters. Medians (white squares), interquartile ranges (boxes), and outliers

(grey dots) are shown for the 50 posterior parameter values. The true parameter values used to generate the synthetic observations (θ∗) are

represented by black crosses. The color-coding is based on the annually fluctuating values of SFCF ∗ in FS.

Inferred posterior parameter ensembles Θpost do not consistently align with the true parameter values Θ∗ in the FS experi-

ment (see Fig. 3a & b). Among all parameters, SFCF shows the highest sensitivity. Its annual posterior ensembles generally300

reflect the imposed artificial bias fluctuations SFCF ∗, although they tend to exceed SFCF ∗ on average, except during years
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with the highest SFCF ∗ (2005, 2013, and 2021). SFCFELEV and WHC are often underestimated, while MHOCK , RHOCK

and CV are overestimated in most years. This suggests the occurrence of numerous posterior SWE scenarios with higher over-

all SWE (SFCF ), preferential accumulation at lower elevations (SFCFELEV ), faster overall melt (MHOCK and RHOCK),

yet slower snow cover depletion (CV ), compared to the synthetic SWE observations. The inferred posterior parameter ensem-305

bles thus show that biased SWE scenarios can lead to the best-performing streamflow simulations.

In the SS experiment, of all Θ∗ only RFCF ∗ is known, as SWEref,SS consists of an external SWE product generated

with different forcing and a different snow model (Sect. 2.3.2). Fig. 3c shows that RFCF is consistently overestimated, which

is compensated by an annual underestimation of catchment-wide SWE accumulation of 6.6± 4.4% to close the melt season

water balance (not shown). The annual posterior ensembles of SFCF vary considerably across the prior range, suggesting310

annually varying biases in the snowfall forcing and confirming the need for annual over multiannual inversion. The values of

SFCFELEV , TTELEV , MHOCK , RHOCK , and WHC are consistently on the lower edge of the prior range, while the CV

values are consistently shifted to the higher edge. This suggests preferential accumulation at lower elevations, slower melt,

and slower snow cover depletion of SWEref,SS (i.e. OSHD-TI product) compared to our prior assumptions expressed as

parameter ranges.315

3.2 Streamflow and SWE performance

The posterior parameter ensembles for the FS experiment show that we cannot recover the true parameter values from stream-

flow alone, with NSE as the streamflow performance metric (Fig. 3). To better understand this result, we analyze the model

performances associated with the best ranked parameter sets. Figure 4 shows theEQ−NSE results and posterior ensemble

member selection (Fig. 4a and 4c) and the subsequent evaluation of this selection on EAccumulation
GRID as an example SWE320

performance metric (Fig. 4b and 4d), for both FS and SS. The results for other target SWE metrics are presented in Figs.

S1-10.

The EQ−NSE results confirm strong agreement between simulated and synthetic streamflow in both experiments, with an

overall mean posterior NSE of 0.99± 0.01 for FS, and 0.94± 0.03 for SS (Fig. 4a and 4c), compared to an overall mean prior

NSE of 0.67± 0.11 for FS and 0.56± 0.16 for SS. The mean annual NSE range of the posterior ensembles equals 0.01± 0.01325

for FS and 0.03± 0.01 for SS, compared to prior ranges of 2.4± 1.2 for FS and 2.4± 1 for SS.

Figures 4b and 4d show the EAccumulation
GRID error results for each of the 5000 prior ensemble members, with the retained

posterior members (i.e. the best 1% under EQ−NSE) subset overlaid. The best-performing prior members show near-zero error

in FS for some years (2001, 2002, 2004, 2016–2022), suggesting a good approximation of the existing solution SWEref,FS . In

other years, however, the overall minimum prior error is higher (e.g. 2003). This is likely caused by both insufficient sampling330

and a high sensitivity of the highest and lowest elevation grid cells to SFCFELEV and TTELEV fluctuations, leading to high

accumulation biases. In the SS case, a perfect approximation of SWEref,SS is likely non-existent due to added meteorological

and snow model uncertainty, leading to an increase in the lowest achievable accumulation error compared to FS and resulting

in a higher overall prior error.

14

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



(c)

(a)

(d)

(b)

Figure 4. Streamflow-based posterior selection (a, c) and evaluation of the sampled parameter sets on the SWE performance metric

EAccumulation
GRID (b, d), for both FS (a, b) and SS (c, d) experiments. Grey points represent the 5000 annual prior members (above the y-

axis cutoff), while green points represent the posterior ensemble: the 50 members with the best streamflow performance.

The posterior subset is located among the better performing prior members in most years for both FS and SS, suggesting335

that streamflow provides meaningful constraint on SWE properties (in this case, EAccumulation
GRID ). At the same time, numerous

prior members outperform the posterior ensemble, which shows that high streamflow skill does not guarantee high gridded
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SWE accumulation skill (EAccumulation
GRID ). Additionally, the degree of constraint varies substantially across years, with some

years showing a narrow spread (e.g. 2013 in FS) and others showing a wide spread (e.g. 2019) among the posterior ensemble.

3.3 Posterior rank evaluation across SWE metrics340

Figure 5. Annual median SWE metric ranks of the streamflow-derived posterior ensembles, relative to all 5000 prior members. The top figure

shows the results for catchment-aggregated SWE metrics (EAGG), while the bottom shows grid-averaged metrics (EGRID), sorted based on

the FS EAGG ranks. Each point represents the annual median posterior rank between 2001–2022, with the year 2003 in thick outline as an

example. The diamonds represent the mean of all median posterior ranks, and the error bars represent the 95% confidence interval. The fully

and semi-synthetic experiments are represented in blue and orange, respectively. The definitions of the error metrics are given in Sect. 2.5.1
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To further understand the constraining power of streamflow, Figure 5 shows the annual median posterior ranks Rpost,median

across all SWE performance metrics computed for the streamflow-derived posterior ensembles, with the ranks being relative

to the prior ensemble. Results are shown separately for catchment-aggregated (EAGG) and grid-averaged (EGRID) metrics.

Each point represents a year and shows the median rank of the 50 posterior members. High ranks (i.e. low values) indicate

a strong constraint of streamflow on SWE with a perfect constraint corresponding to Rpost,median = 25 and no constraint345

corresponding to Rpost,median = 2500 (Sect. 2.5.1).

EMelt
AGG emerges as the overall highest ranking SWE performance metric in both experiments. In the FS case, Rpost,median

approaches the perfect constraint limit of 25 in most years (Rpost,median = 137±108), indicating that the same simulations that

best reproduce streamflow NSE also tend to best reproduce catchment-scale melt dynamics. In SS, EMelt
AGG remains the overall

highest-ranking AGG metric, though with considerably reduced ranks and more year-to-year variability (Rpost,median = 619±350

518). In contrast, EMelt
GRID ranks considerably lower and shows high interannual spread in both FS (Rpost,median = 807± 557)

and SS (Rpost,median = 1779± 951) (see year 2003 in Fig. 5). This suggests that streamflow can constrain the catchment-

aggregated meltwater production, but to a lesser degree its spatial origin.

