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Abstract

Wetlands play a pivotal role in carbon sequestration but emit methane (CH.), creating
uncertainty in their net climate impact. Although process-based models offer mechanistic
insights into wetland dynamics, they-are-computationally-expensive-uncertainand-difficultto
upseale they require extensive site-specific parameterisation (e.g. soil carbon profiles, pore-
water chemistry, vegetation-specific model parameters), as well as high-resolution hydrological
and meteorological inputs that are often difficult to obtain outside of well-instrumented research
sites, which makes regional upscaling challenging. In contrast, data-driven models provide a
scalable alternative by leveraging available extensive-datasets to identify patterns and
relationships, making them more adaptable for large-scale applications. However, their
performance can vary significantly depending on the quality and representativeness of the data,
as well as the model design, which raises questions about their reliability and generalizability in
complex wetland systems. To address these issues, we present a data-driven framework for
upscaling wetland CO; and CH4 emissions, across a range of machine learning models that
vary in complexity, validated against an extensive observational dataset from the Sacramento-
San Joaquin Delta. We show that artificial intelligence (Al) approaches, including Random
Forests, gradient boosting methods (XGBoost, LightGBM), Support Vector Machines (SVM) and
Recurrent Neural Networks (GRU, LSTM), outperform linear regression models, with RNNs
standing out, achieving an R? of 0.734 for daily CO, flux predictions compared to 0.642 for linear
regression, and an R? of 0.5360




for CH, flux predictions compared to 0.4754 for linear regression. Interestingly, linear
regression performed better than random forest for methane flux, which highlights the necessity
for comparison. Despite that, interannual variability is less well captured, with annual mean
absolute error of 17693 gC m2 yr' for CO, fluxes and 944 gC-CH, m2 yr' for CH, fluxes. By
integrating vertically-resolved atmospheric, subsurface, and spectral reflectance information
from readily available sources, the model identifies key drivers of wetland CO, and CH4
emissions and enables regional upscaling. These findings demonstrate the potential of Al
methods for upscaling, providing practical tools for wetland management and restoration
planning to support climate mitigation efforts.

1. Introduction

Wetlands provide a wide array of ecological, economic, and environmental benefits (Costanza
et al., 2014). They play a crucial role in biodiversity conservation, water purification, flood
control, and climate regulation (Grande et al., 2023; Sharma and Singh, 2021). Significant
attention has been recently given to wetland restoration due to their ability to sequester carbon
from the atmosphere (Lolu et al., 2020; Upadhyay et al., 2020). These ecosystems are highly
effective at storing carbon in their soils because the anaerobic conditions in waterlogged soils
suppress organic matter decomposition, allowing carbon to accumulate over time (Mitsch and
Gosselink, 2015a). However, wetlands can also be significant sources of CHs, a potent
greenhouse gas (Brix et al., 2001), leading to potentially net positive effects of wetlands on
climate warming. The most accurate way to determine the carbon balance in natural
ecosystems is through direct and continuous measurements of carbon and GHG sources and
sinks (Baldocchi et al., 2001). This involves monitoring carbon dynamics using techniques such
as eddy covariance (EC) towers (Aubinet et al., 2012), soil carbon stock assessments (Harrison
et al., 2011), and lateral carbon transport measurements (Ciais et al., 2008). However, these
measurements are time-consuming to carry out, costly, and require specialized instruments and
expertise, limiting their application to a few representative sites globally (Hill et al., 2017; Kumar
et al., 2017). The Ameriflux network offers roughly 500 EC sites comprising about 3600 site
years of data, monitoring carbon fluxes across various ecosystems such as forests, grasslands,
and wetlands (Pastorello et al., 2020). Eddy-covariance site footprints range in scale and are
typically determined by the sensor height and atmospheric turbulence (Chu et al., 2021). Data
from these Ameriflux sites could potentially be upscaled and used for estimating fluxes from
non-monitored sites to obtain regional assessments of carbon balance for various ecosystem
types, including wetlands.

In this study, we focus on nontidal wetlands due to the presence of a cluster of EC towers in a
small region located in the Sacramento-San Joaquin Delta, including three sites, each with over
a decade of continuous data. Reported sequestration rates in wetlands vary widely, influenced
by factors such as climate, vegetation, and management. For instance, reported sequestration
rates range from as low as 26 gC m™2yr™" in boreal rain-fed bogs (Villa and Bernal, 2018) to as
high as 797 gC m=2yr™" in constructed wetlands with emergent Phragmites in the Netherlands
(de Klein and van der Werf, 2014). Similarly, temperate wetlands in central Ohio exhibit a wide



