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Abstract 17 

Wetlands play a pivotal role in carbon sequestration but emit methane (CH4), creating 18 

uncertainty in their net climate impact. Although process-based models offer mechanistic 19 

insights into wetland dynamics, they require extensive site-specific parameterisation (e.g. soil 20 

carbon profiles, pore-water chemistry, vegetation-specific model parameters), as well as high-21 

resolution hydrological and meteorological inputs that are often difficult to obtain outside of well-22 

instrumented research sites, which makes regional upscaling challenging. In contrast, data-23 

driven models provide a scalable alternative by leveraging available datasets to identify patterns 24 

and relationships, making them more adaptable for large-scale applications. However, their 25 

performance can vary significantly depending on the quality and representativeness of the data, 26 

as well as the model design, which raises questions about their reliability and generalizability in 27 

complex wetland systems. To address these issues, we present a data-driven framework for 28 

upscaling wetland CO2 and CH4 emissions, across a range of machine learning models that 29 

vary in complexity, validated against an extensive observational dataset from the Sacramento-30 

San Joaquin Delta. We show that artificial intelligence (AI) approaches, including Random 31 

Forests, gradient boosting methods (XGBoost, LightGBM), Support Vector Machines (SVM) and 32 

Recurrent Neural Networks (GRU, LSTM), outperform linear regression models, with RNNs 33 

standing out, achieving an R² of 0.73 for daily CO₂ flux predictions compared to 0.64 for linear 34 

regression, and an R² of 0.53 for CH₄ flux predictions compared to 0.47 for linear regression. 35 

Interestingly, linear regression performed better than random forest for methane flux, which 36 

highlights the necessity for comparison. The, interannual variability is less well captured, with 37 

annual mean absolute error of 176 gC m-² yr-1 for CO₂ fluxes and 9 gC-CH₄ m-² yr-1  for CH₄ 38 
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fluxes. By integrating vertically-resolved atmospheric, subsurface, and spectral reflectance 39 

information from readily available sources, the model identifies key drivers of wetland CO2 and 40 

CH4 emissions and enables regional upscaling. These findings demonstrate the potential of AI 41 

methods for upscaling, providing practical tools for wetland management and restoration 42 

planning to support climate mitigation efforts. 43 

 44 

1. Introduction 45 

Wetlands provide a wide array of ecological, economic, and environmental benefits (Costanza 46 

et al., 2014). They play a crucial role in biodiversity conservation, water purification, flood 47 

control, and climate regulation  (Grande et al., 2023; Sharma and Singh, 2021). Significant 48 

attention has been recently given to wetland restoration due to their ability to sequester carbon 49 

from the atmosphere (Lolu et al., 2020; Upadhyay et al., 2020). These ecosystems are highly 50 

effective at storing carbon in their soils because the anaerobic conditions in waterlogged soils 51 

suppress organic matter decomposition, allowing carbon to accumulate over time (Mitsch and 52 

Gosselink, 2015a). However, wetlands can also be significant sources of CH4, a potent 53 

greenhouse gas (Brix et al., 2001), leading to potentially net positive effects of wetlands on 54 

climate warming. The most accurate way to determine the carbon balance in natural 55 

ecosystems is through direct and continuous measurements of carbon and GHG sources and 56 

sinks (Baldocchi et al., 2001). This involves monitoring carbon dynamics using techniques such 57 

as eddy covariance (EC) towers (Aubinet et al., 2012), soil carbon stock assessments (Harrison 58 

et al., 2011), and lateral carbon transport measurements (Ciais et al., 2008). However, these 59 

measurements are time-consuming to carry out, costly, and require specialized instruments and 60 

expertise, limiting their application to a few representative sites globally (Hill et al., 2017; Kumar 61 

et al., 2017). The Ameriflux network offers roughly 500 EC sites comprising about 3600 site 62 

years of data, monitoring carbon fluxes across various ecosystems such as forests, grasslands, 63 

and wetlands (Pastorello et al., 2020). Eddy-covariance site footprints range in scale and are 64 

typically determined by the sensor height and atmospheric turbulence (Chu et al., 2021). Data 65 

from these Ameriflux sites could potentially be upscaled and used for estimating fluxes from 66 

non-monitored sites to obtain regional assessments of carbon balance for various ecosystem 67 

types, including wetlands. 68 

In this study, we focus on nontidal wetlands due to the presence of a cluster of EC towers in a 69 

small region located in the Sacramento-San Joaquin Delta, including three sites, each with over 70 

a decade of continuous data. Reported sequestration rates in wetlands vary widely, influenced 71 

by factors such as climate, vegetation, and management. For instance, reported sequestration 72 

rates range from as low as 26 gC m⁻² yr⁻¹ in boreal rain-fed bogs (Villa and Bernal, 2018) to as 73 

high as 797 gC m⁻² yr⁻¹ in constructed wetlands with emergent Phragmites in the Netherlands 74 

(de Klein and van der Werf, 2014). Similarly, temperate wetlands in central Ohio exhibit a wide 75 

range of carbon sequestration rates depending on vegetation: forested depressional wetlands 76 

dominated by Quercus palustris sequester up to 473 gC m⁻² yr⁻¹, while marshes dominated by 77 

Typha sequester around 210 gC m⁻² yr⁻¹ (Bernal and Mitsch, 2012). In Victoria, Australia, 78 

freshwater marshes show varying sequestration rates from 91 gC m⁻² yr⁻¹ in shallow marshes to 79 
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230 gC m⁻² yr⁻¹ in permanent open freshwater wetlands (Carnell et al., 2018). More relevant to 80 

this study, in the San Francisco Bay-Delta region, nontidal managed wetlands dominated by 81 

Schoenoplectus and Typha species sequester carbon at rates of approximately 355 ± 249 gC-82 