ESnowfall presents somewhat different behavior. In FS, both ESnowfall
AGG and ESnowfall

GRID rank relatively high, likely because

the same parameter sets that benefit EMelt also benefit ESnowfall under unbiased forcing. In SS, the different forcing biases355

during accumulation and melt periods reduce this effect, and both ESnowfall
AGG and ESnowfall

GRID rank low. This confirms the ex-

pected difficulties of inferring snowfall dynamics from discharge data, due to the high variability of snowfall in space and time

(Mott et al., 2014).

EAccumulation
GRID ranks slightly higher than EAccumulation

AGG , both in FS and SS. In SS, EAccumulation
GRID is the highest-ranking

GRID performance metric (Rpost,median = 1444). This suggests that the spatial distribution of snow accumulation is equally360

or better constrained by streamflow than the total catchment-wide accumulation. Note, however, that a different streamflow

performance metric than NSE (e.g. seasonal streamflow bias) might favor the constraint of catchment-aggregated accumulation

more.

Among the timing metrics, the melt-out dates (EMelt−out) are relatively well constrained in both FS and SS, particularly

in AGG mode. This is consistent with their physical link to melt cessation and the end of the snow-driven streamflow season.365

Compared to EMelt−out
AGG , EMelt−out

GRID performs similarly in FS but deteriorates more substantially in SS. Conversely, SWE

onset dates (EOnset) are poorly constrained in all cases, mainly resulting from the abovementioned large variability in snowfall

dynamics.

Across all metrics, Rpost,median values are systematically higher in SS compared to FS (orange vs. blue points in Fig. 5),

with an average increase of 989 across all metrics, corresponding to 20% of Nprior. The standard deviation of Rpost,median370

values for each performance metric also increases on average by 414. This confirms that structural and input uncertainty

reduce the ability of streamflow to constrain SWE. Additionally, the increased spread in Rpost,median across different SWE

performance metrics in SS indicates that members performing well on one metric no longer consistently perform well on others.

This suggests a decoupling of performance among metrics and highlights growing trade-offs between competing aspects of
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SWE reconstruction under added uncertainty. Nonetheless, except for ESnowfall
GRID in SS, most median ranks remain above the375

no-constraint threshold, indicating some retained information.

3.4 Correlation among metrics

Figure 6. Correlations among all retained streamflow and SWE performance metrics, expressed as the median of annual Spearman rank

correlations over all 5000 yearly prior members between 2001 and 2022. The upper values in blue represent the fully synthetic experiment,

while the lower values in orange represent the semi-synthetic experiment. Black lines delineate streamflow (Q), catchment-aggregated SWE

(EAGG), and spatially distributed SWE (EGRID) performance metrics. Black squares emphasize EAGG-EGRID diagonals.

To complete the picture, we analyze the complementarity of the retained metrics (Fig. 6). The top row and left-most column

show the Spearman Rank correlation (ρ) of all SWE metrics with streamflow NSE, which is similar to Fig. 5 but instead con-

sidering the correlation among all prior members for each year. Again, EMelt
AGG appears as the SWE performance metric most380

strongly correlated with EQ−NSE (ρFS = 0.89 & ρSS = 0.63). Among the different SWE performance metrics, FS correla-

tions are generally stronger than SS, and AGG metrics correlate well with their GRID counterparts. Strong correlation of
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other SWE performance metrics with EMelt
AGG is not necessarily a guarantee of strong correlation with EQ−NSE . It is the case

for Melt-out, which mirrors the correlation of Melt with EQ−NSE across bothAGGand GRID metrics. However, this does

not hold for EMelt
GRID, which, despite a moderate correlation with EMelt

AGG (ρSS = 0.62), shows little correlation with EQ−NSE385

(ρSS = 0.22). Similarly, EAccumulation
GRID correlates only weakly with EMelt

AGG (ρSS = 0.12), yet shows a slightly stronger corre-

lation with EQ−NSE (ρSS = 0.36).

These results suggest that, in general, streamflow contains information about different SWE metrics independently. In other

words, the members with high EMelt
AGG rank might not be the same as the members with high EAccumulation

GRID rank. This supports

the use of multiple SWE metrics and highlights the risks of drawing conclusions from a single metric.390

4 Discussion

4.1 Streamflow constraining potential under idealized conditions

The FS experiment confirms that streamflow-constrained SWE inversion works in theory, but perfect constraint is only achieved

for catchment-aggregated melt (EMelt
AGG). Other SWE properties remain well-constrained, but far from perfectly constrained. For

example, EAccumulation
AGG has a mean Rpost,median of 693; far above the no-constraint benchmark (2500), but still implying an395

average of 668 (693-0.5*Nposterior) prior members that match snowfall better but streamflow worse. This demonstrates that

even under highly idealized conditions, streamflow does not consistently identify the best-performing SWE scenarios across

all performance metrics.

This finding can primarily be explained by physical non-uniqueness in the SWE-streamflow relationship (Beaton et al.,

2024): different SWE and rainfall scenarios can lead to equivalent streamflow responses. Catchment-aggregated melt (EMelt
AGG)400

being better constrained than distributed melt (EMelt
GRID) is a first indication of this, by showing that biased spatial melt distribu-

tions can lead to the accurate aggregated melt output. A second indication is given by the imperfect constraint on catchment-

aggregated accumulation (EAccumulation
AGG ): the best-performing streamflow performance can be achieved with biased (i.e., over-

or underestimated) catchment-wide SWE accumulation estimates (i.e., Rpost,median far from the perfect constraint limit). Fi-

nally, posterior parameter values of SFCF and RFCF diverge from the known truth (Fig. 3 and Sect. 3.1), confirming that405

multiple distinct SWE and rainfall combinations can yield similar streamflow responses.

A second source of uncertainty in the FS experiment is structural non-uniqueness or equifinality (Beven and Freer, 2001;

Günther et al., 2020), whereby multiple parameter sets yield similar SWE outcomes. However, since this study focuses on

SWE performance rather than parameter convergence, such equifinality is not of major concern. A third potential source is

parameter estimation uncertainty, i.e., the failure to identify optimal parameter combinations by the sampling algorithm. Yet410

this is also of minor importance, as the posterior simulations already achieve high streamflow skill, and further optimization or

a different Nposterior/Nprior ratio would not affect the SWE-streamflow relationships central to our analysis.

The semi-synthetic experiment shows that adding meteorological and snow model uncertainty significantly reduces the

ability of streamflow to constrain SWE across all performance metrics. This reduction suggests a mismatch between our

meteorological forcing and snow model versus the OSHD reference, which the current inversion framework is unable to correct.415
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Increasing model complexity, enhancing the temporal and spatial resolution of θmeteo, or drawing from a larger prior ensemble

could potentially improve inversion outcomes. However, these strategies would quickly render the inversion computationally

infeasible. Combined with the aforementioned non-uniqueness in the SWE–streamflow relationship, uncertainties throughout

the modeling chain present a major barrier to accurately identifying realistic SWE scenarios from streamflow. These added

uncertainties also introduce stronger trade-offs between SWE metrics: even when the best-performing ensemble members for420

EMelt
AGG are correctly identified, they are increasingly unlikely to also perform well on other SWE performance metrics.