range of carbon sequestration rates depending on vegetation: forested depressional wetlands
dominated by Quercus palustris sequester up to 473 gC m™2yr™, while marshes dominated by
Typha sequester around 210 gC m™2yr™' (Bernal and Mitsch, 2012). In Victoria, Australia,
freshwater marshes show varying sequestration rates from 91 gC m™2yr™" in shallow marshes to
230 gC m~2yr~' in permanent open freshwater wetlands (Carnell et al., 2018). More relevant to
this study, in the San Francisco Bay-Delta region, nontidal managed wetlands dominated by
Schoenoplectus and Typha species sequester carbon at rates of approximately 355 + 249 gC-
CO2m™2yr™. This estimate is based on direct calculations using Ameriflux data from sites with
over a decade of observations (US-Myb, US-Tw1, and US-Tw4). For this calculation we used
full-year annual averages and their corresponding standard deviation to the annual mean, to
highlight the significant inter-annual variability, with the standard deviation close to the mean.
The unit reported for these Delta sites is in gC-CO, m™2yr™*, as the EC tower directly detects
CO, exchange, which is convenient for GHG assessment purposes. It is worth noting that, at
these sites, some years were a net CO; source, due to site-specific disturbances such as
caterpillar infestations, drought, or when vegetation cover was fully established (Anderson et al.,
2018; Knox et al., 2017; Rey-Sanchez et al., 2021) . See table S1 for more detailed information
and references therein.

Although CO; balance (photosynthesis minus community respiration) is an important component
of carbon sequestration, in many wetland systems sequestration benefits are counterbalanced
by CH4 emissions, a potent greenhouse gas, with a warming potential 27 times higher than CO,
(Lee et al., 2023) that can often offset climate mitigation efforts. CH4 emission rates also vary
substantially over time and across wetlands, from as low as 0.23 gC-CH, m™2yr™" in saltwater
zones of estuarine environments (Abril and Iversen, 2002) to as high as 270 gC-CH, m™2yr™" in
certain freshwater wetlands (Knox et al., 2021). For example, restored freshwater wetlands in
Maryland dominated by grasses and sedges emit around 142 gC-CH, m™2yr™" (Stewart et al.,
2024). Tropical wetlands in Costa Rica exhibit some of the highest emissions, with isolated and
floodplain wetlands releasing between 220 and 263 gC-CH, m™2yr™" (Mitsch et al., 2013). The
San Francisco Bay-Delta wetlands that have high carbon sequestration rates also release CH4
at rates of 35 + 13 gC-CH, m=2yr™* (direct measurements from the eddy covariance tower data
(Arias-Ortiz et al., 2021)). See table S2 for further information and reference therein. This dual
role of wetlands in both sequestering carbon and emitting CH4 reveals the complex effect they
have on the global greenhouse gas balance. Therefore, integrating CO., and CH4 emissions is
critical to assess the net climate benefits of wetland conservation and restoration initiatives.

To evaluate how wetlands contribute to the atmospheric radiation budget at larger scales, it is
essential to quantify both GHG emissions and carbon sequestration, especially at sites where
direct measurements are unavailable (Moomaw et al., 2018). Upscaling models serve this
purpose by allowing estimation of sequestration and emission rates across larger spatial scales
than those covered by the original data sources (Villa and Bernal, 2018) which provide GHG
accounting and net climate benefit assessments for specific wetland sites (Nahlik and
Fennessy, 2016). Moreover, it aids in targeting wetland restoration efforts that aim to optimize
sequestration by identifying locations with the greatest potential for net carbon uptake.



Process-based models have traditionally been used to estimate sequestration and emissions
(Mack et al., 2023; Zhang et al., 2002). Models such as DNDC (Li, 1996), DayCent (Parton et
al., 1998), and Ecosys (Grant et al., 2017) have been applied to simulate biogeochemical
processes in terrestrial ecosystems, including modeling CH4 emissions, carbon balances, and
soil carbon and nitrogen cycling (Grant and Roulet, 2002; Weiler et al., 2018; Zhang et al.,
2002). While these models can elucidate the processes that play a role in carbon dynamics,
they require extensive mechanistic parameterization to accurately represent the interactions in
various ecosystems(Pastorello et al., 2020; Yin et al., 2023). This approach often necessitates
site-specific information and data collection, making implementation over vast areas challenging
(Saunois et al., 2024; Xu and Trugman, 2021). The extensive data needs associated with these
process-rich models showcase the need for alternative approaches that can effectively upscale
wetland emissions without such intensive resource demands.

Artificial Intelligence (Al) methods, such as machine learning and deep learning, have been
widely applied in ecological modeling in recent years, alongside long-term, large-scale data
collection efforts (Perry et al., 2022). Recent deep learning applications have demonstrated
success in capturing the complex dynamics of carbon and methane fluxes in these systems
(Ouyang et al., 2023; Yuan et al., 2022, 2024; Zou et al., 2024). The availability of open-source
modeling platforms like TensorFlow and PyTorch has made advanced computational
techniques, such as neural networks, more accessible, enabling the rapid development and
deployment of a range of specialized modeling tasks (Xu et al., 2021). Despite several recent
studies demonstrating the potential of machine learning for large-scale carbon cycling in
wetland ecosystems, this remains a relatively young field. Moreover, carbon dynamics in
wetland ecosystems are temporally variable and inherently nonlinear, making them particularly
well-suited for testing machine learning approaches (Arora et al., 2019, 2022). We therefore
emphasize the importance of evaluating and comparing various approaches within this domain
and their potential for large-scale assessment.

