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Abstract

Historical snow mass estimates are key to understanding snowmelt-driven streamflow and climate change impacts on snow
water resources. However, snow mass observations are scarce, and SWE reconstructions rely largely on snow models forced
with meteorological inputs. Ground-based and satellite observations are often used to constrain the typically high uncertainty
of modeled snow mass reconstructions, but their constraining potential is limited in data-scarce regions and prior to the onset
of satellite monitoring. Here, we suggest using streamflow information as an additional information source to better reconstruct
snow mass. We introduce an inverse hydrological modeling framework that selects realistic snow mass realizations based on
the accuracy of their streamflow response. Before real-world application, we test the framework in two synthetic experiments.
Our results demonstrate that streamflow has the potential to constrain snow mass reconstructions, but that non-uniqueness in
the snow-streamflow relationship and uncertainties in the inverse modelling chain can easily stand in the way. We also show
that streamflow is most helpful in estimating catchment-aggregated properties of snow mass reconstructions, in particular
catchment-aggregated melt rates. Future work should assess the potential of streamflow-constrained snow mass reconstruction

under real-world conditions and investigate the added value of streamflow when combined with other snow data sources.

1 Introduction

Seasonal snow is essential to hydrology, ecology, tourism, and hydropower in mountainous regions (Beniston et al., 2018). A
key variable in understanding snow dynamics is snow water equivalent (SWE), which represents the amount of water stored
in the snowpack. Historical SWE estimates are important to understand how snow accumulation and melt have responded to
climate change over the past decades (Gottlieb and Mankin, 2024), and to assess the role of changing snowpack dynamics in
altering streamflow timing, volume, and drought risk (Berghuijs et al., 2014; Gordon et al., 2022; Brunner et al., 2023; Han

et al., 2024; Hou et al., 2025). However, direct observations of SWE from ground stations are often limited due to sparse
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station networks and the high logistical and physical cost of manual snow surveys (Haberkorn et al., 2019). In addition, spatial
patterns of snowfall and snowmelt are highly heterogeneous (Griinewald et al., 2010; Mooney and Webb, 2025), making it
difficult to generalize available observations. Passive microwave measurements from space provide large-scale SWE estimates,
but at a resolution insufficient for mountainous areas (Luojus et al., 2021). Measurements of other snow properties are more
widespread, such as snow covered area (SCA) (Gascoin et al., 2019) and wet snow maps (Cluzet et al., 2024) from satellites,
and snow depth (SD) from both satellites (Lievens et al., 2021; Besso et al., 2024) and ground measurements (Fontrodona-Bach
et al., 2023), but their relationship to SWE is indirect; SCA and wet snow measurements provide only binary information on
the presence or the wetness of snow, while SD must be converted to SWE using snow density estimates, which are highly
variable in space and time as well (L6pez-Moreno et al., 2013).

To understand SWE dynamics, numerous studies have performed gridded SWE reconstructions through snow modeling
constrained by different sources of indirect SWE observations. Mudryk et al. (2024) benchmarked 23 coarse-resolution,
continental-scale SWE products, including snow model outputs—with and without assimilation of indirect snow observa-
tions—and passive microwave retrievals, some of which incorporate in-situ SD observations. While most analyzed products
performed well in capturing SWE climatology and interannual variability over low-relief regions, their performance degraded
substantially in mountainous areas. Several SWE reconstruction methods have been developed specifically for mountain areas.
Margulis et al. (2016) and Fang et al. (2022) reconstructed gridded SWE in the Western US using a land-surface model com-
bined with remotely sensed fractional SCA maps using batch data assimilation. Fiddes et al. (2019) applied a similar approach
to Switzerland, while additionally including a grid cell clustering scheme in the land-surface model. Also in Switzerland, Mott
et al. (2023) produced gridded SWE reconstructions using two different snow models with forward data assimilation of in-
situ SD observations. Similarly, Broxton et al. (2016, 2019) combined in-situ SWE and SD observations with meteorological
data to reconstruct SWE since 1981 in the continental United States. Avanzi et al. (2023) reconstructed SWE in Italy, using a
snow model with data assimilation of both interpolated SD and SCA maps. Finally, Premier et al. (2023) identified periods of
snow accumulation and melt by integrating in-situ SD observations, SCA maps, and snow classification maps from satellite-
based synthetic aperture radar. They then reconstructed SWE accumulation by summing degree-day melt estimates during the
identified melt phases using an empirical melt factor.

In addition to indirect SWE observations, SWE reconstructions can be constrained by empirical knowledge on recurring
snow patterns. Numerous studies have shown that spatial snow depth distributions can be statistically linked to terrain char-
acteristics such as elevation, slope, and sky view factor (Lehning et al., 2011; Griinewald et al., 2013; Revuelto et al., 2014)
and vegetation features like canopy structure and density (Trujillo et al., 2007; Mazzotti et al., 2019; Helbig et al., 2020).
Helbig and van Herwijnen (2017) derived gridded snow depth estimates from point-scale snow depth measurements using
terrain properties of each grid cell. Helbig et al. (2021) in turn used similar terrain properties to relate gridded snow depth to
sub-grid fractional snow cover, which is used in snow models to constrain melt rates. Similarly, Mazzotti et al. (2022) used
canopy structure parameters to improve fractional snow cover and SWE estimates in forest sites. Pflug et al. (2021) instead

leveraged interannual similarity in snow patterns to infer snow deposition patterns based on corresponding information from
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better-informed years. Finally, Michel et al. (2023) demonstrated that SWE reconstructions for poorly observed years can be
constrained by applying bias corrections derived from well-observed years.

Nonetheless, the above sources of information are sometimes insufficient to constrain SWE reconstructions, notably before
the onset of satellite observations or in scarcely monitored regions. An additional, relatively abundant data source that can
inform the temporal and spatial SWE dynamics is streamflow. However, until now it has not been given a lot of attention in
SWE reconstructions. Streamflow represents the integrated hydrological response of a catchment, in terms of both timing and
volume (Kirchner, 2009). As such, it ought to contain information on the snow melt dynamics and the water balance of the
entire catchment, including the higher elevations which are typically underrepresented in snow and meteorological observations
(Thornton et al., 2021). However, the SWE information in streamflow is indirect and subject to transformation: the melt signal is
delayed and smoothed by processes of water partitioning, storage and transport through the catchment, confounded by rainfall
contributions, and affected by sublimation and evaporation losses. Moreover, streamflow is a one-dimensional, catchment-
integrated observation, while SWE is a spatially distributed state variable. These complications raise a fundamental question:
to what extent can streamflow observations constrain SWE reconstructions?

Three main approaches have been proposed to retrieve SWE information from streamflow. The first is the mass-curve tech-
nique, which estimates maximum catchment SWE directly from the maximum seasonal deficit between accumulated precip-
itation and streamflow. Schaefli (2016) showed good agreement with the SWE output of a snow model, while Horner et al.
(2020) found that although interannual variability was well captured, absolute SWE was overestimated due to unaccounted
losses and storage assumptions. A second approach estimates SWE from the difference between total streamflow and baseflow,
as applied by Casson et al. (2018) and Whittaker and Leconte (2022) in large boreal catchments. This method assumes that all
direct runoff in spring originates from snowmelt, an assumption less valid in smaller, more complex basins, and is sensitive
to baseflow separation uncertainty. A third strategy involves inverse hydrological modeling, or "doing hydrology backwards"
(Kirchner, 2009): Henn et al. (2015, 2018) used Bayesian inversion to infer annual catchment precipitation from streamflow
in snow-dominated Californian basins. However, they did not evaluate SWE directly and did not separate rain from snow,
limiting the applicability of the approach in mixed-phase climates. Also using inverse hydrological modeling, Ruelland (2020)
accurately derived temperature and precipitation gradients, but did not evaluate SWE directly either. All three approaches fo-
cus on seasonal, catchment-integrated SWE estimates and provide little insight into temporal or spatial snowpack dynamics.
Moreover, they are confounded by key uncertainties—assumptions about catchment storage (Horner et al., 2020), baseflow
separation (Whittaker and Leconte, 2022), and model structure (Henn et al., 2015, 2018), leaving open the question of the
amount and nature of SWE information theoretically embedded in streamflow, and under what conditions it can be used to
constrain SWE reconstructions.