4.2 Additional challenges under real-world conditions

Under real-world conditions, constraining SWE reconstructions using streamflow presents additional challenges and requires

methodological adaptations beyond the idealized setup explored in this study. These challenges include both substantially

increased uncertainty and reduced opportunities for performance evaluation (Fig. 1). One major source of uncertainty not ad-425

dressed here is runoff model uncertainty. This encompasses both uncertainty in static catchment properties—such as lithology,

pedology, and hydraulic conductivity—and uncertainty in the representation of water transport processes through the catch-

ment (Beven, 2006). Such uncertainty can introduce persistent timing biases in the translation of snowmelt into streamflow,

complicating efforts to infer SWE dynamics from streamflow observations. Henn et al. (2018) have already demonstrated that

model structural choices critically influence the success of precipitation inversion, and similar effects are expected for SWE.430

Another source of uncertainty excluded from this study is streamflow observation error. This includes uncertainty in river stage

measurements, discharge gauging procedures, rating curve estimation (Di Baldassarre and Montanari, 2009), and potentially

ice damming (Burrell et al., 2023). These errors can propagate into both event-scale misattribution of meltwater timing and

biases in the estimation of seasonal water inputs in mass-conserving models. A further category of uncertainty concerns the me-

teorological and snow model uncertainties imposed in the semi-synthetic experiment, which we deem conservative compared to435

real-world conditions. Real-world meteorological errors likely exceed the mismatch between our forcing and the OSHD forc-

ing, not least due to the addition of evaporation estimation uncertainty. Likewise, snowpack dynamics are more heterogeneous

and complex in reality than what is represented in the OSHD model, leading to additional structural snow model uncertainty.

Taken together, these additional sources of uncertainty are expected to further diminish the constraining potential of streamflow

on SWE reconstruction beyond the reduction observed here between the fully synthetic and semi-synthetic experiments.440

An additional challenge in real-world applications is the absence of true SWE observations against which to evaluate in-

version results. Unlike synthetic experiments, where the true SWE is known, real-world evaluations rely on incomplete and

uncertain observations. Ground SWE measurements offer accurate data but are sparse and represent only single points, making

comparisons with spatially averaged model outputs problematic (Horner et al., 2020; Magnusson et al., 2019). Ground snow

depth observations require conversion to SWE using snow density estimates, which are often uncertain and spatially variable445

(López-Moreno et al., 2013). Satellite-derived snow cover products provide complete spatial snow duration information, but

lack information on SWE magnitude. State-of-the-art SWE reconstructions, such as the OSHD product, offer gridded recon-

structions that can be used for benchmarking: they allow for evaluating whether streamflow can provide a similar degree of

constraint compared to ground or remote sensing observations. However, they remain model-based reconstructions themselves,
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equally suffering from multiple sources of uncertainty. Airborne Snow Observatory (ASO) data in the U.S. are likely the most450

accurate catchment-scale SWE estimates currently available (Painter et al., 2016), but they remain limited to Western-US

catchments and do not provide temporal continuity. On a related note, the lack of SWE evaluation data equally implies a

lack of training data for data-driven methods, thereby limiting the potential of machine learning methods as an alternative in

streamflow-constrained SWE reconstruction.

Taken together, these limitations imply that verifying whether SWE inversion has succeeded is inherently difficult under real-455

world conditions. A practical way forward is to continue refining idealized experiments by further adding controlled sources

of uncertainty, such as runoff model and streamflow observation errors, thereby approximating real-world complexity while

retaining the ability to assess inversion effectiveness quantitatively.

4.3 Potential inversion framework adaptations

Several elements of the inversion framework proposed here may require adaptation under real-world conditions, where un-460

certainty is higher and evaluation opportunities are more limited. One key limitation is the use of NSE as the streamflow

performance metric. NSE is sensitive to timing errors, potentially penalizing simulations that replicate melt events with slight

temporal shifts more than those that miss them entirely. This is problematic in light of our finding that streamflow has the

strongest constraint on catchment-aggregated melt, which is inherently timing-dependent. Directional optimization sampling

algorithms (as opposed to the LHS random sampling applied here) risk further exacerbating the sensitivity of NSE to timing465

errors. Alternative metrics targeting hydrological signatures, such as the coefficient of variation or the sum of streamflow over

the melt season (Schaefli, 2016), might be more robust when errors are more pronounced.

Real-world uncertainty may additionally alter which SWE properties are best constrained and should therefore be the target

of the inversion. While catchment-aggregated melt was the best-constrained SWE property in our synthetic experiments, its

sensitivity to timing errors could reduce its identifiability under real-world conditions. SWE accumulation may be less sensitive470

to timing errors, though it might be more sensitive to mass balance errors. Other SWE properties, such as snowfall rates and

SWE onset dates, showed limited constraint even under ideal conditions and are unlikely to improve with added uncertainty.

The interactions between streamflow and SWE performance metrics are also likely to affect the outcome of the inversion, in

addition to the individual choice of each metric. NSE is a residual-based streamflow performance metric, that might favor the

selection of members performing well on residual-based SWE performance metrics (such as EMelt
AGG). A bias-based streamflow475

performance metric, such as the error on the accumulated discharge over the melt season, might instead favor the selection

of members performing well on bias-based SWE performance metrics, such as EAccumulation
AGG (which ranked relatively low

under EQ−NSE). Consequently, the results presented here should be considered in light of the use of NSE as the streamflow

performance metric. A full analysis of the streamflow and SWE performance metric interactions is outside the scope of this

work, but is recommended for future research.480

Given the increased spatial and temporal variability and uncertainty in meteorological forcing under real-world conditions,

the correction factors currently applied in this study are likely too simplistic to adequately capture real-world meteorological

biases. The current application of θmeteo assumes constant biases within each season, whereas in reality, snowfall and melt-
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related biases may vary at sub-seasonal and event timescales. Furthermore, the assumed linear dependence of snowfall and melt

threshold corrections on elevation (SFCFELEV and TTELEV ) likely oversimplifies the actual non-linear lapse-rate behavior485

observed in complex terrain. While our findings suggest that temporal snowfall biases have a limited effect on streamflow

simulations, the representation of melt dynamics and SWE accumulation is more sensitive. Increasing the temporal resolution

of temperature-based parameters (TT , TT_ELEV ) and introducing greater spatial flexibility for snowfall and melt correc-

tions (SFCF , SFCFELEV , TT , and TT_ELEV ) could improve the identifiability of relevant processes from streamflow

observations. Despite the associated increase in computational cost, such refinements may enhance the potential of streamflow490

to constrain SWE properties.

