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Abstract 

Wetlands play a pivotal role in carbon sequestration but emit methane (CH4), creating 
uncertainty in their net climate impact. Although process-based models offer mechanistic 
insights into wetland dynamics, they are computationally expensive, uncertain, and difficult to 
upscale they require extensive site-specific parameterisation (e.g. soil carbon profiles, pore-
water chemistry, vegetation-specific model parameters), as well as high-resolution hydrological 
and meteorological inputs that are often difficult to obtain outside of well-instrumented research 
sites, which makes regional upscaling challenging. In contrast, data-driven models provide a 
scalable alternative by leveraging available extensive datasets to identify patterns and 
relationships, making them more adaptable for large-scale applications. However, their 
performance can vary significantly depending on the quality and representativeness of the data, 
as well as the model design, which raises questions about their reliability and generalizability in 
complex wetland systems. To address these issues, we present a data-driven framework for 
upscaling wetland CO2 and CH4 emissions, across a range of machine learning models that 
vary in complexity, validated against an extensive observational dataset from the Sacramento-
San Joaquin Delta. We show that artificial intelligence (AI) approaches, including Random 
Forests, gradient boosting methods (XGBoost, LightGBM), Support Vector Machines (SVM) and 
Recurrent Neural Networks (GRU, LSTM), outperform linear regression models, with RNNs 
standing out, achieving an R² of 0.731 for daily CO₂ flux predictions compared to 0.642 for linear 
regression, and an R² of 0.5360 
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 for CH₄ flux predictions compared to 0.4754 for linear regression. Interestingly, linear 
regression performed better than random forest for methane flux, which highlights the necessity 
for comparison. Despite that, interannual variability is less well captured, with annual mean 
absolute error of 17693 gC m-² yr-1 for CO₂ fluxes and 911 gC-CH₄ m-² yr-1  for CH₄ fluxes. By 
integrating vertically-resolved atmospheric, subsurface, and spectral reflectance information 
from readily available sources, the model identifies key drivers of wetland CO2 and CH4 
emissions and enables regional upscaling. These findings demonstrate the potential of AI 
methods for upscaling, providing practical tools for wetland management and restoration 
planning to support climate mitigation efforts. 

 

1. Introduction 

Wetlands provide a wide array of ecological, economic, and environmental benefits (Costanza 
et al., 2014). They play a crucial role in biodiversity conservation, water purification, flood 
control, and climate regulation  (Grande et al., 2023; Sharma and Singh, 2021). Significant 
attention has been recently given to wetland restoration due to their ability to sequester carbon 
from the atmosphere (Lolu et al., 2020; Upadhyay et al., 2020). These ecosystems are highly 
effective at storing carbon in their soils because the anaerobic conditions in waterlogged soils 
suppress organic matter decomposition, allowing carbon to accumulate over time (Mitsch and 
Gosselink, 2015a). However, wetlands can also be significant sources of CH4, a potent 
greenhouse gas (Brix et al., 2001), leading to potentially net positive effects of wetlands on 
climate warming. The most accurate way to determine the carbon balance in natural 
ecosystems is through direct and continuous measurements of carbon and GHG sources and 
sinks (Baldocchi et al., 2001). This involves monitoring carbon dynamics using techniques such 
as eddy covariance (EC) towers (Aubinet et al., 2012), soil carbon stock assessments (Harrison 
et al., 2011), and lateral carbon transport measurements (Ciais et al., 2008). However, these 
measurements are time-consuming to carry out, costly, and require specialized instruments and 
expertise, limiting their application to a few representative sites globally (Hill et al., 2017; Kumar 
et al., 2017). The Ameriflux network offers roughly 500 EC sites comprising about 3600 site 
years of data, monitoring carbon fluxes across various ecosystems such as forests, grasslands, 
and wetlands (Pastorello et al., 2020). Eddy-covariance site footprints range in scale and are 
typically determined by the sensor height and atmospheric turbulence (Chu et al., 2021). Data 
from these Ameriflux sites could potentially be upscaled and used for estimating fluxes from 
non-monitored sites to obtain regional assessments of carbon balance for various ecosystem 
types, including wetlands. 

In this study, we focus on nontidal wetlands due to the presence of a cluster of EC towers in a 
small region located in the Sacramento-San Joaquin Delta, including three sites, each with over 
a decade of continuous data. Reported sequestration rates in wetlands vary widely, influenced 
by factors such as climate, vegetation, and management. For instance, reported sequestration 
rates range from as low as 26 gC m⁻² yr⁻¹ in boreal rain-fed bogs (Villa and Bernal, 2018) to as 
high as 797 gC m⁻² yr⁻¹ in constructed wetlands with emergent Phragmites in the Netherlands 
(de Klein and van der Werf, 2014). Similarly, temperate wetlands in central Ohio exhibit a wide 
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range of carbon sequestration rates depending on vegetation: forested depressional wetlands 
dominated by Quercus palustris sequester up to 473 gC m⁻² yr⁻¹, while marshes dominated by 
Typha sequester around 210 gC m⁻² yr⁻¹ (Bernal and Mitsch, 2012). In Victoria, Australia, 
freshwater marshes show varying sequestration rates from 91 gC m⁻² yr⁻¹ in shallow marshes to 
230 gC m⁻² yr⁻¹ in permanent open freshwater wetlands (Carnell et al., 2018). More relevant to 
this study, in the San Francisco Bay-Delta region, nontidal managed wetlands dominated by 
Schoenoplectus and Typha species sequester carbon at rates of approximately 355 ± 249 gC-
CO2 m⁻² yr⁻¹. This estimate is based on direct calculations using Ameriflux data from sites with 
over a decade of observations (US-Myb, US-Tw1, and US-Tw4). For this calculation we used 
full-year annual averages and their corresponding standard deviation to the annual mean, to 
highlight the significant inter-annual variability, with the standard deviation close to the mean.  
The unit reported for these Delta sites is in gC-CO₂ m⁻² yr⁻¹, as the EC tower directly detects 
CO₂ exchange, which is convenient for GHG assessment purposes. It is worth noting that, at 
these sites, some years were a net CO2 source, due to site-specific disturbances such as 
caterpillar infestations, drought, or when vegetation cover was fully established (Anderson et al., 
2018; Knox et al., 2017; Rey‐Sanchez et al., 2021) . See table S1 for more detailed information 
and references therein.  

Although CO2 balance (photosynthesis minus community respiration) is an important component 
of carbon sequestration, in many wetland systems sequestration benefits are counterbalanced 
by CH4 emissions, a potent greenhouse gas, with a warming potential 27 times higher than CO2 

(Lee et al., 2023) that can often offset climate mitigation efforts. CH4 emission rates also vary 
substantially over time and across wetlands, from as low as 0.23 gC-CH₄ m⁻² yr⁻¹ in saltwater 
zones of estuarine environments (Abril and Iversen, 2002) to as high as 270 gC-CH₄ m⁻² yr⁻¹ in 
certain freshwater wetlands (Knox et al., 2021). For example, restored freshwater wetlands in 
Maryland dominated by grasses and sedges emit around 142 gC-CH₄ m⁻² yr⁻¹ (Stewart et al., 
2024). Tropical wetlands in Costa Rica exhibit some of the highest emissions, with isolated and 
floodplain wetlands releasing between 220 and 263 gC-CH₄ m⁻² yr⁻¹ (Mitsch et al., 2013). The 
San Francisco Bay-Delta wetlands that have high carbon sequestration rates also release CH4 
at rates of 35 ± 13  gC-CH₄ m⁻² yr⁻¹ (direct measurements from the eddy covariance tower data 
(Arias‐Ortiz et al., 2021)). See table S2 for further information and reference therein. This dual 
role of wetlands in both sequestering carbon and emitting CH4 reveals the complex effect they 
have on the global greenhouse gas balance. Therefore, integrating CO2 and CH4 emissions is 
critical to assess the net climate benefits of wetland conservation and restoration initiatives. 