Here, we present a framework for streamflow-constrained SWE reconstruction that formulates snow inference as an inverse
hydrological problem. Similar in concept to the inversion approach of Henn et al. (2015, 2018), our method generates a large
ensemble of spatially distributed SWE realizations, propagates them through a distributed hydrological model, and selects a
posterior ensemble based on the match between simulated and observed streamflow. To benchmark the core capabilities of

the inversion, we conduct two synthetic numerical experiments. The first is a fully synthetic experiment, where we eliminate
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all sources of uncertainty to test the theoretical constraining potential of streamflow on SWE. The second is a semi-synthetic
experiment, where we test how much the constraining potential is reduced under meteorological forcing and snow model uncer-
tainty. In both experiments, we evaluate which SWE metrics are best constrained by the streamflow and how their identifiability

changes across spatial scales.

2 Methodology
2.1 Streamflow-constrained SWE as an inverse problem

The constraining of SWE reconstructions through streamflow can be framed as an inverse problem, where the known output of a
system (streamflow) is used to infer an unknown internal state (SWE). Prior knowledge on snow physics, topographic controls,
and meteorological inputs reduce the solution space. Still, the inversion remains ill-posed: we aim to retrieve the space-time
evolution of gridded SWE (3-dimensional aspect) from a catchment-integrated streamflow signal (single dimension).

We denote the time series of observed streamflow with .5, and the spatio-temporal SWE field as Hgyy . In a Bayesian

framework, we seek the posterior distribution:

P(Hswe | Qobs) X P(Qobs | Hswr) - P(HswEk). 9]

The prior distribution P(Hgsw ) reflects our initial uncertainty about SWE, and the likelihood P(Qops | Hsw ) quantifies
how well a given SWE realization explains the observed discharge. Since Hgyy g is not a free variable but the result of snow
model simulations, we rather define P(Hgw g) as the result of the finite sampling of the informative prior distributions of

parameters 6 as follows:

HY = Fonow(M;08,0 09 ) with 0, ~ P(Orr), 6% ~ P(Banow), )

»Y'meteo’ ¥ snow meteo snow

where M is the meteorological forcing (precipitation and temperature), 8,,.+e, are meteorological parameters (e.g., precip-
itation scaling, lapse rates, phase partitioning), and 0y,,,,, are snow model parameters controlling melt rates and snowpack
dynamics. Repeating this for i = 1,..., N0 yields an ensemble that approximates the prior distribution P(Hgw g ).

To be able to compute the likelihood, the resulting SWE and the meteorological forcing are passed to a runoff generation

model frunoff:
Qilz)rn = frunoff (HélIZVE’ M7 9'57?515607 af’gnoff)’ with eignoff ~ P(erunoff) (3)

where ()i, is the simulated streamflow and 6,7 ¢ governs surface and subsurface runoff generation, soil storage, and
evaporation. The model thus maps each parameter set © = {0, snow,brunos s} to a streamflow simulation Qg and the

inverse problem becomes one of estimating the posterior distribution:

P(@ ‘ Qobs) o8 P(Qobs | @) ' P(@) (4)
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While it is difficult to compute this posterior distribution analytically, it can be approximated with numerical methods that
generate samples of the posterior distribution, the most popular methods in hydrology being Importance Sampling (Nott et al.,
2012) and Markov Chain Monte Carlo methods (Vrugt, 2016). These methods repeatedly sample parameter sets from their
prior distributions, use them to run a simulation model, and evaluate their likelihood against observations. Parameters sets with
a high likelihood have more chances of being considered as samples from the posterior (e.g., Vrugt (2016)).

Both formal and informal methods exist in hydrological parameter inference literature: formal methods use a well-defined
likelihood function based on an assumed error distribution and combine this with the prior to obtain a well-defined posterior
distribution (Kavetski et al., 2006; Renard et al., 2010). Informal methods do not necessitate a formal likelihood function
and instead obtain a heuristic approximation of the posterior distribution using performance metrics as proxies for likelihood
(Beven and Binley, 1992; Nott et al., 2012).

We opt for an informal approach where we select a fixed percentage of the best-performing members among the prior
ensemble as the heuristic posterior ensemble. This informal approach has the main advantage that the size of the posterior
ensemble remains constant across experiments, which is helpful in assessing whether the posterior ensemble indeed contains
the most realistic SWE realizations. Section 2.2.5 presents the sampling strategy, while Sect. 2.4 introduces the posterior

ensemble selection and the performance metric used for streamflow evaluation.

Modeling chain = %5%° M Runoff model b/‘;/;)N

Prior (1:N) (1:N) (:N) t
SWE+Q ensemble emeteo Osnow SWE prior eruno ff Qprior
] * * *
Fully synthetic Qmeteo gsnow SWEref,FS Qrunoff Qref,FS
Reference # d(QpTiOTI QObS)
(Real world)
6(:N) =N prior samples of parameter distribution 8 Posterior
6" = Reference parameter set SWE i i
T : Bs01 is not sampled in this study and set to 8* SWE+Q ensemble PO QPOSterlor

$: OSHD reanalysis for Switzerland (Mott et al. 2023)

Figure 1. Schematic overview of the streamflow-constrained SWE reconstruction framework and the two synthetic numerical experiments. )
represents streamflow, 6 represents the parameters to be sampled, 6™ represents the reference parameter set, and d represents the streamflow
performance metric. Color-coding is consistent with the remainder of the study, with grey denoting the prior ensemble, green the posterior
ensemble, blue the fully synthetic experiment (FS), and orange the semi-synthetic experiment (SS). See Sect. 2.2 for a detailed explanation

of the workflow.
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2.2 Implementation

Figure 1 illustrates the streamflow-constrained SWE reconstruction framework implemented in this study. Meteorological forc-
ing M (Sect. 2.2.4) is used to drive a snow model f, ., (Sect. 2.2.1), producing gridded SWE and snowmelt estimates. These
are combined with rainfall inputs and routed through a runoff model f,.no s (Sect. 2.2.2) to generate simulated streamflow Q).

For each year, 5000 model realizations are generated by randomly sampling parameter sets from uniform prior distributions
O = {Ometeos Osnow,Vsoir } using Latin Hypercube Sampling (Sect. 2.2.5). The resulting prior ensemble of simulated stream-
flow Qi is compared to observed streamflow Q.55 using a performance metric d(Q sim,Qobs), and the top 1% of members
are selected as the heuristic posterior ensemble (Sect. 2.4).