A pervasive challenge in model development is the ability to balance complexity with
generalizability. While more complex models can capture nonlinear relationships, they also
increase the risk of overfitting, where the model performs well in the testing, but poorly on new
conditions (Hastie, 2009; Tashman, 2000). Furthermore, it is also important to use a robust
validation framework. For the application of upscaling, it is important that the model is able to
extrapolate spatially. For this purpose, a leave-one-site-out (LOSO) validation approach is
typically carried out, whereby the models are trained on data that excludes a single site, with the
excluded site data saved for model testing (Bodesheim et al., 2018; Tramontana et al., 2016). It
is also important to avoid data leakage, where information from the training set inadvertently
appears in the testing set (Kaufman et al., 2012), a risk posed when splitting temporally
adjacent data points that are close in value, potentially inflating performance statistics (Bergmeir
and Benitez, 2012; Kaufman et al., 2012). For example, daily rates of change relative to a
system where seasonal dynamics dominate, such as emissions of CH4 emissions in vegetated
wetlands (Knox et al., 2021).

In this study, we introduce a model framework for coastal nontidal wetland CO, and CH4
emissions using several ‘off-the-shelf models. These models are trained and validated against



observational data, and results are compared to find the most predictive model. The top
performing model is then used to upscale carbon sequestration and CH4 emissions in nontidal
wetlands at regional scale. The San Francisco Bay-Delta serves as the area of interest, due to
its network of EC towers that have been operating for a relatively long time and relevance to
future wetland restoration efforts. We employ a suite of models, ranging widely in complexity: (1)
linear regression; (2) Random Forests (Breiman, 2001), an ensemble method that constructs
multiple decision trees to reduce overfitting; (3) gradient boosting techniques such as LightGBM
(Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016), which are scalable tree boosting
systems able to handle complex nonlinear relationships and variable interactions; (4) Support
Vector Machines (SVM) (Cortes, 1995), a kernel-based technique that can approximate
nonlinear boundaries between data points and (5) the Recurrent Neural Network (RNN) such as
the Long Short-Term Memory (LSTM) neural network (Hochreiter, 1997), an advanced model
designed to process sequential data and capture non-linear interactions over long-term
dependencies. We also test a model with similar but simpler architecture, the Gated Recurrent
Unit (GRU) (Chung et al., 2014), which uses fewer parameters. Linear regressions serve as a
baseline to assess the applicability of the more sophisticated methods. Random Forests have
been used to upscale northern wetland methane emissions (Peltola et al., 2019), gradient
boosting methods have demonstrated success in ecological modeling (Ding, 2024; Rasanen et
al., 2021; Zou et al., 2024), and LSTM neural networks have been successfully applied to model
CO2 and CH; fluxes in ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our proposed
framework is designed to provide transparency, easy determination of model practicality and
applicability, and contextualisation to model performances by comparing to a baseline model
(i.e. linear regression).

2. Methods

Our ultimate aim is to establish a robust modeling framework for estimating wetland carbon
fluxes in sites that are not monitored. To achieve this, we compare a range of models, from
simple linear regression to advanced recurrent machine learning neural networks. Since the
goal is to predict unseen sites, we emphasize cross-site predictability by validating and testing
the models at sites not included in training. Doing so ensures predictions are applicable beyond
the training sites and addresses challenges often associated with model generalizability (Meyer
and Pebesma, 2022). This strategy serves several purposes:

1. Performance Contextualization: Starting with the simplest type of model provides a
baseline for performance and helps evaluate the advantage (or lack thereof) for using
more complex models.

2. Practicality and Transparency: Advanced models may offer better performance but
often require significant effort to set up and may lack interpretability. By comparing
models of varying complexity using the same input data, we assess whether the added
complexity is justified.

3. Feature Evaluation: Training with different combinations of relevant features helps us to
understand which features are dominating control, and the limitations of the data in
terms of predictive capacity.



2.1 Model targets

The model targets two key variables: CO; (FCO2) and CH, (FCH4) surface emissions. Both
variables follow a sign convention where positive values indicate emissions to the atmosphere
(source) and negative values indicate sequestration (sink). Both variables are available at half-
hourly resolution through the Ameriflux database.

The models we developed all operate on a daily time scale, requiring target variables to be
aggregated to the daily time scale. This approach assumes that sub-daily variations have a
negligible non-linear contribution to longer time scales, an assumption supported by the
dominant seasonal signal typically observed in flux data from these systems (Knox et al., 2021).

These target variables could then be used to calculate annual NECB (Net Ecosystem Carbon
Balance; gC m™2yr™" ) and annual wetland net atmospheric radiative effect (FCO,e (CO,-
equivalent flux) gCOze m™2yr™).The global warming potential (GWP) of non-fossil CHsis 27.2 as
per the latest IPCC assessment(Lee et al., 2023). For this study, we neglect contributions of
lateral fluxes due to data limitations, and that lateral transport at these sites is assumed to be
negligible due to the limited outflow from the wetlands (Miller et al., 2008). FCO2e is defined as
annually averaged CO, and CH, emissions, adjusted for the global warming potential (GWP) of
each gas. A positive FCO,e indicates that the ecosystem is contributing positively to
atmospheric warming, and vice versa. Here we consider CO2 and CH4 emissions but neglect
contributions from N2O due to data limitations and because N.O emissions are considered
negligible in Delta wetlands (Windham-Myers et al., 2018).