To evaluate how wetlands contribute to the atmospheric radiation budget at larger scales, it is 
essential to quantify both GHG emissions and carbon sequestration, especially at sites where 
direct measurements are unavailable (Moomaw et al., 2018). Upscaling models serve this 
purpose by allowing estimation of sequestration and emission rates across larger spatial scales 
than those covered by the original data sources (Villa and Bernal, 2018) which provide GHG 
accounting and net climate benefit assessments for specific wetland sites (Nahlik and 
Fennessy, 2016). Moreover, it aids in targeting wetland restoration efforts that aim to optimize 
sequestration by identifying locations with the greatest potential for net carbon uptake. 
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Process-based models have traditionally been used to estimate sequestration and emissions 
(Mack et al., 2023; Zhang et al., 2002). Models such as DNDC (Li, 1996), DayCent (Parton et 
al., 1998), and Ecosys (Grant et al., 2017) have been applied to simulate biogeochemical 
processes in terrestrial ecosystems, including modeling CH4 emissions, carbon balances, and 
soil carbon and nitrogen cycling (Grant and Roulet, 2002; Weiler et al., 2018; Zhang et al., 
2002). While these models can elucidate the processes that play a role in carbon dynamics, 
they require extensive mechanistic parameterization to accurately represent the interactions in 
various ecosystems(Pastorello et al., 2020; Yin et al., 2023). This approach often necessitates 
site-specific information and data collection, making implementation over vast areas challenging 
(Saunois et al., 2024; Xu and Trugman, 2021). The extensive data needs associated with these 
process-rich models showcase the need for alternative approaches that can effectively upscale 
wetland emissions without such intensive resource demands. 

Artificial Intelligence (AI) methods, such as machine learning and deep learning, have been 
widely applied in ecological modeling in recent years, alongside long-term, large-scale data 
collection efforts (Perry et al., 2022). Recent deep learning applications have demonstrated 
success in capturing the complex dynamics of carbon and methane fluxes in these systems 
(Ouyang et al., 2023; Yuan et al., 2022, 2024; Zou et al., 2024). The availability of open-source 
modeling platforms like TensorFlow and PyTorch has made advanced computational 
techniques, such as neural networks, more accessible, enabling the rapid development and 
deployment of a range of specialized modeling tasks (Xu et al., 2021). Despite several recent 
studies demonstrating the potential of machine learning for large-scale carbon cycling in 
wetland ecosystems, this remains a relatively young field. Moreover, carbon dynamics in 
wetland ecosystems are temporally variable and inherently nonlinear, making them particularly 
well-suited for testing machine learning approaches (Arora et al., 2019, 2022). We therefore 
emphasize the importance of evaluating and comparing various approaches within this domain 
and their potential for large-scale assessment. 

A pervasive challenge in model development is the ability to balance complexity with 
generalizability. While more complex models can capture nonlinear relationships, they also 
increase the risk of overfitting, where the model performs well in the testing, but poorly on new 
conditions (Hastie, 2009; Tashman, 2000). Furthermore, it is also important to use a robust 
validation framework. For the application of upscaling, it is important that the model is able to 
extrapolate spatially. For this purpose, a leave-one-site-out (LOSO) validation approach is 
typically carried out, whereby the models are trained on data that excludes a single site, with the 
excluded site data saved for model testing (Bodesheim et al., 2018; Tramontana et al., 2016). It 
is also important to avoid data leakage, where information from the training set inadvertently 
appears in the testing set (Kaufman et al., 2012), a risk posed when splitting temporally 
adjacent data points that are close in value, potentially inflating performance statistics (Bergmeir 
and Benítez, 2012; Kaufman et al., 2012). For example, daily rates of change relative to a 
system where seasonal dynamics dominate, such as emissions of CH4 emissions in vegetated 
wetlands (Knox et al., 2021).  

In this study, we introduce a model framework for coastal nontidal wetland CO2 and CH4 
emissions using several  ‘off-the-shelf’ models. These models are trained and validated against 
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observational data, and results are compared to find the most predictive model. The top 
performing model is then used to upscale carbon sequestration and CH4 emissions in nontidal 
wetlands at regional scale. The San Francisco Bay-Delta serves as the area of interest, due to 
its network of EC towers that have been operating for a relatively long time and relevance to 
future wetland restoration efforts. We employ a suite of models, ranging widely in complexity: (1) 
linear regression; (2) Random Forests (Breiman, 2001), an ensemble method that constructs 
multiple decision trees to reduce overfitting; (3) gradient boosting techniques such as LightGBM 
(Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016), which are scalable tree boosting 
systems able to handle complex nonlinear relationships and variable interactions; (4) Support 
Vector Machines (SVM) (Cortes, 1995), a kernel-based technique that can approximate 
nonlinear boundaries between data points and (5) the Recurrent Neural Network (RNN) such as 
the Long Short-Term Memory (LSTM) neural network (Hochreiter, 1997), an advanced model 
designed to process sequential data and capture non-linear interactions over long-term 
dependencies. We also test a model with similar but simpler architecture, the Gated Recurrent 
Unit (GRU) (Chung et al., 2014), which uses fewer parameters. Linear regressions serve as a 
baseline to assess the applicability of the more sophisticated methods. Random Forests have 
been used to upscale northern wetland methane emissions (Peltola et al., 2019), gradient 
boosting methods have demonstrated success in ecological modeling (Ding, 2024; Räsänen et 
al., 2021; Zou et al., 2024), and LSTM neural networks have been successfully applied to model 
CO2 and CH4 fluxes in ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our proposed 
framework is designed to provide transparency, easy determination of model practicality and 
applicability, and contextualisation to model performances by comparing to a baseline model 
(i.e. linear regression).  

 

2. Methods 

Our ultimate aim is to establish a robust modeling framework for estimating wetland carbon 
fluxes in sites that are not monitored. To achieve this, we compare a range of models, from 
simple linear regression to advanced recurrent machine learning neural networks. Since the 
goal is to predict unseen sites, we emphasize cross-site predictability by validating and testing 
the models at sites not included in training. Doing so ensures predictions are applicable beyond 
the training sites and addresses challenges often associated with model generalizability (Meyer 
and Pebesma, 2022). This strategy serves several purposes: 

1. Performance Contextualization: Starting with the simplest type of model provides a 
baseline for performance and helps evaluate the advantage (or lack thereof) for using 
more complex models.  