CO₂ m⁻² yr⁻¹. This estimate is based on direct calculations using Ameriflux data from sites with 83 

over a decade of observations (US-Myb, US-Tw1, and US-Tw4). For this calculation we used 84 

full-year annual averages and their corresponding standard deviation to the annual mean, to 85 

highlight the significant inter-annual variability, with the standard deviation close to the mean.  86 

The unit reported for these Delta sites is in gC-CO₂ m⁻² yr⁻¹, as the EC tower directly detects 87 

CO₂ exchange, which is convenient for GHG assessment purposes. It is worth noting that, at 88 

these sites, some years were a net CO2 source, due to site-specific disturbances such as 89 

caterpillar infestations, drought, or when vegetation cover was fully established (Anderson et al., 90 

2018; Knox et al., 2017; Rey‐Sanchez et al., 2021) . See table S1 for more detailed information 91 

and references therein.  92 

Although CO2 balance (photosynthesis minus community respiration) is an important component 93 

of carbon sequestration, in many wetland systems sequestration benefits are counterbalanced 94 

by CH4 emissions, a potent greenhouse gas, with a warming potential 27 times higher than CO2 95 

(Lee et al., 2023) that can often offset climate mitigation efforts. CH4 emission rates also vary 96 

substantially over time and across wetlands, from as low as 0.23 gC-CH₄ m⁻² yr⁻¹ in saltwater 97 

zones of estuarine environments (Abril and Iversen, 2002) to as high as 270 gC-CH₄ m⁻² yr⁻¹ in 98 

certain freshwater wetlands (Knox et al., 2021). For example, restored freshwater wetlands in 99 

Maryland dominated by grasses and sedges emit around 142 gC-CH₄ m⁻² yr⁻¹ (Stewart et al., 100 

2024). Tropical wetlands in Costa Rica exhibit some of the highest emissions, with isolated and 101 

floodplain wetlands releasing between 220 and 263 gC-CH₄ m⁻² yr⁻¹ (Mitsch et al., 2013). The 102 

San Francisco Bay-Delta wetlands that have high carbon sequestration rates also release CH4 103 

at rates of 35 ± 13  gC-CH₄ m⁻² yr⁻¹ (direct measurements from the eddy covariance tower data 104 

(Arias‐Ortiz et al., 2021)). See table S2 for further information and reference therein. This dual 105 

role of wetlands in both sequestering carbon and emitting CH4 reveals the complex effect they 106 

have on the global greenhouse gas balance. Therefore, integrating CO2 and CH4 emissions is 107 

critical to assess the net climate benefits of wetland conservation and restoration initiatives. 108 

To evaluate how wetlands contribute to the atmospheric radiation budget at larger scales, it is 109 

essential to quantify both GHG emissions and carbon sequestration, especially at sites where 110 

direct measurements are unavailable (Moomaw et al., 2018). Upscaling models serve this 111 

purpose by allowing estimation of sequestration and emission rates across larger spatial scales 112 

than those covered by the original data sources (Villa and Bernal, 2018) which provide GHG 113 

accounting and net climate benefit assessments for specific wetland sites (Nahlik and 114 

Fennessy, 2016). Moreover, it aids in targeting wetland restoration efforts that aim to optimize 115 

sequestration by identifying locations with the greatest potential for net carbon uptake. 116 

Process-based models have traditionally been used to estimate sequestration and emissions 117 

(Mack et al., 2023; Zhang et al., 2002). Models such as DNDC (Li, 1996), DayCent (Parton et 118 

al., 1998), and Ecosys (Grant et al., 2017) have been applied to simulate biogeochemical 119 

processes in terrestrial ecosystems, including modeling CH4 emissions, carbon balances, and 120 
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soil carbon and nitrogen cycling (Grant and Roulet, 2002; Weiler et al., 2018; Zhang et al., 121 

2002). While these models can elucidate the processes that play a role in carbon dynamics, 122 

they require extensive mechanistic parameterization to accurately represent the interactions in 123 

various ecosystems (Pastorello et al., 2020; Yin et al., 2023). This approach often necessitates 124 

site-specific information and data collection, making implementation over vast areas challenging 125 

(Saunois et al., 2024; Xu and Trugman, 2021). The extensive data needs associated with these 126 

process-rich models showcase the need for alternative approaches that can effectively upscale 127 

wetland emissions without such intensive resource demands. 128 

Artificial Intelligence (AI) methods, such as machine learning and deep learning, have been 129 

widely applied in ecological modeling in recent years, alongside long-term, large-scale data 130 

collection efforts (Perry et al., 2022). Recent deep learning applications have demonstrated 131 

success in capturing the complex dynamics of carbon and methane fluxes in these systems 132 

(Ouyang et al., 2023; Yuan et al., 2022, 2024; Zou et al., 2024). The availability of open-source 133 

modeling platforms like TensorFlow and PyTorch has made advanced computational 134 

techniques, such as neural networks, more accessible, enabling the rapid development and 135 

deployment of a range of specialized modeling tasks (Xu et al., 2021). Despite several recent 136 

studies demonstrating the potential of machine learning for large-scale carbon cycling in 137 

wetland ecosystems, this remains a relatively young field. Moreover, carbon dynamics in 138 

wetland ecosystems are temporally variable and inherently nonlinear, making them particularly 139 

well-suited for testing machine learning approaches (Arora et al., 2019, 2022). We therefore 140 

emphasize the importance of evaluating and comparing various approaches within this domain 141 

and their potential for large-scale assessment. 142 

A pervasive challenge in model development is the ability to balance complexity with 143 

generalizability. While more complex models can capture nonlinear relationships, they also 144 

increase the risk of overfitting, where the model performs well in the testing, but poorly on new 145 