To test the methodology in a controlled environment, we evaluate it in two synthetic experiments: a fully synthetic case (FS;
Sect. 2.3), which eliminates all modeling chain uncertainty, and a semi-synthetic case (SS), which adds meteorological and
snow model structural uncertainty. The lower panel of Fig. 1 outlines the anticipated challenges for real-world applications,
where additional uncertainty sources, particularly in the runoff model and streamflow observations, further complicate the

inversion process (Sect. 4.2).
2.2.1 Snow model

We use an enhanced temperature-index snow model that includes both air temperature and potential clear-sky radiation as
melt drivers (Hock, 1999; Argentin et al., 2025). The model is implemented within the hydrological model wflow_sbm (van
Verseveld et al., 2024). Precipitation is partitioned into rainfall and snowfall using a temperature threshold 7"7" and a transition

range as follows:

P T, <TT-1°C
TT+1°C) —-T,
Popow =1 P- <(_|—20§)a> TT-1°C< Ty <TT+1°C 5
0 T, >TT +1°C

where P is precipitation and 7, represents air temperature. P, ., is then adjusted using a spatially uniform yearly mul-
tiplicative correction factor SFCF and a linear elevation lapse rate SFCFgrpy. TT is defined for each year and applied
uniformly in space and adjusted with an elevation lapse rate TTgrpy. SFCF, SFCFgrpyv, TT, and TTg gy all belong
to meteorological parameters 6,,,¢c, used to generate the prior SWE ensemble (Eq. 2 & Table 1). Liquid precipitation is
calculated as P — Ps;,0q,, and is corrected seperately with rainfall correction factor RF'C'F (Pulka et al., 2024) (Sect. 2.2.4).
Melt occurs when air temperature exceeds 1'7", following:

M(t) = (m+7j % Lyot)(Tu(t) = TT) if Tu(t) > TT .

0 otherwise
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where M is the melt rate (mm d 1), m is the melt factor (mmd~! °C~1), r; is the radiation factor for snow orice (mmd~—' °C~ ! m? W~1)
160 and I, is the potential clear-sky direct solar radiation (W m~2). We calculated 1,0+ for each grid cell based on the formula by
Hock (1999) using the HydroBricks Python package (Horton and Argentin, 2024).
Meltwater is retained within the snowpack until it exceeds a calibratable water holding capacity (WHC) fraction of the total
snow mass (default: 0.1), after which drainage occurs. Liquid water may refreeze within the snowpack when 7, < TT". Snow
density evolution and rain-on-snow thermodynamics are not represented.
165 To represent sub-grid variability in snow depletion, we apply a fractional snow-covered area (fSCA) parameterization based

on Essery and Pomeroy (2004) and Magnusson et al. (2014):

SW Esy(t) )

CV-SWEwmax (7

fSCA(t) = tanh (1.26 .

where SW Esyj is the simulated average SWE in the grid cell at time ¢, C'V is the coefficient of variation, and SW E; 4 x is
the pre-melt seasonal maximum SWE.

170 To account for snow redistribution by wind and gravity, we implement a mass wasting scheme adapted from Frey and
Holzmann (2015). Snow is redistributed to downbhill cells if three precalibrated criteria are met: (i) SWE exceeds 500 mm, (ii)

wet snow to dry snow ratio does not exceed 0.001 , and (iii) slope exceeds 0.3:

! SWE
MW = min (o.5, 5506”76) . min <1.0, 10000) MW F - Lesieria met (8)

where MW is the mass wasting per grid cell, 1 riteria met 1S @ binary mask indicating whether the redistribution conditions are
175 satisfied, and M W F is a mass wasting factor with a precalibrated value of 0.5. Mmpocks Thock, W HC, and C'V are retained as

snow model parameters 6,,,,, used to generate the prior SWE ensemble ( Eq. 2 and Table 1).
2.2.2 Runoff model

wflow_sbm (v0.7.1; van Verseveld et al., 2024) is an open-source, medium-complexity distributed hydrological model. While
we adapted the wflow_sbm snow model (Sect. 2.2.1), we kept the runoff model intact. Each grid cell contains a vertically

180 stratified soil column with up to four unsaturated layers and one saturated layer, allowing for dynamic water table movement.
Soil hydraulic properties are inferred from global soil texture maps using pedotransfer functions (Imhoff et al., 2020).

For channel, overland, and lateral subsurface flow, the model uses the kinematic wave approach (van Verseveld et al., 2024).
wilow_sbm uses globally available soil, vegetation, and terrain datasets, which are preprocessed using HydroMT (Eilander
et al., 2023) (Table A1), and operates on a regular grid set to 1 arcsecond resolution (approximately 900 m x 700 m at 40°

185 latitude). We run wflow_sbm through the eWaterCycle hydrological modeling platform (Hut et al., 2022).

2.2.3 Test case: the Dischma catchment

The Dischma catchment (Fig. 2) in Switzerland spans 42.9 km? with elevations ranging from 1595 to 3180 m a.s.l. (mean: 2372
m). The catchment is predominantly alpine, with minimal forest cover (~3%) and limited glacier extent (<1%). Beside cattle

grazing, anthropogenic disturbances are negligible. Precipitation is fairly evenly distributed throughout the year, with roughly
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Figure 2. Digitial elevation model and delineation of the Dischma catchment, located in the eastern Swiss alps. The regular model grid has

a resolution of 1x1 arcsecond.

half falling as snow. Average annual discharge is 1240 mm/year. The catchment has featured in numerous snow hydrological
studies (Berghuijs et al., 2025; Brauchli et al., 2017; Comola et al., 2015; Schaefli, 2016), is actively monitored by the Swiss
Federal Institute for Forest, Snow and Landscape Research (SLF; Magnusson et al., 2024), and is part of the CAMELS-CH
dataset (Hoge et al., 2023).

2.2.4 Meteorological forcing

Meteorological forcing data are obtained from MeteoSwiss and consist of gridded daily temperature (TabsD) and precipitation
(RhiresD) estimates at 2 km x 2 km spatial resolution (MeteoSwiss, Federal Office of Meteorology and Climatology (2024),
version 2.0). Both are based on station observations and use interpolation methods that account for topographic effects. The
RhiresD dataset is known to suffer from gauge undercatch inherited from the station data (Magnusson et al., 2014). For the
Dischma catchment, mean estimated precipitation across all grid cells is 1029 mm/year (1998-2022), which is in contradiction
with observed streamflow of 1229 mm/year over the same period.

TabsD and RhiresD were downscaled to the 1 arcsecond model grid using area-weighted regridding with ESMValTool
(Eyring et al., 2020). TabsD was first adjusted to sea level using a fixed lapse rate of 6.5 °C km~! before regridding, and

then reprojected back to the original terrain elevation. Potential and actual evapotranspiration were estimated using the semi-
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empirical method of de Bruin et al. (2016), which relies on shortwave radiation and near-surface air temperature. Alongside
205 snowfall correction factors SFCF and SFCFgrgy (Sect. 2.2.1), a flat seasonal rainfall correction factor RF'C'F is also

applied to the MeteoSwiss forcing to allow for seasonal rainfall bias correction (Eq. 3 & Table 1).

Table 1. Overview of meteorological and snow model parameters used in the synthetic experiments. For details on the synthetic true param-

eter values, see Sect. 2.3.

Parameter Class  Description Unit Prior range  Synthetic true value 6*
SFCF Ometeo  Snowfall correction factor - 0.9-1.5 1.0-1.4
SFCFgrLEv  Ometeo  Elevation scaling of snowfall - 0.7-1.3 1.0

RFCF Ometeo  Rainfall correction factor - 0.7-1.3 1.0

T Ometeo  Rain—snow temperature threshold °C —1to1l 0.0

TTeLEV Ometeo  Elevation scaling of TT — —2t02 0.0

Muock Osnow  Degree-day melt factor mm °C~*d! 1-4 2.5

Ruock Osnow  Radiation multiplier mm W m?2°Ctd=!  0.005-0.04 0.025

WHC Osnow  Snowpack water holding capacity - 0.1-0.4 0.25

cv Osnow  Snow cover depletion curve shape - 0.1-0.5 0.3

2.2.5 Sampling strategy

As defined in Sect. 2.1, each parameter set © consists of meteorological parameters (0,,cte0), Snow model parameters (65,01 ),
and runoff model parameters (6,unoff) (Eq. 2 and 3). We restrict our analysis to synthetic experiments with complete knowl-

210 edge of the runoff model structure and parameters. Consequently, 6,..,0f s is not subject to calibration and is fixed at default
values as defined in the wflow_sbm documentation (Imhoff et al., 2020; van Verseveld et al., 2024) (Table B1). To generate
the prior SWE and streamflow ensemble, we thus only sample from meteorological and snow model parameters 6,,,ct., and
Osnow (Table 1). Note that his approach is unsuitable when including ;... ¢ s, Whose values likely vary little between years. A
two-step sampling is then more suited, separating constant and annually varying parameters (Henn et al., 2015).