2. Practicality and Transparency: Advanced models may offer better performance but 
often require significant effort to set up and may lack interpretability. By comparing 
models of varying complexity using the same input data, we assess whether the added 
complexity is justified. 

3. Feature Evaluation: Training with different combinations of relevant features helps us to 
understand which features are dominating control, and the limitations of the data in 
terms of predictive capacity.  
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2.1 Model targets 

The model targets two key variables: CO2 (FCO2) and CH4 (FCH4) surface emissions. Both 
variables follow a sign convention where positive values indicate emissions to the atmosphere 
(source) and negative values indicate sequestration (sink). Both variables are available at half-
hourly resolution through the Ameriflux database.  

The models we developed all operate on a daily time scale, requiring target variables to be 
aggregated to the daily time scale. This approach assumes that sub-daily variations have a 
negligible non-linear contribution to longer time scales, an assumption supported by the 
dominant seasonal signal typically observed in flux data from these systems (Knox et al., 2021). 

These target variables could then be used to calculate annual NECB (Net Ecosystem Carbon 
Balance; gC m⁻² yr⁻¹ ) and annual wetland net atmospheric radiative effect (FCO₂e (CO₂-
equivalent flux) gCO2e m⁻² yr⁻¹).The global warming potential (GWP) of non-fossil CH4 is 27.2 as 
per the latest IPCC assessment(Lee et al., 2023). For this study, we neglect contributions of 
lateral fluxes due to data limitations, and that lateral transport at these sites is assumed to be 
negligible due to the limited outflow from the wetlands (Miller et al., 2008). FCO2e is defined as 
annually averaged CO2 and CH4 emissions, adjusted for the global warming potential (GWP) of 
each gas. A positive FCO₂e indicates that the ecosystem is contributing positively to 
atmospheric warming, and vice versa. Here we consider CO2 and CH4 emissions but neglect 
contributions from N2O due to data limitations and because N2O emissions are considered 
negligible in Delta wetlands (Windham-Myers et al., 2018).  
2.2 Region of interest 
The Sacramento-San Joaquin Delta was selected for this study due to its high density of EC 
towers and extensive long-term data. We selected sites for model training and validation where 
data was collected for at least a decade to capture interannual variability. Hence three restored 
wetland sites, US-Myb (Matthes et al., 2016), US-Tw1 (Valach et al., 2016), and US-Tw4 
(Eichelmann et al., 2016) are selected in this study. While data from two other sites (i.e., US-
Sne and US-Tw5) are available, the lack of sufficient temporal coverage and, in the case of US-
Sne, not fully established vegetation cover, makes them less representative of a stable 
ecosystem. Focusing on sites with over a decade of continuous data allows for capturing long-
term dynamics more effectively and provides sufficient time for the wetlands to reach a stable 
state. The dataset encompasses 35 full site-years of observations across the three sites within 
the Delta (Novick et al., 2018) (Table 2, Figure 1), with detailed mapping data sourced from the 
Ecoatlas Database (Workgroup, 2019) which provides land use and vegetation surveys across 
wetlands in California. 

Table 2: Model training sites 

Site 
Code 

Site Name Water 
Type 

Salinity Years of 
Data (Full) 

Start 
Date 

US-Myb Mayberry Wetland Non-Tidal Fresh 13 2010 

US-Tw1 Twitchell Wetland West Pond Non-Tidal Fresh 12 2011 
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US-Tw4 Twitchell Island East End 
Wetland 

Non-Tidal Fresh 10 2013 

 

The sites are dominated by Tules (Schoenoplectus), Cattails (Typha), and invasive species 
such as Phragmites, which are perennial emergent plants well suited to wetland environments 
(López et al., 2016). The Delta itself is host to the largest estuarine system on the US Pacific 
coast, spanning approximately 3,000 km2, and contains a diverse network of wetland systems. 
Historically, much of the area was drained and converted for agriculture (Laćan and Resh, 2016; 
Lund et al., 2010), but recent restoration efforts have reclaimed select portions of the landscape 
for environmental benefits.  
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Figure 1: Map of the Sacramento-San Joaquin Delta's wetland system. The Eddy-covariance 
tower site locations outlined in Table 2 are shown in the red and purple boxes. Satellite 
image: © Google Earth, accessed 20254. 

 

2.3 Model features 

The application of this work focuses on upscaling carbon fluxes from similar wetlands at a 
regional scale. To achieve this, we aim to predict fluxes at unmonitored sites using widely 
available data that are expected to be key drivers of FCO2 and FCH4. Since site-level 
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measurements from EC towers are not available at a larger spatial scale, we focus on 
ecosystem drivers that can be accessed across broader spatial extents. 

The models utilize a comprehensive set of features from two readily accessible datasets: the 
Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and satellite-derived 
products from MODIS (Justice et al., 2002) (Supplementary Table S3). WLDAS provides high-
resolution hydrological and meteorological data at 1-km spatial and daily temporal resolutions, 
spanning from 1980 to the present. Key variables include soil moisture, soil temperature, 
precipitation, solar radiation, and water table depth. MODIS complements these inputs with 
remote sensing data at a spatial resolution of 250–500 meters and temporal intervals ranging 
from 4 to 16 days, providing vegetation indices such as the Normalized Difference Vegetation 
Index (NDVI) and Leaf Area Index (LAI). The broad spatial and temporal coverage of these 
datasets enables upscaling across various regions. By relying on publicly available data 
sources, the framework remains practical and adaptable, facilitating rapid implementation with 
the appropriate training data.  

The models utilize a comprehensive set of features from two readily accessible datasets: (i) the 
Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and (ii) Landsat 
surface-reflectance products (Landsat, 2020). A list of features can be found in Supplementary 
Table S3. Initially surface reflectance products were derived from MODIS (Justice et al., 2002), 
but we found better model performance with Landsat features . WLDAS provides hydrological 
and meteorological data at 1 km spatial and daily temporal resolution; we bilinearly interpolate 
these fields to each tower coordinate (no additional smoothing). Landsat offers 30 m pixels at a 
nominal 16-day revisit, although temporal resolution increases with time as more satellites are 
added; we average a 3 × 3 pixel window centred on the tower, linearly interpolate the series to 
daily resolution, and apply a centred 17-day running mean to improve data continuity.   

 

 

2.4 Model suite 
To evaluate ML model performance in calculating  FCO2 and FCH4, we implemented a suite of 
seven models ranging from simple linear methods to more complex neural networks. These 
models have been used in various ecosystems to study fluxes and collectively represent a 
broad spectrum of methodological complexity. Table 3 summarizes the core characteristics and 
advantages of each approach. 