Finally, the choice of snow and runoff models can be critical. Radiation-enhanced temperature-index models, such as the

snow model used here, have been shown to perform well on the catchment scale and require minimal meteorological input

(Magnusson et al., 2015). However, when more abundant meteorological data is available, the more complex energy-balance-

based models might be better suited to capture the true SWE evolution (Mott et al., 2023). In contrast, the inversion could495

benefit from decreased complexity in the runoff model. Since the primary function of the runoff model in this framework is

to translate spatial melt into streamflow, semi-distributed or lumped formulations could reduce computational costs and allow

for larger ensembles compared to the fully distributed runoff model used here. More broadly, the use of multiple snow and

runoff models within the inversion framework could enhance robustness by increasing the likelihood of capturing the true

SWE evolution and SWE–Q transformation, respectively.500

4.4 Outlook on the added value of streamflow in SWE reconstructions

We demonstrate that streamflow can constrain certain aspects of SWE reconstructions under idealized conditions, but also that

both non-uniqueness and added uncertainty significantly reduce that ability. Under real-world conditions, streamflow alone

may fail to reliably distinguish biased from unbiased SWE simulations. In the absence of reliable SWE evaluation data, the

selection of biased SWE simulations might even go undetected. This implies that streamflow may, in some cases, not provide505

added value compared to simply running a snow model with uncorrected meteorological forcing.

Several factors influence whether streamflow can provide added value in SWE reconstructions, independent of the method-

ological considerations in Sect. 4.3. First, the quality of meteorological observations is crucial. Low meteorological biases

result in low biases in SWE reconstructions, reducing the need for streamflow to constrain or bias-correct them. Secondly, the

size, shape, and climate of the target catchment play a role. Smaller, elongated catchments (e.g. the Dischma catchment of510

this study) exhibit lower non-uniqueness than large, round catchments, while snow-dominated catchments offer better identi-

fiability of snowmelt than snow-scarce catchments (Griessinger et al., 2016). Dry spring and summer climates are particularly

beneficial for streamflow-assisted SWE inversion as they limit the confounding between rainfall and snowmelt signals.

The same logic likely also applies to inter-annual variability within each catchment. In years with higher snowfall fractions

and less spring rainfall, streamflow likely has greater constraining potential on SWE reconstructions. The above factors favor515

the application of streamflow-assisted SWE inversion as far back as streamflow observations allow, as meteorological forcing

products have become less biased, and snowfall dominance has decreased with time (Han et al., 2024). They also favor its

22

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



application to meteorologically under-observed mountain regions such as the Himalayas and the Andes, where forcing products

equally tend to be more biased and SWE evaluation is scarcer (Beck et al., 2019; Thornton et al., 2021).

While streamflow alone may not fully constrain SWE reconstructions, it can serve as a valuable complement to other sources520

of snow information, such as remotely sensed snow cover (e.g., Margulis et al., 2016), wet snow maps (Cluzet et al., 2024),

ground observations (e.g., Mott et al., 2023), and spatially predictable accumulation and melt patterns governed by topography

(e.g., Pflug et al., 2021). Among these, streamflow is unique in that it captures catchment-integrated snow dynamics, most

notably the timing and total volume of snowmelt runoff. Our finding that streamflow most effectively constrains catchment-

aggregated melt supports its potential role in this context. In light of results by Rhoades et al. (2018), who showed that many525

SWE products systematically misrepresent average melt rates in mountainous terrain, streamflow is the only observational

source capable of directly constraining such errors at the catchment scale. We therefore propose that future studies investigate

the integration of streamflow with other snow data sources to constrain SWE reconstructions as much as practically possible.

4.5 Broader implications in snow hydrology

Our results have important implications beyond the scope of SWE reconstructions. Streamflow observations have been used530

as an evaluation measure of different snow routines (e.g., Griessinger et al., 2019; Valéry et al., 2014; Follum et al., 2019;

Clemenzi et al., 2023) or of snow data assimilation schemes (Roy et al., 2010; Griessinger et al., 2016; Metref et al., 2023).

While these studies mention observation uncertainties and uncertainties in the modeling chain, the inherent non-uniqueness of

the SWE–streamflow relationship is a critical limitation often unacknowledged. The results presented here demonstrate that

multiple combinations of gridded SWE distributions and snowmelt-to-rainfall ratios can produce similar streamflow outputs.535

This implies a trade-off between snow model and meteorological forcing: different snow model structures or data assimila-

tion approaches may yield comparable streamflow results under differing meteorological forcings. Consequently, when only

the snow model structure or assimilation method is varied but the meteorological input remains biased, it becomes difficult

to attribute improvements in streamflow performance to genuine advances in snow process representation. Instead, such im-

provements may simply reflect more effective compensation for input biases. This confounding effect can lead to incorrect540

conclusions about model quality or skill. Furthermore, the choice of both streamflow and SWE evaluation metrics is often

overlooked in the literature, despite their critical influence on interpreting the relationship between streamflow and snow dy-

namics, as demonstrated in this study. Notably, catchment-aggregated melt, which is the SWE component most directly linked

to streamflow, is seldom the explicit focus of SWE model inter-comparisons using streamflow as an evaluation target. We there-

fore recommend future studies using streamflow for snow model inter-comparison to take note of the effects of non-uniqueness,545

potential modeling chain uncertainties, and the choice of metrics in the interpretation of their results.

5 Conclusion

We presented a framework for streamflow-constrained SWE reconstruction at the catchment scale using inverse hydrological

modeling. We tested the methodology in two synthetic numerical experiments and across five target SWE metrics calculated
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on both catchment-aggregated and spatially distributed scales. The fully synthetic experiment showed that, even in the ab-550

sence of all modeling chain uncertainty, a range of different SWE realizations and snowmelt/rainfall combinations can lead

to equivalent and very well-performing streamflow results. The semi-synthetic experiment showed that the addition of artifi-

cial meteorological and snow model uncertainty leads to a considerable reduction in the constraining potential of streamflow

across all SWE properties. In both experiments, streamflow has the most constraining potential on catchment-aggregated melt,

although this finding is conditional to the use of NSE as the streamflow performance metric. This study showed that even555

in synthetic experiments devoid of observation and runoff model uncertainty, the relationship between streamflow and SWE

properties is complex and non-linear, and streamflow alone can only constrain SWE reconstructions to a limited degree. We

therefore expect streamflow-constrained SWE reconstructions using the presented framework to be challenging in many real-

world cases, when the issues of non-uniqueness and uncertainties across the modeling chain are further amplified. We suggest

future studies to further test streamflow-constrained SWE reconstruction under real-world conditions or heightened artificial560

uncertainty (i.e. streamflow observation errors and runoff model imperfections), across diverse catchments, using multiple

streamflow performance metrics and in combination with other indirect SWE observations. More broadly, we advise future

studies relying on streamflow for snow model inter-comparison to carefully consider the complications in the SWE-streamflow

relationship identified here.

Code and data availability. All code and supporting files used in this study are available at 10.5281/zenodo.16146617. The latest wflow_sbm565

code can be found at https://zenodo.org/records/15722493. The Python wrapper for the wflow_sbm Julia code as part of eWaterCycle can

be found at https://github.com/eWaterCycle/ewatercycle-wflowjl. The version of wflow_sbm used in this study including the snow model

adjustments can be found at https://github.com/pauwiersma/Wflow.jl.

Appendix A: HydroMT global datasets

Table A1. Global datasets used to setup wflow through the HydroMT package

Dataset Function Reference

Chelsa Precipitation climatology Karger et al. (2017)

Köppen-Geiger Climate classification Kottek et al. (2006)

MERIT DEM (90m) Topography Yamazaki et al. (2017)

MERIT Hydro Hydrography Yamazaki et al. (2019)

MODIS LAI Leaf Area Index Myeni et al. (2015)

Soilgrids (v2020) Gridded soil classification de Sousa et al. (2020)

Vito Land use classification Buchhorn and smets (2020)
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Appendix B: wflow_sbm default parameters570

Table B1. Key wflow_sbm parameters used in this study. All parameters are unitless. For the remaining parameter values, we refer to van

Verseveld et al. (2024).