215 For each year, 5000 parameter combinations are sampled from the joint prior parameter distributions of the 9 retained
parameters using Latin Hypercube Sampling (LHS) (McKay et al., 2000) using the SPOTPY Python package (Houska et al.,
2015). While 5000 samples do not densely populate the prior parameter space, it is considered adequate for this study, as
increasing the number of samples did not alter the results. We do not use an actual optimization algorithm or a Markov Chain
Monte Carlo sampling algorithm since the objective of our study is to explore the information content of streamflow for SWE

220 inference by efficiently exploring the full parameter space rather than identifying the posterior distribution.
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2.3 Synthetic numerical experiment design

To evaluate the constraining potential of streamflow for SWE reconstruction, we perform two synthetic experiments, both use

the same prior ensemble of 5000 parameters described above.
2.3.1 Experiment 1: Fully synthetic (FS)

The first is an “inverse crime” experiment (Wirgin, 2004): we generate synthetic SWE and streamflow using the same snow and
runoff model structures as those used for inversion, ensuring consistency between forward and inverse models. In doing so, we
aim to quantify the theoretical potential of streamflow-constrained SWE inversion by eliminating any model structural error
or observation uncertainty. The synthetic true parameters 8* used to generate synthetic SWE (SW Ei.. ¢, rg) are given in Table
1. The snowfall correction factor oscillates over all years between 1 and 1.4, with annual changes of 0.1. This mimics the full
potential extent of seasonal meteorological forcing bias. For the remaining parameters, 8* is set to the midpoint between the
lower and upper prior bounds. Because LHS ensures uniform coverage of each parameter’s range, the median of the sampled
parameter set © will approximate 6*. Consequently, the ensemble mean of the resulting prior SWE simulations SW Ep.;o, is

expected to roughly approximate the reference simulation SW E,..¢ rg.
2.3.2 Experiment 2: Semi-Synthetic (SS)

The second experiment is a Semi-Synthetic experiment, where we use the OSHD temperature-index SWE reanalysis product
(Mott et al., 2023; Mott, 2023) as the synthetic SWE reference SW E,.. ¢ s5. This product combines a temperature-index snow
model with data assimilation of in-situ snow depth observations for both snowfall and SWE state correction. It is available
for all of Switzerland since 1998 at 1 km resolution. Although the underlying meteorological forcing is comparable to that
used in this study, the combination of an alternative model structure and assimilation-induced SWE corrections introduces
both snow model and meteorological deviations relative to the base snow model and forcing. This introduces artificial snow-
related uncertainty in the inversion, thereby making it closer to real-world conditions (Fig. 1). The semi-synthetic experiment
thus allows us to examine the degradation in inversion performance when realistic discrepancies exist between the “true” and
assumed snow processes. To establish the coupling between OSHD and wflow_sbm, the OSHD output is first resampled to
the wflow_sbm grid and then inserted in the wflow_sbm model by modifying the meteorological forcing: all snowfall events
(i.e., when T,;,. < 0°C) are removed, air temperature is capped at a minimum of 0°C, and OSHD-derived snowmelt is added
as liquid precipitation. This enables integration without altering the wflow_sbm source code. While this method introduces
some physical inconsistencies, such as the omission of refreezing in the soil, these effects are deemed negligible. The runoff
model and streamflow observations remain free of uncertainty, isolating the impact of snow-related uncertainties. RF'CF' is
not dictated by OSHD and is still inferred, with the true RE'C'F' (RFCF*) set to 1. The rainfall correction is applied only to

the RhiresD forcing, not to the OSHD-derived snowmelt implemented as rainfall.
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2.4 Posterior ensemble selection

We use the Nash—Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) as the streamflow performance metric to quantify
agreement between model output and observations (denoted as Eg_ nysg) . An NSE of 1 indicates perfect agreement, while an
NSE of 0 implies no improvement over using the observed mean as a predictor. We calculate NSE over the snowmelt season
(March to July) to focus on snowmelt-driven discharge. Although NSE can give inflated values in catchments with strong
seasonality, such as the Dischma (Schaefli and Gupta, 2007), our focus is on relative differences in NSE, reflecting variations
in squared error magnitudes.

We adopt a rank-based heuristic posterior selection. All prior ensemble members are evaluated against observed streamflow
using NSE, and the top 1% are selected as the posterior ensemble, yielding a posterior size of Nyosterior = 50. The quality of

this posterior ensemble is then evaluated on different SWE metrics (Sect. 2.5).
2.5 Posterior SWE evaluation
2.5.1 SWE metrics and scales

We evaluate SWE reconstructions using a set of performance metrics that target different physical properties of the seasonal
snowpack. We follow the concept of the “snow triangle” metrics from Trujillo and Molotch (2014) and Rhoades et al. (2018),
with modifications. Unlike Rhoades et al. (2018), who reduce snowfall and melt to seasonal means, we use the full daily time
series of snowfall and melt rates to better evaluate temporal dynamics and individual events. For snow accumulation, we use
the total seasonal snow accumulation, rather than peak SWE volume, to reflect the total snow contribution to the catchment
water balance. Several timing metrics, such as date of peak SWE and melt season length, are omitted as their information is

assumed to be embedded in other metrics. Each performance metric £ is computed annually at two spatial scales:

— Catchment-aggregated (AGG): E 4c¢ metrics are calculated from the spatially averaged SWE time series across the

catchment.

— Distributed (GRID): Eqrrp metrics are computed per grid cell and averaged over space.

This allows assessment of whether streamflow informs the spatial structure or only the integrated behavior of the snowpack.
Such multi-scale evaluation is enabled by full spatio-temporal availability of the reference SWE.

Each performance metric matches the nature of the evaluated variable (Table 2). For the evaluation of time series such as
melt and snowfall, we use the NSE (Sect. 2.4) in AGG mode, and the grid-mean NSE in GRI D mode. For total accumulation,
we use Absolute Percentage Error (APE) in AGG mode:

pAccumulation _ App Accumulationg;,, — Accumulation s
AGG - -

-100 9
Accumulationps, ©)
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and the Mean Absolute Percentage Error (MAPE) in GRI D mode:

) 1
Eé(}:{cjul'r)nulatwn — MAPE = E Z

i=1

Accumulationg;y, ; — Accumulationeps ;

-100 (10)

Accumulationeps,;,

where ¢ denotes individual grid cells. For timing metrics evaluating SWE onset and melt-out dates, we use Absolute Error

(AE) in AGG mode:
Ei\{[ég—out/Onset — AE = |Tsim i Tobs| (11)
and Mean Absolute Error (MAE) in GRI D mode:

elt—ou nse 1 i
Egrrp """ = MAE =~ |Tuim,i — Toba.i (12)
i=1

where T;.,, and T, are the simulated and observed event dates (in day-of-year).

Table 2. Overview of SWE performance metrics used to evaluate the streamflow-derived posterior SWE ensemble. Error types are given for

catchment-aggregated (AGG) and distributed (GRI D) modes.