2.2 Region of interest

The Sacramento-San Joaquin Delta was selected for this study due to its high density of EC
towers and extensive long-term data. We selected sites for model training and validation where
data was collected for at least a decade to capture interannual variability. Hence three restored
wetland sites, US-Myb (Matthes et al., 2016), US-Tw1 (Valach et al., 2016), and US-Tw4
(Eichelmann et al., 2016) are selected in this study. While data from two other sites (i.e., US-
Sne and US-Twb5) are available, the lack of sufficient temporal coverage and, in the case of US-
Sne, not fully established vegetation cover, makes them less representative of a stable
ecosystem. Focusing on sites with over a decade of continuous data allows for capturing long-
term dynamics more effectively and provides sufficient time for the wetlands to reach a stable
state. The dataset encompasses 35 full site-years of observations across the three sites within
the Delta (Novick et al., 2018) (Table 2, Figure 1), with detailed mapping data sourced from the
Ecoatlas Database (Workgroup, 2019) which provides land use and vegetation surveys across
wetlands in California.

Table 2: Model training sites

Site Site Name Water Salinity | Years of Start
Code Type Data (Full) Date
US-Myb | Mayberry Wetland Non-Tidal | Fresh 13 2010
US-Tw1 Twitchell Wetland West Pond Non-Tidal | Fresh 12 2011




US-Tw4 | Twitchell Island East End Non-Tidal | Fresh 10 2013
Wetland

The sites are dominated by Tules (Schoenoplectus), Cattails (Typha), and invasive species
such as Phragmites, which are perennial emergent plants well suited to wetland environments
(Lopez et al., 2016). The Delta itself is host to the largest estuarine system on the US Pacific
coast, spanning approximately 3,000 km?, and contains a diverse network of wetland systems.
Historically, much of the area was drained and converted for agriculture (La¢an and Resh, 2016;

Lund et al., 2010), but recent restoration efforts have reclaimed select portions of the landscape
for environmental benefits.
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Figure 1: Map of the Sacramento-San Joaquin Delta's wetland system. The Eddy-covariance
tower site locations outlined in Table 2 are shown in the red and purple boxes. Satellite
image: © Google Earth, accessed 20254.

2.3 Model features

The application of this work focuses on upscaling carbon fluxes from similar wetlands at a
regional scale. To achieve this, we aim to predict fluxes at unmonitored sites using widely
available data that are expected to be key drivers of FCO2 and FCH4. Since site-level



measurements from EC towers are not available at a larger spatial scale, we focus on
ecosystem drivers that can be accessed across broader spatial extents.

The models utilize a comprehensive set of features from two readily accessible datasets: (i) the
Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and (ii) Landsat
surface-reflectance products (Landsat, 2020). A list of features can be found in Supplementary
Table S3. Initially surface reflectance products were derived from MODIS (Justice et al., 2002),
but we found better model performance with Landsat features . WLDAS provides hydrological
and meteorological data at 1 km spatial and daily temporal resolution; we bilinearly interpolate
these fields to each tower coordinate (no additional smoothing). Landsat offers 30 m pixels at a
nominal 16-day revisit, although temporal resolution increases with time as more satellites are
added; we average a 3 x 3 pixel window centred on the tower, linearly interpolate the series to
daily resolution, and apply a centred 17-day running mean to improve data continuity.
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2.4 Model suite

To evaluate ML model performance in calculating FCO2 and FCH4, we implemented a suite of
seven models ranging from simple linear methods to more complex neural networks. These
models have been used in various ecosystems to study fluxes and collectively represent a
broad spectrum of methodological complexity. Table 3 summarizes the core characteristics and
advantages of each approach.

Table 3: An overview of the models that are applied to wetland fluxes

Model Name Category Description Key Strengths
Linear Regression Regression Fits a linear relationship Simple baseline,
between predictors and easily
fluxes




interpretable
(Breiman, 2001)

Random Forest Ensemble of Aggregates multiple Robust to
(Breiman, 2001) Decision Trees | decision trees to enhance nonlinearity,
prediction stability reduces overfitting

(Cortes, 1995)

Support Vector Kernel-Based Uses flexible kernels to find | Effective in high
Machine (Cortes, Method optimal separating dimensions,
1995) (SVM) hyperplanes adaptable kernels
(Ke et al., 2017)
LightGBM (Ke et al., | Gradient Employs iterative boosting | Fast, memory-
2017) Boosting with efficient tree growth efficient, handles

large datasets

XGBoost (Chen and | Gradient Improves boosting with Manages outliers,
Guestrin, 2016) Boosting regularization and efficient | handles sparse
computations data well
LSTM Neural Recurrent Captures temporal Ideal for time-
Network Neural Network | dependencies in sequential | series, learns
(Hochreiter, 1997) data inputs long-term patterns
GRU Neural Recurrent Similar to LSTM but Efficient temporal
Network (Chung et | Neural Network | streamlined with fewer modeling, lower
al., 2014) parameters complexity

These models act to demonstrate a spectrum of model complexity and how that can be
leveraged to improve flux prediction.