Table 3: An overview of the models that are applied to wetland fluxes 

Model Name Category Description Key Strengths 

Linear Regression Regression Fits a linear relationship 
between predictors and 
fluxes 

Simple baseline, 
easily 

Formatted: Font: (Default) Arial, Highlight
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interpretable 
(Breiman, 2001) 

Random Forest 
(Breiman, 2001)  

Ensemble of 
Decision Trees 

Aggregates multiple 
decision trees to enhance 
prediction stability 

Robust to 
nonlinearity, 
reduces overfitting 
(Cortes, 1995) 

Support Vector 
Machine (Cortes, 
1995) (SVM) 

Kernel-Based 
Method 

Uses flexible kernels to find 
optimal separating 
hyperplanes 

Effective in high 
dimensions, 
adaptable kernels 
(Ke et al., 2017) 

LightGBM (Ke et al., 
2017)  

Gradient 
Boosting 

Employs iterative boosting 
with efficient tree growth 

Fast, memory-
efficient, handles 
large datasets 

XGBoost (Chen and 
Guestrin, 2016)  

Gradient 
Boosting 

Improves boosting with 
regularization and efficient 
computations 

Manages outliers, 
handles sparse 
data well 

LSTM Neural 
Network 
(Hochreiter, 1997)  

Recurrent 
Neural Network 

Captures temporal 
dependencies in sequential 
data inputs 

Ideal for time-
series, learns 
long-term patterns 

GRU Neural 
Network (Chung et 
al., 2014)  

Recurrent 
Neural Network 

Similar to LSTM but 
streamlined with fewer 
parameters 

Efficient temporal 
modeling, lower 
complexity 

 

These models act to demonstrate a spectrum of model complexity and how that can be 
leveraged to improve flux prediction. 

After performing simple grid searches we found that all models were largely insensitive to 
hyperparameter tuning, so we kept almost everything at the package defaults with some minor 
exceptions. Model hyper-parameter choices can be found in Brereton (2025). 

 

2.5 Validation framework 

To evaluate the models' ability to generalize across sites, we employed a Leave-One-Site-Out 
(LOSO) cross-validation strategy. In LOSO, we train the models on data from all but one site, 
and test the models on the excluded site. This approach is repeated for each site in the dataset 
and then aggregated, ensuring that there are no spatio-temporal connections between the 
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training and testing data. While few models are immune to overfitting, this approach minimizes 
the risk of doing so. 

An integral part of our modeling approach is the strategic selection of input features to optimize 
the model's performance. We perform this selection by first selecting features that are expected 
to be important, guided by mechanistic considerations of wetland processes gained from 
fieldwork and insights from mechanistic models (Table S3). Since the total number of possible 
feature combinations is too large for an exhaustive search, we adopt a feed-forward selection 
(FFS) strategy. This method begins with a single feature and iteratively adds features that most 
improves the model's performance based on a chosen statistic. At each step, we evaluate the 
model's performance with each potential new feature and select the one that provides the 
greatest improvement. This process continues until adding additional features no longer 
significantly enhances the model's performance. By using this approach, we efficiently identify 
the most influential predictors without the computational burden of testing all possible 
combinations. 

 

2.6. Validation 

As suggested above, each model was trained using data from two wetland sites and then 
validated on the third. Although the number of sites was limited, each site offered over a decade 
of observations accumulated to a daily time step, ensuring exposure to a range of 
environmental conditions representative of the wetland type and regional climate. For each 
excluded site, the model’s predictions were compared against measured FCO2 and FCH4. We 
aggregated performance metrics (R², Pearson correlation coefficient (r), and RMSE) across all 
site predictions. and we calculated R², Pearson’s r, and RMSE for that site. We then pooled all 
held-out predictions from the three sites into one combined set and recomputed R² (as well as r 
and RMSE) on the full array to give an overall cross-validation score.  This process was paired 
with the FFS method optimized to maximize R2. 

After selecting LSTM as the model of choice, it was retrained using all available data from the 
three sites for upscaling.. The Sacramento-San Joaquin Delta contains roughly 700km2 of 
wetland area, including tidal and nontidal regions. The upscaling domain encompasses 
approximately 25 km² of nontidal wetlands in the region, dominated by vegetation types relevant 
to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the 
training sites used in this study are representative of the broader conditions in the Delta, but we 
acknowledge that local variability in carbon dynamics, such as those caused by microclimates 
prevalent in the area, may not be fully captured during the ML model training. Improvements to 
the model might be achieved if additional site data covering a wider range of environmental 
conditions were incorporated. The feature data used to optimize the model were spatially 
interpolated onto the regional model grid and the model applied to yield flux estimations. 
Although relatively modest in spatial extent, these wetlands are of particular interest given their 
role in carbon sequestration and potential climate mitigation and as targets for conservation and 
restoration. 
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3. Results 

3.1 Model Validation  

We tested six modeling techniques of varying complexities (Table 3). Model performance scores 
for daily predictions are shown in Figure 2, demonstrating that nearly all machine learning 
models outperformed the linear regression baseline (R² = 0.642 for FCO2 and R² = 0.4754 for 
FCH4). For FCO2, LSTM and GRU achieved the highest R² values (0.731 and 0.710, 
respectively), outperforming other  methods. A similar result was found for FCH4, with LSTM 
and GRU both scoring R² of 0.5360. These results suggest that deep learning models can 
provide tangible benefits over linear regression methods for upscaling flux predictions. The 
LSTM model was selected for upscaling in this study as it scored highest consistently, though 
other ML models scored comparably, so we do not assert it as definitively the best model. 

The feature selection process had access to 26 environmental features from WLDAS and 78 
features derived from LANDSAT spectral bandsMODIS (see table S3 for full details). These 
variables encompass a wide range of atmospheric, soil, and vegetation characteristics, such as 
precipitation, temperature, soil moisture, and spectral indices, key environmental drivers known 
to influence carbon and methane flux dynamics (Mitsch and Gosselink, 2015b).  

The feature selection routine converged on variables that map directly onto the three main 
controls of wetland carbon cycling - vegetation productivity, surface energy-water balance, and 
microbial temperature sensitivity, see Table 4. For FCO2, the features selected were the Soil-
Adjusted Vegetation Index (SAVI) and the upwards sensible heat flux, which are proxies for 
gross primary production and the surface energy water balance (Anderson et al., 2016; Huete, 
1988). For FCH4, the features selected were canopy temperature, soil temperature and 
Greenness Difference Vegetation Index (GNDVI), which are proxies for short-term thermal 
forcing and vegetation water status, the anaerobic root-zone temperature that governs 
methanogenesis, and the supply of photosynthetically derived substrates for microbes, 
respectively (Bubier et al., 1993; Knox et al., 2021; Whiting and Chanton, 1993; Yvon-Durocher 
et al., 2014).  

Results revealed that model performance plateaued after including 2 and 3 4 features for FCO2 
and FCH4 respectively, meaning that only a small subset of predictors were needed to 
maximize predictive skill. Notably all ML models, regardless of complexity, selected the same 
initial feature for both FCO2 and FCH4, which highlights temperature as a dominant 
environmental driver. As shown in Table 4 for the LSTM case, temperature-related variables 
emerged as the first selected feature for both FCO2 (Air Temperature) and FCH4 (Canopy 
Temperature) predictions, illustrating the importance of temperature in driving ecosystem 
activity. As an aside, while temperature variables may be most significant in the first step, many 
other features scored comparably. The subsequent inclusion of hydrological and spectral 
reflectance variables led to modest improvements in R² values, which is also mirrored by 
improvements in RMSE and r.  
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Table 4: Feed-forward feature selection process. 