Parameter Function Default value

khfrac Multiplication factor applied to vertical hydraulic conductivity to obtain horizontal hydraulic conductivity 100

f Scaling parameter controlling the decline of vertical hydraulic conductivity with depth 1

kvfrac Multiplication factor applied to the vertical hydraulic conductivity 5

C Brooks-Corey power coefficient controlling soil water pressure for each soil layer 1

Author contributions. Conceptualization: PW, GM. Methodology: PW, GM. Formal analysis: PW. Methodology: PW, GM. Supervision:

GM. Visualization: PW. Writing – original draft preparation: PW. Writing – review and editing: PW, GM, JM, NP, BS.

Competing interests. At least one of the (co-)authors is a member of the editorial board of Hydrology and Earth System Sciences.

Acknowledgements. We thank MeteoSwiss for providing open access to the meteorological datasets. We are also grateful to Willem van

Verseveld and Bart Schilperoort for their technical support and advice on the wflow_sbm model and its implementation in eWaterCycle.575

AI-assisted tools were used to improve the clarity and phrasing of the manuscript.

25

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Argentin, A.-L., Horton, P., Schaefli, B., Shokory, J., Pitscheider, F., Repnik, L., Gianini, M., Bizzi, S., Lane, S. N., and Comiti, F.: Scale

Dependency in Modeling Nivo-Glacial Hydrological Systems: The Case of the Arolla Basin, Switzerland, Hydrology and Earth System

Sciences, 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, 2025.580

Avanzi, F., Gabellani, S., Delogu, F., Silvestro, F., Pignone, F., Bruno, G., Pulvirenti, L., Squicciarino, G., Fiori, E., Rossi, L., Puca, S.,

Toniazzo, A., Giordano, P., Falzacappa, M., Ratto, S., Stevenin, H., Cardillo, A., Fioletti, M., Cazzuli, O., Cremonese, E., di Cella, U. M.,

and Ferraris, L.: IT-SNOW: A Snow Reanalysis for Italy Blending Modeling, in Situ Data, and Satellite Observations (2010–2021), Earth

System Science Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, 2023.

Beaton, A. D., Han, M., Tolson, B. A., Buttle, J. M., and Metcalfe, R. A.: Assessing the Impact of Distributed Snow Water Equivalent Cali-585

bration and Assimilation of Copernicus Snow Water Equivalent on Modelled Snow and Streamflow Performance, Hydrological Processes,

38, https://doi.org/10.1002/hyp.15075, 2024.

Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., and Karger,

D. N.: Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments

Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments, Journal590

of Climate, 33, 1299–1315, https://doi.org/10.1175/jcli-d-19-0332.1, 2019.

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald,

H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A.,

Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European Mountain Cryosphere: A Review of Its Current State, Trends,

and Future Challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.595

Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A Precipitation Shift from Snow towards Rain Leads to a Decrease in Streamflow,

Nature Climate Change, 4, 583–586, https://doi.org/10.1038/nclimate2246, 2014.

Berghuijs, W. R., Hale, K., and Beria, H.: Technical Note: Streamflow Seasonality Using Directional Statistics, EGUsphere, 2025, 1–16,

https://doi.org/10.5194/egusphere-2024-4117, 2025.

Besso, H., Shean, D., and Lundquist, J. D.: Mountain Snow Depth Retrievals from Customized Processing of ICESat-2 Satellite Laser600

Altimetry, Remote Sensing of Environment, 300, 113 843, https://doi.org/10.1016/j.rse.2023.113843, 2024.

Beven, K.: A Manifesto for the Equifinality Thesis, Journal of Hydrology, 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.

Beven, K. and Binley, A.: The Future of Distributed Models: Model Calibration and Uncertainty Prediction, Hydrological Processes, 6,

279–298, https://doi.org/10.1002/hyp.3360060305, 1992.

Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental605

systems using the GLUE methodology, Journal of Hydrology, 249, 11–29, https://doi.org/https://doi.org/10.1016/S0022-1694(01)00421-

8, 2001.

Brauchli, T., Trujillo, E., Huwald, H., and Lehning, M.: Influence of Slope-scale Snowmelt on Catchment Response Simulated with the

Alpine3D Model, Water Resources Research, 53, 10 723–10 739, https://doi.org/10.1002/2017wr021278, 2017.

Broxton, P. D., Dawson, N., and Zeng, X.: Linking Snowfall and Snow Accumulation to Generate Spatial Maps of SWE and Snow Depth,610

Earth and Space Science, 3, 246–256, https://doi.org/10.1002/2016ea000174, 2016.

Broxton, P. D., Leeuwen, W. J. D., and Biederman, J. A.: Improving Snow Water Equivalent Maps with Machine Learning of Snow Survey

and Lidar Measurements, Water Resources Research, 55, 3739–3757, https://doi.org/10.1029/2018wr024146, 2019.

26

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Brunner, M. I., Götte, J., Schlemper, C., and Loon, A. F. V.: Hydrological Drought Generation Processes and Severity Are Changing in the

Alps, Geophysical Research Letters, 50, https://doi.org/10.1029/2022gl101776, 2023.615

Buchhorn, M. and smets, B.: Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe (V3.0.1),

https://doi.org/10.5281/zenodo.3939050, 2020.

Burrell, B., Beltaos, S., and Turcotte, B.: Effects of climate change on river-ice processes and ice jams, International Journal of River Basin

Management, 21, 421–441, 2023.

Casson, D. R., Werner, M., Weerts, A., and Solomatine, D.: Global Re-Analysis Datasets to Improve Hydrological Assessment and Snow Wa-620

ter Equivalent Estimation in a Sub-Arctic Watershed, Hydrology and Earth System Sciences, 22, 4685–4697, https://doi.org/10.5194/hess-

22-4685-2018, 2018.

Clemenzi, I., Gustafsson, D., Marchand, W.-D., Norell, B., Zhang, J., Pettersson, R., and Pohjola, V. A.: Impact of Snow Distribution

Modelling for Runoff Predictions, Hydrology Research, 54, 633–647, https://doi.org/10.2166/nh.2023.043, 2023.

Cluzet, B., Magnusson, J., Quéno, L., Mazzotti, G., Mott, R., and Jonas, T.: Exploring How Sentinel-1 Wet-Snow Maps Can Inform Fully625

Distributed Physically Based Snowpack Models, The Cryosphere, 18, 5753–5767, https://doi.org/10.5194/tc-18-5753-2024, 2024.