conditions (Hastie, 2009; Tashman, 2000). Furthermore, it is also important to use a robust 146 

validation framework. For the application of upscaling, it is important that the model is able to 147 

extrapolate spatially. For this purpose, a leave-one-site-out (LOSO) validation approach is 148 

typically carried out, whereby the models are trained on data that excludes a single site, with the 149 

excluded site data saved for model testing (Bodesheim et al., 2018; Tramontana et al., 2016). It 150 

is also important to avoid data leakage, where information from the training set inadvertently 151 

appears in the testing set (Kaufman et al., 2012), a risk posed when splitting temporally 152 

adjacent data points that are close in value, potentially inflating performance statistics (Bergmeir 153 

and Benítez, 2012; Kaufman et al., 2012). For example, daily rates of change relative to a 154 

system where seasonal dynamics dominate, such as emissions of CH4 emissions in vegetated 155 

wetlands (Knox et al., 2021).  156 

In this study, we introduce a model framework for coastal nontidal wetland CO2 and CH4 157 

emissions using several  ‘off-the-shelf’ models. These models are trained and validated against 158 

observational data, and results are compared to find the most predictive model. The top 159 

performing model is then used to upscale carbon sequestration and CH4 emissions in nontidal 160 

wetlands at regional scale. The San Francisco Bay-Delta serves as the area of interest, due to 161 

its network of EC towers that have been operating for a relatively long time and relevance to 162 
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future wetland restoration efforts. We employ a suite of models, ranging widely in complexity: (1) 163 

linear regression; (2) Random Forests (Breiman, 2001), an ensemble method that constructs 164 

multiple decision trees to reduce overfitting; (3) gradient boosting techniques such as LightGBM 165 

(Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016), which are scalable tree boosting 166 

systems able to handle complex nonlinear relationships and variable interactions; (4) Support 167 

Vector Machines (SVM) (Cortes, 1995), a kernel-based technique that can approximate 168 

nonlinear boundaries between data points and (5) the Recurrent Neural Network (RNN) such as 169 

the Long Short-Term Memory (LSTM) neural network (Hochreiter, 1997), an advanced model 170 

designed to process sequential data and capture non-linear interactions over long-term 171 

dependencies. We also test a model with similar but simpler architecture, the Gated Recurrent 172 

Unit (GRU) (Chung et al., 2014), which uses fewer parameters. Linear regressions serve as a 173 

baseline to assess the applicability of the more sophisticated methods. Random Forests have 174 

been used to upscale northern wetland methane emissions (Peltola et al., 2019), gradient 175 

boosting methods have demonstrated success in ecological modeling (Ding, 2024; Räsänen et 176 

al., 2021; Zou et al., 2024), and LSTM neural networks have been successfully applied to model 177 

CO2 and CH4 fluxes in ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our proposed 178 

framework is designed to provide transparency, easy determination of model practicality and 179 

applicability, and contextualisation to model performances by comparing to a baseline model 180 

(i.e. linear regression).  181 

 182 

2. Methods 183 

Our ultimate aim is to establish a robust modeling framework for estimating wetland carbon 184 

fluxes in sites that are not monitored. To achieve this, we compare a range of models, from 185 

simple linear regression to advanced recurrent machine learning neural networks. Since the 186 

goal is to predict unseen sites, we emphasize cross-site predictability by validating and testing 187 

the models at sites not included in training. Doing so ensures predictions are applicable beyond 188 

the training sites and addresses challenges often associated with model generalizability (Meyer 189 

and Pebesma, 2022). This strategy serves several purposes: 190 

1. Performance Contextualization: Starting with the simplest type of model provides a 191 

baseline for performance and helps evaluate the advantage (or lack thereof) for using 192 

more complex models.  193 

2. Practicality and Transparency: Advanced models may offer better performance but 194 

often require significant effort to set up and may lack interpretability. By comparing 195 

models of varying complexity using the same input data, we assess whether the added 196 

complexity is justified. 197 

3. Feature Evaluation: Training with different combinations of relevant features helps us to 198 

understand which features are dominating control, and the limitations of the data in 199 

terms of predictive capacity.  200 

2.1 Model targets 201 
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The model targets two key variables: CO2 (FCO2) and CH4 (FCH4) surface emissions. Both 202 

variables follow a sign convention where positive values indicate emissions to the atmosphere 203 

(source) and negative values indicate sequestration (sink). Both variables are available at half-204 

hourly resolution through the Ameriflux database.  205 

The models we developed all operate on a daily time scale, requiring target variables to be 206 

aggregated to the daily time scale. This approach assumes that sub-daily variations have a 207 

negligible non-linear contribution to longer time scales, an assumption supported by the 208 

dominant seasonal signal typically observed in flux data from these systems (Knox et al., 2021). 209 

These target variables could then be used to calculate annual NECB (Net Ecosystem Carbon 210 

Balance; gC m⁻² yr⁻¹ ) and annual wetland net atmospheric radiative effect (FCO₂e (CO₂-211 

equivalent flux) gCO2e m⁻² yr⁻¹).The global warming potential (GWP) of non-fossil CH4 is 27.2 as 212 

per the latest IPCC assessment (Lee et al., 2023). For this study, we neglect contributions of 213 

lateral fluxes due to data limitations, and that lateral transport at these sites is assumed to be 214 

negligible due to the limited outflow from these specific non-tidal wetland sites (Miller et al., 215 

2008). FCO₂e is defined as annually averaged CO2 and CH4 emissions, adjusted for the global 216 

warming potential (GWP) of each gas. A positive FCO₂e indicates that the ecosystem is 217 

contributing positively to atmospheric warming, and vice versa. Here we consider CO2 and CH4 218 

emissions but neglect contributions from N2O due to data limitations and because N2O 219 

emissions are considered negligible in Delta wetlands (Windham-Myers et al., 2018).  220 