Target 
Variable 

Step Chosen Feature R² RMSE r 

FCO2 1 Soil-adjusted 
vegetation index 
(SAVI) Air 
Temperature 

0.5966 1.7962 0.7882 

FCO2 2 (Upwards) 
sensible heat flux 
Water Table Depth 

0.7368 1.4657 0.863 

FCO2 3 Bare Soil 
Evaporation 

0.70 1.54 0.84 

FCO2 4 Blue Reflectance 0.71 1.50 0.85 

FCH4 1 Canopy 
Temperature 

0.4852 0.054 0.703 

FCH4 2 Soil temperature 
(10-40 cm)Near-
Infrared 
Reflectance 

0.528 0.0521 0.736 

FCH4 3 Normalized 
Difference 
Greenness Index 
(NDGI)Total 
Evapotranspiration 

0.5360 0.0510 0.747 

 

Figure 3 shows both FCO2 and FCH4 results, including time series and scatter plots comparing 
predictions to observations. Overall, the predicted values track the observations reasonably 
well. For FCO2, predictions tended to regress toward the mean, underestimating peak 
emissions at local maxima and overestimating at local minima, although reasonable interannual 
variability was observed. The ML models also displayed less interannual variability than the 
observations, common in machine learning approaches (Ouyang et al., 2023). For wetlands, 
this is likely due to limited subsurface process information included in the machine learning 
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models. Still, the scatter plot shows strong performance for FCO2 (r = 0.864, R² = 0.731, RMSE 
= 1.469 gC-CO₂ m-2 day-1), despite a noticeable spread around the 1:1 line. 

FCH4 predictions exhibited similar behavior, with lower interannual variability than the 
observations. At the US-Myb site, for example, observed FCH4 were initially high (aside from 
the first year, when vegetation cover had yet to be fully established) but declined over time, 
stabilizing at lower values. The ML models captured this shift to some extent, predicting higher 
fluxes early in the time series and then modulating to lower levels later on. However, predictions 
did not fully replicate the magnitude of the observed downward annual trend, introducing bias 
into the scatter plots at higher and lower extreme values. This phenomenon is known as 
regression to the mean, observed in similar machine learning studies (Ouyang et al., 2023). 
Consequently, the FCH4 model performance was weaker than the FCO2 model (R² = 0.5361, r 
= 0.748, RMSE = 0.05 g C-CH4 m-2 day-1), indicating that the processes controlling FCH4 in 
younger wetlands like US-Myb may require more detailed subsurface information (such as soil 
organic C, oxygen, or redox information) to be accurately modeled. Restored Delta wetlands are 
often net GHG sources for 1-3 years after flooding, before vegetation is fully established. Eddy-
covariance measurements show positive NEE of +201 ± 101 g C-CO₂ m⁻² yr⁻¹ and elevated 
CH₄ emissions in the initial period, switching to sinks of between -400 to -700 g C-CO₂ m⁻² yr⁻¹ 
thereafter (Hemes et al., 2019). A larger synthesis found that this can persist decades in 
nontidal marshes because CH₄ radiative forcing outweighs CO₂ burial (Arias‐Ortiz et al., 2021). 
Similar contrasts between 2 and 15-year-old wetlands (Knox et al., 2015). 

 

The annual bar plots presented in Figure 4 highlight the model’s difficulty in capturing the 
interannual variability of carbon fluxes across the study sites. While the average FCO2 and 
FCH4 predictions are generally aligned with observed average values with small overall mean 
bias, the model struggles to reproduce the observed year-to-year variability. Although direct 
subsurface measurements are available at certain sites, at the regional scale their limited spatial 
and temporal coverage currently limits integration into models designed for regional upscaling 
over inter-annual timescale. For example, while spatial maps of wetland soil organic carbon 
exist (Uhran et al., 2022), using only three sites for training purposes would provide just three 
corresponding data points, limiting model training. The LOSO validation approach revealed that 
deep learning models, particularly LSTM and GRU, consistently outperformed traditional linear 
regression and other machine learning methods for both FCO2 and FCH4 predictions. While 
nonlinear models demonstrated clear advantages, the magnitude of improvement was relatively 
modest, reflecting the inherent challenges of capturing site-specific inter-annual dynamics of 
wetland emissions. To improve model performance, additional techniques such as feature 
transformations or attention mechanisms could be implemented. However, the primary goal of 
this model suite is to ensure reproducible results with ‘off-the-shelf’ models, which serves as a 
foundation for more advanced, nuanced approaches. 
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Figure 2: Bar plot showing best model performance for each type of machine learning 
model based on R2 score (though other metrics are in agreement, see Pearson r 
correlation and RMSE).outline model performance based on R2 score 
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Figure 3: Time-series plots (left) of observed (blue) and predicted (orangegreen) FCO2 and 
FCH4 fluxes for US-Myb, US-Tw1, and US-Tw4. The scatter plot (right) compares observed 
vs. predicted values across all sites, with a 1:1 reference line (red dashed) and overall with 
overall and site-only performance metrics (RMSE, r, R²) displayed in the upper-left corner. 

 
 
 

 

 



19 

 
 

 



20 

 
 

 

Figure 4: Annual Observed and Predicted FCO2 and FCH4 Across Three 
Wetland Sites. Aggregated statistics for all sites are as follows: For FCO2, the 
Mean Absolute Error (MAE) is 193 176 gC m-² yr-1 and the Mean Bias Error 
(MBE) is -10 17 gC m-² yr-1 . For FCH4, MAE is 11 9 gC-CH₄ m-² yr-1  and the 
MBE is 1-2 gC-CH₄ m-² yr-1 . 
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3.2. Model Application: Upscaling 

After selecting LSTM as the model of choice, it was retrained using all available data from the 
three sites for upscaling.. The Sacramento-San Joaquin Delta contains roughly 700km2 of 
wetland area, including tidal and nontidal regions. The upscaling domain encompasses 
approximately 25 km² of nontidal wetlands in the region, dominated by vegetation types relevant 
to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the 
training sites used in this study are representative of the broader conditions in the Delta, but we 
acknowledge that local variability in carbon dynamics, such as those caused by microclimates 
prevalent in the area, may not be fully captured during the ML model training. Improvements to 
the model might be achieved if additional site data covering a wider range of environmental 
conditions were incorporated. The feature data used to optimize the model were spatially 
interpolated onto the regional model grid and the model applied to yield flux estimations. 
Although relatively modest in spatial extent, these wetlands are of particular interest given their 
role in carbon sequestration and potential climate mitigation and as targets for conservation and 
restoration. 

Figure 5 displays spatial maps of annual flux estimates of Net Ecosystem Carbon Balance 
(NECB), methane flux (FCH4), and the CO₂ equivalent flux rate (FCO2e) in the study domain , 
including zoom-in subplots highlighting areas with more data. 10 models were trained and mean 
and standard deviation was calculated for each spatial point.  The results show that carbon 
sequestration, indicated by negative NECB (green) values, are typically dominant throughout 
the domain, although the northern regions shows more carbon sources. are notably stronger in 
the more northern parts of the domain, which is likely driven by air temperature (dominant 
feature), with this region of California being subject to distinctive microclimates. In contrast, 
FCH4 shows a comparatively uniform spatial pattern, which was also observed in the model 
validation. Similar to NECB, In contrast, the FCO2e distribution shows variability across the 
regionstrong latitudinal dependence, with sources and sinks found a net CO2e sink throughout 
in northern zones and a tendency toward emissions in the southern portion of the study area, 
though localized heterogeneity exists..   