Comola, F., Schaefli, B., Rinaldo, A., and Lehning, M.: Thermodynamics in the Hydrologic Response: Travel Time Formulation and Appli-

cation to Alpine Catchments, Water Resources Research, 51, 1671–1687, https://doi.org/10.1002/2014wr016228, 2015.

de Bruin, H. A. R., Trigo, I. F., Bosveld, F. C., and Meirink, J. F.: A Thermodynamically Based Model for Actual Evapotranspiration of an

Extensive Grass Field Close to FAO Reference, Suitable for Remote Sensing Application, Journal of Hydrometeorology, 17, 1373–1382,630

https://doi.org/10.1175/jhm-d-15-0006.1, 2016.

de Sousa, L. M., Poggio, L., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Riberio, E., and Rossiter, D.: SoilGrids 2.0: Producing

Quality-Assessed Soil Information for the Globe, SOIL Discussions, 2020, 1–37, https://doi.org/10.5194/soil-2020-65, 2020.

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrology and Earth System

Sciences, 13, 913–921, 2009.635

Eilander, D., Boisgontier, H., Bouaziz, L. J. E., Buitink, J., Couasnon, A., Dalmijn, B., Hegnauer, M., de Jong, T., Loos, S., Marth, I., and

van Verseveld, W.: HydroMT: Automated and Reproducible Model Building and Analysis, Journal of Open Source Software, 8, 4897,

https://doi.org/10.21105/joss.04897, 2023.

Essery, R. and Pomeroy, J.: Implications of Spatial Distributions of Snow Mass and Melt Rate for Snow-Cover Depletion: Theoretical

Considerations, Annals of Glaciology, 38, 261–265, https://doi.org/10.3189/172756404781815275, 2004.640

Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni,

I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., Mora, L. d., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier,

B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala,

S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips,

A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., Hardenberg, J. v., Weigel,645

K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for

quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geoscientific Model Development, 13, 3383–3438,

https://doi.org/10.5194/gmd-13-3383-2020, 2020.

Fang, Y., Liu, Y., and Margulis, S. A.: A Western United States Snow Reanalysis Dataset over the Landsat Era from Water Years 1985 to

2021, Scientific Data, 9, 677, https://doi.org/10.1038/s41597-022-01768-7, 2022.650

27

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Fiddes, J., Aalstad, K., and Westermann, S.: Hyper-Resolution Ensemble-Based Snow Reanalysis in Mountain Regions Using Clustering,

Hydrology and Earth System Sciences, 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, 2019.

Follum, M. L., Niemann, J. D., and Fassnacht, S. R.: A Comparison of Snowmelt-derived Streamflow from Temperature-index and Modified-

temperature-index Snow Models, Hydrological Processes, 33, 3030–3045, https://doi.org/10.1002/hyp.13545, 2019.

Fontrodona-Bach, A., Schaefli, B., Woods, R., Teuling, A. J., and Larsen, J. R.: NH-SWE: Northern Hemisphere Snow Water Equivalent655

Dataset Based on in Situ Snow Depth Time Series, Earth System Science Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-

2023, 2023.

Frey, S. and Holzmann, H.: A Conceptual, Distributed Snow Redistribution Model, Hydrology and Earth System Sciences, 19, 4517–4530,

https://doi.org/10.5194/hess-19-4517-2015, 2015.

Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.: Theia Snow Collection: High-Resolution Operational Snow Cover660

Maps from Sentinel-2 and Landsat-8 Data, Earth System Science Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, 2019.

Gordon, B. L., Brooks, P. D., Krogh, S. A., Boisrame, G. F. S., Carroll, R. W. H., McNamara, J. P., and Harpold, A. A.: Why Does Snowmelt-

Driven Streamflow Response to Warming Vary? A Data-Driven Review and Predictive Framework, Environmental Research Letters, 17,

053 004, https://doi.org/10.1088/1748-9326/ac64b4, 2022.

Gottlieb, A. R. and Mankin, J. S.: Evidence of Human Influence on Northern Hemisphere Snow Loss, Nature, 625, 293–300,665

https://doi.org/10.1038/s41586-023-06794-y, 2024.

Griessinger, N., Seibert, J., Magnusson, J., and Jonas, T.: Assessing the Benefit of Snow Data Assimilation for Runoff Modeling in Alpine

Catchments, Hydrology and Earth System Sciences, 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, 2016.

Griessinger, N., Schirmer, M., Helbig, N., Winstral, A., Michel, A., and Jonas, T.: Implications of Observation-Enhanced Energy-

Balance Snowmelt Simulations for Runoff Modeling of Alpine Catchments, Advances in Water Resources, 133, 103 410,670

https://doi.org/10.1016/j.advwatres.2019.103410, 2019.

Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in a small mountain

catchment, The Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010.

Grünewald, T., Stötter, J., Pomeroy, J. W., Dadic, R., Baños, I. M., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., and Lehning,

M.: Statistical modelling of the snow depth distribution in open alpine terrain, Hydrology and Earth System Sciences, 17, 3005–3021,675

https://doi.org/10.5194/hess-17-3005-2013, tex.rating: 5, 2013.

Günther, D., Hanzer, F., Warscher, M., Essery, R., and Strasser, U.: Including parameter uncertainty in an intercomparison of physically-based

snow models, Front, Earth Sci, 8, 2020.

Haberkorn, A., López-Moreno, J. I., Helmert, J., Pirazzini, R., and Leppänen, L.: European Snow Booklet,

https://doi.org/10.16904/envidat.59, 2019.680

Han, J., Liu, Z., Woods, R., McVicar, T. R., Yang, D., Wang, T., Hou, Y., Guo, Y., Li, C., and Yang, Y.: Streamflow Seasonality in a Snow-

Dwindling World, Nature, 629, 1075–1081, https://doi.org/10.1038/s41586-024-07299-y, 2024.

Helbig, N. and van Herwijnen, A.: Subgrid Parameterization for Snow Depth over Mountainous Terrain from Flat Field Snow Depth, Water

Resources Research, 53, 1444–1456, https://doi.org/10.1002/2016wr019872, 2017.

Helbig, N., Bühler, Y., Eberhard, L., Deschamps-Berger, C., Gascoin, S., Dumont, M., Revuelto, J., Deems, J. S., and Jonas, T.: Fractional685

Snow-Covered Area: Scale-Independent Peak of Winter Parameterization, The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-

615-2021, 2020.

28

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Helbig, N., Schirmer, M., Magnusson, J., Mäder, F., van Herwijnen, A., Quéno, L., Bühler, Y., Deems, J. S., and Gascoin, S.: A Seasonal

Algorithm of the Snow-Covered Area Fraction for Mountainous Terrain, The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-

4607-2021, 2021.690

Henn, B., Clark, M. P., Kavetski, D., and Lundquist, J. D.: Estimating Mountain Basin-mean Precipitation from Streamflow Using Bayesian

Inference, Water Resources Research, 51, 8012–8033, https://doi.org/10.1002/2014wr016736, 2015.

Henn, B., Clark, M. P., Kavetski, D., Newman, A. J., Hughes, M., McGurk, B., and Lundquist, J. D.: Spatiotemporal Patterns of Pre-

cipitation Inferred from Streamflow Observations across the Sierra Nevada Mountain Range, Journal of Hydrology, 556, 993–1012,

https://doi.org/10.1016/j.jhydrol.2016.08.009, 2018.695

Hock, R.: A Distributed Temperature-Index Ice- and Snowmelt Model Including Potential Direct Solar Radiation, Journal of Glaciology, 45,

101–111, https://doi.org/10.3189/s0022143000003087, 1999.

Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm, S., Sikorska-

Senoner, A. E., Addor, N., Brunner, M., Pool, S., Zappa, M., and Fenicia, F.: CAMELS-CH: Hydro-Meteorological Time Series

and Landscape Attributes for 331 Catchments in Hydrologic Switzerland, Earth System Science Data Discussions, 2023, 1–46,700

https://doi.org/10.5194/essd-2023-127, 2023.

Horner, I., Branger, F., McMillan, H., Vannier, O., and Braud, I.: Information Content of Snow Hydrological Signatures Based on Streamflow,

Precipitation and Air Temperature, Hydrological Processes, 34, 2763–2779, https://doi.org/10.1002/hyp.13762, 2020.

Horton, P. and Argentin, A.-L.: hydrobricks: v0.7.2, https://doi.org/10.5281/zenodo.11082505, 2024.

Hou, Y., Han, J., Woods, R., Guo, Y., and Yang, Y.: Understanding Long-term Streamflow Response to Snowfall Change: Insights from a705

Multivariate Analysis, Water Resources Research, 61, https://doi.org/10.1029/2024wr038215, 2025.

Houska, T., Kraft, P., Chamorro-Chavez, A., and Breuer, L.: SPOTting Model Parameters Using a Ready-Made Python Package, PLoS ONE,

10, e0145 180, https://doi.org/10.1371/journal.pone.0145180, 2015.

Hut, R., Drost, N., van de Giesen, N., van Werkhoven, B., Abdollahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B., Camphuijsen, J.,

Dzigan, Y., van Haren, R., Hutton, E., Kalverla, P., van Meersbergen, M., van den Oord, G., Pelupessy, I., Smeets, S., Verhoeven, S.,710

de Vos, M., and Weel, B.: The eWaterCycle Platform for Open and FAIR Hydrological Collaboration, Geoscientific Model Development,

15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, 2022.

Imhoff, R. O., van Verseveld, W. J., van Osnabrugge, B., and Weerts, A. H.: Scaling Point-scale (Pedo)Transfer Functions to Seamless Large-

domain Parameter Estimates for High-resolution Distributed Hydrologic Modeling: An Example for the Rhine River, Water Resources

Research, 56, https://doi.org/10.1029/2019wr026807, 2020.715

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:

Climatologies at High Resolution for the Earth’s Land Surface Areas, Scientific Data, 4, 170 122, https://doi.org/10.1038/sdata.2017.122,

2017.

Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian Analysis of Input Uncertainty in Hydrological Modeling: 1. Theory, Water Resources

Research, 42, https://doi.org/10.1029/2005wr004368, 2006.720

Kirchner, J. W.: Catchments as Simple Dynamical Systems: Catchment Characterization, Rainfall-runoff Modeling, and Doing Hydrology

Backward, Water Resources Research, 45, https://doi.org/10.1029/2008wr006912, 2009.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger Climate Classification Updated, Meteorolo-

gische Zeitschrift, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.

29

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Lehning, M., Grünewald, T., and Schirmer, M.: Mountain Snow Distribution Governed by an Altitudinal Gradient and Terrain Roughness,725

Geophysical Research Letters, 38, n/a–n/a, https://doi.org/10.1029/2011gl048927, 2011.

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and Lannoy, G. D.: Sentinel-1 Snow Depth Retrieval at Sub-Kilometer

Resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2021.

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer, C., Derksen, C., Mudryk, L., Moisander, M., Hiltunen, M., Smolander,

T., Ikonen, J., Cohen, J., Salminen, M., Norberg, J., Veijola, K., and Venäläinen, P.: GlobSnow v3.0 Northern Hemisphere Snow Water730

Equivalent Dataset, Scientific Data, 8, 163, https://doi.org/10.1038/s41597-021-00939-2, 2021.

López-Moreno, J., Fassnacht, S., Heath, J., Musselman, K., Revuelto, J., Latron, J., Morán-Tejeda, E., and Jonas, T.: Small scale spatial

variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent, Advances in Water

Resources, 55, 40–52, https://doi.org/10.1016/j.advwatres.2012.08.010, 2013.

Magnusson, J., Gustafsson, D., Hüsler, F., and Jonas, T.: Assimilation of Point SWE Data into a Distributed Snow Cover Model Comparing735

Two Contrasting Methods, Water Resources Research, 50, 7816–7835, https://doi.org/10.1002/2014wr015302, 2014.

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating Snow Models with Varying Process Representations

for Hydrological Applications, Water Resources Research, 51, 2707–2723, https://doi.org/10.1002/2014wr016498, 2015.

Magnusson, J., Eisner, S., Huang, S., Lussana, C., Mazzotti, G., Essery, R., Saloranta, T., and Beldring, S.: Influence of Spatial Resolution on

Snow Cover Dynamics for a Coastal and Mountainous Region at High Latitudes (Norway), Water Resources Research, 55, 5612–5630,740

https://doi.org/10.1029/2019wr024925, 2019.

Magnusson, J., Bühler, Y., Quéno, L., Cluzet, B., Mazzotti, G., Webster, C., Mott, R., and Jonas, T.: High-Resolution Hydrom-

eteorological and Snow Data for the Dischma Catchment in Switzerland, Earth System Science Data Discussions, 2024, 1–24,

https://doi.org/10.5194/essd-2024-374, 2024.

Margulis, S. A., Cortés, G., Girotto, M., Huning, L. S., Li, D., and Durand, M.: Characterizing the Extreme 2015 Snowpack745

Deficit in the Sierra Nevada (USA) and the Implications for Drought Recovery, Geophysical Research Letters, 43, 6341–6349,

https://doi.org/10.1002/2016gl068520, 2016.

Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D., and Jonas, T.: Revisiting Snow Cover Variabil-

ity and Canopy Structure within Forest Stands: Insights from Airborne Lidar Data, Water Resources Research, 55, 6198–6216,

https://doi.org/10.1029/2019wr024898, 2019.750

Mazzotti, G., Webster, C., Quéno, L., Cluzet, B., and Jonas, T.: Canopy Structure, Topography and Weather Are Equally Important

Drivers of Small-Scale Snow Cover Dynamics in Sub-Alpine Forests, Hydrology and Earth System Sciences Discussions, 2022, 1–32,

https://doi.org/10.5194/hess-2022-273, 2022.

McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods for selecting values of input variables in the analysis of

output from a computer code, Technometrics, 42, 55–61, 2000.755

MeteoSwiss, Federal Office of Meteorology and Climatology: MeteoSwiss RhiresD, 2024.

Metref, S., Cosme, E., Lay, M. L., and Gailhard, J.: Snow Data Assimilation for Seasonal Streamflow Supply Prediction in Mountainous

Basins, Hydrology and Earth System Sciences, 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023, 2023.

Michel, A., Aschauer, J., Jonas, T., Gubler, S., Kotlarski, S., and Marty, C.: SnowQM 1.0: A Fast R Package for Bias-Correcting Spatial Fields

of Snow Water Equivalent Using Quantile Mapping, Geoscientific Model Development, 17, 8969–8988, https://doi.org/10.5194/gmd-17-760

8969-2024, 2023.