2.2 Region of interest 221 

The Sacramento-San Joaquin Delta was selected for this study due to its high density of EC 222 

towers and extensive long-term data. We selected sites for model training and validation where 223 

data was collected for at least a decade to capture interannual variability. Hence three restored 224 

wetland sites, US-Myb (Matthes et al., 2016), US-Tw1 (Valach et al., 2016), and US-Tw4 225 

(Eichelmann et al., 2016) are selected in this study. While data from two other sites (i.e., US-226 

Sne and US-Tw5) are available, the lack of sufficient temporal coverage and, in the case of US-227 

Sne, not fully established vegetation cover, makes them less representative of a stable 228 

ecosystem. Focusing on sites with over a decade of continuous data allows for capturing long-229 

term dynamics more effectively and provides sufficient time for the wetlands to reach a stable 230 

state. The dataset encompasses 35 full site-years of observations across the three sites within 231 

the Delta (Novick et al., 2018) (Table 2, Figure 1), with detailed mapping data sourced from the 232 

Ecoatlas Database (Workgroup, 2019) which provides land use and vegetation surveys across 233 

wetlands in California. 234 

Table 2: Model training sites 235 

Site 

Code 

Site Name Water 

Type 

Salinity Years of 

Data (Full) 

Start 

Date 

US-Myb Mayberry Wetland Non-Tidal Fresh 13 2010 

US-Tw1 Twitchell Wetland West Pond Non-Tidal Fresh 12 2011 

US-Tw4 Twitchell Island East End 

Wetland 

Non-Tidal Fresh 10 2013 
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 236 

The sites are dominated by Tules (Schoenoplectus), Cattails (Typha), and invasive species 237 

such as Phragmites, which are perennial emergent plants well suited to wetland environments 238 

(López et al., 2016). The Delta itself is host to the largest estuarine system on the US Pacific 239 

coast, spanning approximately 3,000 km2, and contains a diverse network of wetland systems. 240 

Historically, much of the area was drained and converted for agriculture (Laćan and Resh, 2016; 241 

Lund et al., 2010), but recent restoration efforts have reclaimed select portions of the landscape 242 

for environmental benefits.  243 

 244 
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Figure 1: Map of the Sacramento-San Joaquin Delta's wetland system. The Eddy-covariance 

tower site locations outlined in Table 2 are shown in the red and purple boxes. Satellite 

image: © Google Earth, accessed 2025. 

 245 

2.3 Model features 246 

The application of this work focuses on upscaling carbon fluxes from similar wetlands at a 247 

regional scale. To achieve this, we aim to predict fluxes at unmonitored sites using widely 248 

available data that are expected to be key drivers of FCO2 and FCH4. Since site-level 249 

measurements from EC towers are not available at a larger spatial scale, we focus on 250 

ecosystem drivers that can be accessed across broader spatial extents. 251 

 252 

The models utilize a comprehensive set of features from two readily accessible datasets: (i) the 253 

Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and (ii) Landsat 254 

surface-reflectance products (Landsat, 2020). A list of features can be found in Supplementary 255 

Table S3. Initially surface reflectance products were derived from MODIS (Justice et al., 2002), 256 

but we found better model performance with Landsat features . WLDAS provides hydrological 257 

and meteorological data at 1 km spatial and daily temporal resolution; we bilinearly interpolate 258 

these fields to each tower coordinate (no additional smoothing). Landsat offers 30 m pixels at a 259 

nominal 16-day revisit, although temporal resolution increases with time as more satellites are 260 

added; we average a 3 × 3 pixel window centred on the tower, linearly interpolate the series to 261 

daily resolution, and apply a centred 17-day running mean to improve data continuity.   262 

 263 

 264 

2.4 Model suite 265 

To evaluate ML model performance in calculating  FCO2 and FCH4, we implemented a suite of 266 

seven models ranging from simple linear methods to more complex neural networks. These 267 

models have been used in various ecosystems to study fluxes and collectively represent a 268 

broad spectrum of methodological complexity. Table 3 summarizes the core characteristics and 269 

advantages of each approach. 270 

Table 3: An overview of the models that are applied to wetland fluxes 271 

Model Name Category Description Key Strengths 

https://www.zotero.org/google-docs/?o7KLgl
https://www.zotero.org/google-docs/?K4No9v
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Linear Regression Regression Fits a linear relationship 

between predictors and 

fluxes 

Simple baseline, 

easily 

interpretable 

(Breiman, 2001) 

Random Forest 

(Breiman, 2001)  

Ensemble of 

Decision Trees 

Aggregates multiple 

decision trees to enhance 

prediction stability 

Robust to 

nonlinearity, 

reduces overfitting 

(Cortes, 1995) 

Support Vector 

Machine (Cortes, 

1995) (SVM) 

Kernel-Based 

Method 

Uses flexible kernels to find 

optimal separating 

hyperplanes 

Effective in high 

dimensions, 

adaptable kernels 

(Ke et al., 2017) 

LightGBM (Ke et al., 

2017)  

Gradient 

Boosting 

Employs iterative boosting 

with efficient tree growth 

Fast, memory-

efficient, handles 

large datasets 

XGBoost (Chen and 

Guestrin, 2016)  

Gradient 

Boosting 

Improves boosting with 

regularization and efficient 

computations 

Manages outliers, 

handles sparse 

data well 

LSTM Neural 

Network 

(Hochreiter, 1997)  

Recurrent 

Neural Network 

Captures temporal 

dependencies in sequential 

data inputs 

Ideal for time-

series, learns 

long-term patterns 

GRU Neural 

Network (Chung et 

al., 2014)  