Figure S1 plots the coefficient of variation (CV = σ/μ) of the inter-model ensemble for both 
NECB and FCO2e. Higher CV indicates locations where environmental conditions are poorly 
represented in the training data - effectively a proxy to determine model confidence. Across the 
study domain the vast majority of pixels show low dispersion: ≈ 85 % of the mapped area has a 
CV < 0.5 for NECB, and 69 % falls below that same threshold for FCO2e.  

Figure 6 shows averaged fluxes in the upscaling domain over the full study period. The results 
highlight the Delta as an overall carbon sink, with NECB averaging approximately -45380 gC 
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m⁻² yr⁻¹, indicating persistent sequestration across multiple years. CH4 fluxes average 3128 gC-
CH₄ m⁻² yr⁻¹, and shows little spatial variability. Values are consistent with those previously 
reported in the region (Arias‐Ortiz et al., 2021). Integrating these fluxes into a CO₂-equivalent 
metric, this regional wetland system remains a net sink of CO2 e, with approximately 60400 
gCO₂e m⁻² yr⁻¹ sequestered on average in the upscaling domain, with an increasing trend with 
time..  
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Figure 5: Mean annual Net Ecosystem Carbon Balance (NECB, left) and CO₂-equivalent radiative forcing (FCO₂e, right) averaged 
over all model years. Main maps show the Delta area; dashed rectangles (1 - 3) correspond to zoom-in panels. Tidal wetlands are 
shaded dark blue, non-tidal light blue. Positive values (red) indicate net carbon loss; negative values (green) net uptake. See 
Figure 1 for reference to training sites. 
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Figure 5: Spatial maps of the average annual fluxes across the Delta region. NECB (left) 
displays carbon sequestration. FCH4 (center) highlights CH4 emissions. FCO2e (right) 
integrates CO₂ and CH₄ fluxes weighted by radiative forcing.  Green indicates net sinks and 
red indicates net emissions to the atmosphere. 
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Figure 6: Bar plots and box plots of annual NECB, FCH4, and FCO2e fluxes, which have 
been spatially integrated over the study region, a total of 25 km2 total land area vegetated 
primarily by Tules, but also Cattails and Phragmites. The left column shows annual fluxes 
for each year, with negative fluxes in green and positive fluxes in orangered. Daily fluxes, 
aggregated to annual totals, are overlaid as greyblack lines. The right column shows box 
plots summarizing the distribution of annual fluxes, highlighting the range, median (blue 
line), and spread of values. Each row represents a different flux variable: (a) NECB, (b) 
FCH4, and (c) FCO2e. 
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4. Discussion 

This study demonstrates the development and evaluation of a data-driven framework to upscale 
terrestrial CO₂ and CH₄ flux estimates for non-tidal wetlands in the Sacramento-San Joaquin 
Delta. By systematically comparing models of varying complexity, including linear regression, 
ensemble methods, gradient boosting algorithms, and recurrent neural networks (RNNs), we 
presented a transparent assessment of model performance. The goals were to identify the 
model that best predicts CO₂ and CH₄ fluxes and critically appraise whether incremental 
complexity is justified by improvements in predictive capacity. Relevant cited works have 
included many different machine learning approaches for predicting emissions. This work aims 
to unify modelling efforts by establishing a standard framework for developing robust data-
driven models, particularly for upscaling purposes.  

Our results indicate that non-linear and more advanced models generally outperformed simple 
linear regression approaches. Among all tested models, the Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) neural networks provided the highest overall skill in predicting 
both CO₂ and CH₄ fluxes at daily timescales. This improvement was marginal but consistent, 
supporting the notion that time-series models, which inherently capture temporal dependencies 
and non-linearities, can provide tangible benefits over linear methods and traditional machine 
learning algorithms. 

However, while these deep learning models performed best, the performance gains were not as 
large as might be expected given their significantly higher complexity and computational 
demands. Similar outcomes have been noted in other ecological modeling applications, where 
advanced machine learning methods yield improvements that are statistically significant yet  
modest in terms of performance gains relative to linear models (Oh et al., 2022; Wood, 2022).  

The deep learning models provided reasonable estimates of daily fluxes but struggled to 
replicate the full range of interannual variability observed in the field measurements, which is a 
common issue for data-driven models in this field (Nelson et al., 2024). This limited ability to 
capture long-term trends and extremes mirrors common challenges in machine learning-based 
modeling, where the absence of explicit mechanistic understanding limits extrapolation beyond 
the conditions represented in the training data. The difficulty in reproducing interannual 
fluctuations was particularly evident for CH₄ fluxes, an outcome consistent with the high spatial 
and temporal complexity of CH₄ cycling in wetland environments and the limited availability of 
subsurface parameters (e.g., oxygen concentration, redox conditions, substrate availability) that 
drive CH₄ production. This may not be surprising as the number of annual cycles available in 
the training set was only 35 years. 

The observed regression to the mean and the reduced dynamic range in model predictions may 
reflect insufficient representation of key environmental drivers in the feature set or inadequate 
temporal coverage and variability in the training data. While publicly available datasets such as 
WLDAS and LANDSATMODIS were effective at providing spatially and temporally 
comprehensive inputs, the lack of direct subsurface and soil biogeochemical measurements 
likely limited the model’s ability to capture critical internal processes that are likely causing the 
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observed differences between years. Although the feed-forward selection process for the model 
features had access to an extensive pool of relevant features, results indicated that only a small 
subset of features was necessary to maximise performance. This suggests that, while there are 
many features that control CO2 and methane, their contribution to predictive accuracy may be 
redundant or captured indirectly by other variables. The exclusion of particular features, such as 
the water table depth for FCH4, illustrates the trade-off between mechanistic intuition and data-
driven optimization. Strong correlations between features and limited independent variability can 
lead to features being left out that would typically be considered ecologically relevant. 

After applying the chosen model (LSTM) to calculate CO2 and CH4 fluxes, we estimated NECB 
and CO₂-equivalent fluxes for similar wetland settings across the Delta region. The results show 
spatial heterogeneity and pinpoint regions that act as stronger net carbon sinks, as well as 
areas where CH₄ emissions may offset climate benefits of net carbon sequestration. Such 
insights support targeted conservation and restoration strategies aimed at maximizing net 
carbon sequestration benefits, facilitating ongoing efforts to restore and manage wetlands to 
contribute to net-zero emission goals. 

A key advantage of the chosen approach is its reliance on readily available, open-source data 
streams and standard computational resources. The framework can be deployed efficiently 
without specialized hardware, making it accessible to resource-limited organizations, 
practitioners, and researchers. 

The primary objectives of this study were to identify a suitable model, contextualize model 
performance by comparing to a baseline linear regression, and highlight trade-offs between 
complexity, interpretability, and accuracy. By explicitly testing multiple models ranging from 
simple linear regressions to advanced recurrent neural networks, we demonstrated that 
complexity alone does not guarantee a substantial increase in predictive power. Instead, 
complexity should be adopted judiciously, based on the magnitude of performance gains, the 
cost of model implementation, and the level of interpretability. 