30

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Mooney, K. L. and Webb, R. W.: Aspect controls on the spatial redistribution of snow water equivalence through the lateral flow of liquid

water in a subalpine catchment, The Cryosphere, 19, 2507–2526, https://doi.org/10.5194/tc-19-2507-2025, 2025.

Mott, R.: Climatological snow data since 1998, OSHD, https://doi.org/http://dx.doi.org/10.16904/envidat.401, 2023.

Mott, R., Scipión, D., Schneebeli, M., Dawes, N., Berne, A., and Lehning, M.: Orographic Effects on Snow Deposition Patterns in Moun-765

tainous Terrain, Journal of Geophysical Research: Atmospheres, 119, 1419–1439, https://doi.org/10.1002/2013jd019880, 2014.

Mott, R., Winstral, A., Cluzet, B., Helbig, N., Magnusson, J., Mazzotti, G., Quéno, L., Schirmer, M., Webster, C., and Jonas, T.: Operational

Snow-Hydrological Modeling for Switzerland, Frontiers in Earth Science, 11, 1228 158, https://doi.org/10.3389/feart.2023.1228158,

2023.

Mudryk, L., Mortimer, C., Derksen, C., Chereque, A. E., and Kushner, P.: Benchmarking of Snow Water Equivalent (SWE) Products Based770

on Outcomes of the SnowPEx+ Intercomparison Project, The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025, 2024.

Myeni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V006,

2015.

Nash, J. and Sutcliffe, J.: River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles, Journal of Hydrology,

10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.775

Nott, D. J., Marshall, L., and Brown, J.: Generalized Likelihood Uncertainty Estimation (GLUE) and Approximate Bayesian Computation:

What’s the Connection?, Water Resources Research, 48, https://doi.org/10.1029/2011wr011128, 2012.

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D.,

Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory:

Fusion of Scanning Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping Snow Water Equivalent and Snow Albedo,780

Remote Sensing of Environment, 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.

Pflug, J. M., Hughes, M., and Lundquist, J. D.: Downscaling Snow Deposition Using Historic Snow Depth Patterns: Diagnosing Lim-

itations from Snowfall Biases, Winter Snow Losses, and Interannual Snow Pattern Repeatability, Water Resources Research, 57,

https://doi.org/10.1029/2021wr029999, 2021.

Premier, V., Marin, C., Bertoldi, G., Barella, R., Notarnicola, C., and Bruzzone, L.: Exploring the Use of Multi-Source High-785

Resolution Satellite Data for Snow Water Equivalent Reconstruction over Mountainous Catchments, The Cryosphere, 17, 2387–2407,

https://doi.org/10.5194/tc-17-2387-2023, 2023.

Pulka, T., Herrnegger, M., Ehrendorfer, C., Lücking, S., Avanzi, F., Formayer, H., Schulz, K., and Koch, F.: Evaluating Precipitation Correc-

tions to Enhance High-Alpine Hydrological Modeling for Hydropower, https://doi.org/10.2139/ssrn.4823086, 2024.

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.: Understanding Predictive Uncertainty in Hydrologic Modeling: The790

Challenge of Identifying Input and Structural Errors, Water Resources Research, 46, https://doi.org/10.1029/2009wr008328, 2010.

Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Topographic Control of Snowpack Distribu-

tion in a Small Catchment in the Central Spanish Pyrenees: Intra- and Inter-Annual Persistence, The Cryosphere, 8, 1989–2006,

https://doi.org/10.5194/tc-8-1989-2014, 2014.

Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: Assessing Mountains as Natural Reservoirs with a Multimetric Framework, Earth’s Future,795

6, 1221–1241, https://doi.org/10.1002/2017ef000789, 2018.

Roy, A., Royer, A., and Turcotte, R.: Improvement of Springtime Streamflow Simulations in a Boreal Environment by Incorporating Snow-

Covered Area Derived from Remote Sensing Data, Journal of Hydrology, 390, 35–44, https://doi.org/10.1016/j.jhydrol.2010.06.027, 2010.

31

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Ruelland, D.: Should Altitudinal Gradients of Temperature and Precipitation Inputs Be Inferred from Key Parameters in Snow-Hydrological

Models?, Hydrology and Earth System Sciences, 24, 2609–2632, https://doi.org/10.5194/hess-24-2609-2020, 2020.800

Schaefli, B.: Snow Hydrology Signatures for Model Identification within a Limits-of-acceptability Approach, Hydrological Processes, 30,

4019–4035, https://doi.org/10.1002/hyp.10972, 2016.

Schaefli, B. and Gupta, H. V.: Do Nash Values Have Value?, Hydrological Processes, 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.

Thornton, J., Brauchli, T., Mariethoz, G., and Brunner, P.: Efficient Multi-Objective Calibration and Uncertainty Analysis of Distributed

Snow Simulations in Rugged Alpine Terrain, Journal of Hydrology, 598, 126 241, https://doi.org/10.1016/j.jhydrol.2021.126241, 2021.805

Trujillo, E. and Molotch, N. P.: Snowpack Regimes of the Western United States, Water Resources Research, 50, 5611–5623,

https://doi.org/10.1002/2013wr014753, 2014.

Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, Meteorologic, and Canopy Controls on the Scaling Characteristics of the Spatial

Distribution of Snow Depth Fields, Water Resources Research, 43, https://doi.org/10.1029/2006wr005317, 2007.

Valéry, A., Andréassian, V., and Perrin, C.: ‘As Simple as Possible but Not Simpler’: What Is Useful in a Temperature-Based Snow-810

Accounting Routine? Part 1 – Comparison of Six Snow Accounting Routines on 380 Catchments, Journal of Hydrology, 517, 1166–1175,

https://doi.org/10.1016/j.jhydrol.2014.04.059, 2014.

van Verseveld, W. J., Weerts, A. H., Visser, M., Buitink, J., Imhoff, R. O., Boisgontier, H., Bouaziz, L., Eilander, D., Hegnauer, M., ten

Velden, C., and Russell, B.: Wflow_sbm v0.7.3, a Spatially Distributed Hydrological Model: From Global Data to Local Applications,

Geoscientific Model Development, 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, 2024.815

Vrugt, J. A.: Markov Chain Monte Carlo Simulation Using the DREAM Software Package: Theory, Concepts, and MATLAB Implementa-

tion, Environmental Modelling & Software, 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

Whittaker, C. and Leconte, R.: A Hydrograph-Based Approach to Improve Satellite-Derived Snow Water Equivalent at the Watershed Scale,

Water, 14, 3575, https://doi.org/10.3390/w14213575, 2022.

Wirgin, A.: The Inverse Crime, arXiv, https://doi.org/10.48550/arxiv.math-ph/0401050, 2004.820

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A

High-accuracy Map of Global Terrain Elevations, Geophysical Research Letters, 44, 5844–5853, https://doi.org/10.1002/2017gl072874,

2017.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-resolution Global Hydrography

Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053–5073, https://doi.org/10.1029/2019wr024873, 2019.825

32

https://doi.org/10.5194/egusphere-2025-3610
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.