After performing simple grid searches we found that all models were largely insensitive to
hyperparameter tuning, so we kept almost everything at the package defaults with some minor
exceptions. Model hyper-parameter choices can be found in Brereton (2025).

2.5 Validation framework

To evaluate the models' ability to generalize across sites, we employed a Leave-One-Site-Out
(LOSO) cross-validation strategy. In LOSO, we train the models on data from all but one site,
and test the models on the excluded site. This approach is repeated for each site in the dataset
and then aggregated, ensuring that there are no spatio-temporal connections between the
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training and testing data. While few models are immune to overfitting, this approach minimizes
the risk of doing so.

An integral part of our modeling approach is the strategic selection of input features to optimize
the model's performance. We perform this selection by first selecting features that are expected
to be important, guided by mechanistic considerations of wetland processes gained from
fieldwork and insights from mechanistic models (Table S3). Since the total number of possible
feature combinations is too large for an exhaustive search, we adopt a feed-forward selection
(FFS) strategy. This method begins with a single feature and iteratively adds features that most
improves the model's performance based on a chosen statistic. At each step, we evaluate the
model's performance with each potential new feature and select the one that provides the
greatest improvement. This process continues until adding additional features no longer
significantly enhances the model's performance. By using this approach, we efficiently identify
the most influential predictors without the computational burden of testing all possible
combinations.

2.6. Validation

As suggested above, each model was trained using data from two wetland sites and then
validated on the third. Although the number of sites was limited, each site offered over a decade
of observations accumulated to a daily time step, ensuring exposure to a range of
environmental conditions representative of the wetland type and regional climate. For each
excluded site, the model’'s predlctlons were compared agalnst measured FCO2 and FCH4\\e

site-predictions-_ and we calculated R2 Pearson sr, and RMSE for that S|te We then pooled aII

held-out predictions from the three sites into one combined set and recomputed R? (as well as r
and RMSE) on the full array to give an overall cross-validation score. This process was paired
with the FFS method optimized to maximize R2.

After selecting LSTM as the model of choice, it was retrained using all available data from the
three sites for upscaling.. The Sacramento-San Joaquin Delta contains roughly 700km2 of
wetland area, including tidal and nontidal regions. The upscaling domain encompasses
approximately 25 km? of nontidal wetlands in the region, dominated by vegetation types relevant
to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the
training sites used in this study are representative of the broader conditions in the Delta, but we
acknowledge that local variability in carbon dynamics, such as those caused by microclimates
prevalent in the area, may not be fully captured during the ML model training. Improvements to
the model might be achieved if additional site data covering a wider range of environmental
conditions were incorporated. The feature data used to optimize the model were spatially
interpolated onto the regional model grid and the model applied to yield flux estimations.
Although relatively modest in spatial extent, these wetlands are of particular interest given their
role in carbon sequestration and potential climate mitigation and as targets for conservation and
restoration.
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3. Results

3.1 Model Validation

We tested six modeling techniques of varying complexities (Table 3). Model performance scores
for daily predictions are shown in Figure 2, demonstrating that nearly all machine learning
models outperformed the linear regression baseline (R? = 0.642 for FCO2 and R? = 0.4754 for
FCH4). For FCO2, LSTM and GRU achieved the highest R? values (0.734 and 0.716,
respectively), outperforming other _methods. A similar result was found for FCH4, with LSTM
and GRU both scoring R? of 0.5360. These results suggest that deep learning models can
provide tangible benefits over linear regression methods for upscaling flux predictions. The
LSTM model was selected for upscaling in this study as it scored highest consistently, though
other ML models scored comparably, so we do not assert it as definitively the best model.

The feature selection process had access to 26 environmental features from WLDAS and 78
features derived from LANDSAT spectral bandsMODBIS-(see table S3 for full details). These
variables encompass a wide range of atmospheric, soil, and vegetation characteristics, such as
precipitation, temperature, soil moisture, and spectral indices, key environmental drivers known
to influence carbon and methane flux dynamics (Mitsch and Gosselink, 2015b).

The feature selection routine converged on variables that map directly onto the three main
controls of wetland carbon cycling - vegetation productivity, surface energy-water balance, and
microbial temperature sensitivity, see Table 4. Foi FCO2, the features selected were the Soil-
Adjusted Vegetation Index (SAVI) and the upwards sensible heat flux, which are proxies for
gross primary production and the surface energy water balance (Anderson et al., 2016; Huete,
1988). For FCH4, the features selected were canopy temperature, soil temperature and
Greenness Difference Vegetation Index (GNDVI), which are proxies for short-term thermal
forcing and vegetation water status, the anaerobic root-zone temperature that governs
methanogenesis, and the supply of photosynthetically derived substrates for microbes,
respectively (Bubier et al., 1993; Knox et al., 2021; Whiting and Chanton, 1993; Yvon-Durocher

etal., 2014).
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Table 4: Feed-forward feature selection process.