We suggest that future modeling efforts should focus on deriving mechanistically relevant 
predictors (Ouyang et al., 2023), and incorporating hybrid modeling approaches (Yao et al., 
2023) that combine the strengths of process-based and machine learning methods. Attention 
mechanisms (Yuan et al., 2022), advanced architectures (e.g., Transformers (Vaswani, 2017)), 
or physics-informed machine learning (Raissi et al., 2019) may also help address model 
performance limitations. 

 

5. Conclusions 

 
This study provides a transparent, methodical demonstration of an artificial intelligence 
approach to modeling wetland carbon dioxide (CO₂) and methane (CH₄) emissions, using a 
suite of “off-the-shelf” tools and establishing a standardized benchmarking protocol for model 
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performance evaluation. In the study region (the Sacramento–San Joaquin Delta), inter-model 
comparisons revealed modest but appreciable performance differences when comparing 
advanced models with a linear regression baseline. While there are tangible benefits to 
employing machine learning for these purposes, it is likely that the gap between simpler models 
and more sophisticated models will widen as data quantity and quality continues to increase. 
Ultimately, this study lays the groundwork for regional scale model benchmark testing, 
facilitating the development of more advanced modeling approaches that can guide wetland 
management, restoration planning, and climate mitigation strategies. 

 

Code and data availability 

The current version of the RCCAT model is available on GitHub at 
https://github.com/ashbre2/RCCAT under the MIT License. The exact version of the model used 
to produce the results presented in this paper has been archived on Zenodo (Brereton, 2025) 
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Supplementary 

 

Carbon Sequestration in Nontidal Wetlands 

 

Various studies have documented substantial rates of carbon uptake in nontidal wetlands. Table 
1 summarizes reported carbon sequestration rates from prominent publications. 

Table S1: Reported Carbon Sequestration Rates in Nontidal Wetlands 

 

Location Method Climate Scale 
(# of 
Sites) 

Descriptors Sequestration 
Rate 
(g C/m²/year) 

Cited  
Study 

San 
Francisco 
Bay-Delta 
(Young 
Wetlands) 

Soil coring, 210Pb 
radiometric dating, 
eddy covariance 

Mediterran
ean 

1 site Nontidal 
managed 
wetland 
dominated by 
Typha spp., 
Phragmites 

334 ± 70 Arias-Ortiz 
et al. (2021) 
(Arias‐Ortiz 
et al., 2021) 

San 
Francisco 
Bay-Delta 
(Old 
Wetlands) 

Soil coring, 210Pb 
radiometric dating, 
eddy covariance 

Mediterran
ean 

1 site Nontidal 
managed 
wetland 
dominated by 
dense Typha 
spp. canopy 

357 ± 102 Arias-Ortiz 
et al. (2021) 
(Arias‐Ortiz 
et al., 2021) 

Central Ohio 
(Gahanna 
Woods) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
small 
scale 

Depressional 
wetland -Shrub 
dominated by 
Cephalanthus 
occidentalis 
 

202 Bernal and 
Mitsch 
(2012) 
(Bernal and 
Mitsch, 
2012) 

Central Ohio 
(Gahanna 
Woods) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
small 
scale 

Depressional 
wetland -
Forested 
dominated by 
Quercus 

473 Bernal and 
Mitsch 
(2012)(Bern
al and 

Formatted: Font: Not Bold

Formatted: No underline

Formatted: Font: Not Bold

Formatted: Font color: Auto, Not Highlight
Formatted: Font color: Auto, Not Highlight
Formatted: Font color: Auto, Not Highlight

Formatted: Font color: Auto, Not Highlight
Formatted: Font color: Auto, Not Highlight
Formatted: Font color: Auto, Not Highlight



38 

palustris Mitsch, 
2012) 

Central Ohio 
(Gahanna 
Woods) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
small 
scale 

Depressional 
wetland  -Marsh 
dominated by 
Typha spp. 

210 Bernal and 
Mitsch 
(2012)(Bern
al and 
Mitsch, 
2012) 

Northern 
Ohio (Old 
Woman 
Creek) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
mediu
m 
scale 

Riverine 
wetland  -Marsh 
dominated by 
Phragmites 
australis, 
Scirpus 
fluviatilis 

105 Bernal and 
Mitsch 
(2012)(Bern
al and 
Mitsch, 
2012) 

Northern 
Ohio (Old 
Woman 
Creek) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
mediu
m 
scale 

Riverine 
wetland  -
Mudflat 
dominated by 
Leersia 
oryzoides 

112 Bernal and 
Mitsch 
(2012)(Bern
al and 
Mitsch, 
2012) 

Northern 
Ohio (Old 
Woman 
Creek) 

137Cs and 210Pb 
radiometric dating 

Temperate 1 site, 
mediu
m 
scale 

Riverine 
wetland  -
Floating bed 
dominated by 
Nelumbo lutea 

160 Bernal and 
Mitsch 
(2012)(Bern
al and 
Mitsch, 
2012) 

Victoria, 
Australia 

Core sampling, 
model (Appleby & 
Oldfield, 1978; 
Krishnaswami, 
Lal, Martin, & 
Meybeck, 1971) 

Temperate 19 
sites  

Shallow 
freshwater 
marsh: 
moderate 
carbon stocks 

91 Carnell et 
al. 
(2018)(Car
nell et al., 
2018) 

Victoria, 
Australia 

Core sampling, 
model (Appleby & 
Oldfield, 1978; 
Krishnaswami, 
Lal, Martin, & 
Meybeck, 1971) 

Temperate 22 
sites  

Permanent 
open freshwater 
wetlands: low 
carbon stock  

230 Carnell et 
al. 
(2018)(Car
nell et al., 
2018) 
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Victoria, 
Australia 

Core sampling, 
model (Appleby & 
Oldfield, 1978; 
Krishnaswami, 
Lal, Martin, & 
Meybeck, 1971) 

Temperate 33 
sites 

Deep freshwater 
marsh: high 
carbon stocks  

160 Carnell et 
al. 
(2018)(Car
nell et al., 
2018) 

Netherlands Biomass 
measurement 

Temperate 1 site Constructed 
wetland with 
emergent 
vegetation 
(Phragmites) 

797 (average) De Klein 
and van der 
Werf 
(2014)(de 
Klein and 
van der 
Werf, 2014) 

Global Soil coring Temperate 
& tropical 

7 sites Includes natural 
and created 
wetlands 

118 (average) Mitsch et al. 
(2013)(Mits
ch et al., 
2013) 

Global  Marker horizons, 
137Cs and 210Pb 
radiometric dating  

Temperate
/Tropical 

186 
sites 

Inland wetland -
Permanent 
Freshwater 
Marsh 

122.6 Villa and 
Bernal 
(2018)(Villa 
and Bernal, 
2018) 

Global Radiometric 
dating (14C) 

Temperate
/Boreal  

88 
sites 

Rain-fed 
bogs/mires -
Non-forested 
Peatland 

26.1 Villa and 
Bernal 
(2018)(Villa 
and Bernal, 
2018) 

Global Dendrogeomor- 
phic techniques, 
14C and 210Pb 
radiometric dating 

Temperate
/Tropical in 
riparian 
settings 

117 
sites 

Riparian/Bottom
land Forests -
Freshwater 
Tree-Dominated 
Wetland 

176 Villa and 
Bernal 
(2018)(Villa 
and Bernal, 
2018) 

 