Metric Description Error Type (AGG/GRID)
EMelt NSE of daily snowmelt time series (—dSW E/dt) NSE / grid-mean NSE
ESnowfall NSE of daily snowfall time series (+dSW E/dt) ~ NSE/ grid-mean NSE
EOnset First day SWE exceeds 10% of seasonal max AE /MAE

EMelt—out First day SWE drops below 10% of seasonal max ~ AE/MAE

EAceumulation Tyl snowfall (or melt) over season APE / MAPE

2.5.2 Posterior rank evaluation

To assess how well streamflow constrains SWE, we apply a rank-based diagnostic. All 5000 prior members are ranked on each
performance metric. We then identify the ranks of the 50 posterior ensemble members in this list and compute their median
rank, denoted R,s¢, median-

If streamflow perfectly selects the best SWE scenarios, we expect Rp,st,median = 29, corresponding to the median of 50
samples (rounded down from 25.5). Conversely, if streamflow offers no useful constraint, posterior members will be randomly
distributed throughout the prior, and Ry,ost,median=2500, corresponding to the median rank among 5000 samples (rounded
down from 2500.5). A median rank significantly higher than 2500 would suggest streamflow-based selection degrades perfor-
mance for that metric. Note that this rank-based summary neglects the distribution shape of posterior ranks, focusing solely on

the median.

12
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3 Results

3.1 Posterior parameter ensembles
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Figure 3. Annual posterior parameter ensembles for the FS and SS experiments, expressed relative to the normalized prior range. 6xr
and Osp0q represent the meteorological and snow model parameters. Medians (white squares), interquartile ranges (boxes), and outliers
(grey dots) are shown for the 50 posterior parameter values. The true parameter values used to generate the synthetic observations (6*) are

represented by black crosses. The color-coding is based on the annually fluctuating values of SFC'F™* in FS.

Inferred posterior parameter ensembles O,,,,: do not consistently align with the true parameter values ©* in the FS experi-
ment (see Fig. 3a & b). Among all parameters, SFCF shows the highest sensitivity. Its annual posterior ensembles generally

reflect the imposed artificial bias fluctuations SF'C F*, although they tend to exceed SEF'C F™* on average, except during years
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with the highest S F'C'F* (2005, 2013, and 2021). SFC Fgrpy and W HC are often underestimated, while Myock, Ruock
and C'V are overestimated in most years. This suggests the occurrence of numerous posterior SWE scenarios with higher over-
all SWE (SFCF), preferential accumulation at lower elevations (SFCFgr gy ), faster overall melt (Myock and Ryock),
yet slower snow cover depletion (C'V"), compared to the synthetic SWE observations. The inferred posterior parameter ensem-
bles thus show that biased SWE scenarios can lead to the best-performing streamflow simulations.

In the SS experiment, of all ©* only RFCF™ is known, as SW E,.f ss consists of an external SWE product generated
with different forcing and a different snow model (Sect. 2.3.2). Fig. 3c shows that RF'C'F is consistently overestimated, which
is compensated by an annual underestimation of catchment-wide SWE accumulation of 6.6 +4.4% to close the melt season
water balance (not shown). The annual posterior ensembles of SFCF vary considerably across the prior range, suggesting
annually varying biases in the snowfall forcing and confirming the need for annual over multiannual inversion. The values of
SFCFgrev, TTerev, Myock, Ruock, and W HC are consistently on the lower edge of the prior range, while the C'V’
values are consistently shifted to the higher edge. This suggests preferential accumulation at lower elevations, slower melt,
and slower snow cover depletion of SWE,.y g5 (i.e. OSHD-TI product) compared to our prior assumptions expressed as

parameter ranges.
3.2 Streamflow and SWE performance

The posterior parameter ensembles for the FS experiment show that we cannot recover the true parameter values from stream-
flow alone, with NSE as the streamflow performance metric (Fig. 3). To better understand this result, we analyze the model
performances associated with the best ranked parameter sets. Figure 4 shows the Eg_ ysg results and posterior ensemble
member selection (Fig. 4a and 4c) and the subsequent evaluation of this selection on Eé%ﬁﬁ”“l““"" as an example SWE
performance metric (Fig. 4b and 4d), for both FS and SS. The results for other target SWE metrics are presented in Figs.
S1-10.

The Eq_ nsg results confirm strong agreement between simulated and synthetic streamflow in both experiments, with an
overall mean posterior NSE of 0.99 £ 0.01 for FS, and 0.94 & 0.03 for SS (Fig. 4a and 4c), compared to an overall mean prior
NSE of 0.67£0.11 for FS and 0.56 £ 0.16 for SS. The mean annual NSE range of the posterior ensembles equals 0.01 £ 0.01
for FS and 0.03 £ 0.01 for SS, compared to prior ranges of 2.4 + 1.2 for FS and 2.4 41 for SS.

Figures 4b and 4d show the E&¢smulation error results for each of the 5000 prior ensemble members, with the retained
posterior members (i.e. the best 1% under Eg_ ysE) subset overlaid. The best-performing prior members show near-zero error
in FS for some years (2001, 2002, 2004, 2016-2022), suggesting a good approximation of the existing solution SW E,..f rs. In
other years, however, the overall minimum prior error is higher (e.g. 2003). This is likely caused by both insufficient sampling
and a high sensitivity of the highest and lowest elevation grid cells to SFC Fgppy and TTg gy fluctuations, leading to high
accumulation biases. In the SS case, a perfect approximation of SW E,.. ¢ 55 is likely non-existent due to added meteorological
and snow model uncertainty, leading to an increase in the lowest achievable accumulation error compared to FS and resulting

in a higher overall prior error.
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Figure 4. Streamflow-based posterior selection (a, ¢) and evaluation of the sampled parameter sets on the SWE performance metric

Egscumulation (_q), for both FS (a, b) and SS (c, d) experiments. Grey points represent the 5000 annual prior members (above the y-

axis cutoff), while green points represent the posterior ensemble: the 50 members with the best streamflow performance.

335 The posterior subset is located among the better performing prior members in most years for both FS and SS, suggesting
that streamflow provides meaningful constraint on SWE properties (in this case, EAScpmulation) At the same time, numerous

prior members outperform the posterior ensemble, which shows that high streamflow skill does not guarantee high gridded
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SWE accumulation skill (Eéfg}‘g“l“”o"). Additionally, the degree of constraint varies substantially across years, with some

years showing a narrow spread (e.g. 2013 in FS) and others showing a wide spread (e.g. 2019) among the posterior ensemble.

340 3.3 Posterior rank evaluation across SWE metrics
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Figure 5. Annual median SWE metric ranks of the streamflow-derived posterior ensembles, relative to all 5000 prior members. The top figure
shows the results for catchment-aggregated SWE metrics (E aca), while the bottom shows grid-averaged metrics (Ecrrp), sorted based on
the FS E 4 ranks. Each point represents the annual median posterior rank between 2001-2022, with the year 2003 in thick outline as an
example. The diamonds represent the mean of all median posterior ranks, and the error bars represent the 95% confidence interval. The fully

and semi-synthetic experiments are represented in blue and orange, respectively. The definitions of the error metrics are given in Sect. 2.5.1
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To further understand the constraining power of streamflow, Figure 5 shows the annual median posterior ranks Rpost,median
across all SWE performance metrics computed for the streamflow-derived posterior ensembles, with the ranks being relative
to the prior ensemble. Results are shown separately for catchment-aggregated (F4g¢) and grid-averaged (Fgrrp) metrics.
Each point represents a year and shows the median rank of the 50 posterior members. High ranks (i.e. low values) indicate
a strong constraint of streamflow on SWE with a perfect constraint corresponding to Ryost,median = 25 and no constraint
corresponding t0 Ry,os¢,median = 2500 (Sect. 2.5.1).