Target Step Chosen Feature R? RMSE r
Variable

FCO2 1 Soil-adjusted 0.5966 1.7962 0.7882
vegetation index
(SAVI) Air
Temperature

FCO2 2 (Upwards) 0.7368 1.4657 0.863
sensible heat flux

Water Table-Depth

Fco2 3 Bare-Soil 070 154 084
Evaporation

FcOo2 4 BlueReflectance | 644 450 085

FCH4 1 Canopy 0.4852 0.054 0.703
Temperature

FCH4 2 Soil temperature 0.528 0.05214 0.736
(10-40 cm)Near-
Infrared

Reflectance

FCH4 3 Normalized 0.5360 0.0510 0.747
Difference
Greenness Index
(NDGl)Fetal

£ o

Figure 3 shows both FCO2 and FCH4 results, including time series and scatter plots comparing
predictions to observations. Overall, the predicted values track the observations reasonably
well. For FCO2, predictions tended to regress toward the mean, underestimating peak
emissions at local maxima and overestimating at local minima, although reasonable interannual
variability was observed. The ML models also displayed less interannual variability than the
observations, common in machine learning approaches (Ouyang et al., 2023). For wetlands,
this is likely due to limited subsurface process information included in the machine learning
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models. Still, the scatter plot shows strong performance for FCO2 (r = 0.864, R? = 0.734, RMSE
= 1.469 gC-CO, m2day'), despite a noticeable spread around the 1:1 line.

FCH4 predictions exhibited similar behavior, with lower interannual variability than the
observations. At the US-Myb site, for example, observed FCH4 were initially high (aside from
the first year, when vegetation cover had yet to be fully established) but declined over time,
stabilizing at lower values. The ML models captured this shift to some extent, predicting higher
fluxes early in the time series and then modulating to lower levels later on. However, predictions
did not fully replicate the magnitude of the observed downward annual trend, introducing bias
into the scatter plots at higher and lower extreme values. This phenomenon is known as
regression to the mean, observed in similar machine learning studies (Ouyang et al., 2023).
Consequently, the FCH4 model performance was weaker than the FCO2 model (R? = 0.5364, r
=0.748, RMSE = 0.05 g C-CH4 m2day"), indicating that the processes controlling FCH4 in
younger wetlands like US-Myb may require more detailed subsurface information (such as soil
organic C, oxygen, or redox information) to be accurately modeled. Restored Delta wetlands are
often net GHG sources for 1-3 years after flooding, before vegetation is fully established. Eddy-
covariance measurements show positive NEE of +201 + 101 g C-CO, m~? yr™* and elevated
CH, emissions in the initial period, switching to sinks of between -400 to -700 g C-CO, m™2 yr™*
thereafter (Hemes et al., 2019). A larger synthesis found that this can persist decades in
nontidal marshes because CH, radiative forcing outweighs CO, burial (Arias-Ortiz et al., 2021).
Similar contrasts between 2 and 15-year-old wetlands (Knox et al., 2015).

The annual bar plots presented in Figure 4 highlight the model’s difficulty in capturing the
interannual variability of carbon fluxes across the study sites. While the average FCO2 and
FCH4 predictions are generally aligned with observed average values with small overall mean
bias, the model struggles to reproduce the observed year-to-year variability. Although direct
subsurface measurements are available at certain sites, at the regional scale their limited spatial
and temporal coverage currently limits integration into models designed for regional upscaling
over inter-annual timescale. For example, while spatial maps of wetland soil organic carbon
exist (Uhran et al., 2022), using only three sites for training purposes would provide just three
corresponding data points, limiting model training. The LOSO validation approach revealed that
deep learning models, particularly LSTM and GRU, consistently outperformed traditional linear
regression and other machine learning methods for both FCO2 and FCH4 predictions. While
nonlinear models demonstrated clear advantages, the magnitude of improvement was relatively
modest, reflecting the inherent challenges of capturing site-specific inter-annual dynamics of
wetland emissions. To improve model performance, additional techniques such as feature
transformations or attention mechanisms could be implemented. However, the primary goal of
this model suite is to ensure reproducible results with ‘off-the-shelf models, which serves as a
foundation for more advanced, nuanced approaches.
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Figure 4: Annual Observed and Predicted FCO2 and FCH4 Across Three
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3.2. Model Application: Upscaling

Figure 5 displays spatial maps of annual flux estimates of Net Ecosystem Carbon Balance
(NECB), methane-flux{FCH4)-and the CO, equivalent flux rate (FCOZ2e) in the study domain-,
including zoom-in subplots highlighting areas with more data. 10 models were trained and mean
and standard deviation was calculated for each spatial point. The results show that carbon
sequestration, indicated by negative NECB (green) values, are typically dominant throughout
the domain, althouqh the northern reqmns shows more carbon sources. -aFe—netabl-y—stFenge#m

vahdaﬂen—SmlaHe—NEGB— In contrast, the FCO2e dlstrlbutlon shows varlabllltv across the
eglo skenngaLdependenee with sources and sinks found a-net COze sink throughou

Figure S1 plots the coefficient of variation (CV = o/y) of the inter-model ensemble for both

NECB and FCO2e. Higher CV indicates locations where environmental conditions are poorly
represented in the training data - effectively a proxy to determine model confidence. Across the
study domain the vast majority of pixels show low dispersion: = 85 % of the mapped area has a
CV < 0.5 for NECB, and 69 % falls below that same threshold for FCO2e.