Recurrent 

Neural Network 

Similar to LSTM but 

streamlined with fewer 

parameters 

Efficient temporal 

modeling, lower 

complexity 

 272 

These models act to demonstrate a spectrum of model complexity and how that can be 273 

leveraged to improve flux prediction. 274 

After performing simple grid searches we found that all models were largely insensitive to 275 

hyperparameter tuning, so we kept almost everything at the package defaults with some minor 276 

exceptions. Model hyper-parameter choices can be found in Brereton (2025). 277 

 278 

2.5 Validation framework 279 

To evaluate the models' ability to generalize across sites, we employed a Leave-One-Site-Out 280 

(LOSO) cross-validation strategy. In LOSO, we train the models on data from all but one site, 281 

and test the models on the excluded site. This approach is repeated for each site in the dataset 282 

https://www.zotero.org/google-docs/?S6V5Pr
https://www.zotero.org/google-docs/?LN5JJL
https://www.zotero.org/google-docs/?zP5hEp
https://www.zotero.org/google-docs/?2ekCxJ
https://www.zotero.org/google-docs/?2ekCxJ
https://www.zotero.org/google-docs/?xQnECi
https://www.zotero.org/google-docs/?LaHnXc
https://www.zotero.org/google-docs/?LaHnXc
https://www.zotero.org/google-docs/?tF4s1s
https://www.zotero.org/google-docs/?tF4s1s
https://www.zotero.org/google-docs/?EzkoTk
https://www.zotero.org/google-docs/?BtRQa6
https://www.zotero.org/google-docs/?BtRQa6


10 

and then aggregated, ensuring that there are no spatio-temporal connections between the 283 

training and testing data. While few models are immune to overfitting, this approach minimizes 284 

the risk of doing so. 285 

An integral part of our modeling approach is the strategic selection of input features to optimize 286 

the model's performance. We perform this selection by first selecting features that are expected 287 

to be important, guided by mechanistic considerations of wetland processes gained from 288 

fieldwork and insights from mechanistic models (Table S3). Since the total number of possible 289 

feature combinations is too large for an exhaustive search, we adopt a feed-forward selection 290 

(FFS) strategy. This method begins with a single feature and iteratively adds features that most 291 

improves the model's performance based on a chosen statistic. At each step, we evaluate the 292 

model's performance with each potential new feature and select the one that provides the 293 

greatest improvement. This process continues until adding additional features no longer 294 

significantly enhances the model's performance. By using this approach, we efficiently identify 295 

the most influential predictors without the computational burden of testing all possible 296 

combinations. 297 

 298 

2.6. Validation 299 

As suggested above, each model was trained using data from two wetland sites and then 300 

validated on the third. Although the number of sites was limited, each site offered over a decade 301 

of observations accumulated to a daily time step, ensuring exposure to a range of 302 

environmental conditions representative of the wetland type and regional climate. For each 303 

excluded site, the model’s predictions were compared against measured FCO2 and FCH4 and 304 

we calculated R², Pearson’s r, and RMSE for that site. We then pooled all held-out predictions 305 

from the three sites into one combined set and recomputed R² (as well as r and RMSE) on the 306 

full array to give an overall cross-validation score.  This process was paired with the FFS 307 

method optimized to maximize R2. 308 

After selecting LSTM as the model of choice, it was retrained using all available data from the 309 

three sites for upscaling. The Sacramento-San Joaquin Delta contains roughly 700 km2 of 310 

wetland area, including tidal and nontidal regions. The upscaling domain encompasses 311 

approximately 25 km² of nontidal wetlands in the region, dominated by vegetation types relevant 312 

to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the 313 

training sites used in this study are representative of the broader conditions in the Delta, but we 314 

acknowledge that local variability in carbon dynamics, such as those caused by microclimates 315 

prevalent in the area, may not be fully captured during the ML model training. Improvements to 316 

the model might be achieved if additional site data covering a wider range of environmental 317 

conditions were incorporated. The feature data used to optimize the model were spatially 318 

interpolated onto the regional model grid and the model applied to yield flux estimations. 319 

Although relatively modest in spatial extent, these wetlands are of particular interest given their 320 

role in carbon sequestration and potential climate mitigation and as targets for conservation and 321 

restoration. 322 
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 323 

3. Results 324 

3.1 Model Validation  325 

We tested six modeling techniques of varying complexities (Table 3). Model performance scores 326 

for daily predictions are shown in Figure 2, demonstrating that nearly all machine learning 327 

models outperformed the linear regression baseline (R² = 0.64 for FCO2 and R² = 0.47 for 328 

FCH4). For FCO2, LSTM and GRU achieved the highest R² values (0.73 and 0.71, 329 

respectively), outperforming other  methods. A similar result was found for FCH4, with LSTM 330 

and GRU both scoring R² of 0.53. These results suggest that deep learning models can provide 331 

tangible benefits over linear regression methods for upscaling flux predictions. The LSTM model 332 

was selected for upscaling in this study as it scored highest consistently, though other ML 333 

models scored comparably, so we do not assert it as definitively the best model. 334 

The feature selection process had access to 26 environmental features from WLDAS and 7 335 

features derived from LANDSAT spectral bands (see table S3 for full details). These variables 336 

encompass a wide range of atmospheric, soil, and vegetation characteristics, such as 337 

precipitation, temperature, soil moisture, and spectral indices, key environmental drivers known 338 

to influence carbon and methane flux dynamics (Mitsch and Gosselink, 2015b).  339 

The feature selection routine converged on variables that map directly onto the three main 340 

controls of wetland carbon cycling - vegetation productivity, surface energy-water balance, and 341 

microbial temperature sensitivity, see Table 4. For FCO2, the features selected were the Soil-342 

Adjusted Vegetation Index (SAVI) and the upwards sensible heat flux, which are proxies for 343 

gross primary production and the surface energy water balance (Anderson et al., 2016; Huete, 344 