E%C?g emerges as the overall highest ranking SWE performance metric in both experiments. In the FS case, Rj,st,median
approaches the perfect constraint limit of 25 in most years (Rpost,median = 1372108), indicating that the same simulations that
best reproduce streamflow NSE also tend to best reproduce catchment-scale melt dynamics. In SS, EfX[G?lé remains the overall
highest-ranking AG'G metric, though with considerably reduced ranks and more year-to-year variability (Rpost,median = 619+
518). In contrast, Eéf]g}tD ranks considerably lower and shows high interannual spread in both FS (R,os¢,median = 807 £ 557)
and SS (Rpost,median = 1779 £ 951) (see year 2003 in Fig. 5). This suggests that streamflow can constrain the catchment-
aggregated meltwater production, but to a lesser degree its spatial origin.

ESnrowfall presents somewhat different behavior. In FS, both B v and EZ747 ! rank relatively high, likely because
the same parameter sets that benefit £ ¢! also benefit £°™°"f! ynder unbiased forcing. In SS, the different forcing biases
during accumulation and melt periods reduce this effect, and both Eig‘g"f “and Eé?—fl%f ! rank low. This confirms the ex-
pected difficulties of inferring snowfall dynamics from discharge data, due to the high variability of snowfall in space and time
(Mott et al., 2014).

EAccumulation rankg slightly higher than E4giamulation both in FS and SS. In SS, EA¢umulation jq the highest-ranking
GRID performance metric (Rpost,median = 1444). This suggests that the spatial distribution of snow accumulation is equally
or better constrained by streamflow than the total catchment-wide accumulation. Note, however, that a different streamflow
performance metric than NSE (e.g. seasonal streamflow bias) might favor the constraint of catchment-aggregated accumulation
more.

Among the timing metrics, the melt-out dates (E¢%#~°%%) are relatively well constrained in both FS and SS, particularly
in AGG mode. This is consistent with their physical link to melt cessation and the end of the snow-driven streamflow season.
Compared to EAlcliout | pAleli-out performs similarly in FS but deteriorates more substantially in SS. Conversely, SWE
onset dates (E°™*¢?) are poorly constrained in all cases, mainly resulting from the abovementioned large variability in snowfall
dynamics.

Across all metrics, Rp,os¢,median Values are systematically higher in SS compared to FS (orange vs. blue points in Fig. 5),
with an average increase of 989 across all metrics, corresponding to 20% of N,,,;,. The standard deviation of R,s¢ median
values for each performance metric also increases on average by 414. This confirms that structural and input uncertainty
reduce the ability of streamflow to constrain SWE. Additionally, the increased spread in Rpos¢,median across different SWE

performance metrics in SS indicates that members performing well on one metric no longer consistently perform well on others.

This suggests a decoupling of performance among metrics and highlights growing trade-offs between competing aspects of
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SWE reconstruction under added uncertainty. Nonetheless, except for Egg}%f all in SS, most median ranks remain above the

no-constraint threshold, indicating some retained information.

3.4 Correlation among metrics
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Figure 6. Correlations among all retained streamflow and SWE performance metrics, expressed as the median of annual Spearman rank
correlations over all 5000 yearly prior members between 2001 and 2022. The upper values in blue represent the fully synthetic experiment,
while the lower values in orange represent the semi-synthetic experiment. Black lines delineate streamflow (@), catchment-aggregated SWE

(Eaca), and spatially distributed SWE (Egrrp) performance metrics. Black squares emphasize Eage-Ecqrrp diagonals.

To complete the picture, we analyze the complementarity of the retained metrics (Fig. 6). The top row and left-most column
show the Spearman Rank correlation (p) of all SWE metrics with streamflow NSE, which is similar to Fig. 5 but instead con-
sidering the correlation among all prior members for each year. Again, Eﬁ/’(‘;"’l@t appears as the SWE performance metric most
strongly correlated with Eg_nse (prs = 0.89 & pss = 0.63). Among the different SWE performance metrics, FS correla-

tions are generally stronger than SS, and AGG metrics correlate well with their GRID counterparts. Strong correlation of
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other SWE performance metrics with E%C?g is not necessarily a guarantee of strong correlation with Fg_ ysg. It is the case

for Melt-out, which mirrors the correlation of Melt with Eg_ ygg across bothAGGand GRID metrics. However, this does

not hold for EMsY which, despite a moderate correlation with E32$Y (pgg = 0.62), shows little correlation with Eg_ ysi
(pss = 0.22). Similarly, Eéf{}‘g“l““‘m correlates only weakly with E]X[G?g (pss = 0.12), yet shows a slightly stronger corre-

lation with EQfNSE (pss = 0.36).
These results suggest that, in general, streamflow contains information about different SWE metrics independently. In other
words, the members with high £ %5@5 rank might not be the same as the members with high Eéff}lgwla“o” rank. This supports

the use of multiple SWE metrics and highlights the risks of drawing conclusions from a single metric.

4 Discussion
4.1 Streamflow constraining potential under idealized conditions

The FS experiment confirms that streamflow-constrained SWE inversion works in theory, but perfect constraint is only achieved
for catchment-aggregated melt (£ %C?g). Other SWE properties remain well-constrained, but far from perfectly constrained. For
example, £ ﬁggm“l““‘m has a mean Rpos¢,median Of 693; far above the no-constraint benchmark (2500), but still implying an
average of 668 (693-0.5% N ,sterior) prior members that match snowfall better but streamflow worse. This demonstrates that
even under highly idealized conditions, streamflow does not consistently identify the best-performing SWE scenarios across
all performance metrics.

This finding can primarily be explained by physical non-uniqueness in the SWE-streamflow relationship (Beaton et al.,
2024): different SWE and rainfall scenarios can lead to equivalent streamflow responses. Catchment-aggregated melt (E%Gdé)
being better constrained than distributed melt (EX5,) is a first indication of this, by showing that biased spatial melt distribu-
tions can lead to the accurate aggregated melt output. A second indication is given by the imperfect constraint on catchment-
aggregated accumulation (E ﬁggm“l““on): the best-performing streamflow performance can be achieved with biased (i.e., over-
or underestimated) catchment-wide SWE accumulation estimates (i.e., Rpost,median far from the perfect constraint limit). Fi-
nally, posterior parameter values of SF'C'F' and RFCF diverge from the known truth (Fig. 3 and Sect. 3.1), confirming that
multiple distinct SWE and rainfall combinations can yield similar streamflow responses.

A second source of uncertainty in the FS experiment is structural non-uniqueness or equifinality (Beven and Freer, 2001;
Giinther et al., 2020), whereby multiple parameter sets yield similar SWE outcomes. However, since this study focuses on
SWE performance rather than parameter convergence, such equifinality is not of major concern. A third potential source is
parameter estimation uncertainty, i.e., the failure to identify optimal parameter combinations by the sampling algorithm. Yet
this is also of minor importance, as the posterior simulations already achieve high streamflow skill, and further optimization or
a different Nposierior /Nprior ratio would not affect the SWE-streamflow relationships central to our analysis.

The semi-synthetic experiment shows that adding meteorological and snow model uncertainty significantly reduces the

ability of streamflow to constrain SWE across all performance metrics. This reduction suggests a mismatch between our

meteorological forcing and snow model versus the OSHD reference, which the current inversion framework is unable to correct.
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Increasing model complexity, enhancing the temporal and spatial resolution of 6,,,¢¢¢0, Or drawing from a larger prior ensemble
could potentially improve inversion outcomes. However, these strategies would quickly render the inversion computationally
infeasible. Combined with the aforementioned non-uniqueness in the SWE—streamflow relationship, uncertainties throughout
the modeling chain present a major barrier to accurately identifying realistic SWE scenarios from streamflow. These added
uncertainties also introduce stronger trade-offs between SWE metrics: even when the best-performing ensemble members for

E%ég are correctly identified, they are increasingly unlikely to also perform well on other SWE performance metrics.