Methane Emissions in Nontidal Wetlands 

 

While nontidal wetlands sequester carbon, they can also emit methane, potentially offsetting 
some climate mitigation benefits. Table 2 presents methane emission rates from various 
studies. 
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Table S2: Reported Methane Emissions in Nontidal Wetlands 

 

 

Location Method Climate Scale 
(# of 
Sites) 

Descriptors Methane 
Emissions  
(g C-CH4 
m−2 yr−1) 

Cited  
Study 

San Francisco 
Bay-Delta 
(Young 
Wetlands) 

Eddy covariance Mediterran
ean 

1 site Nontidal managed 
wetland 
dominated by 
Typha spp., 
Phragmites 

 44 ± 5 Arias-Ortiz 
et al. 
(2021) 
(Arias‐
Ortiz et al., 
2021) 

San Francisco 
Bay-Delta (Old 
Wetlands) 

Eddy covariance Mediterran
ean 

1 site Nontidal managed 
wetland 
dominated by 
dense Typha spp. 
canopy 

37 ± 4 Arias-Ortiz 
et al. 
(2021) 
(Arias‐
Ortiz et al., 
2021) 

Maryland Static chambers 
and eddy 
covariance 
(combined in a 
Bayesian 
framework) 

Humid 
subtropical 

1 site Restored 
freshwater 
wetlands with 
graminoid patches 
dominated by 
grasses and 
sedges  

~142 
(median) 

Stewart et 
al. (2024) 
(Stewart et 
al., 2024) 

Delmarva 
Peninsula, 
Maryland 

Static chambers 
and eddy 
covariance 
(combined in a 
Bayesian 
framework) 

Humid 
subtropical 

1 site Open water areas ~5 Stewart et 
al. (2024) 
(Stewart et 
al., 2024) 

Louisiana Gas diffusion 
chambers 

Humid 
subtropical 

3 
sites 

Freshwater 
marshes 

 3–225 Delaune 
and 
Pezeshki 
(2003)(De
Laune and 
Pezeshki, 
2003) 
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Ohio Non-steady state 
gas sampling 
chamber method 
(Altor and Mitsch 
(2006, 2008) and 
Nahlik and Mitsch 
(2010, 2011)) 

Temperate 1 site Natural wetland 57 Mitsch et 
al. 
(2013)(Mit
sch et al., 
2013) 

Ohio Non-steady state 
gas sampling 
chamber method 
(Altor and Mitsch 
(2006, 2008) and 
Nahlik and Mitsch 
(2010, 2011)) 

Temperate 2 
sites 

Created marshes 30 Mitsch et 
al. 
(2013)(Mit
sch et al., 
2013) 

Costa Rica Non-steady state 
gas sampling 
chamber method 
(Altor and Mitsch 
(2006, 2008) and 
Nahlik and Mitsch 
(2010, 2011)) 

Tropical 3 
sites 

Isolated & 
floodplain 
wetlands 

Highest 
220–263 

Mitsch et 
al. 
(2013)(Mit
sch et al., 
2013) 

Costa Rica Non-steady state 
gas sampling 
chamber method 
(Altor and Mitsch 
(2006, 2008) and 
Nahlik and Mitsch 
(2010, 2011)) 

Tropical 1 site Flow-through 
tropical wetland 

33 Mitsch et 
al. 
(2013)(Mit
sch et al., 
2013) 

Randers 
Fjord, 
Denmark 

Sediment core Temperate 1 site Estuarine 
Environments 
(Freshwater 
Zones) 

2.08 Abril and 
Iversen 
(2002)(Abr
il and 
Iversen, 
2002) 

Randers 
Fjord, 
Denmark 

Sediment core Temperate 1 site Estuarine 
Environments 
(Saltwater Zones) 

0.23 Abril and 
Iversen 
(2002)(Abr
il and 
Iversen, 
2002) 

Global Eddy covariance Boreal, 
temperate, 

23 
sites 

Freshwater 
Wetlands 

0.25–271 Knox et al. 
(2021)(Kn
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tropical/su
btropical 

ox et al., 
2021) 

 

 

 

Table S3: Feature pool 

 

Variable Name Full Variable Name Variable Name Full Variable Name 

WLDAS variables: https://ldas.gsfc.nasa.gov/wldas/model-output 

AvgSurfT_tavg Surface 
Temperature 

Rainf_f_tavg Rainfall Flux (Rain + Snow) 

BareSoilT_tavg Bare Soil 
Temperature 

Rainf_tavg Precipitation Rate 

CanopInt_tavg Total Canopy Water 
Storage 

SWdown_f_tavg Surface Downwelling 
Shortwave Flux 

ECanop_tavg Interception 
Evaporation 

Soil Moisture Soil Moisture (0-200 cm), m³ 
m⁻³ 

ESoil_tavg Bare Soil 
Evaporation 

Soil Temperature Soil Temperature (0-100 cm), 
K 

Evap_tavg Total 
Evapotranspiration 

Swnet_tavg Surface Net Downward 
Shortwave Flux 

LWdown_f_tavg Surface 
Downwelling 
Longwave Flux 

TVeg_tavg Vegetation Transpiration 
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Lwnet_tavg Surface Net 
Downward 
Longwave Flux 

Tair_f_tavg Air Temperature 

Psurf_f_tavg Surface Pressure VegT_tavg Canopy Temperature 

Qair_f_tavg Specific Humidity Wind_f_tavg Wind Speed 

Qg_tavg Downward Heat Flux 
in Soil 

WT_tavg Water in Aquifer and Saturated 
Soil 

Qh_tavg Surface Upward 
Sensible Heat Flux 

WaterTableD_tav
g 

Water Table Depth 

Qle_tavg Surface Upward 
Latent Heat Flux 

Qs_tavg Surface Runoff Amount 

LANDSAT MODIS variables: https://landsat.gsfc.nasa.gov/data/data-access/ 
https://lpdaac.usgs.gov/products/mcd15a3hv006/  

                               https://lpdaac.usgs.gov/products/mod13q1v006/                                

NDVI Normalized 
Difference 
Vegetation Index 

EVI Enhanced Vegetation Index 

SAVIMIR_reflect
ance 

Soil-Adjusted 
Vegetation 
IndexMid-Infrared 
Reflectance 

NDWINIR_reflect
ance 

Normalized Difference Water 
IndexNear-Infrared Reflectance 

NDMIblue_refle
ctance 

Normalized 
Difference Moisture 
IndexBlue 
Reflectance 

NDGIred_reflecta
nce 

Normalized Difference 
Greenness IndexRed 
Reflectance 
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MNDWI Modified Normalized 
Difference Water 
Index 
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Figure S1: Coefficient of variation (σ/|μ|) of NECB (left) and FCO2e (right) across the 10 runs, showing relative inter-model  
uncertainty in the predictions. Green areas show high model confidence and red areas shower either lower model confidence (or 
division by small μ). This can be interpreted as a proxy for the confidence of the spatial upscaling. 

 