1988). For FCH4, the features selected were canopy temperature, soil temperature and 345 

Greenness Difference Vegetation Index (GNDVI), which are proxies for short-term thermal 346 

forcing and vegetation water status, the anaerobic root-zone temperature that governs 347 

methanogenesis, and the supply of photosynthetically derived substrates for microbes, 348 

respectively (Bubier et al., 1993; Knox et al., 2021; Whiting and Chanton, 1993; Yvon-Durocher 349 

et al., 2014).  350 

 351 

 352 

Table 4: Feed-forward feature selection process. 353 

Target 

Variable 

Step Chosen Feature R² RMSE r 

https://www.zotero.org/google-docs/?0hi8a5
https://www.zotero.org/google-docs/?PxyvPm
https://www.zotero.org/google-docs/?PxyvPm
https://www.zotero.org/google-docs/?PXpYeA
https://www.zotero.org/google-docs/?PXpYeA
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FCO2 1 Soil-adjusted 

vegetation index 

(SAVI)  

0.59 1.79 0.78 

FCO2 2 (Upwards) 

sensible heat flux   

0.73 1.46 0.86 

FCH4 1 Canopy 

Temperature 

0.48 0.054 0.70 

FCH4 2 Soil temperature 

(10-40 cm) 

0.52 0.052 0.73 

FCH4 3 Normalized 

Difference 

Greenness Index 

(NDGI) 

0.53 0.051 0.74 

 354 

Figure 3 shows both FCO2 and FCH4 results, including time series and scatter plots comparing 355 

predictions to observations. Overall, the predicted values track the observations reasonably 356 

well. For FCO2, predictions tended to regress toward the mean, underestimating peak 357 

emissions at local maxima and overestimating at local minima, although reasonable interannual 358 

variability was observed. The ML models also displayed less interannual variability than the 359 

observations, common in machine learning approaches (Ouyang et al., 2023). For wetlands, 360 

this is likely due to limited subsurface process information included in the machine learning 361 

models. Still, the scatter plot shows strong performance for FCO2 (r = 0.86, R² = 0.73, RMSE = 362 

1.46 gC-CO₂ m-2 day-1), despite a noticeable spread around the 1:1 line. 363 

FCH4 predictions exhibited similar behavior, with low interannual variability than the 364 

observations. At the US-Myb site, for example, observed FCH4 were initially high (aside from 365 

the first year, when vegetation cover had yet to be fully established) but declined over time, 366 

stabilizing at lower values. The ML models captured this shift to some extent, predicting higher 367 

fluxes early in the time series and then modulating to lower levels later on. However, predictions 368 

did not fully replicate the magnitude of the observed downward annual trend, introducing bias 369 

into the scatter plots at higher and lower extreme values. This phenomenon is known as 370 

regression to the mean, observed in similar machine learning studies (Ouyang et al., 2023). 371 

Consequently, the FCH4 model performance was weaker than the FCO2 model (R² = 0.53, r = 372 

0.74, RMSE = 0.05 g C-CH4 m-2 day-1), indicating that the processes controlling FCH4 in 373 

younger wetlands like US-Myb may require more detailed subsurface information (such as soil 374 

organic C, oxygen, or redox information) to be accurately modeled. Restored Delta wetlands are 375 

often net GHG sources for 1-3 years after flooding, before vegetation is fully established. Eddy-376 

covariance measurements show positive NEE of +201 ± 101 g C-CO₂ m⁻² yr⁻¹ and elevated 377 

https://www.zotero.org/google-docs/?VHtrKT
https://www.zotero.org/google-docs/?3Pmv8G
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CH₄ emissions in the initial period, switching to sinks of between -400 to -700 g C-CO₂ m⁻² yr⁻¹ 378 

thereafter (Hemes et al., 2019). A larger synthesis found that this can persist decades in 379 

nontidal marshes because CH₄ radiative forcing outweighs CO₂ burial (Arias‐Ortiz et al., 2021). 380 

Similar contrasts between 2 and 15-year-old wetlands (Knox et al., 2015). 381 

 382 

The annual bar plots presented in Figure 4 highlight the model’s difficulty in capturing the 383 

interannual variability of carbon fluxes across the study sites. While the average FCO2 and 384 

FCH4 predictions are generally aligned with observed average values with small overall mean 385 

bias, the model struggles to reproduce the observed year-to-year variability. Although direct 386 

subsurface measurements are available at certain sites, at the regional scale their limited spatial 387 

and temporal coverage currently limits integration into models designed for regional upscaling 388 

over inter-annual timescale. For example, while spatial maps of wetland soil organic carbon 389 

exist (Uhran et al., 2022), using only three sites for training purposes would provide just three 390 

corresponding data points, limiting model training. The LOSO validation approach revealed that 391 

deep learning models, particularly LSTM and GRU, consistently outperformed traditional linear 392 

regression and other machine learning methods for both FCO2 and FCH4 predictions. While 393 

nonlinear models demonstrated clear advantages, the magnitude of improvement was relatively 394 

modest, reflecting the inherent challenges of capturing site-specific inter-annual dynamics of 395 

wetland emissions. To improve model performance, additional techniques such as feature 396 

transformations or attention mechanisms could be implemented. However, the primary goal of 397 

this model suite is to ensure reproducible results with ‘off-the-shelf’ models, which serves as a 398 

foundation for more advanced, nuanced approaches. 399 

 400 

https://www.zotero.org/google-docs/?y1noTo
https://www.zotero.org/google-docs/?6ZDePr
https://www.zotero.org/google-docs/?xJxcyx
https://www.zotero.org/google-docs/?eWq31y
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Figure 2: Bar plot showing best model performance for each type of machine learning 

model based on R2 score (though other metrics are in agreement, see Pearson r correlation 

and RMSE). 