Figure 6 shows averaged fluxes in the upscaling domain over the full study period. The results
highlight the Delta as an overall carbon sink, with NECB averaging approximately -45380 gC
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m~2yr', indicating persistent sequestration across multiple years. CH, fluxes average 3128 gC-
CH, m™2yr™, and shows little spatial variability. Values are consistent with those previously
reported in the region (Arias-Ortiz et al., 2021). Integrating these fluxes into a CO,-equivalent
metric, this regional wetland system remains a net sink of CO. e, with approximately 60460
gCO.,e m™2 yr' sequestered on average in the upscaling domain, with an increasing trend with

time.-
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Figure 5: Mean annual Net Ecosystem Carbon Balance (NECB, left) and CO,-equivalent radiative forcing (FCO.e, right) averaged

over all model years. Main maps show the Delta area; dashed rectangles (1 - 3) correspond to zoom-in panels. Tidal wetlands are

shaded dark blue, non-tidal light blue. Positive values (red) indicate net carbon loss; negative values (green) net uptake. See

Figure 1 for reference to training sites.
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Figure 6: Bar plots and box plots of annual NECB, FCH4, and FCO2e fluxes, which have

primarily by Tules, but also Cattails and Phragmites. The left column shows annual fluxes
for each year, with negative fluxes in green and positive fluxes in orangered. Daily fluxes,
aggregated to annual totals, are overlaid as greyblack lines. The right column shows box
plots summarizing the distribution of annual fluxes, highlighting the range, median (blue
line), and spread of values. Each row represents a different flux variable: (a) NECB, (b)
FCH4, and (c) FCO2e.
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4. Discussion i - [ Formatted: Font: 11 pt, Not Bold

This study demonstrates the development and evaluation of a data-driven framework to upscale
terrestrial CO, and CH, flux estimates for non-tidal wetlands in the Sacramento-San Joaquin
Delta. By systematically comparing models of varying complexity, including linear regression,
ensemble methods, gradient boosting algorithms, and recurrent neural networks (RNNs), we
presented a transparent assessment of model performance. The goals were to identify the
model that best predicts CO, and CH, fluxes and critically appraise whether incremental
complexity is justified by improvements in predictive capacity. Relevant cited works have
included many different machine learning approaches for predicting emissions. This work aims
to unify modelling efforts by establishing a standard framework for developing robust data-
driven models, particularly for upscaling purposes.

Our results indicate that non-linear and more advanced models generally outperformed simple
linear regression approaches. Among all tested models, the Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) neural networks provided the highest overall skill in predicting
both CO, and CH, fluxes at daily timescales. This improvement was marginal but consistent,
supporting the notion that time-series models, which inherently capture temporal dependencies
and non-linearities, can provide tangible benefits over linear methods and traditional machine
learning algorithms.

However, while these deep learning models performed best, the performance gains were not as
large as might be expected given their significantly higher complexity and computational
demands. Similar outcomes have been noted in other ecological modeling applications, where
advanced machine learning methods yield improvements that are statistically significant yet
modest in terms of performance gains relative to linear models (Oh et al., 2022; Wood, 2022).

The deep learning models provided reasonable estimates of daily fluxes but struggled to
replicate the full range of interannual variability observed in the field measurements, which is a
common issue for data-driven models in this field (Nelson et al., 2024). This limited ability to
capture long-term trends and extremes mirrors common challenges in machine learning-based
modeling, where the absence of explicit mechanistic understanding limits extrapolation beyond
the conditions represented in the training data. The difficulty in reproducing interannual
fluctuations was particularly evident for CH, fluxes, an outcome consistent with the high spatial
and temporal complexity of CH, cycling in wetland environments and the limited availability of
subsurface parameters (e.g., oxygen concentration, redox conditions, substrate availability) that
drive CH, production. This may not be surprising as the number of annual cycles available in
the training set was only 35 years.

The observed regression to the mean and the reduced dynamic range in model predictions may
reflect insufficient representation of key environmental drivers in the feature set or inadequate
temporal coverage and variability in the training data. While publicly available datasets such as
WLDAS and LANDSATMODBIS-were effective at providing spatially and temporally
comprehensive inputs, the lack of direct subsurface and soil biogeochemical measurements
likely limited the model’s ability to capture critical internal processes that are likely causing the
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observed differences between years. Although the feed-forward selection process for the model
features had access to an extensive pool of relevant features, results indicated that only a small
subset of features was necessary to maximise performance. This suggests that, while there are

many features that control CO2,and methane, their contribution to predictive accuracy may be - [ Formatted: Not Superscript/ Subscript

redundant or captured indirectly by other variables. The exclusion of particular features, such as
the water table depth for FCH4, illustrates the trade-off between mechanistic intuition and data-
driven optimization. Strong correlations between features and limited independent variability can
lead to features being left out that would typically be considered ecologically relevant.

After applying the chosen model (LSTM) to calculate CO2 and CH4 fluxes, we estimated NECB - [ Formatted: Not Superscript/ Subscript

and CO,-equivalent fluxes for similar wetland settings across the Delta region. The results show {Formatted: Not Superscript/ Subscript

spatial heterogeneity and pinpoint regions that act as stronger net carbon sinks, as well as
areas where CH, emissions may offset climate benefits of net carbon sequestration. Such
insights support targeted conservation and restoration strategies aimed at maximizing net
carbon sequestration benefits, facilitating ongoing efforts to restore and manage wetlands to
contribute to net-zero emission goals.