4.2 Additional challenges under real-world conditions

Under real-world conditions, constraining SWE reconstructions using streamflow presents additional challenges and requires
methodological adaptations beyond the idealized setup explored in this study. These challenges include both substantially
increased uncertainty and reduced opportunities for performance evaluation (Fig. 1). One major source of uncertainty not ad-
dressed here is runoff model uncertainty. This encompasses both uncertainty in static catchment properties—such as lithology,
pedology, and hydraulic conductivity—and uncertainty in the representation of water transport processes through the catch-
ment (Beven, 2006). Such uncertainty can introduce persistent timing biases in the translation of snowmelt into streamflow,
complicating efforts to infer SWE dynamics from streamflow observations. Henn et al. (2018) have already demonstrated that
model structural choices critically influence the success of precipitation inversion, and similar effects are expected for SWE.
Another source of uncertainty excluded from this study is streamflow observation error. This includes uncertainty in river stage
measurements, discharge gauging procedures, rating curve estimation (Di Baldassarre and Montanari, 2009), and potentially
ice damming (Burrell et al., 2023). These errors can propagate into both event-scale misattribution of meltwater timing and
biases in the estimation of seasonal water inputs in mass-conserving models. A further category of uncertainty concerns the me-
teorological and snow model uncertainties imposed in the semi-synthetic experiment, which we deem conservative compared to
real-world conditions. Real-world meteorological errors likely exceed the mismatch between our forcing and the OSHD forc-
ing, not least due to the addition of evaporation estimation uncertainty. Likewise, snowpack dynamics are more heterogeneous
and complex in reality than what is represented in the OSHD model, leading to additional structural snow model uncertainty.
Taken together, these additional sources of uncertainty are expected to further diminish the constraining potential of streamflow
on SWE reconstruction beyond the reduction observed here between the fully synthetic and semi-synthetic experiments.

An additional challenge in real-world applications is the absence of true SWE observations against which to evaluate in-
version results. Unlike synthetic experiments, where the true SWE is known, real-world evaluations rely on incomplete and
uncertain observations. Ground SWE measurements offer accurate data but are sparse and represent only single points, making
comparisons with spatially averaged model outputs problematic (Horner et al., 2020; Magnusson et al., 2019). Ground snow
depth observations require conversion to SWE using snow density estimates, which are often uncertain and spatially variable
(Lépez-Moreno et al., 2013). Satellite-derived snow cover products provide complete spatial snow duration information, but
lack information on SWE magnitude. State-of-the-art SWE reconstructions, such as the OSHD product, offer gridded recon-
structions that can be used for benchmarking: they allow for evaluating whether streamflow can provide a similar degree of

constraint compared to ground or remote sensing observations. However, they remain model-based reconstructions themselves,
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equally suffering from multiple sources of uncertainty. Airborne Snow Observatory (ASO) data in the U.S. are likely the most
accurate catchment-scale SWE estimates currently available (Painter et al., 2016), but they remain limited to Western-US
catchments and do not provide temporal continuity. On a related note, the lack of SWE evaluation data equally implies a
lack of training data for data-driven methods, thereby limiting the potential of machine learning methods as an alternative in
streamflow-constrained SWE reconstruction.

Taken together, these limitations imply that verifying whether SWE inversion has succeeded is inherently difficult under real-
world conditions. A practical way forward is to continue refining idealized experiments by further adding controlled sources
of uncertainty, such as runoff model and streamflow observation errors, thereby approximating real-world complexity while

retaining the ability to assess inversion effectiveness quantitatively.
4.3 Potential inversion framework adaptations

Several elements of the inversion framework proposed here may require adaptation under real-world conditions, where un-
certainty is higher and evaluation opportunities are more limited. One key limitation is the use of NSE as the streamflow
performance metric. NSE is sensitive to timing errors, potentially penalizing simulations that replicate melt events with slight
temporal shifts more than those that miss them entirely. This is problematic in light of our finding that streamflow has the
strongest constraint on catchment-aggregated melt, which is inherently timing-dependent. Directional optimization sampling
algorithms (as opposed to the LHS random sampling applied here) risk further exacerbating the sensitivity of NSE to timing
errors. Alternative metrics targeting hydrological signatures, such as the coefficient of variation or the sum of streamflow over
the melt season (Schaefli, 2016), might be more robust when errors are more pronounced.

Real-world uncertainty may additionally alter which SWE properties are best constrained and should therefore be the target
of the inversion. While catchment-aggregated melt was the best-constrained SWE property in our synthetic experiments, its
sensitivity to timing errors could reduce its identifiability under real-world conditions. SWE accumulation may be less sensitive
to timing errors, though it might be more sensitive to mass balance errors. Other SWE properties, such as snowfall rates and
SWE onset dates, showed limited constraint even under ideal conditions and are unlikely to improve with added uncertainty.

The interactions between streamflow and SWE performance metrics are also likely to affect the outcome of the inversion, in
addition to the individual choice of each metric. NSE is a residual-based streamflow performance metric, that might favor the
selection of members performing well on residual-based SWE performance metrics (such as E}L$%). A bias-based streamflow
performance metric, such as the error on the accumulated discharge over the melt season, might instead favor the selection
of members performing well on bias-based SWE performance metrics, such as Eﬁggm“l““‘m (which ranked relatively low
under Eg_ nsg). Consequently, the results presented here should be considered in light of the use of NSE as the streamflow
performance metric. A full analysis of the streamflow and SWE performance metric interactions is outside the scope of this
work, but is recommended for future research.

Given the increased spatial and temporal variability and uncertainty in meteorological forcing under real-world conditions,
the correction factors currently applied in this study are likely too simplistic to adequately capture real-world meteorological

biases. The current application of 6,,,¢;., assumes constant biases within each season, whereas in reality, snowfall and melt-
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related biases may vary at sub-seasonal and event timescales. Furthermore, the assumed linear dependence of snowfall and melt
threshold corrections on elevation (SFCFgp gy and TTgr gyv) likely oversimplifies the actual non-linear lapse-rate behavior
observed in complex terrain. While our findings suggest that temporal snowfall biases have a limited effect on streamflow
simulations, the representation of melt dynamics and SWE accumulation is more sensitive. Increasing the temporal resolution
of temperature-based parameters (17, TT_FELFEV') and introducing greater spatial flexibility for snowfall and melt correc-
tions (SFCF, SFCFgrgyv, TT, and TT_ELFEV) could improve the identifiability of relevant processes from streamflow
observations. Despite the associated increase in computational cost, such refinements may enhance the potential of streamflow
to constrain SWE properties.

Finally, the choice of snow and runoff models can be critical. Radiation-enhanced temperature-index models, such as the
snow model used here, have been shown to perform well on the catchment scale and require minimal meteorological input
(Magnusson et al., 2015). However, when more abundant meteorological data is available, the more complex energy-balance-
based models might be better suited to capture the true SWE evolution (Mott et al., 2023). In contrast, the inversion could
benefit from decreased complexity in the runoff model. Since the primary function of the runoff model in this framework is
to translate spatial melt into streamflow, semi-distributed or lumped formulations could reduce computational costs and allow
for larger ensembles compared to the fully distributed runoff model used here. More broadly, the use of multiple snow and
runoff models within the inversion framework could enhance robustness by increasing the likelihood of capturing the true

SWE evolution and SWE-Q transformation, respectively.
4.4 Outlook on the added value of streamflow in SWE reconstructions

We demonstrate that streamflow can constrain certain aspects of SWE reconstructions under idealized conditions, but also that
both non-uniqueness and added uncertainty significantly reduce that ability. Under real-world conditions, streamflow alone
may fail to reliably distinguish biased from unbiased SWE simulations. In the absence of reliable SWE evaluation data, the
selection of biased SWE simulations might even go undetected. This implies that streamflow may, in some cases, not provide
added value compared to simply running a snow model with uncorrected meteorological forcing.