 401 

 402 
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Figure 3: Time-series plots (left) of observed (blue) and predicted (orange) FCO2 and FCH4 

fluxes for US-Myb, US-Tw1, and US-Tw4. The scatter plot (right) compares observed vs. 

predicted values across all sites, with a 1:1 reference line with overall and site-only 

performance metrics (R²). 

 403 
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Figure 4: Annual Observed and Predicted FCO2 and FCH4 Across Three 

Wetland Sites. Aggregated statistics for all sites are as follows: For FCO2, the 

Mean Absolute Error (MAE) is  176 gC m-² yr-1 and the Mean Bias Error 

(MBE) is  17 gC m-² yr-1 . For FCH4, MAE is  9 gC-CH₄ m-² yr-1  and the MBE 

is 1gC-CH₄ m-² yr-1 . 

 408 

 409 

 410 

 411 

3.2. Model Application: Upscaling 412 

Upscaling was repeated 10 times for 10 separately trained ML models using the same data, and 413 

the ensemble mean is the value reported, as training includes stochasticity. Figure 5 displays 414 

spatial maps of annual flux estimates of Net Ecosystem Carbon Balance (NECB), and the CO₂ 415 

equivalent flux rate (FCO2e) in the study domain, including zoom-in subplots highlighting areas 416 

with more data. The results show that carbon sequestration, indicated by negative NECB 417 

(green) values, are typically dominant throughout the domain, although the northern regions 418 

show more carbon sources.  In contrast, the FCO2e distribution shows variability across the 419 

region, with sources and sinks found CO2e sink throughout.   420 

Figure S1 plots the coefficient of variation (CV = σ/μ) of the inter-model ensemble for both 421 

NECB and FCO2e. Higher CV indicates locations where environmental conditions are poorly 422 

represented in the training data - effectively a proxy to determine model confidence. Across the 423 

study domain the vast majority of pixels show low dispersion: ≈ 85 % of the mapped area has a 424 

CV < 0.5 for NECB, and 69 % falls below that same threshold for FCO2e.  425 

Figure 6 shows averaged fluxes in the upscaling domain over the full study period. The results 426 

highlight the Delta as an overall carbon sink, with NECB averaging approximately -450 gC m⁻² 427 

yr⁻¹, indicating persistent sequestration across multiple years. CH4 fluxes average 31 gC-CH₄ 428 

m⁻² yr⁻¹, and shows little spatial variability. Values are consistent with those previously reported 429 

in the region (Arias‐Ortiz et al., 2021). Integrating these fluxes into a CO₂-equivalent metric, this 430 

regional wetland system remains a net sink of CO2 e, with approximately 600 gCO₂e m⁻² yr⁻¹ 431 

sequestered on average in the upscaling domain, with an increasing trend with time. 432 

https://www.zotero.org/google-docs/?1P20Da
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 433 

 

Figure 5: Mean annual Net Ecosystem Carbon Balance (NECB, left) and CO₂-equivalent radiative forcing (FCO₂e, right) averaged 

over all model years. Main maps show the Delta area; dashed rectangles (1 - 3) correspond to zoom-in panels. Tidal wetlands are 

shaded dark blue, non-tidal light blue. Positive values (red) indicate net carbon loss; negative values (green) net uptake. See 

Figure 1 for reference to training sites. 

434 
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  435 

 436 

 437 

 438 

 

 

 

Figure 6: Bar plots and box plots of annual NECB, FCH4, and FCO2e fluxes, which have 

been spatially integrated over the study region, a total of 25 km2 total land area vegetated 

primarily by Tules, but also Cattails and Phragmites. The left column shows annual fluxes 

for each year, with negative fluxes in green and positive fluxes in orange. Daily fluxes, 

aggregated to annual totals, are overlaid as grey lines. The right column shows box plots 

summarizing the distribution of annual fluxes, highlighting the range, median (blue line), and 
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spread of values. Each row represents a different flux variable: (a) NECB, (b) FCH4, and (c) 

FCO2e. 

4. Discussion 439 

This study demonstrates the development and evaluation of a data-driven framework to upscale 440 

terrestrial CO₂ and CH₄ flux estimates for non-tidal wetlands in the Sacramento-San Joaquin 441 

Delta. By systematically comparing models of varying complexity, including linear regression, 442 

ensemble methods, gradient boosting algorithms, and recurrent neural networks (RNNs), we 443 

presented a transparent assessment of model performance. The goals were to identify the 444 

model that best predicts CO₂ and CH₄ fluxes and critically appraise whether incremental 445 

complexity is justified by improvements in predictive capacity. Relevant cited works have 446 

included many different machine learning approaches for predicting emissions. This work aims 447 

to unify modelling efforts by establishing a standard framework for developing robust data-448 

driven models, particularly for upscaling purposes.  449 

Our results indicate that non-linear and more advanced models generally outperformed simple 450 

linear regression approaches. Among all tested models, the Long Short-Term Memory (LSTM) 451 

and Gated Recurrent Unit (GRU) neural networks provided the highest overall skill in predicting 452 

both CO₂ and CH₄ fluxes at daily timescales. This improvement was marginal but consistent, 453 

supporting the notion that time-series models, which inherently capture temporal dependencies 454 

and non-linearities, can provide tangible benefits over linear methods and traditional machine 455 

learning algorithms. 456 

However, while these deep learning models performed best, the performance gains were not as 457 

large as might be expected given their significantly higher complexity and computational 458 

demands. Similar outcomes have been noted in other ecological modeling applications, where 459 

advanced machine learning methods yield improvements that are statistically significant yet  460 

modest in terms of performance gains relative to linear models (Oh et al., 2022; Wood, 2022).  461 