A key advantage of the chosen approach is its reliance on readily available, open-source data
streams and standard computational resources. The framework can be deployed efficiently
without specialized hardware, making it accessible to resource-limited organizations,
practitioners, and researchers.

The primary objectives of this study were to identify a suitable model, contextualize model
performance by comparing to a baseline linear regression, and highlight trade-offs between
complexity, interpretability, and accuracy. By explicitly testing multiple models ranging from
simple linear regressions to advanced recurrent neural networks, we demonstrated that
complexity alone does not guarantee a substantial increase in predictive power. Instead,
complexity should be adopted judiciously, based on the magnitude of performance gains, the
cost of model implementation, and the level of interpretability.

We suggest that future modeling efforts should focus on deriving mechanistically relevant
predictors (Ouyang et al., 2023), and incorporating hybrid modeling approaches (Yao et al.,
2023) that combine the strengths of process-based and machine learning methods. Attention
mechanisms (Yuan et al., 2022), advanced architectures (e.g., Transformers (Vaswani, 2017)),
or physics-informed machine learning (Raissi et al., 2019) may also help address model
performance limitations.

5. Conclusions B [ Formatted: Font: 11 pt, Not Bold

e [ Formatted: Font: Not Bold

This study provides a transparent, methodical demonstration of an artificial intelligence
approach to modeling wetland carbon dioxide (CO,) and methane (CH,) emissions, using a
suite of “off-the-shelf” tools and establishing a standardized benchmarking protocol for model
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performance evaluation. In the study region (the Sacramento—San Joaquin Delta), inter-model
comparisons revealed modest but appreciable performance differences when comparing
advanced models with a linear regression baseline. While there are tangible benefits to
employing machine learning for these purposes, it is likely that the gap between simpler models
and more sophisticated models will widen as data quantity and quality continues to increase.
Ultimately, this study lays the groundwork for regional scale model benchmark testing,
facilitating the development of more advanced modeling approaches that can guide wetland
management, restoration planning, and climate mitigation strategies.

AQQC!Q apdfdaﬁt@f@\(afllfahlljty _ - 7| Formatted: Font: 14 pt, Not Bold, Font color: Custom

Color(RGB(67,67,67))
The current version of the RCCAT model is available on GitHupbat o - [ Formatted: Font: Not Bold
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Various studies have documented substantial rates of carbon uptake in nontidal wetlands. Table
1 summarizes reported carbon sequestration rates from prominent publications.

Table S1: Reported Carbon Sequestration Rates in Nontidal Wetlands
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While nontidal wetlands sequester carbon, they can also emit methane, potentially offsetting
some climate mitigation benefits. Table 2 presents methane emission rates from various
studies.
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Table S2: Reported Methane Emissions in Nontidal Wetlands
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Table S3: Feature pool
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Total
Evapotranspiration

Surface
Downwelling
Longwave Flux

Rainf_f_tavg

Rainf_tavg

SWdown_f_tavg

Soil Moisture

Soil Temperature

Swnet_tavg

TVeg_tavg

Rainfall Flux (Rain + Snow)

Precipitation Rate

Surface Downwelling
Shortwave Flux

Soil Moisture (0-200 cm), m?
m—3

Soil Temperature (0-100 cm),
K

Surface Net Downward
Shortwave Flux

Vegetation Transpiration
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Lwnet_tavg Surface Net Tair_f_tavg Air Temperature
Downward
Longwave Flux
Psurf_f_tavg Surface Pressure VegT_tavg Canopy Temperature
Qair_f_tavg Specific Humidity Wind_f_tavg Wind Speed
Qg_tavg Downward Heat Flux | WT_tavg Water in Aquifer and Saturated
in Soil Soil
Qh_tavg Surface Upward WaterTableD_tav | Water Table Depth
Sensible Heat Flux | g
Qle_tavg Surface Upward Qs_tavg Surface Runoff Amount

Latent Heat Flux

LANDSAT MODBIS-variables: hitps://landsat.gsfc.nasa.gov/data/data-access/,

-~ ’{ Formatted: Font: Not Bold

h { Formatted: Font: Not Bold

NDVI Normalized EVI Enhanced Vegetation Index
Difference
Vegetation Index
SAVIMIR—refleet | Soil-Adjusted NDWINIR—reflect | Normalized Difference Water
ance Vegetation ance IndexNear-Infrared Reflectance
IndexMid-lrfrared
Reflectance
NDMlIblue—refle | Normalized NDGlred-—reflecta | Normalized Difference
etanee Difference Moisture | ree Greenness IndexRed
IndexBlue Reflectance
Reflectance
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MNDWI Modified Normalized
Difference Water
Index
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Figure S1: Coefficient of variation (o/|u|) of NECB (left) and FCO2e (right) across the 10 runs, showing relative inter-model
uncertainty in the predictions. Green areas show high model confidence and red areas shower either lower model confidence (or

division by small y). This can be interpreted as a proxy for the confidence of the spatial upscaling.
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