Several factors influence whether streamflow can provide added value in SWE reconstructions, independent of the method-
ological considerations in Sect. 4.3. First, the quality of meteorological observations is crucial. Low meteorological biases
result in low biases in SWE reconstructions, reducing the need for streamflow to constrain or bias-correct them. Secondly, the
size, shape, and climate of the target catchment play a role. Smaller, elongated catchments (e.g. the Dischma catchment of
this study) exhibit lower non-uniqueness than large, round catchments, while snow-dominated catchments offer better identi-
fiability of snowmelt than snow-scarce catchments (Griessinger et al., 2016). Dry spring and summer climates are particularly
beneficial for streamflow-assisted SWE inversion as they limit the confounding between rainfall and snowmelt signals.

The same logic likely also applies to inter-annual variability within each catchment. In years with higher snowfall fractions
and less spring rainfall, streamflow likely has greater constraining potential on SWE reconstructions. The above factors favor
the application of streamflow-assisted SWE inversion as far back as streamflow observations allow, as meteorological forcing

products have become less biased, and snowfall dominance has decreased with time (Han et al., 2024). They also favor its
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application to meteorologically under-observed mountain regions such as the Himalayas and the Andes, where forcing products
equally tend to be more biased and SWE evaluation is scarcer (Beck et al., 2019; Thornton et al., 2021).

While streamflow alone may not fully constrain SWE reconstructions, it can serve as a valuable complement to other sources
of snow information, such as remotely sensed snow cover (e.g., Margulis et al., 2016), wet snow maps (Cluzet et al., 2024),
ground observations (e.g., Mott et al., 2023), and spatially predictable accumulation and melt patterns governed by topography
(e.g., Pflug et al., 2021). Among these, streamflow is unique in that it captures catchment-integrated snow dynamics, most
notably the timing and total volume of snowmelt runoff. Our finding that streamflow most effectively constrains catchment-
aggregated melt supports its potential role in this context. In light of results by Rhoades et al. (2018), who showed that many
SWE products systematically misrepresent average melt rates in mountainous terrain, streamflow is the only observational
source capable of directly constraining such errors at the catchment scale. We therefore propose that future studies investigate

the integration of streamflow with other snow data sources to constrain SWE reconstructions as much as practically possible.
4.5 Broader implications in snow hydrology

Our results have important implications beyond the scope of SWE reconstructions. Streamflow observations have been used
as an evaluation measure of different snow routines (e.g., Griessinger et al., 2019; Valéry et al., 2014; Follum et al., 2019;
Clemenzi et al., 2023) or of snow data assimilation schemes (Roy et al., 2010; Griessinger et al., 2016; Metref et al., 2023).
While these studies mention observation uncertainties and uncertainties in the modeling chain, the inherent non-uniqueness of
the SWE-streamflow relationship is a critical limitation often unacknowledged. The results presented here demonstrate that
multiple combinations of gridded SWE distributions and snowmelt-to-rainfall ratios can produce similar streamflow outputs.
This implies a trade-off between snow model and meteorological forcing: different snow model structures or data assimila-
tion approaches may yield comparable streamflow results under differing meteorological forcings. Consequently, when only
the snow model structure or assimilation method is varied but the meteorological input remains biased, it becomes difficult
to attribute improvements in streamflow performance to genuine advances in snow process representation. Instead, such im-
provements may simply reflect more effective compensation for input biases. This confounding effect can lead to incorrect
conclusions about model quality or skill. Furthermore, the choice of both streamflow and SWE evaluation metrics is often
overlooked in the literature, despite their critical influence on interpreting the relationship between streamflow and snow dy-
namics, as demonstrated in this study. Notably, catchment-aggregated melt, which is the SWE component most directly linked
to streamflow, is seldom the explicit focus of SWE model inter-comparisons using streamflow as an evaluation target. We there-
fore recommend future studies using streamflow for snow model inter-comparison to take note of the effects of non-uniqueness,

potential modeling chain uncertainties, and the choice of metrics in the interpretation of their results.

5 Conclusion

We presented a framework for streamflow-constrained SWE reconstruction at the catchment scale using inverse hydrological

modeling. We tested the methodology in two synthetic numerical experiments and across five target SWE metrics calculated
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on both catchment-aggregated and spatially distributed scales. The fully synthetic experiment showed that, even in the ab-
sence of all modeling chain uncertainty, a range of different SWE realizations and snowmelt/rainfall combinations can lead
to equivalent and very well-performing streamflow results. The semi-synthetic experiment showed that the addition of artifi-
cial meteorological and snow model uncertainty leads to a considerable reduction in the constraining potential of streamflow
across all SWE properties. In both experiments, streamflow has the most constraining potential on catchment-aggregated melt,
although this finding is conditional to the use of NSE as the streamflow performance metric. This study showed that even
in synthetic experiments devoid of observation and runoff model uncertainty, the relationship between streamflow and SWE
properties is complex and non-linear, and streamflow alone can only constrain SWE reconstructions to a limited degree. We
therefore expect streamflow-constrained SWE reconstructions using the presented framework to be challenging in many real-
world cases, when the issues of non-uniqueness and uncertainties across the modeling chain are further amplified. We suggest
future studies to further test streamflow-constrained SWE reconstruction under real-world conditions or heightened artificial
uncertainty (i.e. streamflow observation errors and runoff model imperfections), across diverse catchments, using multiple
streamflow performance metrics and in combination with other indirect SWE observations. More broadly, we advise future
studies relying on streamflow for snow model inter-comparison to carefully consider the complications in the SWE-streamflow

relationship identified here.

Code and data availability. All code and supporting files used in this study are available at 10.5281/zenodo.16146617. The latest wflow_sbm
code can be found at https://zenodo.org/records/15722493. The Python wrapper for the wflow_sbm Julia code as part of eWaterCycle can
be found at https://github.com/eWaterCycle/ewatercycle-wflowjl. The version of wflow_sbm used in this study including the snow model

adjustments can be found at https://github.com/pauwiersma/Wflow.jl.
Appendix A: HydroMT global datasets

Table A1. Global datasets used to setup wflow through the HydroMT package

Dataset

Function

Reference

Chelsa
Koppen-Geiger

Precipitation climatology

Climate classification

Karger et al. (2017)
Kottek et al. (2006)

MERIT DEM (90m) Topography Yamazaki et al. (2017)
MERIT Hydro Hydrography Yamazaki et al. (2019)
MODIS LAI Leaf Area Index Myeni et al. (2015)
Soilgrids (v2020) Gridded soil classification de Sousa et al. (2020)
Vito Land use classification Buchhorn and smets (2020)
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Appendix B: wflow_sbm default parameters

Table B1. Key wflow_sbm parameters used in this study. All parameters are unitless. For the remaining parameter values, we refer to van

Verseveld et al. (2024).

Parameter Function Default value
khfrac Multiplication factor applied to vertical hydraulic conductivity to obtain horizontal hydraulic conductivity 100

f Scaling parameter controlling the decline of vertical hydraulic conductivity with depth 1

kv frac Multiplication factor applied to the vertical hydraulic conductivity 5

C Brooks-Corey power coefficient controlling soil water pressure for each soil layer 1
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