The deep learning models provided reasonable estimates of daily fluxes but struggled to 462 

replicate the full range of interannual variability observed in the field measurements, which is a 463 

common issue for data-driven models in this field (Nelson et al., 2024). This limited ability to 464 

capture long-term trends and extremes mirrors common challenges in machine learning-based 465 

modeling, where the absence of explicit mechanistic understanding limits extrapolation beyond 466 

the conditions represented in the training data. The difficulty in reproducing interannual 467 

fluctuations was particularly evident for CH₄ fluxes, an outcome consistent with the high spatial 468 

and temporal complexity of CH₄ cycling in wetland environments and the limited availability of 469 

subsurface parameters (e.g., oxygen concentration, redox conditions, substrate availability) that 470 

drive CH₄ production. This may not be surprising as the number of annual cycles available in 471 

the training set was only 35 years. 472 

https://www.zotero.org/google-docs/?wYdKLA
https://www.zotero.org/google-docs/?DChj8P


21 

The observed regression to the mean and the reduced dynamic range in model predictions may 473 

reflect insufficient representation of key environmental drivers in the feature set or inadequate 474 

temporal coverage and variability in the training data. While publicly available datasets such as 475 

WLDAS and LANDSAT were effective at providing spatially and temporally comprehensive 476 

inputs, the lack of direct subsurface and soil biogeochemical measurements likely limited the 477 

model’s ability to capture critical internal processes that are likely causing the observed 478 

differences between years. Although the feed-forward selection process for the model features 479 

had access to an extensive pool of relevant features, results indicated that only a small subset 480 

of features was necessary to maximise performance. This suggests that, while there are many 481 

features that control CO2 and CH4, their contribution to predictive accuracy may be redundant or 482 

captured indirectly by other variables. The exclusion of particular features, such as the water 483 

table depth for FCH4, illustrates the trade-off between mechanistic intuition and data-driven 484 

optimization. Strong correlations between features with limited independent variability can lead 485 

to features being left out that would typically be considered ecologically relevant. 486 

The feed-forward selection converges on a compact set of features that are mechanistically 487 

expected to drive CO2 and CH4 gas exchange in natural wetlands, adding qualitative 488 

confidence to the model; see Table 4 for the list of features selected. For FCO2; the model 489 

selected SAVI (Soil-Adjusted Vegetation Index), which represents vegetation state and 490 

photosynthetic capacity, and upward sensible heat flux (Qh), which is related to the rate of 491 

evapotranspiration. For FCH4, canopy temperature and GNDVI (Greenness index) indicate 492 

plant activity and substrate supply via plant-mediated transport, while 10-40 cm soil temperature 493 

reflects anaerobic microbial production (methanogenesis) in the root zone.  494 

After applying the chosen model (LSTM) to calculate CO2 and CH4 fluxes, we estimated NECB 495 

and CO₂-equivalent fluxes for similar wetland settings across the Delta region (Figure 5). The 496 

results show spatial heterogeneity and pinpoint regions that act as stronger net carbon sinks, as 497 

well as areas where CH₄ emissions may offset climate benefits of net carbon sequestration. 498 

Such insights support targeted conservation and restoration strategies aimed at maximizing net 499 

carbon sequestration benefits, facilitating ongoing efforts to restore and manage wetlands to 500 

contribute to net-zero emission goals. 501 

A key advantage of the chosen approach is its reliance on readily available, open-source data 502 

streams and standard computational resources. The framework can be deployed efficiently 503 

without specialized hardware, making it accessible to resource-limited organizations, 504 

practitioners, and researchers. 505 

The primary objectives of this study were to identify a suitable model, contextualize model 506 

performance by comparing to a baseline linear regression, and highlight trade-offs between 507 

complexity, interpretability, and accuracy. By explicitly testing multiple models ranging from 508 

simple linear regressions to advanced recurrent neural networks, we demonstrated that 509 

complexity alone does not guarantee a substantial increase in predictive power. Instead, 510 

complexity should be adopted judiciously, based on the magnitude of performance gains, the 511 

cost of model implementation, and the level of interpretability. 512 
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We suggest that future modeling efforts should focus on deriving mechanistically relevant 513 

predictors (Ouyang et al., 2023), and incorporating hybrid modeling approaches (Yao et al., 514 

2023) that combine the strengths of process-based and machine learning methods. Attention 515 

mechanisms (Yuan et al., 2022), advanced architectures (e.g., Transformers (Vaswani, 2017)), 516 

or physics-informed machine learning (Raissi et al., 2019) may also help address model 517 

performance limitations. 518 

 519 

5. Conclusions 520 

 521 

This study provides a transparent, methodical demonstration of an artificial intelligence 522 

approach to modeling wetland carbon dioxide (CO₂) and methane (CH₄) emissions, using a 523 

suite of “off-the-shelf” tools and establishing a standardized benchmarking protocol for model 524 

performance evaluation. In the study region (the Sacramento–San Joaquin Delta), inter-model 525 

comparisons revealed modest but appreciable performance differences when comparing 526 

advanced models with a linear regression baseline. While there are tangible benefits to 527 

employing machine learning for these purposes, it is likely that the gap between simpler models 528 

and more sophisticated models will widen as data quantity and quality continues to increase. 529 

Ultimately, this study lays the groundwork for regional scale model benchmark testing, 530 

facilitating the development of more advanced modeling approaches that can guide wetland 531 

management, restoration planning, and climate mitigation strategies. 532 

 533 
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 824 

 

Figure A1: Coefficient of variation (σ/|μ|) of NECB (left) and FCO2e (right) across the 10 runs, showing relative inter-model  
uncertainty in the predictions. Green areas show high model confidence and red areas shower either lower model confidence (or 
division by small μ). This can be interpreted as a proxy for the confidence of the spatial upscaling. 
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